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Abstract: The present study proposes an economic indicator to support the evaluation of aircraft End

of Life (EoL) strategies in view of the increasing demand with regards to aircraft decommissioning.

This indicator can be used to evaluate the economic performance and to facilitate the trade-off studies

among different strategies. First, Disposal and Recycle (D&R) scenarios related to stakeholders

are investigated to identify the core concepts for the economic evaluation. Next, we extracted the

aircraft D&R process from various real-life practices. In order to obtain the economic measure for the

engineering process, a method of estimating the D&R cost and values are developed by integrating

product, process and cost properties. This analysis is demonstrated on an averaged data set and

two EoL aircraft cases. In addition, sensitivity analysis is performed to evaluate the impact of the

D&R cost, residual value, and salvage value. Results show that the disassembly and dismantling

of an aircraft engine possesses relatively more economic gains than that for the aircraft. The main

factors influencing the proposed D&R economic indicator are the salvage value and D&R cost for

economically efficient D&R cases. In addition, delaying the disposal and recycle process for EoL

aircraft can lead to economically unfavorable solutions. The economic indicator combined with the

evaluation methods is widely applicable for evaluations of engineering products EoL solutions, and

implies a significant contribution of this research to decision making for such complex systems in

terms sustainable policy.

Keywords: aircraft disposal and recycle process; End of Life (EoL); aircraft and aircraft engine Life

Cycle Analysis (LCA); engineering cost and value analysis; disposal and recycle economic indicator

1. Introduction

Within the current commercial aviation industry, more than 8500 aircraft have been retired,

and it is expected that around 6600 aircraft will reach their End of Life (EoL) in the next decade [1,2].

This has led to the required development of economic efficient aircraft Disposal and Recycle (D&R)

strategies. Figure 1 illustrates a disposal and recycle sites for EoL aircraft (a) disassembly and (b)

dismantling operations.
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Figure 1. Aircraft disposal and recycle (picture source: courtesy of Aircraft End-of-Life Solutions

(AELS) Company).

Significant savings can be identified by comparing the labor, material, and energy consumption

generated from the D&R processes and that for new productions, i.e., where the D&R processes

recycle old components and offer recovered materials, while manufacturing processes produce new

components and is concerned with virgin materials. It is found that the cost of manufacturing virgin

carbon fiber is around 15–30 USD per pound in 2011, while only 8–12 USD per pound is needed via

recycling [3]. Recycling aluminum material from scrap can save up to 95% energy, and the D&R process

of producing recovered aluminum metal can reduce 39% energy consumption [4]. Airbus’ PAMELA

(Process for Advanced Management of End of Life Aircraft) project, in 2005, has demonstrated that

around 85% weight recovery can be achieved by recycling an A300 aircraft. Rolls-Royce can recycle

as much as 75% aero engine metal by aerospace smelters [5,6]. This is the main reason for the D&R

process to remain competitive in the aviation market, and the D&R process is also related to the original

design via the material choice and component recyclability and recoverability [7]. The aircraft EoL

solution is associated with the aircraft status based on its operating and maintenance condition before

parking and storing. The D&R process also involves engineering processes, such as dismantling,

sorting, and component management. Based on the aforementioned properties, it clearly indicates a

transdisciplinary character [8]. A deep understanding of the aircraft D&R process could improve the

product EoL solutions, and at the same time will, in practice, strengthen its life cycle performance.

Studies associated with the disassembly sequence and its efficiency have proven to support the product

development process [9,10]. However, aircraft economics, company economics, and global economics

all often restrict the aircraft EoL solution [7]. Due to the small industry size for the aircraft dismantling

and recycling, comparatively little study has been carried out to analyze the D&R process and its

economic performance. Along with the growth of the industry, it becomes necessary to perform those

analyses quantitatively.

Literature shows that aircraft disposal cost is around 10% of the purchase price or 1% of the

total Life Cycle Cost (LCC) [11,12], although those rough estimates could not provide a guideline on

determining whether a D&R strategy is economic and efficient. The D&R cost and value analysis for

commercial aircraft are potentially an effective means for evaluating this process related fundamentally

to sustainability. It is very necessary to provide a standard in order to evaluate the economic

performance of an EoL solution; therefore, there is a need for an economic indicator for this purpose.

Combining the economic indicator with the environmental and societal measures of the aircraft D&R

process would strengthen the process of aircraft sustainability evaluation and improve the aircraft life

cycle performance.

This paper is constructed as follows: First, literature is reviewed thoroughly for both macro and

micro levels of aircraft disposal and recycle analysis. Based on historical aircraft EoL projects, the D&R

scenarios and its process model are constructed. Detailed methodology for cost and value evaluations

is developed, followed by the D&R economic indicator, which is the first time a proposal for a standard

for economic evaluation of an aircraft EoL solution is addressed. Next, analysis is implemented for an

averaged real data set as well as for two aircraft D&R case studies data set, which are then verified
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and validated by Net Present Value (NPV) estimation and sensitivity analysis. Finally, the paper is

concluded by highlighting the main contributions and results of this research.

2. Literature Review of Aircraft Disposal and Recycle Analysis

Recent research on industrial EoL solutions include that regarding rolling stock [13],

automobiles [14], ships [15], and aircraft vehicles [8,16,17]. The research focus ranges from the

macro perspective of EoL strategies [8] to the micro perspective of the disassembly and dismantling

process [18], as well as material management methods, i.e., the material recycling [19–21], and

component management [17,22]. In addition, the economic and environmental impacts of the D&R

process are also studied [4,23,24]. Another stream of research is relevant to aircraft retirement

decision-making [25–27]. It mainly focuses on the temporal approaches to aircraft decommissioning in

order to decide the time at which to retire an aircraft or a fleet with specific strategies. It is noteworthy

that the retirement decision is very different from the EoL solution, where the latter considers the

time period after the retirement decision has been made. The EoL solution is the focus of the current

research and is associated with economic and sustainability of aircraft Life Cycle Analysis (LCA).

Aircraft EoL strategies focus on general policies in terms of the priorities of the preferred approach

by stakeholders, e.g., the selection of resale or disassembly for an aircraft, which also considers the

logistics and supply chain allocations. The goal is to select a D&R strategy for the optimal product

usage with the least cost and highest benefit. The model considers stakeholders’ benefit, the cost benefit

trade-offs among different EoL solutions, the reuse/remanufacturing possibility for the aircraft and its

components, and the reverse logistics of the product and material retransformation and redistribution.

Most research assumes a fixed task sequence of disassembly & dismantling process. Moreover, methods

are provided to generate appropriate EoL solutions. The following techniques are often used for

strategy selection: alternative strategy modeling [16,28], network flow simulation [29], cost-benefit

optimization [15], complex system modeling [28], reverse logistics analysis [17,30], and sustainability

considering economic, social, and environmental balances [16,28,31].

The detail-level disassembly & dismantling research looks into the characteristic elements of the

process steps, viz., the disassembly method, the process steps sequence, the cost of process handling,

and material flows. It aims to achieve an optimal process sequence for least cost and maximum

revenue. It can be modeled by mathematical programming, heuristics, and artificial intelligence

techniques. Methods, such as fuzzy logic [18], mixed-integer linear programming [28], process planning

optimization [32], dynamic programming [33], and simulated annealing [34], are utilized.

Component management refers to the reuse of components for other aircraft or for other purposes.

It also involves the extension of the component lifespan as well as the control of spare parts inventory

at EoL stage. The objective is to maximize the reusability and/or the values for the EoL aircraft

components. For example, Coro et al. [35,36] proposed a method of adapting inspection schedule of

aero engine welded structures based on defect propagation analysis, and considered the replacement

of the welded components by additive manufacturing spare parts in view of improving component

life cycle performance. Hur et al. [22] investigated inventory control for aircraft spare parts based

on continuous-time Markov chain model at the aircraft EoL phase. A component-oriented approach

within a computer-aided system was implemented to integrate assembly and disassembly properties

to support component management during the aircraft disposal process [17].

Research on material recycling investigates possible solutions for separating the various material

usage in the product and the reuse of the materials in new products [37,38]. It aims to reduce cost

consumption, while considering economic and ecologic impact. It is generally influenced by material

properties for material separation and reuse. Similar to research on disassembly & dismantling, it is

solved by process modeling techniques [39,40].

Both macro and micro perspectives of the disposal and recycle analysis require trade-offs between

cost and economic benefit. Therefore, it is necessary to define an appropriate economic measure for the



Appl. Sci. 2020, 10, 522 4 of 24

whole process. However, literature rarely provides detail analysis about economic indicators, if at all,

which leads to the main contribution presented in this work.

3. Scenarios and Process Detail

Economic performance of a given EoL solution is tightly associated with the engineering practices

and the D&R process executions. In order to extract the cost and value properties, stakeholder relevant

scenarios and process details are summarized according to various D&R cases.

3.1. Stakeholder Relevant Scenarios

Many stakeholders are involved in an aircraft D&R process. Among others, the airline and the

End of Life Solution (EoLS) company are the two main players. In general, three D&R scenarios can be

categorized depending on the stakeholders’ involvement (see Table 1). Basically an airline and an EoLS

company could own the aircraft and perform the D&R operations in the three ways presented. By

reviewing the cost and value distribution of the three scenarios, we identify that the D&R cost, residual

value, and salvage value are key to the economic analysis.

Table 1. Stakeholders and relevant scenarios.

No
Stakeholder and Its

Involvement
Disposal and Recycle (D&R)

Scenarios
Cost and Value Distribution

I

The airline owns the
aircraft.
The End of Life Solution
(EoLS) company has no
involvement.

The airline performs the aircraft
D&R and reuses or resells the
aircraft after the D&R process.

The airline pays the cost of the aircraft
D&R and retains the aircraft salvage
value (if reuse) or the aircraft salvage
value and the resale profit (if resale).

II

The airline owns the
aircraft.
The EoLS company is
subcontracted for the
D&R operations.

The airline reuses or resells the
aircraft after the D&R process.
The EoLS company performs the
aircraft D&R process.

The airline pays the cost of the aircraft
D&R (which is charged by the EoLS
company with profit) and retains the
aircraft salvage value (if reuse) or the
aircraft salvage value and the resale profit
(if resale).
The EoLS company pays the cost of the
aircraft D&R and obtains the D&R profit.

III

The airline resells the
aircraft to an EoLS
company.
The EoLS company owns
the aircraft.

The airline resells the aircraft to
an EoLS company without
performing the D&R process.
The EoLS company purchases
the aircraft, performs the D&R
process, and reuses or resells the
aircraft afterwards.

The airline obtains the resale profit
(which is a small margin based on the
residual value charged by the airline).
The EoLS company pays the airline resale
charge and the aircraft D&R cost, while
possessing the aircraft salvage value (if
reuse) or the aircraft salvage value and
the resale profit (if resale).

3.2. Aircraft Disposal and Recycle Process

The D&R process is generalized in Figure 2. It consists of three key elements: the EoL aircraft

module (in orange), the D&R process step module (dashed blue frame), and the EoL products module

(dashed green frame). The EoL aircraft module refers to the grounded aircraft for which the retirement

decision has been made. Within the D&R process step module, the main D&R process steps are

illustrated using square blocks. Each process step contains a group of sub-process steps (listed in

the bracket within the process square block). The EoL products module indicates the end-products

generated from the corresponding process flows. A complete D&R process starts with the EoL

aircraft and ends up with the EoL products. The sequence of the process block is indicated by the

workflow arrows. The execution of a specific process step is decided at each diamond-shaped decision

point. Component management and material management branches can be carried out concurrently

for different components or parts of an aircraft. Further process steps are performed sequentially
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depending on the priority of the various disposal and recycle techniques. The D&R process for a

specific project is established based on the status of the aircraft and the customer requirements relating

specifically to reuse and recycle [7].

 

Figure 2. Aircraft disposal and recycle process model.

The EoL aircraft is firstly stored at dry plain boneyard such as the Southern California Logistics

Airport in the United States and the Teruel Airport in Europe, which can facilitate long term parking,

maintenance and recycling capabilities with large storage capacity for commercial aircraft. For this

step, the aircraft is often transported or parked with or without performing maintenance activities.

Whether it is necessary to perform maintenances is mainly decided by the aircraft current condition

and its future usage. After deciding not to park the decommissioned aircraft, it can either be cleaned,

reconditioned, converted, and recertified for resale and, subsequently, it is reused completely as

passenger or freighter aircraft, or cannibalized via a series of process steps, the so-called disassembly &

dismantling process.

Disassembly includes components removal and cannibalization for component management,

while dismantling refers to material cutting and shredding for further recycling. Several strategies,

such as systematic disassembly, shredding, smart shredding, gross cutting, semi-gross cutting, detail

cutting, smart disassembly, and disassembly combined with cutting, can be utilized to accomplish

the disassembly and dismantling [16]. The systematic disassembly will result in all the components

and attachments being separated, removed, and sorted by material compositions. While shredding
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pertains to cut the aircraft being dissected into small pieces with mixed materials. Various techniques

of shredding, such as magnetic, eddy-current, and sink-float separations, are employed depending on

different material types [41]. Other strategies are intermediate solutions balancing costs and benefits of

the operations.

Component management and material management are performed respectively, and could be

conducted concurrently for different parts of an aircraft. In one way, component management removes

valuable components, which can then be sold and reused on other aircraft or for alternative reuse. Note

that, for a component to be reused on another aircraft of the same model and sustaining of its original

function, the component needs to be cleaned, repaired, and recertified to satisfy the regulations of an

operational aircraft. If it is reused alternatively without sustaining its original primary function (e.g.,

for product exhibition), it needs to be reworked and remanufactured. On the other hand, material

sorting and separating, referred as material management, are conducted after removing and scrapping

hazardous materials. The sorted and separated materials are used for secondary recycling based on

material properties and available recycling techniques. The secondary recycling is distinguished from

the primary recycling for materials that are scrapped during the aircraft production processes [7].

In general, metal, glass, composite, and plastic materials are separated. Based on their sizes and

recycling techniques, different materials are supplied for respective recycling processes. For example,

Al metal parts are firstly grouped by aluminum main families (Al 2xxx and 7xxx) with similar sizes.

Then, those clean and sorted parts or shredded chips can be melted to be reformed to foundry parts.

The composite parts, such as Carbon Fiber Reinforced Plastic (CFRP) material, can be decomposed to

extract the pure carbon fibers. Those carbon fibers can then be treated as recovering materials for new

components. The components are usually non-structural parts or parts for automotive components or

for electronic instruments. Two types of secondary recycling processes are categorized in terms of the

quality of the recovered materials. Some are recycled without losing the material quality, while others

are recycled due to containing paint/glue or recycled by the immature recycling techniques, which is

also denoted as down-cycling.

If the material cannot be recycled but can be burnt as wastes, the incineration process will then

convert the burning energy to heat or electricity, so-called energy recovery. In an ecological hierarchy,

the last choice would be land filling when the part/component material cannot be reused, recycled,

nor used for energy recovery.

Taking a Boeing 737 D&R case as an example, the following process flow can be constructed:

The aircraft is purchased and transported to the disposal site; then, the systems, such as air conditioning,

auto flight and electrical power systems, are removed, and the engine and landing gear are also

removed. Next, some systems and engine parts are repaired, recertified, and reused for the other

aircraft; the landing gear is scrapped; the airframe is shredded and the materials are sorted to be

further recycled as recovered material. For such a Boeing 747 case, the aircraft is firstly purchased and

transported to the disposal site; then, maintenance is carried out to keep its operational condition. It is

followed by a freighter conversion to be reused as a cargo aircraft.

Based on the generalized disposal and recycle process, a specific process plan can be generated

using various process planning techniques. The planning can be separated in three levels, depending on

distinct levels of planning detail: the strategic level of reverse logistics, the tactical level of disassembly

sequence planning and scheduling, and the operational level of detailed dismantling scheduling [17].

The strategic level planning utilizes techniques, such as network design and system dynamics [8].

This corresponds to the macro perspective of EoLS, and is sometimes focused by Original Equipment

Manufacturers (OEMs) to support the improvement of the product design and manufacturing process.

The tactical level and operational level planning adopt approaches, such as those illustrated by the

disassembly option diagrams, product-oriented automatic analysis system, selective disassembly,

partial disassembly, and artificial intelligence [17], pertaining to the micro perspective of EoLS.

Value and cost flow resides in the whole disposal and recycle process. The corresponding values

and costs are indicated in brackets within the ‘EoL aircraft’ block, the ‘process step module’ block, and
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the ‘EoL products module’ block in Figure 2. The EoL aircraft contains original residual value, and all

process steps introduce corresponding D&R cost items. The end products contain the values salvaged

from the D&R processes, from which the valorization value is introduced.

4. Cost and Value Evaluation

The D&R costs and values are identified according to the scenarios and process steps, while

methods of the cost estimation and value evaluation are developed in the following sections.

4.1. Disposal and Recycle Cost Estimation

The cost estimation herein is based on the integration of the product, D&R process, and cost

properties [42]. Complying with customer requirements for the EoL aircraft with considering the

component function and materials, the EoL strategy and the detailed D&R process can be planned.

The D&R process plan is generated based on the D&R process model and the engineering rules

embedded in the model. For example, if it is an engine part to be reused in another aircraft, the engine

should go through ‘component management’ and ‘reuse in other aircraft’ steps, which contain detailed

sub-steps, including remove, clean, repair, recovery, and recertification. These process steps are set

up sequentially to represent the D&R process for this specific case. The total cost is then formulated

by summing up the cost items for all process steps (see Equation (1)). The generalized D&R cost

function includes the costs of all possible steps following the D&R process model. It includes storing,

component management, disassembly & dismantling, material management, reuse in other aircraft,

alternative reuse, land filling, energy recovery, secondary material down cycling (for low quality

material(lq)), and secondary material recycling (for high quality material(hq)), plus resale. Dependent

upon the D&R operational scenarios, either part of or all the process steps are performed. In other

words, Equation (1) only includes the cost items incurred within the actual D&R practice. Other cost

items of the process steps not incurred are denoted as zero.

Next, each D&R process step cost can be obtained by aggregating the cost elements defined in a

Cost Breakdown Structure (CBS). The CBS contains labor, material, and energy consumption incurred

during each D&R process step, the facility, tooling & equipment costs used to facilitate the D&R

process operations, the miscellaneous costs including the project management, and other overhead

costs, as shown in Figure 3 (see Equation (2)). Equivalently, we can first sum up the process step costs

for each cost element, then accumulate the cost elements to obtain the total D&R cost. This equivalence

between those two aggregations can be expressed as in Equation (3).

CD&R =
∑

k
CD&R,k = CD&R,storing + CD&R,disassembly&dismantling + CD&R,component_management

+CD&R,material_management + CD&R,reuse + CD&R,alternative_reuse + CD&R,energy_recovery + CD&R,land_ f illing

+CD&R,recycling_lq + CD&R,recycling_hq + CD&R,resale

, (1)

CD&R,k =
∑

j
CD&R,k, j = CD&R,k,labour + CD&R,k,material + CD&R,k,energy + CD&R,k, f acility

+CD&R,k,tooling&equipment + CD&R,k,miscellaneous

, (2)

CD&R =
∑

k

∑

j

CD&R,k, j =
∑

j

∑

k

CD&R, j,k, (3)

where CD&R is the total cost used for the overall D&R process. CD&R,k,j indicates a D&R cost item, k

refers to a specific D&R process step (e.g., storing, disassembly & dismantling, etc.), and j refers to a

D&R cost element (e.g., labor, material, etc.).
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should go through ‘component management’ and ‘reuse in other aircraft’ steps, which are detailed 

   

    

 





   

 



  

 

Figure 3. Disposal and recycle Cost Breakdown Structure (CBS).

In practice, since the labor, material, and energy cost elements are directly associated with the

process steps, they are easily extracted during the D&R operation. The other cost elements, such as

facility cost, tooling, and equipment cost, are mostly one-time investments, and can either be estimated

as a lump sum or be distributed over the D&R process steps to be aggregated later. It is also noteworthy

that there are different D&R cost classifications, such as buy-back cost, transportation cost, tip and

storage fee, labor cost, equipment investment cost, and recovery cost [43]. However, this kind of

classification often confuses the process costs and the pure cost elements. The proposed method of

integrating the process steps and the pure cost elements follows a rigorous logic of integration and

avoids missing or duplicating cost items for aggregation.

Some analysis has included the aircraft residual value related ownership cost (Cresidual-related), also

called investment cost or ownership cost [41]. That refers to the investment for an airline or EoLS

company to keep the aircraft, based on its residual value, which adheres to a miscellaneous cost

element. There are often two situations when the aircraft is purchased: If the aircraft is always with

its first operator and follows a general depreciation schedule, the cost is generated due to aircraft

depreciation from the time of purchase till resale or dismantling. It relates to the depreciation cost in

the year of disposal and recycle based on the purchase price (book value) at the onset of its operation

(Equation (4)). If the aircraft is bought when it is going to be disposed and recycled, then it is often

bought with a given residual value. Then, this residual value related ownership cost relates to the

depreciation based on the residual value (book value*). Equation (5) shows the approximate residual

value related ownership cost, which is a portion of the aircraft residual value multiplied by the number

of years required for conducting the D&R process. Empirically, the residual value is around 10% of the

aircraft price [44]. The yearly investment cost is approximately 5% of the aircraft residual value [41].

In summary, the residual value related ownership cost actually refers to the cost discounted based on

the purchase price or the residual value from the time when the aircraft is bought until the time when

the corresponding disposal and recycle process step is finished.

Cdepreciation = PAC(1 + I)ndepreciation(FY − FY0)/ndepreciation, (4)

Cresidual−related = Vresidual(1 + I)
n∗

depreciation(FY∗ − FY∗0)/n∗depreciation, (5)

where Cdepreciation is the depreciation cost, Vresidual is the residual value, PAC is the aircraft price, equals

to the airline acquisition cost Cacquisition, FY is the current year, FY0 is the initial year; thus, FY − FY0 is

the depreciation period when conducting the evaluation, and ndepreciation depicts the total depreciation

period, which is larger than FY − FY0. The superscript * indicates that the parameter corresponds to

the current elapsed time of the D&R process.

4.2. Salvage, Valorization, and Residual Value Evaluation

The aircraft value involved in the D&R process generally relates to the residual, salvage, and

valorization values, which will influence the disposal and recycle strategies. They are irrelevant

to the stakeholders, while tightly linked to the specific D&R processes, and to the end reusable or

recycled product.

Aircraft residual value is the aircraft value after a certain period of depreciation. It is determined

by the airline based on its depreciation strategy and the duration of depreciation [45]. The residual

value at the year for disposal and recycle can be calculated by Equation (6). If the (FY − FY0) is just
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the total depreciation period ndepreciation, then we will have Vresidual = 0. Residual value can also be

estimated via purchase price, as in Equation (7).

Vresidual = PAC(1 + I)FY−FY0
−Cdepreciation =

PAC
ndepreciation

(

(1 + I)FY−FY0ndepreciation − (1 + I)ndepreciation(FY − FY0)
)

, (6)

Vresidual = rresidualPAC, (7)

rresidual =
(1 + I)FY−FY0 ndepreciation − (1 + I)ndepreciation(FY − FY0)

ndepreciation
, (8)

where I is the inflation rate, and rresidual is residual rate. According to Equations (6) and (7), we can

derive the expression of rresidual with Equation (8).

The salvage value (Vsalvage) is the estimated aircraft (or component) value after the D&R process.

It is extracted from the reused and recycled or resold aircraft or components and materials. It is

considered to be the value of the aircraft or aircraft component, including the valorization according

to the D&R process. Similar terms, such as the part harvested value or the component market value,

are also utilized in previous studies [2,41]. According to the present value theory, the present value (PV)

is the discounted future value (FV) by a given rate of return (r) in a period (n), as shown in Equation

(9). In the context of aircraft disposal and recycle process, the salvage value corresponds to the future

value of the aircraft after the D&R process, while the residual value is just the present value of the

aircraft in the current condition before the D&R process. Based on the relationship between FV and PV,

the link between salvage value and residual value can be formulated as in Equation (10). Therefore,

once the rate of return is given, the salvage value can be obtained through Equation (11). Depending

on the actual D&R process step, detailed salvage value may contain the following value items: the

value of the components for reuse and alternative reuse, the value of energy recovery, the value of

recycling the high and low quality material, and the value of the other resale parts or the value of the

aircraft resale (see Equation (12) and Figure 2). The salvage value for land filling is deemed as zero.

PV =
FV

(1 + r)n , (9)

Vresidual =
Vsalvage

(1 + rD&R)
nD&R

, (10)

Vsalvage = Vresidual(1 + rD&R)
nD&R , (11)

Vsalvage = Vcomponent_reuse + Vcomponent_alter_reuse + Venergy_rcv + Vmaterial_hq + Vmaterial_lq + Vresale, (12)

where rD&R is the rate of return for the D&R process, which is the interest the D&R process might earn,

nD&R is the period of disposal and recycle process, and it is equivalent to the duration of the D&R

process. The subscripts in Equation (12) correlate to the aforementioned process steps. Note that, in the

current research presented, the salvage cost concept, which is the cost spent to salvage an aircraft and

aggregation of the process step cost specifically for product salvage (e.g., reuse, material recycle, etc.),

is different and not interchangeable with the salvage value.

Valorization value (Vvalorization) is the product value added after the aircraft disposal and recycle

process. It is not straightforward to identify the valorization through each D&R process step. If the

salvage value and the residual value are known, then the valorization value can be obtained through

Equation (13).

Vvalorization = Vsalvage −Vresidual, (13)
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5. Aircraft Disposal and Recycle Economic Indicator

5.1. Definition of Disposal and Recycle Economic Indicator ID&R

For aircraft that are no longer in service, the airline will consider the trade-off between direct

resale and disassemble & dismantle (scenarios I, II, and III). At the same time, the EoLS Company

will decide whether it will conduct the aircraft disposal and recycle processes (scenarios II and III). In

order to provide a measure for the economic performance of the D&R process, a general economic

indicator (ID&R) is proposed (see Equation (14)). We consider the ratio between the values valorized

versus the cost spent through the D&R process as ID&R. It is assumed that the decommissioned aircraft

with/without D&R process remains positive in value, i.e., the salvage value and residual value are

positive. Once the aircraft is parked, it incurs a D&R cost; therefore, the D&R cost is also assumed to be

positive. Note that all values and costs should be evaluated from the same fiscal year (FY).

ID&R =
Vsalvage −Vresidual

CD&R
=

Vvalorization

CD&R
, (14)

When ID&R > 1, we have Vsalvage − Vresidual > CD&R, i.e., Valorization > CD&R. The salvage value

is therefore larger than the residual value, i.e., the valorization value is larger than the D&R cost.

It indicates that the value valorized via the D&R process is able to cover the cost incurred. Therefore,

the corresponding D&R solution should be selected, and the larger the positive ID&R, the better the

solution is.

Other situations all lead to unfavorable solutions: Where if ID&R < 0, the salvage value is smaller

than the residual value, and the D&R process would introduce a negative effect. When ID&R = 0,

salvage value equals the residual value, and the D&R process introduces zero effect. When 0 < ID&R

< 1, the salvage value is larger than the residual value, which means that the valorization value is

less than the D&R cost, where, the anticipated valorization recovers part of the aircraft residual value.

Hence, the process cannot fully harvest the residual value of the aircraft. When ID&R = 1, the salvage

value is larger than the residual value, and the valorization value is equal to the D&R cost, where the

D&R solution is at the critical point.

5.2. Definition of Disposal and Recycle NPV (ID&R_NPV)

It is known that NPV is the aggregation of the yearly differences between the present value of cash

inflow and present value of cash outflow over a period of time, as seen in Equation (15). A positive NPV

indicates that the project earnings generated in present money exceeds the costs spent, also in present

money. Therefore, an investment with a positive NPV will be profitable, and an investment with a

negative NPV will result in a net loss. In the domain of aircraft disposal and recycle, the valorization

value is comparable with the cash inflow, while the disposal and recycle cost is the cash outflow.

The disposal and recycle NPV ID&R_NPV is then formulated as shown in Equation (16).

NPV =
∑

t

CIt −COt

(1 + i)t
, (15)

ID&R_NPV =
∑

nD&R

(Vvalorization)nD&R
−(CD&R)nD&R

(1+i)nD&R
=
∑

nD&R

(Vsalvage)nD&R
−(Vresidual)nD&R

−(CD&R)nD&R

(1+i)nD&R
, (16)

where CI is the cash inflow, and CO is the cash outflow, i represents the discount rate, t is the specific

year of the project counted from the time of start, and nD&R is the current year of conducting the D&R

process. Assuming that the valorization profile is equally distributed over the duration of the disposal

and recycle project, then (Vvalorization)nD&R
and (CD&R)nD&R

are averaged values for each year. Therefore,

we obtain the simplified Equation (17) with a discount multiplier D (Equation (18)):
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ID&R_NPV = D
(

(Vvalorization)nD&R
− (CD&R)nD&R

)

= D
(

(

Vsalvage

)

nD&R
− (Vresidual)nD&R

− (CD&R)nD&R

)

, (17)

D =
∑

nD&R

1

(1 + i)nD&R
=

1

i
−

1

i(1 + i)nD&R
. (18)

When ID&R_NPV > 0, a positive aggregation of the differences between the present valorization

value and the present D&R cost is obtained. The value valorized is able to cover the cost spent for

D&R process within a certain period, which indicates that the D&R process introduces a positive effect,

and that the D&R solution should be chosen. In general, the larger the ID&R, the better the solution.

Alternatively, when ID&R_NPV < 0, the D&R process makes a net loss. When ID&R_NPV = 0, the D&R

process does not introduce any effect.

6. Analysis and Result Discussion

In order to verify and validate the proposed economic indicator, costs and values are extracted and

evaluated from both an averaged data set (see Section 6.1) and two aircraft EoL cases (see Section 6.2).

In the current market (circa 2019), there is not a standard format for cost and value data collection.

Therefore, the reference data sets are reorganized and standardized to match with the cost and value

classification and integration proposed in Section 4. Both the D&R economic indicator ID&R and the

NPV measure ID&R_NPV are calculated. The former provides the economic analysis for general and

case-specific EoL performance in civil aviation, while the latter is mainly used to verify and validate

the analysis and the corresponding results.

Furthermore, the general sensitivity analysis [46] is implemented to evaluate the sensitivity for

various base conditions, shown as general sensitivity tornado diagrams. For n model inputs x = [x1,

x2, . . . , xn] ⊆ χ in R, and a model output y = g(x) ⊆ y in R. The general sensitivity measure of xi with

a positive model input change ∆xi
+, i.e., xi + ∆xi

+ = xi
+, is then represented by the following three

indicators (Equations (19)–(24)):

Individual effect:

φ+
i
= ∆

+
i

y, (19)

Total effect:

φT
i
+ = φi

+ +
n
∑

j=1

φi, j
+ +

n
∑

k=1

n
∑

j=1

φi, j,k
+ + . . .+ φ1,2,...n

+, (20)

Interaction effect:

φI
i
+ = φT

i
+
−φi

+ =
n
∑

j=1

φi, j
+ +

n
∑

k=1

n
∑

j=1

φi, j,k
+ + . . .+ φ1,2,...n

+, (21)

where,

φi
+ = ∆

+
i

y = g
(

x+
i

, x0
∼i

)

− g
(

x0
)

, (22)

φi, j
+ = g

(

x+
i

, x+
j

, x0
∼i, j

)

−φi
+
−φ j

+
− g
(

x0
)

, (23)

φi, j,k
+ = g

(

x+
i

, x+
j

, x+
k

, x0
∼i, j,k

)

−φi, j
+
−φi,k

+
−φ j,k

+
−φi

+
−φ j

+
−φk

+
− g
(

x0
)

. (24)

where x0 refers to the model variables for the base case, (xi + ∆xi
+, x0

∼i
) is the data point in χ with

positive input change for the ith variable only, φi
+ is the individual effect for the model input xi, and

represents the first order finite change sensitivity index of the general sensitivity measures, φi,j
+ is

the interaction effect of simultaneous variation of two model inputs xi and xj, φi,j,k
+ is the interaction

effect of varying three model inputs, xi, xj, and xk, at the same time, φi
T+ refers to the total effect
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(including the individual and interaction effect) related to the model input xi, and represents the total

finite change index, φi
I+ is obtained by excluding the individual effect from the total effect relative to

the model input xi, and represents the interaction effect. In summary, the general sensitivity measure

can be represented by a generalized tornado diagram with φi
+, φi

T+ and φi
I+ indices. Accordingly,

the general sensitivity measure of xi with a negative model input change ∆xi
− is then represented by

φi
−, φi

T−, φi
I− indices.

6.1. Averaged Data Set and Economic Indicators

In this section, the analysis is conducted based on the data collected from three aircraft categories

of responses from survey investigation [2]. The costs and values relate to 2014 USD.

6.1.1. Economic Indicator Evaluation

The average costs of dismantling an aircraft or engine and the salvage values of their harvested

parts classified by aircraft categories can be seen from Tables 2 and 3 [2]. The aircraft average residual

value is assumed to be 10% of the aircraft average price, which is approximated based on aircraft

market price for aircraft manufacturers [47,48], see Tables 4 and 5. The D&R economic indicator and

NPV measure can then be obtained (Tables 6 and 7). Note that the term ‘aircraft’ shown in these tables

refers to the airframe and systems without engines, the ‘aircraft (total)’ is aircraft with engine parts,

and ‘engine’ refers to 1 engine component.

Table 2. Average dismantling cost of an aircraft/engine (2014 USD) [2].

D&R Cost ($) Narrow Body Wide Body Regional Jet

Aircraft 74,000 102,000 49,000
Engine 24,000 33,000 23,000

Table 3. Average salvage value of parts from an aircraft/engine (2014 USD) [2].

Salvage Value ($1 × 106) Narrow Body Wide Body Regional Jet

Aircraft 1.5 2.5 2.0
Engine 2.7 3.7 1.5

Table 4. Average aircraft price (2014 USD) (data resource for aircraft price.

Price ($1 × 106)
Narrow Body
(2 Engines)

Wide Body
(4 Engines)

Regional Jet
(2 Engines)

Aircraft (total) 58 214 28
Aircraft 38 134 22
Engine 10 20 3

Table 5. Average residual value (2 engines for narrow body and regional jet, 4 engines for wide body)

(rresidual = 10%) (2014 USD).

Residual Value
($1 × 106)

Narrow Body
(2 Engines)

Wide Body
(4 Engines)

Regional Jet
(2 Engines)

Aircraft (total) 5.8 21.4 2.8
Aircraft 3.8 13.4 2.2
Engine 1.0 2.0 0.3
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Table 6. Average values of the disposal and recycle economic indicator (ID&R).

ID&R Narrow Body Wide Body Regional Jet

Aircraft −30.6 −106.7 −4.1
Engine 70.8 51.5 52.2

Table 7. Disposal and recycle NPV based on average aircraft value (ID&R_NPV) (nD&R = 3, i = 8%) (2014

USD).

ID&R_NPV ($1 × 106) Narrow Body Wide Body Regional Jet

Aircraft −2.01 −9.43 −0.22
Engine 1.44 1.43 1.01

For aircraft disposal and recycle, the D&R economic indicator (ID&R) are all below 1, an unfavorable

feature from the economic perspective. ID&R of the regional jet case is shown to be the highest value

close to 1, while those of the narrow body and wide body aircraft are far from economically efficient

(Table 6). This is because a regional jet often has a relatively low purchase cost relative to general

supply chain economics [49] but has a high salvage value. It should be noted that, when there is a

small difference between the salvage value and residual value (e.g., regional jet), it is easy to turn

the situation from beneficial to economically inefficient, and vice versa. Therefore, those situations

should be carefully treated during practical disposal and recycle executions. For an engine dismantling

process, the D&R activities for the aforementioned three aircraft categories are all profitable. This can

be explained by the large salvage values of all recovered engines. The narrow body engine achieves

the highest D&R economic indicator, and it is followed by regional jet engine, and then by wide body

aircraft engine. The D&R NPV shows a similar tendency (Table 7). By comparing the engine and the

aircraft of all categories, the ID&R and NPV of the engine is generally higher than the so-called critical

point, which indicates that the engine D&R process may achieve larger valorization value and obtain

higher salvage value relatively than those of the aircraft D&R process under the 2014 reference year of

D&R techniques and the market.

6.1.2. Sensitivity Analysis for Averaged Data Set

General sensitivity measures are calculated for the averaged data set. The impact of the model

inputs on the economic indicator is obtained. Those model inputs are tightly related to their respective

cost drivers. This also motivates further inspections of their interactions [50]. Tornado diagrams for

the D&R economic indicators ID&R and the NPV measure ID&R_NPV are generated by applying ±∆xi

for the model inputs, viz., residual value, D&R cost, and salvage value. Three ranges of ∆xi = 0.1xi,

0.5xi, and 0.99xi are applied. We mainly focus on the sensitivities of the economically efficient D&R

cases. Therefore, the general tornado diagram for an engine for narrow body aircraft is exemplified in

Figure 4.
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Figure 4. General sensitivity diagram–Engine (Narrow body).

According to the general sensitivity analysis for ID&R (Figure 4a,c,e) φD&R(i)+ and φD&R(i)−, the

individual effect of the salvage value is shown to be the most sensitive for ∆xi = 0.1xi
+, ∆xi = 0.5xi

+,

and ∆xi = 0.99xi
+ (relating to positive input changes). The second influential factor is the D&R cost

in all three ∆xi
+ cases. The increase of the D&R cost and residual value introduces negative effects,

while the increase of the salvage value introduces a positive impact on the change of ID&R (all ∆xi
+

cases). Considering the negative input changes ∆xi
−, the individual effect of salvage value is the most

sensitive when ∆xi = 0.1xi
−, while the D&R cost is the most sensitive model input when ∆xi = 0.5xi

−

and ∆xi = 0.99xi
−. The second influential factor is the D&R cost when ∆xi = 0.1xi

−, and it is the salvage
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value when ∆xi = 0.5xi
− and ∆xi = 0.99xi

−. The decrease of the D&R cost and residual value introduces

positive effects on ID&R, while the decrease of the salvage value has a negative effect on ID&R for all ∆xi
−

cases. From the perspective of ID&R_NPV (Figure 4b,d,f) φD&RNPV
(i)+ and φD&RNPV

(i)−, the individual

effect of the salvage value is consistently the most sensitive factor in all ∆xi
+ cases. The second-most

influential factor is the residual value (all ∆xi
+ cases). The increase of the D&R cost and residual value

introduces negative changes of ID&R_NPV, while the increase of the salvage value has a positive impact

on ID&R_NPV (all ∆xi
+ cases). With the negative input changes ∆xi

−, the individual sensitivity shows a

symmetrical performance: The salvage value is the most sensitive (all ∆xi
− cases), while the residual

value is the second influential factor (all ∆xi
− cases). The decrease of the D&R cost and residual value

introduces positive effects on ID&R_NPV, while the decrease of the salvage value has a negative effect on

ID&R_NPV for all ∆xi
− cases. We can see that the individual sensitivities of the D&R cost and residual

value are different for ID&R and ID&R_NPV. This difference is caused by the mathematical formulation

of those two indices: ID&R places the disposal and recycle cost in the denominator position, while the

D&R cost is a subtraction item in ID&R_NPV. When ∆xi = 0.99xi
−, the D&R cost is close to zero, which

significantly increases the ID&R and illustrates a very sensitive feature.

Considering the total sensitivity for ID&R, i.e., φT
D&R

(i)+ andφT
D&R

(i)− in Figure 4a,c,e, the salvage

value is the most sensitive, and the second sensitive factor is the D&R cost (∆xi = 0.1xi
+, ∆xi = 0.5xi

+),

while D&R cost is the most sensitive and salvage value the second-most sensitive when ∆xi = 0.99xi
+.

Increasing the D&R cost and residual value will result in negative impacts, while increasing salvage

value introduces a positive effect (all ∆xi
+ cases). With negative model input changes, the salvage

value is the most sensitive (all ∆xi
+ cases), the second-most sensitive factor is the D&R cost when

∆xi = 0.1xi
−, and the residual value when ∆xi = 0.5xi

- and ∆xi = 0.99xi
−. Decreasing D&R cost and

residual value introduces positive impacts, while decreasing salvage value introduces a negative effect

(all ∆xi
− cases). According to Figure 4b,d,f) φT

D&RNPV
(i)+ and φT

D&RNPV
(i)−, the most sensitive factor

for ID&R_NPV is the residual value in terms of the total sensitivity, and the D&R cost is shown as the

second-most influential factor (all ∆xi
+ cases). Increasing the D&R cost, residual value, and salvage

value all introduce negative influences on the change of ID&R_NPV when ∆xi = 0.1xi
+ and ∆xi = 0.5xi

+.

However, increasing the D&R cost and residual value have negative impacts, and increasing the

salvage value has a positive impact when ∆xi = 0.99xi
+. The negative model input change for ID&R_NPV

shows that the salvage value is the most sensitive, while the residual value is the second-most sensitive

parameter (all ∆xi
− cases). Decreasing the D&R cost and residual value produces positive impacts,

while reducing the salvage value introduces a negative effect (all ∆xi
− cases).

In view of the interaction sensitivity for ID&R (Figure 4a,c,e) φI
D&R

(i)+ and φI
D&R

(i)−, the most

sensitive model input is the salvage value, and the D&R cost is the second-most influential parameter

(all ∆xi
+ cases). Increasing the D&R cost and salvage value introduces negative impacts (all ∆xi

+ cases),

while increasing the residual value introduces positive influences on input interaction induced output

change. In terms of negative input changes, the interaction sensitivity of salvage value is the most

sensitive, while the D&R cost is next (all ∆xi
− cases). Reducing the D&R cost and salvage value has

negative influences, while decreasing the residual value induces a positive interaction change on ID&R

(all ∆xi
− cases). However, it is noteworthy that the interaction sensitivity is negligible for all positive

input changes when compared with their counterpart of negative changes for ID&R. From Figure 4a,c,e)

φI
D&RNPV

(i)+ and φI
D&RNPV

(i)−, the interaction sensitivity of the residual value, salvage value, and D&R

cost for ID&R_NPV illustrate equal interaction sensitivities for all ∆xi
− cases. The increase of the three

model inputs has a negative influence on ID&R_NPV. By decreasing the input changes, the sensitivity of

the three parameters also maintains the same value when xi = 0.1xi
− and ∆xi = 0.5xi

−, and very close

values when ∆xi = 0.99xi
−. It is also noted that the interaction sensitivity is negligible for all negative

input changes when compared with their counterpart regarding positive changes for ID&R_NPV.
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6.2. Boeing 737-300 and 747-400 Data Set and Economic Indicators

In more detail, the D&R economic indicator and NPV measure are evaluated by referencing the

estimated D&R costs and values for a 737-300 case and a B747-400 case. The cost data are resourced

from the research conducted by van Heerden in 2005 [41] (see Table 8). The 737-300 was manufactured

in 1986 with CFM56 engines, and the B747 in 1989 with CF6 engines [41]. Four D&R cases were

considered: (1) disassembly & dismantling (same year of retirement, parking 1 year for D&R operation),

(2) disassembly & dismantling (same age at 20 years old), (3) resale (same year of retirement, parking 1

year for D&R operation), and (4) resale (same age at 20 years old). The first case refers to a disassembly

& dismantling process immediately after the aircraft reached the end of its life cycle; the second is to

disassemble and dismantle the aircraft until it is 20 years old, the third case is to resell the aircraft after

parking the retired aircraft for one year, while the last refers to resale of the retired aircraft until it is 20

years old. The time of the 737-300 retirement is just at the time when the aircraft is at an age of 20.

Therefore, for 737-300 study case, the first and second cases are equivalent, while the third and fourth

cases are the same. The costs in Euro (€) are all converted to USD ($) via the euro-dollar conversion

rate in the fiscal year 2005, i.e., €1 = $1.18.

Table 8. Disposal and recycle costs for 737-300 and 747-400 disposal and recycle cases (2005 USD).

D&R Process Cost Items ($)
737-300 (Age 20,
Parking 1 Year)

747-400 (Age 17,
Parking 1 Year)

Resale

Transport 177,000 177,000
Parking (1 year) 3600 5400

Maintenance (1 year) 159,300 159,300
Investment (1 year) 135,700 666,700

Total 475,600 1,008,400

Disassembly &
dismantling

Labor 31,860 123,900
Material 5900 11,800

Transport 3540 11,800
Scrap 2360 7080

Equipment 17,700 35,400
Project management 7080 14,160

Overhead 2950 5900
Total 71,390 210,040

6.2.1. Economic Indicator Evaluation

The cost estimations for respective EoL cases are illustrated in Tables 8–10. It is noted that the cost

and value are aggregated following the methodology proposed in Section 4. Minor adaptations on

specific cost and value items are applied based on actual data availability. For example, the investment

cost is the aforementioned residual value related ownership cost.

Table 9. Disposal and recycle costs for 747-400 resale till age 20 (2005 USD).

D&R Process Cost Items ($) B747-400 (Age 20, Parking 3 Years)

Resale till age 20

Transport 177,000
Parking (3 years) 16,200

Maintenance (3 years) 199,360
Investment (3 years) 2,000,100

Total 2,392,660
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Table 10. Disposal and recycle costs for 747-400 disassembly and dismantling till age 20 (2005 USD).

D&R Process Cost Items ($) B747-400 (Age 20, Parking 3 Years)

Disassembly &
dismantling till age 20

Transport 177,000
Parking (3 years) 16,200

Maintenance(3 years) 199,360
Investment (3 years) 2,000,100

Labor 123,900
Material 11,800

Transport 11,800
Scrap 7080

Equipment 35,400
Project management 14,160

Overhead 5900
Total 2,602,700

A European airline bought the 737 for €23million ($27 million), and the 747 for €11.3 million

($133 million) [41]. If we set the residual value as 10% of the aircraft price, the residual values for

737-300 and 747-400 are shown in Table 11. The residual value is assumed to be the same for the

disassembly & dismantling and the resale options. The salvage values of disassembly & dismantling is

the aggregation of the total market value of the dismantled components and materials, which are $3.2

million and 13.2 million for 737-300 and 747-400, respectively. The engine components for 737-300 and

747-400 are estimated to be $0.1 million and $0.2 million, and this should be included in the salvage

value. The salvage value of the resale option is assumed to be the current market value of an aircraft

when parked one year of valorization, and it is estimated at $1.7 million and $17.1 million for 737-300

and 747-400 [41], as shown in Table 11.

Table 11. Residual and salvage values for 737-300 and 747-400 cases (2005 USD).

Value ($1 × 106)
Disassembly & Dismantling Resale

737-300 747-400 737-300 747-400 737-300 747-400 737-300 747-400

Age (year) 20 17 20 20 20 17 20 20
Parking (year) 1 1 1 3 1 1 1 3
Residual value 2.7 13.3 2.7 11.2 2.7 13.3 2.7 11.2
Salvage value 3.3 13.4 3.3 11.3 1.7 17.1 1.7 10.4

Based on the method elaborated in Section 5, the economic indicator for the aforementioned D&R

cases can be calculated (see Table 12). It can be seen that the disassembly & dismantling of Boeing

737-300 (ID&R = 8.4 > 1) would fully recover the aircraft residual value with extra benefit, and the

Boeing 747-400 would only make a profit from the resale (parking 1 year) solution (ID&R = 3.8 > 1).

By conducting D&R processes when both aircraft are at the same age, it can be seen that the result for

the B737-300 remains unchanged, while neither disassembly & dismantling nor resale is economically

efficient for the 747-400 aircraft. This is mainly due to the large expense of 3 years parking forthe

747-400 before resale or disassembly & dismantling. Therefore, for an aircraft reaching its EoL, it is

better to conduct D&R process sooner. In addition, it is obviously seen that, the older the aircraft, the

lower the chance to achieve economic efficiency. Based on ID&R measurement, decisions on resale or

disassembly & dismantling can be easily made through the comparisons.

Table 12. Disposal and recycle economic indicator for 737-300 and 747-400 cases.

D&R Economic
Indicator

Disassembly & Dismantling Resale

737-300 747-400 737-300 747-400 737-300 747-400 737-300 747-400

Age (year) 20 17 20 20 20 17 20 20
Parking (year) 1 1 1 3 1 1 1 3

ID&R 8.4 0.5 8.4 0.0 −2.1 3.8 −2.1 −0.3
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For verification and validation, by assuming the discount rate i = 8%, the duration of the D&R

case nD&R = 3, and the in and out cash flow as evenly distributed over the D&R case duration, the

D&R NPV is evaluated and listed in Table 13. Comparing the D&R NPV measure with the economic

indicator, shows a consistent result.

Table 13. Disposal and recycle NPV for 737-300 and 747-400 cases (nD&R = 3, I = 8%) (2005 USD).

D&R NPV
($1 × 106)

Disassembly & Dismantling Resale

737-300 747-400 737-300 747-400 737-300 747-400 737-300 747-400

Age (year) 20 17 20 20 20 17 20 20
Parking (year) 1 1 1 3 1 1 1 3

ID&R_NPV 0.45 −0.09 0.45 −22.3 −1.27 2.41 −1.27 −2.74

6.2.2. Sensitivity Analysis for Cases 737-300 and 747-400 Data Set

Similarly, in order to identify the impact of the model inputs, general sensitivity measures are

obtained by applying ∆xi = 0.1xi, 0.5xi, and 0.99xi for the driving parameters for economically efficient

cases. Sensitivity diagrams for the 737-300 disassembly & dismantling case and the 747-400 resale case

are illustrated in Figures 5 and 6. The sensitivity values and their ranges vary based on specific cases

since the general sensitivity is still a local sensitivity measure. The magnitude indicates the numeric

scale of the sensitivity under specific circumstances of each study case. For different cases, it is not of

interest to compare the absolute values among them but, more importantly, to verify the similar trend

and the magnitude range of sensitivities. By comparing Figures 4–6, the sensitivity representations

of 737-300 and 747-400 economic indicators and the NPV measures are seen to be consistent, which

shows a coherent sensitivity performance for economically efficient cases
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(a) 737-300 ID&R, Δxi = 0.1xi (b) 737-300 ID&R_NPV, Δxi = 0.1xi 

  
(c) 737-300 ID&R, Δxi = 0.5xi (d) 737-300 ID&R_NPV, Δxi = 0.5xi 

  
(e) 737-300 ID&R, Δxi = 0.99xi (f) 737-300 ID&R_NPV, Δxi = 0.99xi 

Figure 5. Sensitivity tornado diagram (737-300 disassembly and dismantling).
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(a) 747-400 ID&R, Δxi = 0.1xi (b) 747-400 ID&R_NPV, Δxi = 0.1xi 

  

(c) 747-400 ID&R, Δxi = 0.5xi (d) 747-400 ID&R_NPV, Δxi = 0.5xi 

  

(e) 747-400 ID&R, Δxi = 0.99xi (f) 747-400 ID&R_NPV, Δxi = 0.99xi 

Figure 6. Sensitivity tornado diagram (747-400 resale).

7. Conclusions

The present study proposed an economic indicator for the D&R process to measure the overall

performance of the D&R solution, providing a new way of LCA that evaluates aircraft life cycle

performance. In order to assess the economic performance in engineering D&R operation, a value

and cost estimation method, by means of integrating the product, process, and cost properties, is
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developed. The product properties are connected with their cost and value via each process step.

The analysis can greatly improve the EoL strategy and process development by providing economic

estimates for relevant stakeholders. By involving the properties of aircraft configuration, its materials

and components composition, and the operation and maintenance condition, we can derive the D&R

process cost and value evaluation and the EoL solution. A general approach of developing an aircraft

EoL solution is illustrated and can be summarized as follows: (1) Select the stakeholder and evaluate

relevant scenarios; (2) map the process network to the detailed D&R process with specific steps for

aircraft and its components; (3) evaluate value and cost of possible EoL strategies; (4) decide the most

economically efficient strategy; and (5) build the final EoL solution with the detailed process steps.

The proposed indicator is used within the aforementioned 5 steps to evaluate the economic performance

and to facilitate the trade-off studies among different strategies. The formulation of the economic

indicator combined with the evaluation methods indicates a wider applicability for evaluations of

engineering products EoL solutions, which implies a significant contribution of this research.

Analysis has been conducted on an averaged data set and data collected from Boeing 737-300

and 747-400 aircraft EoL cases. It is found that the disassembly & dismantling of an engine possesses

relatively more economic gains than that of an aircraft. An aircraft is better disposed and recycled when

it just reaches the time point disposal, while parking with maintenance is cost-consuming. In general,

a higher salvage value and lower D&R cost will have better economic performance. The effectiveness

of the proposed economic indicator is verified and validated by the NPV measure. This indicator can

further support the EoL strategy development, such as the disassembly & dismantling decision or

the resale decision, at the early phase of an aircraft EoL. Besides, the sensitivity of each model input

is analyzed in detail. The individual, total, and interaction sensitivities are obtained by varying the

model inputs within a certain range for both ID&R and ID&R_NPV. The sensitivity is tightly related to

the mathematical construction of the evaluation model. Salvage value and D&R cost possess great

influence on the D&R economic indicator, while in most cases, salvage value and residual value have

major impacts on the D&R NPV.

Since not all cost elements are included in this analysis, this might have reduced the impact of the

D&R cost on the D&R economic indicator. It is, therefore, recommended to use cost parameters for

each process step, so that the cost drivers can be identified that support the development of the exact

relationships between the parameters and the corresponding cost elements. Moreover, it is necessary

to extract a better evaluation for product salvage values by relevant stakeholders to achieve a more

accurate analysis. Nonetheless, the economic indicator does not nullify the decision. For example,

the environmental impact and innovative energy conversion [51,52] have not been involved in the

decision-making process. By combining the D&R economic indicator with evaluations concerning its

environmental and societal impact, the D&R process can be further assessed and improved regarding

the sustainability of an aircraft life cycle. If a potential disposal and recycle approach can lead to a

sustainable solution, all sustainability metrics should be considered, while using the economic indicator

as a warranty check. Last but not least, since the proposed economic indicator involves data from the

initial purchase of aircraft, the depreciation during the aircraft operation, and the values and costs of

the EoL solutions, it is rather complex to acquire accurate and latest economic data. Therefore, it is of

great interest to continue the analysis for more recent data and to strengthen the validation of results,

and furthermore to identify global economic influences on aircraft disposal and recycle.
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