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Abstract
Waste masks pose a serious threat to the environment, including marine plastic pollution and soil pollution risks caused by 
landfills since the outbreak of COVID-19. Currently, numerous effective methods regarding disposal and resource utilization 
of waste masks have been reported, containing physical, thermochemical, and solvent-based technologies. As for physical 
technologies, the mechanical properties of the mask-based materials could be enhanced and the conductivity or antibacterial 
activity was endowed by adding natural fibers or inorganic nanoparticles. Regarding thermochemical technologies, cata-
lytic pyrolysis could yield considerable hydrogen, which is an eco-friendly resource, and would mitigate the energy crisis. 
Noticeably, the solvent-based technology, as a more convenient and efficient method, was also considered in this paper. In 
this way, soaking the mask directly in a specific chemical reagent changes the original structure of polypropylene and obtains 
multi-functional materials. The solvent-based technology is promising in the future with the researches of sustainable and 
universally applicable reagents. This review could provide guidance for utilizing resources of waste masks and address the 
issues of plastic pollution.

Keywords  Waste mask · Disposal · COVID-19 · Resource utilization · Physical technology · Thermochemical technology · 
Solvent-based technology

Introduction

COVID-19 is a global issue that mankind is facing recently, 
so amounts of single-used masks are worn to cut off the 
transmission of novel coronavirus. Statistics show that 3.4 
billion waste masks are produced and discarded every day 
around the world (Benson et al. 2021). With the extensive 
use of disposable medical masks, the related waste has 
brought severe problems. The used disposable masks can 
become mediums for the propagation of the infectious 
disease, which leads to uncontrollable spread of coronavirus. 
Meanwhile, a substantial number of disposable masks 
have been discarded to the environment, posing adverse 
physiological and ecotoxicological effects to wildlife (Silva 

et al. 2021). Additionally, soil erosion and microbial action 
may result in the progressive breakdown of the disposable 
masks into microplastics, which can easily go into the food 
chain via crops and animals, threatening the health of human 
beings (Zhou et al. 2020). Disposable masks are mainly 
composed of spunbond non-woven fabric, melt-blown 
non-woven fabric, ear loop, and nose wire. Polypropylene 
(PP) non-woven microfiber is the main material of masks 
(Xiang et al. 2021), so it indicates that plastic pollution is 
the major challenge. The accumulation of polypropylene will 
cause incalculable damage to the ecological environment 
(Dharmaraj et al. 2021). At the same time, many discarded 
masks will also lead to a significant waste of resources (Park 
et al. 2021). Therefore, it is urgent to seek productive and 
eco-friendly solutions for the treatment or utilization of 
waste masks.

Generally, physical, thermochemical, and solvent-
based technologies have been widely used for disposal and 
resource utilization of waste masks. The first two meth-
ods are regarded as traditional disposals of waste plastics. 
When physical technologies are used, masks are mixed 
with traditional construction materials such as asphalt to 
boost concrete strength (Saberian et al. 2021) after soaking 
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masks with graphene oxide suspension. Besides, masks are 
directly melted and applied as raw plastic materials with low 
mechanical strength. Thermochemical technology refers to a 
process of pyrolyzing masks after being separated, crushed, 
and dried. In this kind of method, the most valuable pyroly-
sis product is liquid oil which has a calorific value and com-
ponents similar to those of diesel (Sun et al. 2022). In this 
way, multiple carbon materials can also be prepared, which 
could serve as new conductive or charge storage materials 
(Hu and Lin 2021) through catalysts or sulfuric acid treat-
ment. Recently, some breakthroughs have also been made 
in traditional technologies. For instance, novel physical 
technology intends to enhance the strength and functional-
ity of mask PP and modify the material by mixing natural 
fibers (Pulikkalparambil et al. 2022) and inorganic nanopar-
ticles (Irez et al. 2022). By adding reinforcing fillers, novel 
physical technology is more environmental-friendly and can 
produce novel properties, such as tensile property, compres-
sive property, and antimicrobial property. The use of cata-
lysts such as the zeolite and biochar in the thermochemical 
technologies is confirmed to increase the yield of H2. Thus, 
thermochemical technologies may become a favorable way 
of energy supplement.

Noticeably, it is promising that the solvent-based 
technology is focusing on the inherent characteristics 
(e.g., hydrophobicity and hydrophilicity) of masks. The 
waste masks can be prepared into highly value-added 
materials, such as battery separators and catalytically 
active substances, according to the properties of different 
components. Besides, this method can be conducted in 
more extensive experimental conditions without high-
temperature and complex pretreatment process. Other than 
that, the novel solvent-based technology is more convenient 
to separate target products from by-products and solution 
than conventional technologies. Hence, novel solvent-based 
technology is desirable to solve the problem of waste mask 
pollution during the epidemic (Sangkham 2020). The most 
existing reviews are about the feasibility of the secondary 
use of waste masks after disinfection (Gir et al. 2021) and 

the introduction of physical and chemical valorization 
(Asim et al. 2021; Torres and De-la-Torre 2021). However, 
the innovations of traditional technologies as well as the 
novel solvent-based technology have not been considered 
in previous reviews. Therefore, this review summarizes 
not only the latest development of the two traditional 
technologies along with the novel solvent-based technology 
for waste mask disposal, but also the mechanism of each 
technology. The aim is to provide inspiration and reference 
to obtain the ideal products. A more comprehensive and 
systematic utilization method of waste masks can be formed 
with some comparisons. Under the goals of carbon peaking 
and carbon neutrality, this review helps to better control the 
waste mask pollution and utilize waste energy.

Physical recovery technology

Traditional physical recovery

Direct melting and thermoforming

The main component of the mask is the thermoplastic poly-
mer that can be melted. Direct melting and thermoform-
ing refer to the process of directly melting in the extruder, 
extruding, and hot compressing disinfected masks to prepare 
regenerated materials. Due to the low molecular weight of 
mask PP, the regenerated material possessed low viscos-
ity but equivalent stiffness and strength to the typical PP 
copolymer (Battegazzore et al. 2020).

The PP fiber of the masks was heated and melted at 
190 °C. The fiber structure of masks was transformed into a 
continuous matrix of PP, in which calcium carbonate parti-
cles were dispersed uniformly (Fig. 1a). Thermogravimetric 
analysis showed that it was the most suitable condition when 
the heating reaction was under 190 °C, for 2 min. It would 
lead to excessive degradation of PP under a higher heating 
temperature or a longer heating time. If ear loops were recy-
cled together, the processing temperature of 230 °C would 

Fig. 1   SEM images of a masks without ear loops processed at 190 °C, b masks with ear loops processed at 190 °C, and c masks with ear loops 
processed at 230 °C. Figure 2 is taken from Battegazzore et al. (2020) with copyright permission
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be not sufficient. Unmelted fibers of ear loops existed in the 
PP matrix as fillers (Fig. 1b, c), and the adhesion between 
matrices and fibers was poor. Because ear loops in the mar-
ket show great variability in materials and shapes, different 
kinds of ear loops have various effects on the properties of 
final products. In addition, the high local concentration of 
ear loop fibers may alter the viscosity and yield stress of the 
final materials due to heterogeneity (Crespo et al. 2021). 
Thus, mechanical or artificial separation and classification 
of the components are suggested in the recycling process of 
waste masks. The possible influence on the heterogeneity of 
masks could be eliminated and the efficiency of upgrading 
and reconstruction would be improved (Irez et al. 2022).

In short, the process of direct melting and thermoforming 
is simple and economical with a short procedure, which 
can be used to recycle waste masks. However, regenerated 
materials can only be used in  situations requiring low 
mechanical properties, such as flowerpots, storage tanks, 
or transport pallets that are not critical to technical 
specifications (Crespo et  al. 2021). Other fillers or 
polymers can be added to further improve the performance 
of regenerated materials to meet the requirements of 
more industrial applications. For example, fillers such as 
montmorillonite, SiO2, and carbon nanomaterials can be 
added to mask PP to prepare composites or polymers such 
as polyethylene (PE) and polyamide (PA) can be added to 
prepare polymer alloys.

Modification of building materials

Waste masks can be treated by physical processing directly 
after strict medical disinfection and sterilization. Waste 
masks after physical processing can serve as a modifier for 
building materials to realize the recycling of waste masks, 
as illustrated in Table 1. Adding a low percentage (0–5%, 
according to soil weight) of the broken masks in road materi-
als could strengthen the ductility and flexibility of pavement 
foundation and underlying foundation layer (Rehman and 
Khalid 2021; Saberian et al. 2021; Zhang et al. 2022). For 
example, waste masks were used as an asphalt modifier for 
the first time. The modification process of waste masks to 
asphalt was a physical modification, and no chemical reac-
tion occurred to generate new functional groups. The frag-
mented mask was dispersed in the asphalt to form a partial 
network structure, and the asphalt had good compatibility 
with the mask under this process. Thus, the softening point, 
viscosity, rate of elastic recovery, high-temperature deforma-
tion resistance, rutting resistance, and freeze–thaw splitting 
strength of asphalt were improved (Yalcin et al. 2022; Zhao 
et al. 2022).

Concrete is one of the most widely used building materi-
als in the construction process. Concrete is a quasi-brittle 
material. Internal stress in hardened concrete can lead to the 

formation of microcracks. Studies have added small amounts 
of crushed masks to cement paste, cement mortar, or con-
crete (Kilmartin-Lynch et al. 2021). Waste masks bear part 
of load before any microcracking is initiated and reduce the 
number of microcracks (Nili and Afroughsabet 2010; Shen 
et al. 2020a). And, waste masks bridge cracks and transfer 
stress across the cracks after initial cracking of the specimen 
(Afroughsabet et al. 2016; Mohammadhosseini et al. 2017) 
Therefore, waste masks can improve the crack resistance and 
durability of concrete.

The effects of masks as fillers on the mechanical strength 
and durability of concrete were studied in terms of the shape, 
percentage, and pretreatment of the masks. Fibrosing the 
mask and cutting the masks into pieces of squares could 
modify the shape of masks (Idrees et al. 2022). Fibrous 
masks which were produced in the first approach offered 
better tensile strength of concrete than mask fragments. 
Additionally, the penetrability of the final material should 
be taken into consideration as lower permeability means bet-
ter endurance. The permeability of the sample added with 
mask fragments was greatly reduced since square mask frag-
ments were impermeable, not allowing water or ions to pass 
through. However, the fibrous masks did not reduce the pen-
etrability of concrete significantly as the square fragments 
did. Therefore, specific mechanical properties and durability 
can be improved by changing the shape of the masks to meet 
engineering requirements.

Furthermore, the percentage of adding masks had a sig-
nificant effect on the performance of concrete. It would 
be hardly possible for excessive fibrous or fragmented 
fillers to distribute evenly in concrete, creating too many 
voids instead. As a result, compressive and tensile strength 
declined and penetrability improved. The optimum percent-
age of fibrous masks was found to be 1% to enhance the 
mechanical and endurable properties of concrete (Idrees 
et al. 2022). The optimum percentage of waste masks added 
to concrete in the form of fragments remains to be studied.

The drawback of waste masks in application in concrete 
is the weak bonding with cement matrix. The pretreatment 
of masks can improve the interface transition zone between 
the mask fibers and cement slurry matrix in order to further 
enhance the strength of concrete. Nano-active powders or 
chemical treatments can be used to the surface modifica-
tion of the masks. For example, a high-range water reducer 
(HRWR, MasterGlenium7920, BASF) was used to disperse 
the masks into microfibers with a length range of about 
5–30 mm and a diameter range of 20–40 μm. Microfibers 
were pretreated with graphene oxide (GO, 0.05 wt%) sus-
pension (Li et al. 2022b). GO raised the degree of polymeri-
zation of hydration products in the interfacial transition zone 
between mask fibers and cement slurry matrix through its 
superior nano-nucleation and interlocking effect, resulting 
in tighter bonding between mask fibers and cement slurry 
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(Luo et al. 2021a). In the cement slurry with the water/
cement ratio of 0.40, the GO-treated mask fibers at 0.1 vol% 
showed great growth on the splitting tensile strength (by 
47% at 28 days), even though the compressive strength of 
paste decreased slightly (by 3% at 28 days).

In general, it is of a good prospect for waste masks to 
make building materials produce with better strength and 
endurance. As we expect, sustainability, circular economy, 
and effective waste management are gradually coming true.

Novel physical recovery

The relative molecular mass of melt-blown PP is small 
and the distribution is narrow, and it is easy to control the 
process of modifying the mask PP (Chadwick et al. 2004). 
Introducing common and inexpensive inorganic nanoparti-
cles and natural fibers or blending mask PP with other poly-
mers to obtain polymer alloys can convert waste masks into 
highly value-added products during mechanical recycling 
(Fig. 2).

Composite modification with fillers

Nanomaterials have strong volume, surface, size, and mac-
roscopic quantum effect, so they can affect the mechanical, 

optical, electrical, and thermal properties of the final mate-
rials. Natural fibers have the significant properties of easy 
availability, low density, low cost, high mechanical strength, 
renewability, lower environmental impact, lower abrasive 
damage, and good insulation properties (Pulikkalparambil 
et al. 2017). Without any coupling agent or additive, nano-
materials and natural fibers can be used as reinforcing fillers 
to improve the mechanical strength of mask PP, and even 
allow mask PP to obtain special features, such as conductiv-
ity and antibacterial property. Composites can be utilized for 
specific industrial applications, as shown in Table 1.

Uniformly dispersed fillers act as the skeleton in the 
matrix. The physical or chemical interactions between filler 
and PP matrix restrict the movement of the matrix and con-
sequently improve the mechanical properties of the compos-
ites such as stiffness, toughness, and strength (Liang et al. 
2016). Graphene nanosheets (GnPs) were employed as rein-
forcement material to blend with mask PP. The elastic modu-
lus of the composites was increased due to the high elastic 
modulus of GnPs when GnPs were uniformly distributed 
(Irez et al. 2022). Moreover, conductive polymer composites 
were fabricated by simply melting and blending mask PP 
and multi-walled carbon nanotubes (MWNTs) at 180 °C. 
PP matrix was locked in the network of MWNTs to avoid 
rupture under strong external force. The tensile strength of 

Fig. 2   The process of novel 
physical recovery
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the composites increased and was higher than that of com-
mon commercial grade polypropylene (Xiang et al. 2022). 
Loofah sponge (LS) containing a unique micron-channel 
structure was used as an enhancer to melt and blend with 
mask fragments at 180 °C (Xiang et al. 2021). Mask PP with 
high fluidity overcame the capillary effect of microchannels 
of LS. That micron channels of LS fiber were filled with the 
PP matrix led to the transformation of LS fibers from hollow 
fibers to solid ones, so a reinforcement network was formed. 
The LS/mask PP composites exhibited better tensile strength 
and toughness.

In addition to the basic mechanical properties, the intro-
duction of inorganic nanoparticles and natural fibers can also 
functionalize PP and expand the range of use. For example, 
GnPs can absorb microwaves owing to such two-dimen-
sional honeycomb microstructure (Chen et al. 2010; Hassan 
et al. 2009; Li et al. 2010). The composites with enhanced 
impact resistance and microwave self-healing function were 
produced by blending GnPs with mask PP, to provide ben-
eficial outcomes for the maintenance planning and lifetime 
improvement of the bumpers in the automotive industry (Irez 
et al. 2022). In the microstructure of the MWNTs/mask PP 
composites, MWNT fibers interpenetrated with each other 
in the PP matrix to form a conducting network. Thus, more 
conducting paths were constructed to transport carriers, 
leading to the improved electrical property of the compos-
ites. And, good thermal conductivity of MWNTs transferred 
the heat needed by the thermal decomposition of the com-
posite in time, leading to the improved thermal property of 
the composites. Besides, the enhanced thermal stability of 
the composites came from the good thermal stability of the 
MWNTs their selves (Xiang et al. 2021).

The uniform dispersion of nanomaterials and natural fib-
ers as fillers melting in PP is the key to preparing composites 
by melt blending. High molecular weight of neat PP leads to 
high melt viscosity in the preparation of the composites. Fill-
ers would be more difficult to uniformly disperse in the neat 
PP matrix, leading to a poor increase of mechanical property 
of the composites. Compared with neat PP, the molecular 
weight of mask PP decreases, leading to the lower melt vis-
cosity in the preparation of the composites. Fillers would be 
easier to uniformly disperse in the mask PP matrix, leading 
to a higher increase of mechanical property of the compos-
ites (Xiang et al. 2021).

Nevertheless, excessive nanomaterials and natural fibers 
are prone to agglomerate. The aggregation of nanomaterials 
and natural fibers leads to stress concentration, resulting in 
microcracks around these nanoparticle clusters, and prevents 
effective stress transfer and reduces the toughening effects 
of nanoparticles (Irez et al. 2022). The aggregation of nano-
materials and natural fibers not only reduces the mechani-
cal properties, but other functional properties also are nega-
tively affected. Scientists investigate the influence of surface 

bioactive treatment on the dispersion of fillers. For example, 
the surface of GnPs was treated with 65% nitric acid and 
distributed uniformly in the PP matrix, so the stiffness and 
toughness of the composites were boosted (Irez et al. 2022). 
On the other hand, starting from the processing machinery 
and technology, the uniform dispersion of nanoparticles in 
the PP matrix can be realized by changing the shear field and 
tensile flow field in the mixing process (Ferras et al. 2020; 
Grace 2007; Rwei et al. 1990, 1991; Sun et al. 2019).

Recently, researchers have carried out a lot of researches 
on modifying polymers with nanoparticles and natural fibers 
and have been familiar with surface modification of nanopar-
ticles or natural fibers. However, the study of these surface 
modification methods for mask PP modification is deficient. 
Other nanoparticles or natural fibers can also be used to 
modify mask PP to better enhance the mechanical properties 
of regenerated materials, or develop other special character-
istics of regenerated materials, such as permeability, flame 
retardancy, thermal stability, and so on.

Polymer alloy

Polymer alloy is a polymer blend obtained by blending two 
or more polymers and additives in the molten state. Blend-
ing with the polymer can further improve the strength and 
impact resistance and toughness of mask PP. However, 
many polymers with complementary properties have obvi-
ous phase separation in their blends as their poor thermo-
dynamic compatibility leads to the instability and deterio-
ration of their properties. Compatibilizers can increase the 
compatibility between components. The interfacial adhesion 
between polymers can be strengthened, and a macroscopic 
non-separation and microscopic heterogeneous system can 
be formed. Consequently, the well-developed interface can 
transfer stress and enhance the mechanical properties of 
materials.

Nowadays, a reactive compatibilizer is exploited in 
PP blending technology. Grafted or block copolymers 
(Andreopoulos et al. 1999; Bertin and Robin 2002; Eagan 
et  al. 2017; Radonjic and Gubeljak 2002; Yang et  al. 
2003) and maleic anhydride grafted polyethylene (Fang 
et  al. 2013) are typical compatibilizers. For instance, 
the nonpolar PP fibers of the mask were mixed with 
polar acrylonitrile butadiene rubber (NBR) using maleic 
anhydride (MA) as the compatibilizer (Varghese et al. 2022). 
The reaction mechanism of PP-NBR blends is shown in 
Fig. 3. Dicumyl peroxide (DCP) acted as the free radical 
initiator in the overall reactions. MA reacted with PP first, 
and MA-modified PP molecules further reacted with NBR 
(George et al. 1995, 1999). As an interfacial agent, MA fixed 
PP and NBR together via chemical bonds to form a three-
dimensional elastic network in the blends. Additionally, 
there was sulfur cross-linking within the NBR matrix, which 
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resulted from the vulcanization process that again increased 
the strength of the blend. Meanwhile, islands of PP were 
formed in the network structures and the phase separation 
was prevented. The interface between PP and NBR in the 
blends has superior adhesion and stability compared with 
that between pure PP and NBR. It is obviously shown that 
PP-NBR blends present better mechanical and barrier 
properties.

The issue of poor compatibility between the fillers and 
the matrix also exists in the method of composite modifica-
tion with fillers. The surface energy of nanoparticles is high, 
while the surface tension of PP melt is low. Natural fibers 
are usually strongly hydrophilic because of many hydroxyl 
groups contained while PP is hydrophobic. Therefore, the 
mixture of fillers and PP lacks thermodynamic driving force, 
resulting in obvious phase separation, thus destroying the 
modifying effects. The properties of composites can also 
be improved by using compatibilizers. For example, PP was 
grafted with MA (PP-g-MAH). Moreover, MWNTs were 
covalently attached with hydroxyl groups (MWNT-OH) 
using KOH and further transformed into MWNT-NH2 by 
a silane coupling agent. The subsequent reaction between 
the amino groups on MWNTs and the MAH groups on PP 
resulted in the grafting of PP chains onto the MWNT, and 
the target product PP-g-MWNTs was obtained. Remarkable 
improvements in the mechanical, thermal, and electrical 
properties of the obtained composites were achieved due 
to the improved interfacial conditions (Wang et al. 2019).

The properties and applications of materials derived from 
different physical recovery technologies are summarized in 
Table 1. Traditional physical processing for recycled materi-
als can be obtained economically. Recycled materials can be 
applied to industries with less stringent mechanical owner-
ship requirements. Novel physical treatment can enhance 
the added value of recycled PP. Recycled PP composites can 
often be used as associated components for important equip-
ment and decorations. However, the application of mechani-
cal blending is limited since PP is a nonpolar polymer and 
its interaction with other polar compounds is weak (Chen 

et al., 2020a). Furthermore, repeated mechanical treatment 
may cause side reactions in the molecular chain and reduce 
the performance of recycled PP.

Thermochemical technology

Thermal cracking

Thermal cracking is a widespread method to eliminate 
plastic waste. Polyolefins are degraded via the free radical 
random cleavage pathway in nitrogen or air without cata-
lysts at 300–900 °C. The pyrolytic products of masks can 
be mainly gaseous or liquid with slight solid residues, as 
shown in Table 2. The pyrolysis gas is mainly composed of 
small molecules, including methane and hydrogen, which 
have the potential to become syngas. Meanwhile, no harm-
ful gases will be released during pyrolysis because of the 
low content of N and S in masks (Schwartz et al. 2020). 
Liquid oil is mainly composed of hydrocarbon from C6 to 
C35, and the calorific value is similar to gasoline (44 MJ/kg). 
Thus, the effective usage of liquid oil as an energy resource 
can alleviate the energy crisis (Li et al. 2022a). In addi-
tion, the novel coronavirus could be inactivated at 100 °C 
(Rubio-Romero et al. 2020). Therefore, treating waste masks 
via thermal cracking was a relatively sustainable, efficient, 
and eco-friendly technology as opposed to incineration and 
landfilling.

Figure 4a depicts the mechanism based on the mask 
pyrolysis mass curve. The mask began to decompose at 
130 °C with evaporating of moisture. The friction-mechan-
ical bonds between the fabrics of masks were destroyed and 
existed in the form of individual microparticles as the tem-
perature increased to about 280 °C (Yousef et al. 2021a). A 
high temperature (420 °C) would cause the van der Waals, 
hydrogen, and β-1,4-glycosidic bonds of cellulose, lignin, 
and hemicellulose destroyed, following the generation 
of small molecules and amorphous regions. Low-carbon 

Fig. 3   Reaction mechanism of 
PP-NBR blends (Varghese et al. 
2022)
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hydrocarbon molecules were decomposed into gaseous and 
liquid products at 510 °C, and almost no solid existed at 
700 °C.

The transformation of masks into fuel has been studied 
by pyrolysis. The temperature and feed composition are fac-
tors affecting the yield and distribution of liquid oil. Several 

Table 2   Application summary of thermochemical treatment of waste masks

Method Catalyst Experimental conditions Main products Yield Reference

Thermal cracking – T = 440 °C, time = 20 min Liquid oil 42.1 wt% (Sun et al. 2022)
Thermal cracking – T = 550 °C, time = 30 min Liquid oil 80.7 wt% (Lee et al. 2021)
Thermal cracking – T = 700 °C Diesel 34.1 wt% (Park et al. 2021)
Thermal cracking – T = 900 °C, heating rate = 5 °C/

min
2,4-Dimethyl-1-heptene 32.1 vol% (Yousef et al. 2021a)

Thermal cracking – T = 2700 °C, time = 8 s, carbon 
foam microwave plasma

H2 and CH4 52.0 vol% (Xu et al. 2021)

Co-pyrolysis – T = 400 °C, time = 1 h, co-
pyrolysis with surgical gloves

Bio-crude oil 75.0 wt% (Aragaw and Mekonnen 2021)

Co-pyrolysis – T = 700 °C, ratio of food waste 
to masks = 3:1 (g)

H2 and C1–C3 gas 13.0 vol% (Park et al. 2021)

Co-pyrolysis – T = 300 °C, ratio of Spirulina 
platensis to masks = 3:1 (g)

Bio-oil 23.0 wt% (Li et al. 2021)

Co-pyrolysis – T = 900 °C, ratio of bio-oil to 
masks = 10:1 (g)

Biochar, bio-oil, and graphene 
films

– (Luo et al. 2021a, b)

Catalytic cracking Nb-CeO2 T = 550 °C, time = 4 h C3–C16 86.5 wt% (Ali et al. 2022)
Catalytic cracking β(60H) T = 580 °C Butene 30.9 wt% (Sun et al. 2022)
Catalytic cracking ZSM-5 T = 900 °C, heating rate = 5 °C/

min, ratio of ZSM-5 to 
masks = 1:4 (g)

1-Butanol 28.7 vol% (Yousef et al. 2022)

Catalytic cracking Ni/SiO2 T = 450 °C, heating 
rate = 10 °C/min, N2 environ-
ment

H2 55.1 mol% (Jung et al. 2021)

Catalytic cracking Biochar T = 650 °C, ratio of biochar to 
masks = 4:1 (g)

H2 65.7 vol% (Wang et al. 2022)

Catalytic cracking HBeta T = 450 °C H2 19.5 wt% (Lee et al. 2021)
Catalytic cracking Biochar T = 800 °C, ratio of biochar to 

masks = 2:1 (g)
H2 37.0 vol% (Jiang et al. 2022)

Catalytic cracking Ni/ZSM-5 T = 550 °C, time = 3 h, ratio of 
Ni to ZSM-5 = 1:4

H2 45.0 vol% (Farooq et al., 2021)

Carbonization – T = 800 °C, time = 1 h Activated carbons – (Serafin et al. 2022)
Carbonization – Sulfonation: T = 155 °C, 

time = 12 h
Carbonization: T = 800 °C, 

time = 3 h
Activation: T = 700 °C, 

time = 1 h, ratio of KOH to 
carbon = 2:1 (g)

Multifunctional carbon fiber 58.0 wt% (Robertson et al. 2022)

Carbonization – Sulfonation: T = 110 °C, 
time = 12 h

Carbonization: T = 750 °C, 
time = 2 h, ratio of KOH to 
carbon = 3:1 (g)

S-doped porous carbon 40.0 wt% (Hu and Lin 2021)

Carbonization – Sulfonation: T = 120 °C, 
time = 6 h

Carbonization: T = 2400 °C

Non-graphitizable carbon 
powders

50.0 wt% (Lee et al. 2022)

Carbonization NiO2/NiCl2 T = 700 °C CNTs/Ni hybrids 64.4 wt% (Yu et al. 2021)
Carbonization Ni–Fe-Al2O3 T = 800 °C, time = 3 h, ratio of 

Ni to Fe = 4:1 (mol), ratio of 
catalysts to masks = 1:9 (g)

CNTs 26.8 wt% (Yang et al. 2022)
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studies have investigated the effect of pyrolysis temperature 
on products. Figure 4b is the compositions of pyrolysis prod-
ucts at different temperatures. The yield of oil was 29.9 wt% 
at 400 °C, and it was up to 42.1 wt% at 440 °C. After 440 °C, 
the liquid product decreased slightly, while the gas and solid 
products increased marginally. The pyrolysis process was 
completed at 440 °C. The result of liquid oil quantified by 
gas chromatography is shown in Fig. 4c. Obviously, the oil 
product was dominated by C15 alkene (accounting for about 
3.0 wt% at 480 °C), followed by C9, C12, and C18–C23 com-
pounds, which was similar to diesel components (Sun et al. 
2022). Park et al. (2021) also pointed out that the pyrolysis 
process was completed at 500 °C. The yields of gasoline-
range, jet fuel–range, diesel-range, and motor oil–range 
hydrocarbons were the highest at 700 °C, which were 14.7 
wt%, 18.4 wt%, 34.0 wt%, and 18.1 wt%, respectively. The 
decrease or increase in temperature would both cause reduc-
tion in the oil yield (Park et al. 2021). A similar conclusion 
was drawn that the oil yield was up to 80.7 wt% at 550 °C 

(Lee et al. 2021). In a word, high temperature is efficient to 
raise the yield of oil products, but negligible after 600 °C. 
The liquid yield may be reduced at an extremely high tem-
perature. Both insufficient and excessive pyrolysis will have 
an effect on the product during the heating process. Hence, 
it is critical to find the appropriate temperature for synthesis 
of ideal target products.

The co-pyrolysis effects on different feeds and waste 
masks have been studied, as shown in Table 2. The quality 
and quantity of bio-oil obtained by co-pyrolysis of waste 
biomass were better than those obtained by pyrolysis of 
single raw material (Abnisa and Daud 2014; Gouws et al. 
2021; Uzoejinwa et al. 2018). Li et al. (2021) used Spirulina 
platensis for co-hydrothermal liquefaction with waste masks 
at a relatively low temperature compared to simple pyroly-
sis. The yield of oil was up to 23.0% at 300 °C, which was 
much higher than the yield (7.0%) of hydrothermal liquefac-
tion of individual waste masks. The yield of hydrocarbons 
within the diesel range increased in favor of heavy oil and 

Fig. 4   a The mechanism diagram based on the mask pyrolysis mass 
curve (Aragaw and Mekonnen 2021; Kumar et al. 2009; Yousef et al. 
2021a, 2021b). b Composition of pyrolysis products at different tem-

peratures. c Composition of oil products at different temperatures. 
Panels b and c are taken from Sun et al. (2022) with copyright per-
mission
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gasoline by blending masks with Spirulina platensis (Li 
et al. 2021). Luo et al. (2021b) co-pyrolyzed mask with the 
heavy fraction of bio-oil to obtain a series of biochar, bio-oil, 
and graphene films. The bio-oil contained some aromatics 
compounds, such as 1,2-dimethylbenzene and 2-methyl-
naphthalene, which were widely applied in the chemical and 
pharmaceutical industries (Luo et al. 2021b). However, no 
aromatic compounds were found in the single pyrolysis of 
masks (Lee et al. 2021). Food waste had higher contents of 
O and N compared with other co-feed. Therefore, co-pyrol-
ysis of masks with food waste could obtain the high yields 
of liquid products containing oxygenates and nitrogenous 
compounds. The proportions of phenolic compounds and 
polycyclic aromatic hydrocarbons (PAHs) also increased. 
The high temperature was beneficial for the conversion 
of lignin to phenolic compounds and PAHs (Sharma and 
Hajaligol 2003). These components of liquid products were 
not compatible with fuels but suitable for the chemical and 
pharmaceutical industries (Park et al. 2021). In conclusion, 
adding biomass in the pyrolysis process would influence the 
properties of liquid products significantly. Suitable catalysts 
may be considered to be added in the co-pyrolysis process 
to realize the directional conversion products in the future. 
Co-pyrolysis of masks with other biomass is also a desirable 
route to obtain higher-quality target products.

The possible pyrolysis mechanism of PP is shown in 
Fig. 5. Firstly, the primary and secondary free radicals 
are mainly generated after the main PP backbone braking. 
Methyl radicals were formed with the 1–3-end-hydrogen 
transfer and β-scission of the primary free radicals. Then, 
methyl radicals captured hydrogen ones to form methane 

(Fig.  5a). Meanwhile, 1–3-end-hydrogen and 1–4-end-
hydrogen transfer may occur to generate secondary free radi-
cals. Ethyl and propyl free radicals were generated following 
the β-scission. These free radicals may be transferred into 
corresponding alkanes and olefins by capturing or losing 
hydrogen free radicals (Fig. 5b, c). In addition, the random 
chain scission, 1–2-end-hydrogen transfer, and the capture 
of hydrogen radicals occurred in the secondary free radi-
cals to form butene (Fig. 5d). It is a possible transformation 
pathway of micromolecular pyrolysis products. Although 
the thermal cracking of waste masks was simple to operate, 
the composition of products was complex and the direct use 
value was relatively low.

Catalytic cracking

Catalysts could reduce the activation energy, increase the 
reaction rate, and orient the product to transformation dur-
ing pyrolysis. Some reports related to catalytic cracking are 
summarized in Table 2. The main process is divided into 
two steps, including thermal and catalytic cracking (Fig. 6). 
In the primary stage, PP in mask decomposes into relatively 
long-chain radicals through the free radical random cleav-
age pathway. Subsequently, the radicals can be converted 
into low-chain hydrocarbons through β-scission and hydro-
gen transfer. Then, aromatization of these hydrocarbons is 
conducted to form carbon nanotubes (CNTs) under a high 
temperature in the second stage. At the same time, the for-
mation of aromatic hydrocarbons promotes the yield of H2 
sharply, which could replace traditional fossil fuels. Hence, 
the conversion of waste masks to H2 is an ideal approach to 

Fig. 5   The transfer of PP (the main component of waste masks) during pyrolysis (Yan et al. 2015; Sun et al. 2021)
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solve plastic pollution and produce clean energy. Currently, 
zeolite molecular sieves and biochar are commonly used as 
catalysts in the process of H2 production.

Catalytic cracking of masks with zeolite molecular 
sieves has been investigated. The main factor affecting the 
catalytic performance of zeolites is the density of acid sites 
(Lopez et al. 2017). The amount of acid sites carried by zeo-
lite exerts a great influence on the production of aromatics 
and light olefins as well as the formation of H2 (Lin et al. 
2010). Additionally, the porous structure and pore shape of 
the catalyst also play an important role in the proximity of 
macromolecules formed by polyolefin degradation to the 
acidic site of the catalyst (Park et al. 2002). Lee et al. (2021) 
studied the effect of different types of zeolites (HZSM-5, 
HBeta, and HY) on the pyrolysis product of waste mask. The 
results showed that HBeta had the best performance on the 
enhancement of H2 yield (from ~ 0.5 wt% without the cata-
lyst to ~ 19.5 wt%). The relative excellent nature of HBeta 
was ascribed to larger pore volume and more acid sites than 
those of others (Lee et al. 2021). Farooq et al. (2022) used 
ZSM-5 with different ratios of SiO2 to Al2O3 as the catalyst 
to pyrolyze mask. The yield of H2 would decrease with the 
increase of the ratio. Additionally, the m-ZSM-5 with 25% 
Ni loading would enhance the H2 yield from ~ 3.10 to 45.04 
vol% significantly. The reduced reaction (NiO → Ni0) would 
increase the PP conversion efficiently with the production 
of H2 during pyrolysis (Farooq et al. 2022). However, the 
excessive content of Ni may cover the acid site on the cata-
lyst surface, which will decrease the H2 yield.

Several papers reported the influence of catalytic crack-
ing of masks using biochar. Compared to activated carbon 
and carbon black, biochar had abundant surface functional 

groups, nanostructures, and porosity that contribute to the 
enhancement of H2 yield. Biochar had high electron affin-
ity due to rich sp2 hybrid orbitals so that the alkali and 
alkaline earth metallic species (e.g., Na and K) in biochar 
would be separated from their charges. These metal ions 
provided additional electron fields, inducing the olefina-
tion of alkane to produce H2 (Liu et al. 2019). Wang et al. 
(2022) prepared corn stover–based biochar via microwave 
pyrolysis during catalyst cracking of masks. The yield of 
H2 was 15.8 vol% in gas products at 550 °C without bio-
char while H2 output soared to 56.8 vol% at the same tem-
perature after adding biochar. Temperature was also a crit-
ical ingredient of the H2 yield. The output of H2 increased 
from 15.8 to ~ 31 vol% with temperature rising from 550 to 
650 °C (Wang et al. 2022). High temperature was favora-
ble for the conversion of aromatic hydrocarbons (Lin et al. 
2021). Ni-loaded biochar exhibited the best performance 
on yield (34.2 vol%) of H2 in comparison to individual, 
Zn-loaded, and Fe-loaded biochar at 800 °C (Jiang et al. 
2022; Farooq et al. 2022). As the temperature increased 
to 800 °C, the pyrolysis gas was mainly decomposed into 
small molecules including H2 and CH4. The C–H of small 
molecules (e.g., CH4) could be cleaved by Ni nanoparti-
cles, and the central carbon atoms of CH4 were dissolved 
onto metal active sites, while the separated H diffused in 
the form of H2 (Zhou et al. 2017).

In short, the yield of H2 can be notably enhanced during 
catalytic pyrolysis adjusted by acid and metal active sites. 
Ni loading on the catalyst is also a considerable method that 
can further increase the output of H2. Nevertheless, catalytic 
cracking of mask is still waiting for further development 
due to lacking an action role of acid sites. The equilibrium 

Fig. 6   Schematic diagram of catalytic cracking. a Base-growth of CNTs. b Tip-growth of CNTs
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point of co-function between nickel and acidic sites should 
be found to maximize a catalytic effect. Subsequently, other 
types of catalysts could be tried to apply in the production 
of H2. For example, pyrolyzing masks with metallic oxide 
may be a desirable way in the future.

Carbonization

Carbonization is also applied for disposal and treatment 
of waste masks. Carbon with added value (e.g., graphite, 
carbon nanomaterials, activated carbon) can be formed via 
the carbonization of polymer compounds, which could be 
applied as electrode or absorption materials (Bazargan and 
McKay 2012; Shen 2020b). The high content of polyolefin 
contributes to the high carbon content of the mask (85.7%) 
(Gong et al. 2014a, 2014b). Additionally, masks have a high 
porosity framework which contributes to ion exchange or 
molecular adsorption to filter air. Therefore, mask as car-
bon sources to prepare high value–added carbon materials 
is a promising recycling strategy. However, the yield of 
solid products is fairly low by pyrolyzing masks directly at 
500 °C. Therefore, some special methods need to be adopted 
to improve the carbon yield. Sulfonated modification and the 
introduction of catalysts are applied to the carbonization of 
masks.

Sulfuric acid can destroy and carbonize some complex 
plastic at high temperatures. And, sulfonation promotes effi-
cient cyclization and oxidation to form dense carbon fiber 
structure (Xie et al. 2016). The waste mask can be heated 
in concentrated sulfuric acid before carbonization based 
on the porosity of PP so that the PP carbon chain can be 

cross-linked. The mechanism of cross-linking is shown in 
Fig. 7b. First, sulfonyl groups bind to secondary or tertiary 
carbon atoms along the carbon chain, followed by the homo-
lytic dissociation of the hydroxysulfonyl radicals (•HOSO2) 
to generate an unsaturated bond. The transformed polyolefin 
macromolecules react with •SO3 in sulfuric acid through 
electrophilic addition to produce β-sultones. Then, the rear-
ranged β-sultones will further crack to form olefin PP con-
taining free radicals which cross-link in sulfuric acid. This 
process is repeated until a highly cross-linked polymer net-
work is formed (Lee et al. 2022).

Sulfonation pretreatment technology can cross-link a PP 
fiber structure and has been widely used in waste mask treat-
ment. Lee et al. (2022) treated waste masks with sulfuric 
acid at 120 °C for 6 h and then pyrolyzed at 2400 °C directly. 
The remained carbon was up to 50 wt% and made into car-
bon materials that can be used as anodes for sodium-ion 
batteries. NMR analysis showed that sulfonation could not 
only induce simple cross-linking but also prompt the forma-
tion of PAHs (Lee et al. 2022). Nevertheless, the pyrolysis 
temperature of the above method was relatively high. Yuwen 
et al. (2022) completed the overall sulfonation and oxidation 
of the waste mask within 8 min by microwave solvother-
mal method based on the excellent microwave absorption 
capacity of concentrated sulfuric acid. The sulfonated sam-
ple was made into porous carbon with a high surface area, 
and the carbon yield was up to 54 wt% after self-activated 
pyrolysis in low-flow argon at 900 °C (Yuwen et al. 2022). 
Figure 7a shows the diagram of cross-linking, carbonization, 
and activation of PP fiber. Researchers introduced KOH acti-
vation into carbonization to obtain carbon materials with the 

Fig. 7   a The diagram of cross-
linking, carbonization, and acti-
vation of PP fiber (Robertson 
et al. 2022). b The schematic 
diagram of sulfonation cross-
linking mechanism of PP. Panel 
b is taken from Lee et al. (2022) 
with copyright permission
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high surface porosity. Thereby, the surface area and adsorp-
tion effect were enhanced. Regardless of activation before 
(Robertson et al. 2022) or after (Hu and Lin 2021) pyrolysis, 
sulfonated PP would be made into multi-functional fibers 
with porous structure, and carbon yield was not less than 40 
wt%. Overall, mask treatment by sulfonation can produce 
high yield and high value–added carbon materials, although 
the procedure is slightly sophisticated.

The introduction of catalysts can also enhance carbon 
yield. As mentioned in the previous section, Ni-based cata-
lysts are commonly used in synthesis and conversion. The 
catalyst can promote the cracking of PP and convert PP into 
aromatic compounds selectively, followed by dehydrogena-
tion and synthesis of CNTs, thereby increasing carbon yield. 
Yang et al. (2022) used Ni–Fe-Al2O3 as the catalyst in the 
process of carbonization. The catalyst not only promoted 
the growth of carbon nanotubes, but also divided them into 
multiple cavities, which had excellent electrochemical per-
formance. In addition, the highest carbon yield was realized 
(26.75%) when the molar ratio of Ni to Fe was 4. The yield 
would decrease regardless of the increasing or decreasing 
of the ratio since synergies between Ni and Fe played a sig-
nificant role (Yang et al. 2022). Carbon grows along the 
C/Ni interface. However, the growth would stop when the 
surface of Ni particles was wrapped completely by graphene 
layer (Helveg et al. 2004). In this process, Fe could pro-
mote the production of H2 to prevent Ni surface from being 
covered by graphene layer, thus prolonging catalyst activity 
(Yao et al. 2017). Therefore, a suitable ratio of Ni/Fe would 
promote the formation of CNTs. The mechanism was simi-
lar to that in the section “Catalytic cracking”. When the C 
atom in the metal active sites was saturated, the dissolved 
C framework would further form CNTs. The growth pro-
cess consisted of “base-growth” (Fig. 6a) and “tip-growth” 
(Fig. 6b) depending on the catalyst nanometric dimension 

(Gohier et al. 2008). Yu et al. (2021) increased the carbon 
yield (up to 64.4 wt%) using NiCl2·6H2O as the catalyst. 
Unlike NaCl, NiCl could be decomposed into Ni and •Cl, 
which are effective components of the catalyst. The presence 
of Ni could fix most of the carbon in the condensed phase, 
while •Cl could control the degradation of polyolefin chains 
and promote dehydrogenation and aromatization reactions. 
The microwave absorption performance of the carbonized 
product was superior than that of most C/Ni hybrid materi-
als due to synergies between Ni and CNTs (Yu et al. 2021). 
Overall, carbonization of mask via sulfonated modification 
or catalyst is an effective and low-cost method. And, the 
porosity of masks is used reasonably, which presents rosy 
application prospects in the fields of electrochemistry and 
adsorption.

Solvent‑based technology

The solvent-based technology is used to obtain the certain 
carbon materials. The process of solvent-based technology is 
presented in Fig. 8. The waste mask should be soaked in an 
appropriate chemical solvent directly, and its original struc-
ture of the surface has been modified. The solvent-based 
technology pays more attention to the instinctive framework 
characters of masks compared with physical and thermo-
chemical technologies. The medical mask consists of three 
layers commonly. The outer non-woven fabrics is hydro-
phobic, blocking splashing liquids and droplets. The inner 
layer is also made of non-woven fabrics but hydrophilic 
after modifying, which makes it possible to absorb moisture 
released from the noses and mouths. The middle melt-blown 
fabrics is the core functional area, filtering microorganisms 
and viruses with a diameter of 0.3–1.0 pm (Wibisono et al. 
2020).

Fig. 8   Disposal of three-layer 
masks via solvent-based tech-
nology
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The outer non-woven fabrics of the PP mask has low 
water absorption ability. Waste masks become an ideal 
material for the recycling of oil pollutants due to hydro-
phobicity (Wei et al. 2003). Non-woven PP shows fiber 
properties based on a single fiber network containing small 
pores, which helps liquid enter into the adsorbent and remain 
after being adsorbed. However, the original PP lacks high 
adsorption capacity and selective oil interception function. 
Therefore, the surface of the mask should be modified to 
remove oil pollutions. Fluorine-free ethyl-imidazole-based 
frameworks (MAF-6) with large pores and related hydro-
phobicity may provide additional adsorption sites (He et al. 
2015). The MAF-6 was deposited on the PP mask in an 
organic solvent by optimizing the in situ method, obtain-
ing the PP-MAF-6 with super hydrophobicity and strong 
adsorption capacity towards oil (Guselnikova et al. 2022). 
The adsorption capacity of PP-MAF-6 for diesel oil could 
reach 24,000 mg/g with the removal of pollutants in water 
with less than $5 per square meter. Thus, the PP-MAF-6 has 
the potential for large-scale preparation. Park et al. (2022) 
found that the surface of the mask could also be modified 
by organic solvents, including n-hexane, n-heptane, and 
n-decane. The swollen macromolecular recrystallization 
formed a submicron protrusion on the surface of the mask 
after immersion (Zhu et al. 2015). The protrusion could 
maintain the original structure of PP. The surface roughness 
of both outer and inner layers increased, forming a super-
hydrophobic surface. The mask modified with heptane for 
60 min at 90 °C has a better oil adsorption capacity (g/g), 
reaching 8–21 times the mass of its weight. The oil-saturated 
mask could be converted into crude oil via pyrolysis, filling 
the energy gap.

Unlike the outer, the surface of the inner non-woven fiber 
layer of the mask is rich in –OH, which endows the layer 
with super hydrophilicity. The –OH groups also provide 
strong, sustainable, and recyclable support for the deposi-
tion of metal/metal oxide nanoparticles (Mousli et al. 2020; 
Tang et al. 2020). The inner layer of the mask was immersed 
in the precursor solution containing TiO2, CoOx, and FexOy 
catalytic nanoparticles (Reguera et al. 2022). Then, the 
nanoparticles were embedded in the three-dimensional 
porous structure of the cellulose membrane successfully to 
attain catalytic activity. The dye in polluted water could be 
adsorbed onto catalytic nanoparticles with the non-woven 
PP as the carrier. The cellulose mask/TiO2 system worked 
effectively in the decomposition of methylene blue under 
UV light, while the cellulose mask/FexOy/CoOx system 
showed a good peroxidase-type activity, which could be 
used in advanced applications such as hydrogen peroxide 
electrochemical sensors. The advantage was to avoid the 
medium pollution caused by the aggregation and release of 
nanoparticles in the catalytic reaction process compared to 
previous studies concerning dispersed nanoparticles.

As for the main functional area of the mask, the ideal 
treatment of the middle layer has not been found, originat-
ing from mediocre performance and requirement for strict 
disinfection. The economical treatment could be realized by 
mixing the melt-blown fabrics with asphalt to manufacture 
high-performance roadbed materials (as mentioned in the 
section “Modification of building materials”) or modify-
ing forcibly by chemical reagents. Fuming sulfuric acid 
(FSA) was used to react with the middle filter (MF) layer 
of the mask, obtaining optimized sulfonated MF (S-MF) 
layer (Kim et al. 2022). The S-MF layer is expected to 
play a role in many fields such as environmental catalysts 
and rechargeable battery separators, accounting for higher 
mechanical properties, excellent three-dimensional struc-
ture, satisfactory electrolyte wettability, and abundant polar 
functional groups. Kaneko studied the contact angle and 
O/C ratio during the reaction of FSA and PP (Kaneko and 
Sato 2005). The sulfonation proceeded rapidly in the initial 
stage of treatment, and the surface changed from hydropho-
bic to hydrophilic. The function is achieved because the 
rich •OH and •SO3H are formed by the reactions between 
FSA and PP (Fig. 7). Unlike modified carbonization, no 
subsequent high-temperature treatment was performed, 
and ideal products can be produced in only a few minutes. 
The main operation of solvent-based technology is solution 
immersion. At present, the solvent-based approach is still in 
the experimental stage without being applied in large-scale 
industrial production.

In order to provide an intuitive comparison of different 
waste mask treatment technologies, we have listed the 
advantages and disadvantages of technologies in Table 3. 
Although the solvent-based technology has significant 
features such as high value–added products, operational 
simplicity, and low energy cost compared with the physi-
cal and thermochemical technology, its application in 
practical production is resistant. Pyrolysis is still the most 
promising technology for industrialization, and numer-
ous environmental protection enterprises have already 
invested in the construction of pyrolysis recycling plants. 
In the process of pyrolysis, the experimental conditions 
such as pyrolytic temperature can modify significantly 
on the yield of liquid and gas products. Therefore, upcy-
cling enterprises should concentrate on the influence fac-
tors of different technologies and define the appropriate 
conditions before the upcycling processing to obtain the 
optimal output.

Conclusion

This review summarizes the various technologies for the 
disposal and energy utilization of waste masks comprehen-
sively. Some conclusions are put forward in the following:
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1.	 Traditional physical technology such as mechanical 
compression can convert masks directly into stereotyped 
materials, which have comparatively low strength and 
can be applied to industries without strict mechanical 
property requirements. Another traditional physical 
technology used to mix sterilized and crushed masks 
into traditional construction materials can lead to a 
decline of cracks and a rise in tensile capacity. However, 
the hydrophobic mask fibers lead to a decrease of the 
permeability of building materials. Notably, the interfa-
cial transition zone can be amplified between the mask 
fibers and the building material such as the cement paste 
matrix to improve the permeability via graphene oxide 
aqueous solution soaking. Novel physical technology 
indicates that the mechanical properties of materials can 
be modified and enhanced to some extent by blending 
fillers such as inorganic nanoparticles and natural fibers 
with polymers. Nevertheless, this process suffers from 

poor compatibility and weak interaction forces between 
masks and some fillers, requiring the addition of addi-
tives for surface modification.

2.	 Thermal cracking of masks could generate high-value 
liquid products with performance approaching diesel, 
but require high temperature and long processing time. 
Moreover, the low purity of liquid oil results in bare fea-
sibility to get a large-scale promotion. Comparably, co-
pyrolysis of waste masks with biomass is a considerable 
way to obtaining bio-oil with high quality and quantity. 
The composition of products could be modified by the 
addition of catalysts. The desirable yield of H2 could be 
obtained by pyrolysis with biochar or zeolites, which was 
further improved with Ni loading. Furthermore, the yield 
of solid char soars up with additional Ni-based catalysts 
and pretreatment of sulfonation during pyrolysis. The 
solid char with inherent high porosity could serve as 
high-performance carbon material precursors, which was 

Table 3   Comparison of the differences between various technologies

Method Main treatment Strengths Weaknesses Influencing factor

Traditional physical tech-
nology

Adding the mask fragments 
to the building materi-
als or direct melting and 
thermoforming

• Simple steps
• Larger processing capac-

ity
• High recovery rate

• Low-added value of the 
product

• The shape of the mask
• The percentage of mask
• Whether to preprocess

Novel physical technology Blending modification by 
adding polymers, organic 
fillers, or inorganic fillers 
at 100–300 °C

• Improvement of mechani-
cal properties of raw 
materials

• Access to new materials 
with functions such as 
electricity or magnetism

• Cheap and easy to obtain 
raw materials

• Wide range of product 
applications

• Reduced performance 
with multiple processing

• Requirements for 
the interaction forces 
between the filler and 
mask

• Nature of filler
• Dispersion state of the 

filler
• Interaction of fillers and 

masks

Thermal cracking Degrading at 300–900 °C 
in air or nitrogen

• Easy to operate
• High recovery rate of 

pyrolysis oil
• Liquid product with a 

calorific value close to 
that of diesel

• Complex product com-
position

• Poor quality pyrolysis oil
• High energy consump-

tion

• Pyrolysis temperature
• Reaction time
• Heating rate
• Feed composition

Catalytic cracking Addition of catalyst to the 
pyrolysis process

• High product selectivity
• High calorific value of 

gas products
• Lower pyrolysis tem-

perature
• Low energy consumption 

but high speed

• The mechanism of 
cleavage has not yet been 
explored

• Poor catalyst circulation

• Catalyst acidity and 
porosity

• Pyrolysis temperature
• Pyrolysis ambient

Carbonization Sulfuric acid or catalyst 
prior to pyrolysis pre-
treatment

• Low running costs
• Access to functional 

carbon materials

• Complex operational 
processes

• Risk of ignition and 
explosion

• Sulfonation temperature
• Sulfonation treatment 

method
• Type of catalysts

Solvent-based technology Soaking masks with chemi-
cal solvent

• Simple process
• High economic and 

energy efficiency
• Rational use of the struc-

ture of the mask

• Difficulties with industri-
alization

• The requirement for 
separation of 3-layer 
mask

• Type of solvent
• Processing time
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applied to electrodes and adsorbent materials. However, 
thermochemical technology still has dilemmas such as 
strict requirements on pyrolysis temperature and time, 
complicated processes, and optimal catalyst selection.

3.	 The appropriate chemical solvent is chosen in solvent-
based technology to soak the mask directly for modifica-
tion based on different specific structures of three layers 
of the mask. The outer layer is hydrophobic which can 
be applied to oil spill clean-up while the inner is hydro-
philic and can serve as a catalytic carrier. The middle 
layer has a relatively low reuse value. However, the mid-
dle layer can be modified forcibly by a suitable solvent. 
Solvent-based technology has simple operations and 
requires short time, showing a good prospect but the 
whole technology is still at the experimental stage.

The following challenges remain to be overcome in 
order to better realize the disposal of waste masks and 
resource utilization:

1.	 Modifying mask PP by nanoparticles or natural fib-
ers may better strengthen the mechanical properties or 
improve permeability, flame retardancy, and thermal sta-
bility. Nanoparticles such as ceramic particles with high 
dielectric constant and boron nitride particles with high 
thermal conductivity, which were once used to modify 
other plastic, also have feasibility to be applied into the 
modification of mask PP. However, the maximization 
of modified effect can be realized only after considering 
the dispersion of nanoparticles and interfacial bonding 
strength between nanoparticles and PP matrix.

2.	 Considering the serious periodic energy shortage in the 
global energy market, catalytic pyrolysis, which can 
increase the H2 output, is a favorable disposal. However, 
catalyst deactivation will occur after a long operation time, 
leading to deteriorated biochar performance in extracting 
hydrogen. Zeolite with heat resistance is a more desirable 
choice, and the mechanisms of zeolite catalysis should be 
further studied, especially for acid sites. Also, new cata-
lysts with synergistic catalytic activity, excellent stabil-
ity, and recyclability should be developed. In addition, 
the influence of ear loops and nose clips on the products 
should be paid attention for industrialization.

3.	 Prolonging the life cycle of mask PP via solvent-based 
technology avoids large energy consumption and recy-
cled mask PP are applied successfully into sewage 
treatment. However, a large quantity of solvent would 
be consumed and the solvent like concentrated sulfuric 
acid belongs to hazardous chemicals, urging the appear-
ance of recyclable and green solvents. Additionally, uni-
versally applicable reagents that can be applied to three 
different layers are expected to be developed to omit the 
mask separation step.

4.	 Advanced oxidation process has a desirable prospect 
for the disposal and resource utilization of waste masks. 
Using Fenton, photocatalytic, and persulfate oxidation, 
renewable energy such as alcohol-based fuels can be gen-
erated from waste masks. However, the practical applica-
tion of advanced oxidation process for mask treatment 
is relatively immature with many problems to be solved. 
For example, the development of new catalysts with syn-
ergistic catalytic activity, excellent stability, and high effi-
ciency is necessary. Besides, metal-free catalysts should 
be developed to avoid the secondary pollution caused by 
metal leaching. Additionally, ear loops, nose wires, by-
products, and other impurities should be also taken into 
account due to the scavenging of reactive radicals.

5.	 At present, a great quantity of civil masks is directly 
mixed with domestic garbage and discarded in ordinary 
places of society, or even discarded at will. The treat-
ments of waste masks in professional medical institutions 
refer to the disposal standard of medical waste. Due to 
the small volume and light weight, sorting waste masks is 
an arduous task. After mixing, masks are easy to be pol-
luted, which also increases the difficulty of recycling and 
processing. Furthermore, masks have risks of exposure to 
viruses and different requirements for disinfection. Com-
mon disinfection, such as alcohol and ultraviolet light, 
can only achieve surface disinfection of masks. There-
fore, disinfection methods with low cost, high efficiency, 
and large safety factors are desperately in need.
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