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Abstract 

In this paper, we propose a new type of authentication system, disposable 

zero-knowledge authentication system. Informally speaking, in this authentication 

system, double usage of the same authentication is prevented. Based on these 

disposable zero-knowledge authentication systems, we propose a new untraceable 

eiectronic cash scheme satisfying both untmceobiIity and unreusabZity. This scheme 

overcomes the problems of the previous scheme proposed by Chaum, Fiat and Naor 

through its greater efficiency and provable security under reasonable cryptog-aphic 

assumptions. We also propose a scheme, transferable untruceable electronic cash 

scheme, satisfying trunsferability as well as the above two criteria, whose properties 

have not been previously proposed in any other scheme. Moreover, we also propose 

a new type of electronic cash, untraceable electronic coupon ticket, in which the 

value of one piece of the electronic cash can be subdivided into many pieces. 

1. Introduction 

“Zero-knowledge proofs” are useful for many application areas [B, BC, BCC, 

Cr, GMR, etc.]. A typical application area is authentication systems such as 

identifications and digital signatures [FFS, FS, GQ, MS, OhO]. For zero-knowledge 

proofs, coin flips of the prover are essential for zero-knowledgeness of the proof, 

while coin flips of the verifier are essential for the ability of the proof. Therefore, if 

the coin flips of the prover are restricted, the usage of the proof must be restricted 

under the zero-knowledge condition. 

In this paper, by using this property of zero-knowledge proofs, we propose 

a new type of zero-knowledge authentication, disposable zero-knowledge authen- 

tication. Informally speaking, in this authentication double usage of the same 

authentication is prevented. This type of zero-knowledge authentication is con- 

sidered to have many applications such as electronic cash, checks, and tickets, 

because in these applications a piece of information has value itself, and multiple 

invalid usage of this piece of information must be prevented. 

TO endow electronic cash with properties similar to those of real cash, elec- 

tronic cash should satisfy the following conditions: 

(1) Untraceubility: The privacy of the user should be protected. That is, the 

relationship between the user and his purchases should be untraceable by 

anyone. Ideally, any partial information about the user’s purchases should be 

untraceable by anyone (we call this property perfect untraceability). 

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 481-496, 1990. 
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( 2 )  Unrewability: The ability to use the electronic cash more than once should 

be prevented. 

( 3 )  Transferability: The electronic cash can be transfered to other users. 

Criterion (1) can be satisfied by using blind signatures [Ch, D, OkO]. TO 
satisfy criteria (1) and (2),  Chaum, Fiat and Naor [CFN] have developed an elegant 

electronic cash scheme (untraceable electronic cash) based on the cut-and-choose 
methodology and collision free functions. However, their scheme has two major 
problems fiom the viewpoint of efficiency and formal provability of security: 

0 (Efficiency) In their scheme, a customer must undergo a complex procedure 
including the cut-and-choose methodology to obtain each electronic coin. 

0 (Provability of security) The assumptions under which the scheme is provably 

secure are not clear. 

Although the scheme [CFN] satisfies the fist  two criteria, so far no scheme has 

been proposed that satisfies all three criteria: (I) untraceability, (2) unreusability, 

and ( 3 )  transferability. 

In this paper, we propose a new untraceable electronic cash scheme that sat- 

isfies the criteria (1) and (2) based on disposable zero-knowledge authentications 
as well as the cut-and-choose methodology. This scheme overcomes the problems 

of the previous scheme [CFN] in the following ways: 

0 (Efficiency) In our scheme, a customer undergoes a complex procedure includ- 

ing the cut-and-choose methodology only once when he opens his account at 

a bank. After that, only a minimal procedure is required to obtain each 
electronic coin. In this case, however, our scheme does not satisfy perfect 

untraceability, although it satisfies untraceability. That is, the relationship 
between a user and his purchases cannot be traced by anyone, but a purchase 
history of an anonymous user can be traced. 

Note that, in our scheme, we can choose the degree of efficiency and the 
degree of untraceability, and they have a trade-off. If we choose the degree of 

untraceability as maximal (or perfect untraceability), the degree of efficiency 

is minimal (or comparable to that of the previous scheme [CFN]). 

0 (Provability of security) Our scheme is proven to be secure under the following 
assumptions: 

There exists a secure digital signature 

scheme [GoMiRi] and secure multiple blind digital signature scheme. (If 
a secure multiple blind digital signature scheme exists, a secure digitd 
signature scheme exits.) 

The RSA scheme is secure, and to break the RSA 
scheme in which the plaintext’s redundancy is 0 is as hard to break as 

the RSA scheme in which the plaintext’s redundancy is less than 1/2. (If 
the latter condition holds, the former condition holds.) 

In this paper, we show a typical case where we construct our scheme based 
on the extended Fiat-Shamir scheme [GQ, OhO]. Note, however, that our scheme 

can be constructed based on other disposable zero-knowledge authentications with 
a unique solution S for I such that ( I ,  S) E R (e.g., discrete logarithm problem). 

(i) (Digital signature assumption) 

(i) (RSA Usdumption) 
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In this case, the second assumption for the scheme’s security is replaced by the 

following one (The first assumption is the same as above) : 

A relation R is invulnerable (it is 

hard to compute S from I, where (I, S) E R). And, to compute S from I 
in wbich S’s redundancy is 0 is as hard to compute as S from I in which 

S’s redundancy is less than 1/2. 

Next, we propose a new electronic cash scheme, tran~ferable untraceable elec- 

tronic cash scheme that, to our knowledge, has never been proposed, that satisfies 
criteria (l), (2) and (3).  This scheme is constructed basedon the above untraceable 

electronic cash scheme. 

Moreover, we also propose another type of electronic cash (untraceable elec- 

tronic coupon ticket) with the following property: The value of one piece of elec- 
tronic cash c a n  be subdivided into many pieces. For example, a user with a piece 

of electronic cash worth $100 could subdivide it into 100 pieces of cash worth 
81. If we add the notion of transferability (criterion (3)), tran~ferclble untraceable 

electronic coupon ticket could be constructed in a way similar to the transferable 

untraceable electronic cash. 

(ii) (Invulnerable relation assumption) 

2. Notations 

(P, V )  is an interactive pair of Turing machines, where P is the prover, and 
V is the verifier [GMR, TM]. Let T E {P,V}.  T ( s )  denotes T begun with s on 

its input work tape. ( P , V ) ( I )  refers to the probability space that assigns to the 
string u the probability that (P ,  V), on input I, outputs u. 

(P(3 ) ,V( t ) ) ( I ) ,  - V’s  history, denotes ( I , t , p ‘ , m ’ ) ,  where p’ is the finite prefix of 
V’s random tape that was read, and m‘ is the final content of the communication 
channel tape on which P writes. P A  means P with oracle A, where PA’s oracle 

tapes correspond to P’s communucation channel tapes with A. R X x Y is a 

relation, where X and Y axe sets of finite strings. 11 denotes concatenation. 

3. Disposable Zero Knowledge Authentication 

There are two types of interactive proofs. One is the interactive proof for  

membership in language L ,  in which a membership of an instance in language 

L is demonstrated [GMR]. The other is the interactive proof for p o s ~ e s ~ i o n  of 
knowledge, in which a prover’s possession of information is demonstrated [FFS, 
TW]. In the latter proof, the prover’s power is bounded in polynomid time, while, 
in the former proof, its power is not bounded. 

In this section, first, we show the revealability of the zero-knowledge interactive 

proofs for possession of knowledge. Then, we define the dispo~able zero-knowledge 

authentication and show an implementation of this authentication. 

Definition 1. Let R be a relation, and (P ,V)  be a zero-knowledge interactive 

proof for possession of some S satisfying (1,s) E R. We say that ( P , V )  is k- 

revealable if there exists a polynomial-time probabilistic Turing machine Mv (with 

complete control over V) that computes S’ such that ( I ,  S’) E R after k executions 



of the proof fixing the coin fips p of P with overwhelming probability, where p 

corresponds to one execution of the proof. (When k = O(l1l‘) and c is a constant, 
k-revealable is called poly-revealable . )  

Lemma 1. Every zero-knowledge interactive proof for possession of knowledge 

is poly-revealable. 

Proof Sketch: From the definition of the soundness of the zero-knowledge 

interactive proof for possession of knowledge [FFS], the existence of Mv c a n  be 

shown. QED 

Lemma 2. If there exist secure encryption schemes, any N P  relation has a 

2-revealable zero-knowledge interactive proof for possession of knowledge. 

Proof Sketch: Under the assumption that N P  reductions are one-to-one and 

efficiently invertible, it suffices to prove that Blum’s zero-knowledge interactive 

proof for possession of knowledge of the graph Hamiltonicity ([FFSI’s Theorem 1.) 

is Zrevealable. The iterated number of rounds of this proof is 111 (one round means 

steps 1-7 of [FFSj’s Theorem 1.). Suppose that Blum’s proof ( P , V )  is executed 

twice fixing the coin flips p of P. Let pi (i = 1,2)  be the verifier’s coin flip in 
the i-th execution of the proof, where Ip:l = 111. If p i  # p i ,  a Hamiltonian cycle 

S can be computed in polynomial-time from the history of the two executions of 

this proof. The probablity that pi  # p i  is 1 - 1/2Irl. 

Definition 2. Let A be the authority, Pi be a prover with a secret knowledge S 
such that (1,s) E R, and V; be a verifier with public knowledge I and R. Each 
party follows the below authentication procedure: 

(Step 1) Prover Pi sends a message X to authority A.  
(Step 2) A generates a digital signature C of X and sends it to Pi. ( C , X )  means 

A’s permission to Pj’s authentication. One permission corresponds to one execu- 
tion of the prover’s authentication procedure. 

(Step 3) Pi shows A’s permission (C, X) and proves his possession of S to a verifier 
V;. V ,  accepts Pj to be valid if he verifies the validity of both (C,X) and his proof 
of possession of S. 

Let pi and v; be valid przver and verifier that follow their designated protocols, 
respectively. Let Fi and V,  be invalid polynomial-time provei and verifier that 

can deviate fi2m their correct protocols in arbitrary ways, respectively. Let Pi be 
either Fi or Pi, and V; be either v; or e. 
Let ( A ,  {Pi, V;)) ( i  = 1 , 2 , .  . .) be an authentication sys tem,  if the following two 
conditions are satisfied. 

0 Comple teness:  P,(S)’s authentication is accepted to be valid by vi with 
overwhelming probability. 

0 Soundness: There exists a polynomial-time probabilistic Turing machine MP; 
(with complete control over Pj) such that if Pi’s authentication is accepted to 

be valid by Vi with non-negligible probability, then Mpi breaks cryptographic 

assumptions on A’s digital signatures with overwhelming probability and the 

output produced by Mp, on input I satisfies the relation R with overwhelming 

probability. 

QED 

- 



Note: Informally, soundness means that invalid prover F; is accepted by 7; with 

negligible probability. 

Definition 3. 
if the following conditions are satisfied. 

Authentication system ( A ,  {Pi, V;} )  is diqosable zero-knowoledge 

I Zero-knowledgeness: For any Vi, I, and t ,  there exists a polpornid-time 

probabilistic Turing machine M e  such that ((C,X), (pi(S), - K ( t ) ) ( I ) )  and 

MG ( I ,  t) are polynomially indistinguishable. 

0 DispoJability: There exists a polynomial-time probabilistic Turing machine 

M F ~ , ~ ~  (with complete control over vi and 7,) such that if p;’s authen- 

tication is executed successfully twice with the same ( C , X )  to V; and Vj 
respectively, then the output produced by Mvi,v, on input I satisfies the 

relation R with overwhelming probability. 

Note: Informally, zero-knowledgeness means that when valid prover P i ’ s  authen- 

tication is executed once with the same ( C , X ) ,  then any knowledge about secret 
information S cannot be revealed by anyone. Disposability means that valid prover 

Pi’s authentication is executed twice with the same ( C , X ) ,  then secret informa- 

tion S can be revealed by the coalition of the authority and valid verifiers. 

Theorem 1. If there exist secure encryption schemes [GM] and secure digital 

signature schemes [GoMiRi] , then a disposable zero-knowledge authentication sys- 
tem can be constructed using any N P  relation. 

Proof Sketch: Under the assumption that N P  reductions are one-to-one and 

efficiently invertible, it suflices to prove that a disposable zero-knowledge authen- 

tication system can be constructed using Blum’s zero-knowledge interactive proof 

for graph Hamiltonicity. 

Construction: 

The public input I is a graph, and S such that ( I ,  S) E R is a Hamiltonian cycle 

in I .  H is a probabilistic encryption [GM, Y]. 
(Step 1) Pi randomly permutes the vertices of graph I (using permutation ?TL,  

k = 1,2,. . . 111) to obtain 

- 

I Graph&’ 

0 An II( X 111 m a t h  a k  = { a k a *  I 8 ,  t = 1 , 2 , .  . . , Irl}, where ( Y k a t = H ( 2 ) k a t ) ,  and 
A 

V k s t  = 1 if edge s t  is present in the I k ,  and 0 otherwise, and 

P k  = H ( r k ) .  

Pi sends X =(ax,. . . , alq,pl,. . . ,&I) to authority A .  

(Step 2) A generates a digital signature ( c k )  of { ( a k , P L ) )  (k = 1,2,. . . ,111) and 

sends them to Pi. 

(Step 3-1) k + 1. 

(Step 3-2) pi sends ( a k , P k )  and c k  to vi. 

(Step 3-3) verifies the validity of the digital signature of c k .  If it is invalid, % 
rejects. Otherwise, V, chooses at random p ;  E {0,1}, and sends p; to Pi. 
(Step 3-4) If p; = 1, Pi sets 6 k  =( decryptions of a h s t  and P k ) .  Otherwise, 

6 k  = {decryption of Q k a t  I edge 3 t  is in a Hamiltonian path in I k } .  P; sends 6k to 
6 

V; . 
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(Step 3-5) If Pi is unable to perform steps 3-4 correctly, V; rejects. Otherwise, 
k t k + 1 and go to step 3-2, if k < 111. If k = 111, Vi accepts. 

Completeness: A valid prover can be accepted by a verifier with probability 1. 

Soundness: If Pi’s authentication is accepted to be valid by 7; with non-negligible 
probability, then P; can generate A’s digital signature for non-ne&gible fraction 

of the message space. Therefore, from the assumption of the existence of secure 
digital signature, there exists a polynomial-time probabilistic Turing machine MP; 
(with complete control over Pi) such that Mpi breaks cryptographic assumptions 

of A’s digital signature with overwhelming probability. On the other hand, if 
Pi’s authentication is accepted to be valid by vi with non-negligible probability, 

then, from the soundness of Blum’s protocol, Mpi on input I outputs S’ such that 

(I, S‘) E R with overwhelming probability. 

Zero-knowIedgeness: In a manner similar to the proof of the zero-knowledgeness 

of Blum’s protocol, it can be proven that ( ( C , X ) , ( P i ( S ) ,  V ; ( t ) ) ( T ) )  and M c ( I , t )  
are polynomially indistinguishable. 

Disposability: From Lemma 2. ,  we can show that there exists a polynomial-time 

probabilistic Turing machine MK that produces S’ satisfying (1,s‘) E R with 

overwhelming probability. QED 

An application to traceable electronic cash: Here, we show a straightforward 
application example of the disposable zero-knowledge authentication to traceable 

electronic cash sytems. Let authority A be a b a d ,  prover Pi be a customer, 
and verifier V ,  be a shop. The authority’s permission ( C , X )  corresponds to an 

electronic coin worth $100 that the bank issues to the customer when he withdraws 
$100 from his account. When Pi purchases an article for $100 from shop Vi, he 
makes the disposable zero-knowledge authentication regarding (C, X) to the shop. 
The shop sends the history of this authentication with ( C , X )  to the bank to 

obtain $100 from the bank. If the customer uses ( C , X )  more than once, the 
bank will reveal S’ satisfying (I, S‘) E R, and withdraw more than the $100 from 

his account to penalize the customer. Otherwise, S‘ is never revealed by anyone. 

Here, S’ witnesses the customer’s abuse of the electronic cash, and we assume that 
the bank and the customer have signed a contract such that the customer must 

pay a penalty to the bank when the bank reveals S’ satisfying (1,s’) E R. In 
other words, we can consider this situation as a game between the bank and the 

customer. In this game, the customer loses and pay some money to the bank when 
the bank reveals S’ satisfying ( I ,  S‘) E R, where I is determined by the customer. 

Discussion: The above-mentioned example is an application to a traceable elec- 

tronic cash system, in which the customer’s purchase history is traceable. Al- 
though the above-mentioned example is very simple and efficient, we can easily 

construct other implementations with almost the same functions by using digital 

signatures of the customer without using disposable zero-knowledge authentica- 

tion. 

In contrast to this application, a number of distinct advantages can be realized by 

- 
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applying disposable zero-knowledge authentication to untraceable electronic cash 

and tickets systems. We will describe these applications in some detail in sections 

4, 5 and 6. 

4. Untraceable Electronic Cash 

In this section, we show an untraceable electronic cash scheme satisfying two 

criteria, Untmceability and Unreusability, based on disposable zero-knowledge au- 
thentications. This scheme has advantages over the previously proposed scheme 

[CFN] in the standpoints of efficiency and provability of its security, as described 

in Section 1. This scheme can be constructed based on some disposable zero- 

knowledge authentications with a unique solution S for I such that (I, s) E R. In 
this section, however, we show a typical case based on the extended Fiat-Shamir 

scheme [GQ, OhO]. 
Before describing the untraceable electronic cash protocol, we will introduce 

a specific type of blind digital signature, multiple blind digital signature. 

Definition 4. Let A, P, and eA be a signer, requester, and the signer’s public 

key, respectively. Let F be an algorithm for P, D be an algorithm for A, and 

G,, ( m ~ ,  . . . , m k )  be A’s multiple digital signature of k messages, ml, . . . , mk. 
Let (A ,P ,F ,D,G)  be a multiple blind digitd signature system, if A and P follow 
the below procedure: 

(Step 1) P generates k blind messages {FCA(mi)  I i = 1 ,2 , .  ..,k} from k messages 

{mi I i = 1,2,. . . , k}, and sends them to A. Here, each FeA(mi) is independently 

blinded. 
(Step 2) A generates the multiple blind digital signature D,, (F,, (ml), . . . , F,, 
(mk)) from the k blind messages, Fe,(ml),  . . . , F,,(mk), and sends it to P. 
(Step 3) P extracts A’s multiple digital signature G,, (ml, .  . . ,mi) of ml, . . . , mk. 
(A,  P, F, D ,  G) is a aecure multiple blind digital signature system, if (A, P, F, D, G )  
satisfies the criteria for blind digital signature [Ch, OkO] and P can generate 

probability, where k , t ,  1 are positive integers, and for any subset {Zl, . . . ,ij} C 

mi’s and mi’)’s are in a randomly determined negligible fraction M of the message 

space (e.g., M = {m I Iml/c-prefix of m is a (randomly) fixed sequence, where c 

is a constant }). 

Note: The secure multiple blind digital signature schemes seem to be imple- 

mented based on the previously proposed blind digital signature schemes [Ch, 
OkO]. Note that the multiple blind digital signature scheme contains the previous 

(single) blind digital signature scheme as a special case where k = 1. In the elec- 

tronic cash scheme [CNF], the multiple blind digital signature scheme based on 

(Ch] has been used. We can also construct a multiple blind digital signature scheme 

based on a divertible zero-knowledge proof for endomorphic CRSR relation [OkO]. 

Here, note that, in this scheme based on [OkO], A must send a pre-message to 

P. However, for simplicity in this paper, we omit this pre-message sending phase 

GcA(rnl, .  . . , m k )  from DeA(ml (1) ,. . . ,mi1)), , . ., Dc,(ml (1)  ,. . . ,mIz)) with negligible 

{I,.. . , l } ,  {ml,--* ,mk} # {my’), ..., mt ( i l )  , ... , m, (ij 1 , ..., m ( G ) } ,  and every 
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when describing the multiple blind digital signature. 

Protocol 1. (Untraceable electronic cash) Bank A has a secure multiple 
blind digital signature generation algorithm D. A has published his public keys, 

e A , e a ,  of this blind digital signature scheme, where eA corresponds to the elec- 

tronic l iceme that A issues, and e a  corresponds to the value of the electronic coin 

that A issues. The bank A also sets the security parameter K = O(ln1). CUS- 

tomer P has a bank account number IDp and a secure digital signature generation 

algorithm G, and publishes his public-key ep of the digital signature scheme. 

Part I. 
When a customer P opens an account at bank A ,  A issues an electronic license B to 
use electronic cash of bank A.  (Precisely, an electronic License is (B ,  {I; ,  N;,  Li } ) .  
For simplicity, however, we call B an electronic license.) To get B ,  P conducts the 
following protocol with A. This procedure is executed only once when P opens 

the account, unless P reuses the electronic cash invalidly. 
(Step 1) Customer P chooses random values ui, and composite numbers N;  with 

two large prime factors Pi, Qi ( N ;  = Pi . Qi) ,  for i = 1,. . . , K .  P also fixes prime 

integer Li such that gcd(Li,+(Ni)) = 1, where #(PI;) =lcm(Pi - 1,Qi - 1). For 

simplicity, we assume that dl = o( leA l)(i = 1,. , . , K )  are equivalent, and 
that Li = O(1). 
(Step 2) P forms and sends K blind candidates Wi(i = 1,. . . , K) to bank A. 

Ii = Sfi mod N; ,  

si = I D P  11 ai [I Gep(IDp 11 ai). 

(Step 3) A chooses a random subset of K / 2  blind candidates indices U = {ij}, 1 < 
ij 5 K for 1 5 j 5 K / 2  and transmit it to P .  

(Step 4) P displays the a i , P i , Q i , L ; , G e p ( I D p  11 a;) ,  I D p  for all i in U, and 
random values that make messages W; blinded, then A checks them. If they are 

not valid, A halts this protocol. 
To simplify notations, we will assume that U = ( K / 2  + 1, K / 2  + 2 , .  . . , K} .  
(Step 5 )  A gives P 

D C A  (wl 9 ' ' > wK/2)' 

(Step 6) P can then extract the electronic license B. 

Notes: 
(1) Every L;'s for every customers can be replaced by a unique prime integer L 

determined by the system (or a bank). Note that in this case P must select 

Ni such that gcd(l;, + ( X i ) )  = 1. 



( 2 )  For example, when we use the RSA multiple blind digital signature scheme 

[Ch, CFN], B = nl<i<K/2 g(I; I/ N; 11 L;)lIe mod n, where ( e , n )  is A's RSA 
public key, and g is -=-appropriate one-way hash function. 

Part II. 
When customer P wants bank A to issue an electronic coin worth one dollar C 
which corresponds to ek, P conducts the following protocol with A (Precisely, an 
electronic coin is (C, {Xi}). For simplicity, however, we call C an electronic coin.): 

(Step 1) P chooses random values R; (i = 1,. . . , K / 2 ) ,  and forms and sends 2 to 

A. 

= peL (xl 11 * .  . 11 x K / 2  11 B ) ,  

X; = Rf' mod N; for 1 5  i 5 Kf2.  

(Step 2 )  A gives D,;(Z) to P and charges P's account one dollar. 
(Step 3) P can then extract the electronic coin C = G,; (XI 11 . . . ) I  X K ~  11 B ) .  

Note: We can reduce the amount of information that P posseses as follows: 

In place of possessing K / 2  pieces of information, (X; I 1 5 i _< K / 2 } ,  P possesses 

only one piece of infromation X .  In Part 11, P obtains C = G,;(X [I B). In Part 

111, we regard X as Xi  for all 1 5 i 5 Kf2,  and P computes R, = X'/'' mod Ni 
for 1 5 i 5 K / 2 .  

Part III. 
To pay a shop V one dollar, P and V proceed as follows: 

For each i = 1,2, . . . , K / 2 ,  steps 1-4 axe executed iteratedly. 

(Step 1) P sends Ii ,  Ni,  Li,  Xi to V. When i = K/2 ,  P also sends B and C to V. 
(Step 2 )  V selects a random value E; E Z z i ,  and sends it to P. When i = K/2 ,  V 
verifies the validity of the signatures B for {(I;, Ni, L;)}, and C for (XI,. . . , XK-~, 
B). If B and C are valid, V selects a random value EK12 E Z L ~ , ~ ,  and sends it 
to P. Otherwise V halts this protocol. 

(Step 3) P computes 

(Step 4) V verifies that yiLi E X; -IF 

If P passes this protocol successfully for all i = 1,2 , .  . . , K / 2 ,  then V accepts the 

electronic coin C as one dollar. 

Notex  

(1) This protocol can be modified in a manner similar to the parallel version of 

the extended Fiat-Shamir scheme. 

(2) To prevent bank A from crediting an invalid shop's account in Part IV, in 
steps 2 and 3, we can enhance the protocol as follows: 

In step 2, V selects a random value d;, and sends V's identity I D v ,  time T, 
and d; to P in place of sending Ei. V computes E; = f ( 1 D v  11 T 11 di ) ,  where 

f is a one-way function whose output is uniformly random. In step 3, P also 

computes E;. 

= R; - SF mod N; and sends it to V. 

(mod N ; ) .  
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Part IV. 
For bank A to credit V’s account by one dollar, V sends the history of Part 111 
of this protocol, a, to A, which credits V’s account after verifying whether IT is 

a correct history of Part I11 and whether ljI has not been stored already in A’s 

database. If LI is valid, bank A must store H in its database. 

(End of Protocol 1) 

In the rest of this paper, we adopt the following notations: 

(1) represents valid cash which is correctly issued by valid bank A through its 

(2) 5 represents invalid cash generated through an arbitrary polynomial-time 

(3) C represents either C or 5. P represents either P or F. 
(4) represents the valid history of the protocol between a valid customer P 

( 5 )  g represents an invalid history generated through an arbitrary polynomial- 

( 6 )  H represents either 

Definition 5. 

the following conditions are satisfied: 

designated protocol. 

algorithm of an invalid customer F. 

represents a valid customer with c. 

and a valid shop 7. 

time algorithm of an invalid shop c. 
or g. V represents either 7 or ?. 

The untraceable electronic cash system (Protocol 1) is secure if 

Any valid cash c i s  accepted as valid by any shop 7 through 
part I11 of Protocol 1. Any valid history a is accepted as valid by bank ?1. 

Any invalid cash c’ is accepted by any shop 7 through part 111 
of Protocol 1 with negligible probability. Any invalid history @ is accepted 

by bank X with negligible probability. 

For any V, I ; ,  Ni ,  L;, and t ,  there exists a polynomial-time 
probabilistic Turing machine Mv such that (C, { X i } ,  B ) ,  ( P ( { S i ) ) ,  - V(t>)({Ii ,  

Nil Li })) and M $ ( { I i ,  N i , L i ) , t )  are polynomially indistinguishable. 

There exists a polynomial-time probabilistic Turing machine 
M ~ j , , v ,  (with complete control over v, and vz) such that if fi,s coin c i s  used 

twice through pwt  I11 of Protocol 1 to 7 1  and vz respectively, then Mvl,va, 
on input these histories HI and Zz, outputs at least one piece of information 

S; = IDp 11 ai 11 G,,(IDp 1 1  u;) (i E {l , . . . , K / s ] )  with overwhelming 
probability. 

is used only 

cannot be revealed by anyone. 
is used twice, bank A can obtain 

a Completenesx 

Soundness: 

Untraceability: 

0 Unreusubility: 

Note: 

once, the identity of the customer who uses 

Unreusability means that when a valid coin 
the identity of the customer who uses 

Theorem 2. Protocol 1 is secure if the following two assumptions are satisfied: 

(Digital signature assumption) There exist a secure digital signature scheme 
[GoMi Ri] and a secure multiple blind digital signature scheme. 

( R S A  assumption) The RSA scheme is secure. And, to break the RSA scheme 

in which the plaintext’s redundancy is 0 is as hard to break as the RSA scheme in 

Informally, untraceability means that when a valid coin 

with overwhelming probability. 
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which the plaintext’s redundancy is less than 1/2,  where S’s redundancy is r if S 
is randomly selected from a source with the entropy of (1 - r)lSl bits. (Here, “as 
hard as” is defined from the viewpoint of usual “polynomial-time reduction.”) 

Pro of Sketch: 

Completeness: C and are accepted with probability 1. 

Soundness: First, we prove the following (the soundness can be directly reduced 

from the folowing result if the digital signature assumption and RSA assumption 

are satisfied, because a polynomial-time algorithm can be constructed to break 

these assumptions using Mp if E is accepted): 

There exists a polynomial-time probabilistic Turing machine M p  (with complete 

control over P) such that if C is accepted to be valid by v through part 111 
of Protocol 1 with non-negligible probability, then M p  breaks cryptographic as- 

sumption on A’s digital signatures with the public key e k ,  and, for any positive 

constant b < 1, M p ,  on input {I i}  and b, outputs a subset S c {Si} such that 

#S/(K/2) > b with overwhelming probability, where # denotes the cardinality of 
a subset. 

If C is accepted by V with non-negligible probability, then P can generate A’s dig- 
ital signature for non-negligible fraction of the message space. Therefore, from the 

definition of secure blind digital signature [GoMiRi], there exists a polynomial-time 
probabilistic Turing machine M p  such that M p  breaks cryptographic assumptions 
of A’s blind digital signature with overwhelming probability. Next we show that 

when C is accepted by v with non-negligible probability, then, for any positive 

constant b < 1, M p  can output a subset S C {Si} such that # S / ( K / 2 )  > b with 
overwhelming probability. Let T be the truncated execution tree of ( P , v ) .  T 
has ( K / 2 )  levels, and each vertex in T has at most Li (=0(1)) sons, because 7 
may ask Li possible questions at each stage. A vertex is called heavy if it  has 
at least two sons. If we can find a heavy vertex of the i-th level, we can com- 

pute Sc, since Ci is prime. Then, for a positive constant b < 1, we assume that 

at least (1 - b) (K /2 )  levels have at least one non-heavy vertex. Then, the total 

number of leaves in T is at most a negligible (0(2-K)) fraction of the possible 

leaves. Therefore, for any positive constant b < 1, more than b(K/2) levels have all 
heavy vertices. Hence, we can find at least one heavy vertex in each level with all 
heavy vertices in polynomial-time by blind exploration of T, since a non-negligible 

fraction of the leaves is assumed to survive the truncation. 

Finally, we can conclude the proof of soundness by showing in a similar manner 

that there exists a polynomial-time probabilistic Turing machine MV (with com- 

plete control V) such that if history 151 is accepted to be valid by ;;I through part 

IV of Protocol 1 with non-negligible probability, then M v  breaks cryptographic 

assumption on A’s digital signatures with the public key ek.  

Untruceability: In a manner similar to the proof of the zero-knowledgeness of 

the extended Fiat-Shamir scheme [OhOJ, it can be proven that there exists Mv 

polynomially indistinguishable. 

Di~posabili ty: 

- 

such that ( C , { X i } , I ? ) ,  (P({s i } ) ,  V(f))({Ii,jVi>Li})) a d  M $ ( { I i , N i , L i } , t )  are 

We show that when is used twice, any S; cannot be revealed 



492 

with negligible probability. Let E=(E; 1 E; selected by V1 and E; selected by V2 
are different in part 111, 1 5 i _< K/2  }. Then, for any positive constant Q < 1, 

#& > b(K/2)  with overwhelming probability. Since Li is prime, we can calculate 

I:'Li mod N, for i whose E, is in E.  Therefore, to make all Si's be concealed horn 

anyone, at least b(K/2) blind candidates W; must be invalid in part I, and all these 
invalid candidates must not be selected in U. Hence, all Si's c a n  be concealed from 
anyone with probability 2 - b ( K / 2 )  (or negligible probability). In other words, if is 

used twice, at least one piece of information Si can be revealed with overwhelming 
probability. QED 

5. Transferable Untraceable  Electronic Cash 

In this section, we propose an electronic cash scheme satisfying the criterion 

of tranferability in addition to untraceability and unreusability. 

Protocol 2. (Transferable untraceable electronic cash) 

This protocol is constructed based on Protocol 1. Therefore, undefined notations 
and procedures follow the definitions in Protocol 1. To simplify the description of 

this protocol, we suppose a case where bank A issues one dollar electronic coin c 
to customer P I ,  who transfers C to customer Pz, and P2 uses C at shop V. 

Part I. 
When customers PI and Pz open their accounts at bank A, A issues electronic 

licenses B(j )  to a customer Pj ( j  = 1,2).  Hereafter, in this protocol, &) means x 

of P j ,  where variable z follows the definition in Protocol 1. 

Part II. 
Suppose that customer PI have bank A issue an electronic coin worth one dollar 

C. 

Part III. 
To transfer C to another customer P2, PI and Pz proceeds as follows: 

(Step 1) PI and PZ follow the same protocol as that for PI to pay shop P2 one 
dollar (Part I11 of Protocol 1). 

(Step 2) PI sends a certification T that denotes the transfer of C from Pi to P2. 
For example, PI sends a digital signature G(N;i),Lp))(C ( 1  B ( 2 ) )  (e.g., T = g ( C  11 

P2 generates 

B(2))1 /L?)  mod Nll)). 

Rj2)  = (X~' ) )1 /L~21  mod N i 2 )  for 1 5 i 5 K / 2 .  

If Pz accepts PI'S electronic coin C through step I and verifies the validity of T ,  
then P2 pays one dollar to PI. 

Part IV. 
To pay shop V one dollar, P2 and V proceeds as follows: 

[Step 1) P2 sends the history of Part I11 of this protocol, H ( l ) ,  to V. V checks 
the validity of IT('). 



493 

(Step 2) P2 follows Part I11 of Protocol 1 with shop V to pay C. 

Part V. 
To have bank A credit V’s account by one dollar, V sends the history of Part IV of 

this protocol, 

is a correct history of Part IV and whether a(’) has not been stored already in 

A’s database. If 
(End of Protocol  2) 

Note: Informally, Protocol 2 is secure if the following conditions are satisfied. 

The formal definition and proof regarding the security of Protocol 2 will be shown 

in the final paper. 

a Completeness: Any (original/transfered) valid cash of B, and Fz is ac- 

cepted to be valid by P2 and any shop V ,  respectively. Any valid history 

~ 2 )  is accepted to be valid by bank 2. 
Soundness: Any (transfered) invalid cash is accepted by P2 and any shop 

V with negligible probability. Any invalid history g(’) is accepted by any 
bank with negligible probability. 

Untmceability: When a valid coin E is used only once, any knowledge about 

the identity of the customer who uses 

a Unreusability: When coin E is used twice correctly by a customer, bank ;;I 
can obtain the identity of the customer with overwhelming probability. When 

coin E is used twice correctly by two different customers PI and Ps, bank X 
can obtain the identity of Fl with overwhelming probability. 

to A, which credits V’s account after verifying whether 

is valid, bank A must store B(2)  in its database. 

- 

cannot be revealed by anyone. 

0. Untraceable Electronic Coupon Tickets 

In this section, we also propose another type of untraceable electronic cash 

(untraceable electronic coupon ticket) with the follo&ng property in addition to 

those of the untraceable electronic cash: The value of one piece of electronic cash 

can be subdivided into several pieces, For example, a user with a piece of electronic 
cash worth $100 could subdivide it into 100 pieces of cash worth $1. Here, the 

data size of 100 coupon tickets is comparable to one piece of electronic cash. 

If we add the notion of transferability (criterion (3)), transferable untraceable 

electronic coupon ticket could be constructed in a way similar to the transferable 
untraceable electronic cash. 

Protocol 3. (Untraceable electronic coupon ticket) This protocol is con- 
structed based on Protocol 1. Therefore, undefined notations and procedures 

follow the definitions in Protocol 1. 

Part I .  
To obtain license B from bank A, customer P follows the same protocol with A 

as Part I of Protocol 1. 

Part II. 

To obtain a piece of information (electronic coupon tickets), C, which is 100 tickets 
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each worth $1, customer P conducts the same protocol with bank A as Part I1 of 

Protocol 1. Here, the value of e’ indicates the value and type of electronic coupon 
tickets C (e.g., 100 tickets each worth $1). 

Part III. 
To pay shop V the j - th  one dollar ticket (1 5 j 5 loo), P and V proceeds as 

follows: 

First, P generates X<J’ = f j ( X ; )  and R:j> = ( X y > ) I / & i  mod N;. Here, f j ( Z )  

means a one-way function with a parameter j .  For example, we can construct f j  

by a one-way function f such that 

For each i = 1 , 2 , .  . . , K / 2 ,  steps 1-4 are executed iteratedly. 

(Step 1) and (Step 2) are the same as those of Protocol 1. 

(Step 3) and (Step 4) are the same as those of Protocol 1 except replacing Xi  and 

R, by X<j> and R<’>, respectively. Here, P also sends j, and V checks that 

1 5 j 5 100 and generates X,<J> = f j ( X ; ) .  

If P passes this protocol successfully for all i = I, 2, .  . . , K / 2 ,  then V accepts the 

j- th one dollar ticket of the $100 electronic coupon tickets C. 

Part IV. 

For bank A to credit V’s account by one dollar, V sends the history of Part 111 of 

this protocol, E<j>,  to A, which credits V’s account after verifying whether 

is a correct history of Part 111 and whether H<j> has not been stored already in 
A’s database. If H<j>  is d i d ,  bank A must store H < j >  in its database. 

(End of Protocol 3) 

7. Conclusion 

In this paper, we have proposed a new type of authenticatication, disposable 

zero-knowledge authentication, and described its applications to untraceable elec- 

tronic cash schemes. To find other applications of the disposable zero-knowledge 

authentication remains further work. We improved the efficiency of our scheme 

by reducing the degree of untraceability. We wi l l  concentrate on improving the 
efficiency of these schemes with perfect untraceability in further work. In the 

proof of the security of these protocols, we have supposed some assumptions. TO 
reduce these assumptions to even more fundamental assumptions remains an open 

challenge. 
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