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Disrupted alternative splicing for genes implicated
in splicing and ciliogenesis causes PRPF31 retinitis
pigmentosa
Adriana Buskin et al.#

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis

pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-

syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-

mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as

Prpf31+/− mouse tissues, which revealed that disrupted alternative splicing occurred for

specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins

was limited to patient-specific retinal cells and Prpf31+/−mouse retinae and RPE. Mis-splicing

of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE

defects that include disrupted apical – basal polarity, reduced trans-epithelial resistance and

phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology

also occurred in patient-derived photoreceptors, associated with progressive degeneration

and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression

and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future

therapeutic strategies.
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R
etinitis pigmentosa (RP) is one of the most common
inherited forms of retinal blindness with a prevalence of
about 1 in 2500 births and more than 1 million people

affected worldwide1. RP is characterised by progressive degen-
eration of the mid-peripheral retina, leading to night blindness,
visual field constriction and eventual loss of visual acuity. To date,
there are no effective treatments for RP and it remains a medi-
cally challenging disease. About 15% of RP are autosomal-
dominant forms caused by mutations in the pre-mRNA proces-
sing factors (PRPFs) PRPF8, PRPF31, PRPF3, PRPF4, PRPF6 and
SNRNP2002–11. The PRPFs are components of the U4/U6.U5 tri-
snRNP (small nuclear ribonucleoprotein) subunit of the spliceo-
some, the large RNP complex that catalyses pre-mRNA splicing.

Alternative pre-mRNA splicing expands the coding capacity of
eukaryotic genomes by differential inclusion of exons or retention
of introns in mRNA that enables a relatively small number of
genes to encode a diverse proteome. High levels of splicing
diversity occur in the vertebrate nervous system where it is
required for neuronal development and function. Mouse rod and
cone photoreceptors, for example, have a specific splicing pro-
gramme that is initiated prior to the development of outer seg-
ments12. This specific splicing programme primarily affects
transcripts encoding components of photoreceptor primary cilia
and outer segments, both of which are essential for photo-
transduction. Functional primary cilia are also required for
maturation of the retinal pigment epithelium (RPE)13. Collec-
tively, these data suggest that the precise regulation of splicing
programmes for photoreceptor-specific transcripts, including
those that are involved in ciliogenesis, are essential for retinal
development.

Mutations in PRPFs affect the stoichiometry and kinetics of
spliceosome assembly14,15, resulting in either transcriptional
dysregulation of genes required for retinal function16 or mis-
folding and aggregation of mutant PRPF proteins that trigger
apoptosis in photoreceptors16,17. However, the disease mechan-
isms for PRPFs-related RP remain unclear and it is uncertain
whether RPE or photoreceptors are the primary affected tissue.
Paradoxically, PRPFs are ubiquitously expressed10, but mutations
only cause retinal-specific degeneration, raising the question of
why retinal cells are more susceptible to deficiencies in these
splicing factors. Furthermore, PRPF animal models either do not
recapitulate the human RP phenotype18,19, or only manifest late-
onset RPE defects20,21.

Since human induced pluripotent stem cells (iPSCs) can be
differentiated into RPE and photoreceptors22–24, we developed
patient-derived retinal cells as unique physiologically relevant
disease models in order to gain new insights into the molecular
pathogenesis of splicing factor RP. We generated RPE and three-
dimensional (3D) retinal organoids from iPSCs derived from four
RP11 patients with variable clinical severity caused by two dif-
ferent PRPF31 deletion mutations. Large-scale transcriptome
analyses identified mis-splicing of cell type and patient-specific
target genes affected by PRPF31 mutations, providing unprece-
dented molecular characterisation of splicing-factor RP clinical
phenotypes. CRISPR/Cas9 correction of a PRPF31 mutation in
cells derived from an RP11 patient with very severe RP, resulted
in the rescue of molecular and cellular phenotypes, providing
proof-of-concept evidence for the effectiveness of in situ gene
correction.

Results
Derivation and characterisation of RP11-iPSCs. We ascertained
three related RP type 11 patients with a PRPF31
c.1115_1125del11 heterozygous mutation with variable pheno-
typic expression and one patient with severe RP with a PRPF31

c.522_527+10del heterozygous mutation (Supplementary
Data 1). Disease severity was determined according to fundus
examination, visual field and visual acuity, and took account of
the age at the time of examination (Supplementary Data 1).
Hereafter, all patients and derived cells are referred to as RP11
accompanied by M (moderate), S (severe) and VS (very severe).
Three unaffected controls are referred to as WT1 (wild type),
WT2 and WT3 (Supplementary Data 1)25,26. Dermal skin
fibroblasts were reprogrammed to iPSCs using a non-integrative
RNA-based Sendai virus (Supplementary Figure 1A). All RP11-
iPSCs harboured the mutation identified in fibroblast samples
(Supplementary Figure 1B–E), expressed pluripotency markers
(Supplementary Figure 2A–B), were free of transgenes (Supple-
mentary Figure 2C), were genetically identical to parent fibro-
blasts (Supplementary Figure 2D) and clear of any genomic
abnormalities (Supplementary Figure 2E). Both patient-specific
and control iPSCs were able to differentiate into cells belonging
to all three germ layers in vitro (Supplementary Figure 3A) and
in vivo (Supplementary Figure 3B).

RP11-RPE have functional and ultrastructural abnormalities.
Control and RP11-iPSCs were differentiated into RPE cells using
an established differentiation protocol (Fig. 1a, b). Control and
RP11-iPSC-RPE showed a similar expression of the apical RPE
marker Na+/K+-ATPase, but expression of the basolateral mar-
ker BEST1 was reduced in the severe (S) and very severe (VS)
RP11 patients (Fig. 1c). Polarised cells in control RPE monolayers
expressed MERTK in the apical layer and collagen IV in the basal
layer, whereas RP11-RPE had reduced expression of both markers
(Fig. 1d). Cytokine secretion assays revealed a significantly higher
apical pigment epithelium-derived factor (PEDF) and basal vas-
cular endothelial growth factor (VEGF) expression in the severe
and very severe RP11 patients in comparison to control RPE
(Fig. 1e, f). RPE cells produce very high levels of PEDF and
polarised secretion is associated with their maturation27–29.
Furthermore, PEDF has been shown to activate cone-specific
expression and decrease rod numbers30. Elevated levels of such an
important cytokine could therefore impair RPE polarity, with
further functional consequences for rod survival. VEGF has also
shown to be important for the survival of Müller cells and pho-
toreceptors, in addition to its role in vasculogenesis31, and
although no neovascularisation is observed in RP11 patients,
dysregulated VEGF expression from RPE could have important
consequences for retinal function. RP11-RPE also had an
impaired ability to form a tight epithelial barrier as measured by
trans-epithelial resistance (TER) assay (Fig. 1g). Furthermore,
RP11-RPE derived from the two patients with severe (S) and very
severe (VS) phenotypes had reduced functional ability to pha-
gocytose rod outer segments (Fig. 1h), corroborating previous
results following PRPF31 knockdown in the ARPE-19 cell line21.
At weeks 21 and 43 of differentiation, transmission electron
microscopy (TEM) analyses revealed apical microvilli and mela-
nosomes in control RPE, in contrast to RP11-RPE that displayed
shorter and fewer microvilli, and contained large basal deposits
underneath the RPE (Supplementary Figure 4). Collectively, these
data indicate a loss of apical – basal polarity in patient-derived
RP11-RPE.

RP11-photoreceptors have progressive degenerative features.
We differentiated control and RP11-iPSCs into 3D retinal orga-
noids (Fig. 2a), using an established method24. Bright-phase
neuroepithelium developed on the apical side of retinal organoids
derived from RP11 patients and controls (Fig. 2b and Supple-
mentary Figure 5A). By week 21, retinal organoids derived from
RP11 patients and controls had a well-developed apical layer
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Fig. 1 Characterisation of RP11 - RPE cells revealed polarity and functional defects. a Schematic of RPE differentiation timeline; b Bright-field images of iPSC-

derived RPE: representative examples from at least ten independent experiments, scale bar 100 μm; c Immunostaining for basolateral markers BEST1 and

Na+/K+-ATPase: representative images from three independent experiments, scale bar 50 μm; d Correct basolateral distribution of collagen IV (C-IV)

and apical MERTK in unaffected control (WT3) but not RP11 RPE cells: representative images from three independent experiments, scale bar 50 μm;

e, f ELISA assays for apical and basal secretion of PEDF and VEGF, respectively, in control and RP11 - RPE cells; g Trans-epithelial resistance measurements

revealed a significant difference between patient and RP11 - RPE cells; h Reduced phagocytic capacity in RP11 - RPE cells. Statistical significance is calculated

for MFI (mean fluorescence intensity) values. e–h Data shown as mean ± SEM, n= 3. Statistical significance of pairwise comparisons is indicated by n.s.:

not significant; ***p < 0.001; ****p < 0.0001 (Student’s paired t test). b–h Data obtained from RPE at week 21 of differentiation
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Fig. 2 Generation of retinal organoids following long-term suspension culture. a Schematic representation of iPSC differentiation to retinal organoids;

b Bright-field images showing development of retinal neuroepithelium over time, scale bar 50 μm; c Immunostaining of retinal organoids showing the

expression of cell-specific markers; b–c representative examples from iPSC-derived retinal organoids from RP11S2 patient are shown, scale bar 25 μm

apart from ARL13B, where scale bar is 10 μm; d TEM revealed the presence of outer limiting-like membrane (white arrows), inner segments (IS),

connecting cilia (CC) and developing outer segments (OS) in retinal organoids after 21 weeks in culture, top panel scale bars: 10 μm, 500 nm, 500 nm,

10 μm, bottom panel scale bars: 5 μm, 2 μm, 500 nm, 500 nm; e At 43 weeks in culture, TEM showed that patient photoreceptors contained apoptotic

nuclei with electron dense structures of condensed chromatin (white arrow) and stress vacuoles (black stars). d, e Representative examples of three

independent experiments
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packed with photoreceptors (expressing RECOVERIN) with
connecting cilia (expressing ARL13B; Fig. 2c), some of which also
expressed NRL indicating a rod precursor phenotype. Müller glia,
ganglion and bipolar cells were also present, indicated by
CRALBP, HuC/D and PKCα expression (Fig. 2c). TEM of retinal
organoids at week 21 revealed the presence of outer limiting-like
membrane, inner segments, connecting cilia and developing outer
segments in photoreceptors residing in the apical layer of retinal
organoids (Fig. 2d). There were striking morphological differ-
ences between control and patient-derived cells. RP11 - retinal
organoids had a 150% increase in cells with apoptotic nuclei
compared to the controls (a total of 50 TEM sections analysed).
In addition, unlike WT cells, RP11 cells had 'stress vacuoles' (17%
of patient TEM sections). At week 43, TEM revealed the con-
tinuing presence of apoptotic nuclei and stress vacuoles in RP11
patient-derived photoreceptors, suggesting 'adaptive survival' in
response to environmental or oxidative stress (Fig. 2e).

At week 21 of differentiation, the 3D retinae were flattened
down on multi-electrode arrays (MEAs) with the presumed
ganglion cell layer facing down on the electrodes, in order to
record action potentials generated by these cells. Measuring
activity in retinal ganglion cells (RGCs) reflects the global
network function of the organoid, similar to the retina, since
RGCs carry the output signal to central visual areas in the form of
spike trains. Control and RP11-retinal organoids had no
difference in response to 8-Br-cGMP (a membrane permeable
analogue of cGMP), indicating that phototransduction responses,
specifically Na+ influx similar to the inward dark current, were
intact in photoreceptors (Supplementary Figure 5B, C & F).
Control retinal organoids responded to the addition of the
neurotransmitter GABA with an increased firing rate, but this
response was significantly reduced for those derived from the very
severe RP11 patient (Supplementary Figure 5D, E & G). GABA
signalling emerges during very early development, and at that
time it is depolarising and can induce spiking. Reduced responses
to GABA therefore indicate the impairment of emerging
functional neural networks in RP11 patients.

Impaired pre-mRNA splicing in RP11 RPE and retinal orga-
noids. To better understand the impact of PRPF31 mutations, we
performed semi-quantitative RT-PCR and western blot analysis
of PRPF31 expression in primary fibroblasts, iPSCs and iPSC-
derived RPE and retinal organoids. We observed and confirmed
by Sanger sequencing the presence of nonsense-mediated decay
(NMD)-insensitive long mutant (LM) and NMD-sensitive short
mutant (SM) transcripts only in cells derived from RP11 patients
with the c.1115_1125del11 mutation, but not in the control cells
(Fig. 3a). PRPF31 expression levels were decreased more sig-
nificantly in RP11-RPE cells (Fig. 3b), and this was further con-
firmed by western blot analysis (using an anti-PRPF31 C
terminus antibody) (Fig. 3c, d). Interestingly, the PRPF31 LM
isoform (detected by using an anti-PRPF31 N terminus antibody)
was expressed only in RP11-RPE (Fig. 3c). Furthermore, RP11-
RPE showed a substantial downregulation of SART1, a U5 snRNP
protein important for the formation of the pre-catalytic spliceo-
somal B complex, but no changes in the expression of the U5
protein PRPF8 or the U4/U6 protein PRPF4 were observed
(Fig. 3c).

To test if splicing efficiency was altered in patient-specific cells,
we performed splicing assays32,33 following lentiviral transduc-
tion of an E1A minigene reporter with multiple 5′-splice sites.
This can be alternatively spliced into at least five mRNAs (sizes
13S, 12S, 11S, 10S and 9S; Fig. 3e). Both RP11-RPE and retinal
organoids had impaired alternative splicing of the E1A reporter,
indicated by the accumulation of pre-mRNA and the decrease in

the 9S and 10S isoforms in RPE and the 12S isoform in retinal
organoids (Fig. 3f) compared to unaffected control and patient-
specific RP11 fibroblasts and RP11-iPSCs. There were no
differences in tri-snRNP stability for RP11 and control iPSCs,
as determined by sedimentation of nuclear extracts on density
gradients followed by detection of snRNAs (Supplementary
Figure 6). However, RP11 retinal organoids had decreased
expression of U4 snRNA (Fig. 3g) compared to controls,
suggesting a likely reduced function of the U2-dependent
spliceosome.

Disrupted splicing in cellular adhesion and cilia genes. To
identify differences in transcription and splicing profiles between
RP11 patients and unaffected control cells, we next performed
large-scale transcriptome analyses in primary dermal fibroblasts,
iPSCs, RPE and retinal organoids as biological triplicates from all
subjects (Supplementary Data 2). We identified differentially
expressed transcripts by using DESeq2 (Supplementary Data 2;
threshold value padj < 0.05). Fewer differentially expressed genes
were identified in iPSCs (n= 163) and RPE (n= 59) group
comparisons, in contrast to fibroblasts (n= 1395) and retinal
organoids (n= 1367). The most significant differentially expres-
sed genes in RP11 retinal organoids (Supplementary Data 2) were
enriched for Gene Ontology (GO) categories related to actin
cytoskeleton, ciliary membrane, primary cilium, photoreceptor
inner and outer segments, axon terminals and phototransduction
(Supplementary Data 3). In RP11 fibroblasts, significant differ-
entially expressed genes were enriched for lysosome and endo-
somal processes, focal adhesion, cell-substrate junctions and
extracellular matrix organisation. There were no notable-enriched
pathways in RP11-iPSCs and RP11-RPE.

Since RP11-RPE and retinal organoids had impaired pre-
mRNA splicing (Fig. 3f, g), we next analysed transcripts in all four
cell types for differential exon usage (skipped exons, retained
introns, alternative 5′ and 3′ splice sites, and mutually exclusive
exons; Supplementary Data 4) using rMATS software (threshold
values padj < 0.05 and inclusion difference >5%). Differential exon
usage analyses revealed that RP11-RPE had the highest level of
transcripts with retained introns and alternative 3′ splice sites
(Fig. 4a and Supplementary Data 4). GO enrichment analysis of
biological processes for each cell type (Fig. 4b) showed that RP11
fibroblasts had significant differential exon usage for transcripts
implicated in cilium formation categories (cilium assembly,
cilium organisation, microtubule organising centre and centro-
some; Supplementary Data 5). This suggests that PRPF31 has a
role in fibroblast ciliogenesis and corroborates our previously
published data on decreased cilia length and incidence in RP11
fibroblasts34. In iPSCs, enriched GO biological processes included
DNA recombination and DNA double-strand break repair,
whereas enriched cellular components identified the centrosome,
centriole and microtubule organising centre (Fig. 4b). RP11-RPE
were enriched in genes implicated in cells-to-substrate adherens
junctions and focal adhesions, and mitochondrial inner mem-
brane, whereas RP11 retinal organoids were enriched for centriole
and microtubule organisation (Fig. 4b and Supplementary
Data 5).

Importantly, in both RP11-RPE and retinal organoids, the
most significantly enriched GO biological process was pre-mRNA
and alternative mRNA splicing via the spliceosome (Supplemen-
tary Data 5 and Fig. 4b), consistent with our observations (Fig. 3f,
g) that PRPF31 mutations lead to impaired pre-mRNA splicing of
key components involved in the splicing process itself. Specific
human transcripts included those implicated in spliceosome
assembly (e.g., SF1, SART1/Snu66 and DDX5), formation of the
U4/U6 snRNP (LSM2), 3′-end processing of pre-mRNAs (CPSF1
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and U2AF1L4), association of U2 snRNP with pre-mRNA
(DDX39B and PTPB1) and 5′-splice site selection (LUCL7). To
validate some of these findings, we performed RT-PCR experi-
ments in RPE and retinal organoids derived from RP11 and
control iPSC samples (Fig. 4c). For this validation we selected key

genes involved in cilia formation and/or outer segments of
photoreceptors (RPGR, RPGRIP1L and CNOT3), intraflagellar
transport (IFT122), actin filament organisation, centrosome and
focal adhesion (SORBS1) and pre-mRNA 3′-end processing
(CPSF1). As predicted by the rMATS analysis, the RP11 RPE
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Fig. 4 RNA-seq analysis of alternative splicing in fibroblasts, iPSC, RPE, retinal organoids and Prpf31+/− retina. a rMATS analysis showing that RP11 - RPE

have the highest percentage of transcripts containing retained introns (RI) and alternative 3′ splice sites (A3SS); b Gene Ontology enrichment analysis

showing biological and cellular processes affected by alternative splicing, respectively, in human cells; c Gel electrophoresis of RT-PCR for the indicated

genes in RPE and retinal organoids derived from patient RP11VS and unaffected control WT3. Sizes (in bp) for major and minor isoforms (arrowheads), and

percentage-spliced-in (PSI) values, are indicated; d Sashimi plots for the indicated genes for validation of alternative splicing events in RPE and retinal

organoids derived from RP11 patients (blue) and unaffected controls (red). Data are representative of at least three independent experiments. Green

highlights in Sashimi plots indicate alternative splicing events with the number of junction reads indicated for each event; e, f Gene Ontology enrichment

analysis showing biological and cellular processes affected by alternative splicing, respectively, in mouse Prpf31+/− retinae and RPE. Data are

representative of at least three independent experiments

Fig. 3 PRPF31 expression in patient-specific cells and effects on pre-mRNA splicing. a Gel electrophoresis showing the presence of a long mutant transcript

(LM) isoform for the exon 11 deletion in patient-specific cells. The short mutant (SM) isoform is present only upon inhibition of NMD with puromycin

(indicated by+ ); b The bar graph shows wild-type PRPF31 mRNA in patient cells relative to controls from a, b. Data are representative of at least three

independent repeats, RO retinal organoids; c Wild-type PRPF31 is significantly reduced in patient RPE cells and less notably in retinal organoids. The LM

form and reduced SART1 is observed only in the patient RPE cells; d The bar graph shows wild-type PRPF31 levels in patient cells relative to normal cells

quantified from c, n= 3; e, f Patient RPE cells and retinal organoids exhibit a notable defect in the alternative splicing of E1A minigene reporter. Schematic

representation of alternative splice variants of the E1A reporter (e) and denaturing PAGE and autoradiography using a phosphoimager (f), n= 3; g Northern

blot analysis showing the level of snRNAs in various normal and patient cells. Total RNA was isolated from each sample and snRNA levels were analysed

by denaturing PAGE followed by Northern blotting using probes against U1, U2, U4, U5, U6 and 5S rRNA (top). The levels of snRNAs were quantified and

normalised to the amount of 5S rRNA (bottom), n= 2. All error bars represent SEM
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showed a significant change in alternative splicing of CPSF1 and
CNOT3, while RP11 retinal organoids showed alternative splicing
for RPGR, RPGRIP1L, IFT122 and SORBS1 (Fig. 4d). These
in vitro data were strongly corroborated by differential exon
usage analyses of Prpf31+/− mouse retinae and RPE20,21. The
most significantly enriched GO processes and categories in Prpf31
+/− mouse mutant compared to wild-type control retinae were
for RNA splicing, mRNA processing and ribonucleoprotein
complex biogenesis, as well as microtubules, cilia and centro-
somes (Fig. 4e). Similarly, Prpf31+/− mouse mutant compared to
wild-type control RPE were enriched for genes involved in
mRNA processing and microtubules (Fig. 4f). These data suggest
that disrupted alternative splicing programmes in RP11 result in
exacerbation of splicing deficiencies, in turn disrupting specific
biological processes that cause the unique cellular phenotypes
observed in RP.

RP11 - RPE and photoreceptors show ciliary abnormalities. To
analyse the role of PRPF31 in cilia formation and function, we
first determined the extent of co-localisation of PRPF31 with an
snRNP-specific marker (Y12, Supplementary Figure 7A) and a
cilia-specific marker (ARL13B, Supplementary Figure 7B) in
fibroblasts, iPSCs, RPE and photoreceptors. PRPF31 co-localised
with both snRNPs and ARL13B for all patient cell types and
controls, confirming PRPF31 localisation in both splicing com-
plexes and cilia.

We then measured cilia length and incidence in RP11 - RPE
cells using a combination of ARL13B and a basal body marker
(pericentrin) that is located at the base of the cilia (Fig. 5a). Both
cilia incidence and cilia length were significantly reduced in all
RP11 - RPE cells when compared to controls (Fig. 5b). TEM
analysis revealed the presence of long cilia with clearly aligned
microtubules in control RPE cells, while RP11 - RPE cells had
shorter, abnormal, bulbous cilia (Fig. 5c). Structural defects in
axonemal microtubules were confirmed by serial block face
scanning electron microscopy (SBFSEM, Fig. 5d). RP11 photo-
receptors also had significantly reduced cilia incidence (Fig. 5e, f)
and defective, bulbous cilia with misaligned microtubules (Fig. 5g)
that was also confirmed by SBFSEM analysis (Fig. 5h).

To further confirm that loss of human PRPF31 negatively
regulates ciliogenesis, we performed siRNA knockdown in the
human ciliated retinal pigment epithelial hTERT-RPE1 cell line.
Knockdown of PRPF31 protein levels caused a significant
decrease in cilia incidence (Fig. 6a). Since SHH activity is known
to require functional cilia, we confirmed that PRPF31 siRNA
knockdown caused a dysregulated response to Smoothened
agonist (SAG; Fig. 6b). To investigate possible defects in ciliary
morphogenesis and structural organisation as a consequence of
ciliary gene mis-splicing, we used structured illumination
microscopy (SIM) to resolve the detailed localisation of proteins
along the ciliary axoneme and at the transition zone (TZ).
PRPF31 knockdown caused significant mislocalisation of IFT88
to the ciliary tip (Fig. 6c), and the TZ proteins CC2D2A and
RPGRIP1L were either entirely excluded from the TZ (Fig. 6d) or
mislocalised from the TZ into the ciliary axoneme (Fig. 6e).
Similar mislocalisation was also evident in RP11 - RPE (Fig. 6f, g).

Correction of PRPF31 mutation restores molecular and cel-
lular defects. To further validate the function of PRPF31 in ret-
inal cells, CRISPR/Cas9 genome editing was used to correct the
PRPF31 c.1115_1125del11 genetic mutation in cells from the
patient with the most severe clinical phenotype (RP11VS). For
in situ gene correction, an ssODN template with wild-type
PRPF31 sequences was designed with 91 bp homology arms on
each side of the mutation region (Supplementary Data 6). Two

hundred iPSC clones were selected and tested (Fig. 7a), and
candidates identified by PCR were sequenced to confirm gene
editing of PRPF31 (Fig. 7b). Quantitative RT-PCR analysis con-
firmed the increased expression of PRPF31 in the CRISPR/Cas9-
corrected clone when compared to uncorrected iPSCs (Fig. 7c).
We also excluded potential off-target effects (Supplementary
Data 7) and CytoSNP analysis confirmed the identity to the
parental cell line and lack of genomic abnormalities (Supple-
mentary Figure 8). The CRISPR/Cas9 iPSC clone expressed
pluripotency-associated markers Nanog and TRA-1-60, and gave
rise to cells belonging to all three germ layers (Supplementary
Figure 9).

The CRISPR/Cas9-corrected iPSC clone was differentiated to
RPE and retinal organoids, in parallel with uncorrected RP11-
iPSCs using our established protocols. Cilia length and incidence
was significantly increased in both corrected RPE (Fig. 7d, e) and
corrected photoreceptors (Fig. 7k, l). TEM analysis also revealed
cilia with well-aligned axonemal microtubules in corrected cells
that did not display the aberrant morphology observed in the
RP11-derived retinal cells (Fig. 7f, m). Importantly, flow
cytometry confirmed the rescue of phagocytic capacity (Fig. 7g),
suggesting an improvement of functional characteristics in
corrected RPE. Immunostaining and cytokine secretion assays
also revealed the restoration of cytokine secretion and basal
collagen IV and apical MERTK expression, suggesting that
corrected RPE apical – basal polarity was restored (Fig. 7h–j).
These data indicate that in situ gene editing restored key cellular
and functional phenotypes associated with RP type 11.

To further assess the impact of alternative splicing on protein
abundance, quantitative proteomic analysis was carried out in
RP11VS and CRISPR/Cas9-corrected RPE and retinal organoids
using TMT labelling and mass spectrometry (Supplementary
Figure 10A-F and Supplementary Data 8, 9). GO enrichment
analysis for biological processes indicated that RNA metabolic
processes, mRNA processing, RNA splicing, and both RNA and
DNA metabolic processes, to be the most affected pathways in
RPE and retinal organoids, respectively (Supplementary Fig-
ure 10A, D). Several components of the mRNA surveillance
pathway (MSI2 and RNPS1), the PRP19 complex (PLRG1 and
CTNNBL1), the SF3a/SF3b complex (SF3A1 and SF3B4),
spliceosomal tri-snRNP proteins (PRPF3, USP39, PRPF6 and
DDX23) and SR proteins (SRSF1, 2, 5 and 6) were downregulated
in either RP11 patient-specific RPE, retinal organoid cells or both
(Supplementary Data 8, 9). The endoplasmic reticulum, nucleo-
plasm, ribonucleoprotein and spliceosomal complex were the
most affected cellular components (Supplementary Figure 10B,
D), corroborating the splicing deficiency highlighted by our
RNA-Seq and splicing assays. Ten per cent of the differentially
expressed genes and 10% of differentially spliced transcripts
showed differential protein expression in RPE cells (Supplemen-
tary Figure 10F). Of the 49 differentially spliced transcripts and
differentially expressed proteins, nine were associated with the
ribonucleoprotein complexes and shown to be involved in pre-
mRNA splicing, RNA binding and translation initiation, further
corroborating the impact of PRPF31 mutations on the spliceo-
some complex. The impact of differential gene expression and
exon usage was less pronounced in retinal organoids than in RPE
cells (1.6% and 0.74%, respectively) (Supplementary Figure 10C).
Of the 14 differentially spliced and expressed proteins, PRPF31
itself was identified, in addition to superoxidase dismutase
mitochondrial protein (SOD2) for which reduced expression
has been linked to retinopathies. The latter was also significantly
downregulated in mutant RPE cells. Collectively, the proteomic
data suggest that differential splicing may play a more significant
role in protein isoform generation in RPE when compared to
retinal organoids. This data highlights key candidate genes and
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and pericentrin (red), with representative images shown from n= 3 independent experiments, scale bar 10 μm; b Quantification of cilia length and

incidence showing significant reduction across both parameters in RP11 patients compared to the controls; c, d 2D TEM and 3D SBFSEM images

showing shorter cilia in RP11 - RPE cells, with abnormal bulbous morphology, with representative images shown from n= 3 independent experiments,

scale bar 500 nm (c), 1 μm (d); e Immunostaining of photoreceptors with cilia marker ARL13B (red), with representative images shown from n= 3

independent experiments; f Quantification of cilia length and frequency in photoreceptors showing significant reduction in RP11 patients compared to
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proteins that are affected by alternative splicing in RP11 retinal
cells and deserve further investigation.

Discussion
Retinitis pigmentosa (RP) is one of the most common forms of
hereditary progressive sight loss. Autosomal-dominant inheri-
tance accounts for about 40% of RP, with an estimated 15% of
cases of this RP inheritance type caused by mutations in pre-

mRNA processing factors (PRPFs). PRPFs are ubiquitously
expressed and involved in the formation of stable U4/U6.U5 tri-
snRNPs and the spliceosomal B complex leading to spliceosome
activation, yet human PRPF mutations result in retinal-specific
phenotypes. Despite a large body of work in immortalised cell
lines and animal models, there are no described cellular pheno-
types for PRPF31-related RP type 11 that define the primary
affected cell type or provide clear insights into the patho-
mechanisms that can explain the retinal specificity of phenotypes.
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To gain insights into RP pathomechanisms, we characterised
the cellular phenotypes and splicing programmes of RPE and
retinal organoids in comparison to fibroblasts and iPSCs derived
from RP11 patients with PRPF31 mutations. Through large-scale
transcriptome and biochemical analyses, we provide evidence that
impaired in vivo splicing is restricted to patient-derived retinal
cells only, and that impaired pre-mRNA splicing appears to be
limited to splicing programmes that affect RNA processing itself
(Fig. 4). These splicing defects appeared to be correlated with
ultrastructural, cellular and functional deficiencies that are char-
acteristic of RPE in the RP disease state. These include shorter
microvilli and primary cilia, loss of polarity, reduced barrier
function and defective phagocytic capacity. Similarly, photo-
receptors in patient-specific retinal organoids had defective pri-
mary cilium morphology and features of degeneration and
cell stress. This was corroborated by transcriptome analyses of
Prpf31+/− mouse tissues, demonstrating that alternatively spliced
transcripts in retinae and RPE (but not brain or muscle) also
occurred within the pre-mRNA splicing category (Fig. 4e, f). Our
results are consistent with the existence of precisely regulated
mRNA splicing programmes in the normal mouse retina that are
essential for the formation of primary cilia and their subsequent
development into photoreceptor outer segments12. The exacer-
bation of splicing deficiencies in RP11 retinal cells, in addition to
the disruption of splicing programmes for ciliary genes, are likely
to cause the serious deleterious effects on cellular phenotypes that
underlie splicing factor RP clinical phenotypes. Importantly, our
transcriptomics and proteomics analysis suggest that RPE is the
most severely affected retinal cell type in PRPF31-mutated RP11
patients. In our previous work, we have shown that reduced cilia
length in fibroblasts derived from RP11 patients;34 however,
studies to date have not highlighted cellular deficiencies outside
the retina. Despite this ciliary deficiency, we were able to repro-
gramme RP11 fibroblasts to iPSC with similar efficiency and ease
as the unaffected controls. Thus, we suggest that altered pre-
mRNA splicing is the primary pathogenic defect and cilia defi-
ciencies are secondary impacts that arise from splicing defi-
ciencies (Fig. 8). Since a recent manuscript has shown that PRPF8
defects cause mis-splicing in myeloid malignancies35, it will be
important in future studies to investigate cellular phenotypes in
tissues that have not previously been noted to have clinical
manifestations of pre-mRNA splicing factor deficiency.

Our transcriptome analyses do not directly interrogate the con-
sequences of mis-splicing at the protein-coding level. However, our
quantitation of the different types of alternative splicing events in
cell types (Fig. 4a) showed that RPE and retinal organoids had the
highest burden of retained intron (RI) events. Our transcriptome
analyses do not interrogate the levels of non-canonical or intergenic
transcripts that could arise from retinal cell splicing deficiencies,
since the analysis software only aligns and maps sequence reads to
annotated alternative transcripts. Unique unmapped reads

comprised a minority of total reads (mean= 11.307%, SD=
3.569%, range 5.917–20.797%), but there is unlikely to be a potential
contribution of non-canonical transcripts to RP cellular phenotypes
because there are consistently no significant differences in the
proportion of unmapped reads between control and disease data
sets (p= 0.57, unpaired t test). However, our use of polyA-selected
RNA rather than total RNA could not exclude the involvement of
other classes of noncoding or non-canonical transcripts such as
microRNAs, long noncoding RNAs and circular RNAs. Recent
work has shown that the output of protein-coding genes shifts to
circular RNAs by a process of back-splicing under conditions when
pre-mRNA processing components are limiting36, but the relative
contribution of this process to RP pathogenesis cannot be deter-
mined from our data sets. However, our in vitro and in vivo data
sets both strongly suggest that the exacerbation of splicing defi-
ciencies, specifically of canonical transcripts in retinal cells, con-
tributes to the restricted retinal phenotype in RP11 patients.

Our study recruited four patients with different clinical severity
and although this is a small number for performing
phenotype–genotype correlations, we observed some differences in
cellular phenotypes. For example, there was no significant reduction
in phagocytosis for RPE cells derived from the patient with mild
clinical severity. The incomplete penetrance of RP11 has been linked
to the number of microsatellite repeat elements (MSR1) adjacent to
the PRPF31 core promoter37, but we did not find any difference in
the number of MSR1 repeats between the patients and controls.
Variable clinical severity has also been linked to the expression of
CNOT3, which acts as genetic modifier for PRPF3138. The inclusion
of only four patients makes it difficult to assess such genetic corre-
lations in the present study, but our work provides guidelines about
the optimal size and direction of larger future investigations into
correlations between cellular phenotype and genotype.

The development of therapies for RP and other retinopathies is
a key goal in the stem cell and regenerative medicine fields.
CRISPR/Cas9-mediated in situ gene editing has become a popular
methodology for correcting mutations in iPSCs prior to differ-
entiation into cells of interest. Our iPSC-derived disease models
are the first for this type for splicing factor RP, and we were able
to correct the mutation in iPSC cells derived from a RP11 patient
with the most severe clinical phenotype (Fig. 7a–m). This rescued
all key cellular and functional phenotypes in RPE, the most
severely affected patient cell type, without causing off-target
effects. This demonstrates proof of concept that in situ gene
editing is effective. For this approach to be effective in RP
patients, in situ gene editing in patient′s RPE and photoreceptors
has to be performed. This strategy has been successfully tested in
animal models of RP39 and intense efforts are under way to make
this applicable for human clinical trials40. In addition to CRISPR/
Cas9 gene editing, restoration of PRPF31 mRNA and protein
expression could also be achieved by traditional gene therapy
approaches using AAV vectors that have been optimised for

Fig. 6 PRPF31 loss causes defects in cilia incidence and structural organisation. a PRPF31 siRNA knockdown in human hTERT-RPE1 cells causes a significant

decrease in cilia incidence (lower left) and PRPF31 protein levels (lower right) compared to scrambled negative control (siScr) siRNA, scale bar: 10 μm;

b Gli1 reporter assays of Shh activity measured in NIH3T3-GL cells following knockdown for Ptch1 (positive control), scrambled negative control siRNA

(siScr) and Prpf31. Cells were treated with either 100 nM SAG or vehicle control for 48 h, as indicated. Assays results are expressed in arbitrary units of the

ratio of firefly: Renilla luciferase activities; c Ciliary localisation of IFT88 (green) in primary cilia of hTERT-RPE1 cells (visualised by staining for γ-tubulin

and poly-glutamylated tubulin; red) showing mislocalisation of IFT88 (arrowheads) at ciliary tips following PRPF31 knockdown. Bar graph quantitates the

percentage of cilia with IFT88 at their tip. Scale bar: 1 μm; d Visualisation and quantitative analysis of the transition zone protein CC2D2A (green) and

ARL13B (red); e Visualisation and quantitative analysis of the transition zone (TZ) protein RPGRIP1L (green) and cilia (γ-tubulin and poly-glutamylated

tubulin; red) showing mislocalisation of RPGRIP1L from the TZ into the ciliary axoneme (arrowheads) following PRPF31 knockdown. f, g Ciliary localisation

of IFT88 and RPGRIP1L (green) in RP11 - RPE cells showing mislocalisation of IFT88 (arrowheads) at ciliary tips and RPGRIP1L from the TZ into the

ciliary axoneme (arrowheads). a–g Data shown as mean ± SEM, n= 3. Statistical significance of pairwise comparisons is indicated by n.s. not significant;

*p < 0.05; **p < 0.01; ***p < 0.001 (Student’s unpaired t test). c–f Scale bar: 1 μm
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retinal cells41. Notwithstanding, our studies showed that PRPF31-
mutated RPE had low but detectable levels of mutant PRPF31
proteins, corresponding to the long and NMD-insensitive mutant
(Fig. 3c). It is unclear if mutant PRPF31 proteins could have a
dominant-negative effect, either compromising spliceosome
function in a cell-type-specific fashion, or causing differences in
cellular phenotypes between iPSC-derived lines and even retinal
phenotypes in patients. In contrast, PRPF31 mutant proteins were
not detected in patient-specific retinal organoids, which suggests
that any cellular and functional impairment in photoreceptors
can be ascribed to PRPF31 haploinsufficiency, which is consistent
with previous studies42. Nevertheless, the presence of PRPF31
mutant proteins in RPE suggests that the use of allele-specific
antisense or morpholino oligonucleotides will be required as an
additional treatment strategy to modify PRPF31 gene expression
in order to more fully rescue all retinal phenotypes in splicing
factor RP. However, there are important caveats to extrapolating
disease modelling in iPSCs and derivatives to future preclinical
studies of RP. In particular, cellular phenotypes of RP are
detectable in the iPSC-derived retinal cell types weeks after dif-
ferentiation, whereas the clinical phenotype in RP patients
manifests as a late-onset condition. Part of this disparity may be
explained by the observation of rapid premature senescence in
RPE differentiated from iPSCs43,44.

In conclusion, our data provide a detailed mechanistic expla-
nation of retinal-specific phenotypes in PRPF31-mutated RP type
11 (summarised in Fig. 8) and, more generally, the character-
isation of potential pathomechanisms during retinal degenera-
tion. Our transcriptome data sets comprise a comprehensive
catalogue of target genes affected by PRPF31 mutations. These
delineate retinal-specific splicing programmes in the RP disease

state, providing new insights into the contribution of mRNA
processing to human disease.

Methods
Human subjects. All samples used in this study were obtained with informed
consent according to the protocols approved by Yorkshire and the Humber
Research Ethics Committee (REC ref. no. 03/362). Further information on the
patients and controls is provided in Methods and in Supplementary Data 1.

Animals. The in vivo experiments using mice were performed according to pro-
tocols approved by the Institutional Animal Care and Use Committee of the
Massachusetts Eye and Ear Infirmary. All procedures were performed to minimise
suffering in accordance with the animal care rules in the institution in compliance
with the Animal Welfare Act, the Guide for the Care and Use of Laboratory
Animals, and the Public Health Service Policy on Humane Care and Use of
Laboratory Animals.

iPSC generation. Three age-matched unaffected controls (WT1, WT2 and WT3)
and four RP11 dermal skin fibroblasts (RP11M, RP11S1, RP11S2 and RP11VS,
Supplementary Data 1) were cultured with advanced Dulbecco’s modified Eagle
Medium (Thermo-Fisher, Waltham, MA, USA) containing 10% FBS (Thermo
Fisher Scientific), 1% glutamax (Thermo Fisher Scientific) and 1% penicillin/
streptomycin (Thermo Fisher Scientific) at 37 °C and 5% CO2 in a humidified
incubator. These fibroblasts were transduced at a density of 30,000 cells/cm2 using
the CytoTune™-iPS 2.0 Reprogramming Kit (Life Technologies, A16517) following
the manufacturer’s instructions. iPSC colonies were established on inactivated
primary mouse embryonic fibroblasts feeder layer and then adapted to the feeder-
free system described below.

iPSC culture. Human iPSCs were cultured on six-well plates on Matrigel™ GFR
(Corning, 354230)-coated wells with mTeSR™1 (StemCell Technologies, 05850)
media supplemented with penicillin/streptomycin (Gibco, 15140). Cell culture
medium was replaced on a daily basis. Cells were allowed to grow for 4–5 days
prior to passaging or induction of differentiation. Passaging was carried out using
Versene (EDTA 0.02%) (Lonza, BE17–771E) solution at 37 °C for 3–5 min and
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cells were transferred to fresh matrigel plates in a 1:3–1:6 ratio. All cultures were
maintained at 37 °C, in a humidified environment, with 5% CO2. Cells were
cryopreserved with freezing media containing 90% foetal bovine serum (Gibco,
10270) and 10% dimethyl sulfoxide (Sigma, D2650).

Detection of pluripotency markers by immunocytochemistry. iPSC colonies
were fixed in 4% paraformaldehyde (Sigma, 47608) for 15 min at room temperature
and permeabilised with 0.25% Triton X-100 (Sigma, T8787) for 40 min. Blocking
solution was applied (10% FBS+ 1% bovine serum albumin—Sigma, A3311) for
45 min at room temperature before proceeding with addition of anti-human SSEA4
conjugated with Alexa Fluor® 555 (BD Biosciences, 560218, 1:200) and anti-human
OCT4 primary antibody (R&D, AF1759, 1:200). Secondary staining was performed
with the antibody anti-goat IgG with FITC (Jackson Immuno Research, 705-096-
147, 1:500) diluted in blocking solution, followed by nuclear counterstaining with
DAPI (Partec, 05-5005). Colonies were imaged using a Bioscience Axiovert
microscope in combination with the associated Carl Zeiss software, AxioVision. All
antibody details are shown in Supplementary Data 6.

Detection of pluripotency markers by flow cytometry. iPSCs were treated with
0.02% EDTA (Lonza, BE17-711E) for 3 min at 37 °C to dissociate the colonies. The
suspension was collected in phosphate buffer saline (PBS) and centrifuged for 3
min at 300 × g. Supernatant was removed and replaced with PBS with 0.1% BSA
containing TRA-1-60-conjugated FITC (Merck Millipore, FCMAB115F, 1:60) and
NANOG conjugated with Alexa Fluor® 647 (Cell Signaling Technology, 5448S,
1:150). Samples were incubated in the dark at room temperature for 60 min on a
shaker. Cells were washed with PBS and resuspended in FACS buffer (PBS with 2%
FBS). At least 10,000 events were analysed using a FACS Canto II flow cytometer.
Results were analysed using the FACSDiva software.

In vitro and in vivo three germ-layer differentiation. iPSCs were detached from
six-well plates (20–30 colonies per well) using 1 ml of 1 µg/ml Collagenase type IV
(Gibco 17104–019) and 0.5 µg/ml Dispase II (Gibco, 17105–041) solutions. The
colony suspension was transferred to a 50 ml conical tube until the colonies settled
in the bottom of the tube. The supernatant was carefully aspirated and 2 ml of
differentiation media, containing DMEM-F12 (Gibco 11330), 20% FBS (Gibco,
10270), 1% penicillin/streptomycin (Gibco, 15140), 1% non-essential amino acids
(Gibco, 11140), was added per well. The colony suspension was then transferred to
a 10 cm Petri dish and media was changed every day. After 7 days, the embryoid
bodies (EBs) were transferred to a gelatin-coated 24-well plate or a chamber slide.
After an additional 7 days, colonies were fixed and stained with specific antibodies
for the three germ layers using the 3-Germ Layer Immunocytochemistry Kit (Life
Technologies, A25538). As a negative control, cells were stained only with sec-
ondary antibodies.

For the teratoma assay, iPSC colonies were dissociated with EDTA and 1
million cells were resuspended in a 200 μl solution of PBS (Gibco, 14190)+ 2% FBS
(Gibco, 10270). The samples were injected intraperitoneally in immunosuppressed
mice at the Comparative Biology Centre, at the Medical School, Newcastle
University. Each injection consisted of 0.5 million cells mixed with 100 μl Matrigel
(BD, 354230). Following a period of 10 weeks, the mice were killed and the
teratomae were excised, processed and sectioned according to standard procedures
and stained for Weigert’s haematoxylin, Masson’s trichrome and Mayer’s
haematoxylin and eosin histological analysis. Sections (5–8 µm) were examined
using bright-field microscopy and stained tissue photographed as appropriate.

hTERT-RPE1 cell culture. Human telomerase reverse transcriptase-transformed
retinal pigment epithelium (hTERT-RPE1) were purchased from American Type
Culture Collection (ATCC) at passage 9. The genomic status of the cell lines was
assessed by array CGH and karyotyping. All cell lines were tested every 3 months
for mycoplasma. Cell lines were maintained in DMEM/Ham’s F12 medium (Gibco,
31331) supplemented with 10% foetal calf serum (FCS) (Sigma-Aldrich, F7524),
under standard conditions (37 °C, 5% CO2). Cells were passaged at a split ratio of
1:8 twice a week, with low passages (<25) for both mIMCD3 and hTERT-RPE1
cells. hTERT-RPE1 cells were serum starved in OptiMEM (Gibco, 31985) for 48 h
to induce ciliogenesis.

RNA isolation and reverse transcription. iPSC and iPSC-derived cell pellets were
washed with PBS before being lysed with RNA Lysis buffer provided by the RNA
extraction kit ReliaPrepTM RNA Cell Miniprep System (Promega, Z6010). The
manufacturer’s instructions were followed, including a DNAse incubation step to
the extracted RNA. The products were then passed through a column and resus-
pended in nuclease-free water. RNA was stored at −80 °C or immediately used for
cDNA synthesis. RNA was measured with a NanoDrop 2000 Spectrophotometer
(Thermo Scientific) and 1 µg of extracted RNA was converted into cDNA using
GoScriptTM Reverse Transcription System (Promega, A5000) following the
manufacturer’s instructions.

Reverse transcription polymerase chain reaction. For detection of any residual
expression of the ectopically applied Yamanaka factors, RT-PCR was utilised in

which the primers used were complementary to part of the SeV vector as well as
the transgenes. Oligonucleotides for the housekeeping gene (GAPDH) were used as
a positive control. For the detection of mRNA transcripts as a result of c.1115_1125
del11 mutation, we have designed primers to detect wild type, long and short
mutant transcripts of PRPF31 gene. All primers are listed in Supplementary Data 6.
For the PCR reaction mixture, cDNA produced from 1 µg of RNA was amplified
using the primers described on CytoTune™-iPS 2.0 Sendai Reprogramming Kit
User Guide at the concentration of 10 µM each in addition to 10 µM dNTP mix, 5X
Green GoTaq® Reaction Buffer and GoTaq® DNA Polymerase (5 U/µl) (Promega,
M3175). The PCR consisted of a 35-cycle programme of 95 °C for 30 s, 55 °C for
30 s followed by 72 °C for 30 s and was carried out using a Mastercycler® thermal
cycler. Following the reaction, the samples were analysed using a 2% agarose gel
electrophoresis mixed with GelRedTM Nucleic Acid Stain (Biotium, 41003). A 100
bp ladder was run against the samples.

Quantitative real-time polymerase chain reaction. qRT-PCR was performed
using the GoTaq™ qPCR Master (Promega) according to the manufacturer’s
instructions. Each reaction contained 5 μl GoTaq qPCR Master Mix (Promega),
0.5 μl cDNA sample, nuclease-free water and 0.6 μl primers (10 μM). All amplified
products ranged from 100 to 200 bp in size. The plates were run on an Applied
Biosystems 7500 fast Real Time PCR machine. The cycling programme consisted of
a hot-start activation at 95 °C for 5 min, followed by 45 cycles of denaturation at 95
°C for 10 s, annealing/extension at 60 °C for 30 s and denaturation 95 °C for 1 min.
Following amplification, a melt-curve analysis was performed from 65 to 95 °C
with 0.5 °C increments every 10 s. Each sample was run in triplicate, and the
average quantification cycle (Cq) value was determined. Control reactions were run
with water instead of template for each primer pair to check for primer-dimers and
reagent contamination. Normalised gene expression values (against GAPDH) were
obtained using the ΔΔCT method. All primer details are shown in Supplementary
Data 6.

Genomic DNA extraction. Genomic DNA was extracted from the pelleted cultures
of the iPSC and corresponding parental fibroblast cell lines using the QIAamp
DNA Mini Kit (Qiagen, 56304) following the manufacturer’s instructions.

Mutation screening. An aliquot of 10 ng of DNA from control and patients’
fibroblasts and iPSCs was amplified by standard PCR (40 cycles of 95 °C for 30 s,
64 °C for 30 s and 72 °C for 30 s) using primers described by Dong et al.42 for the
specific exons where the PRPF31 mutations were located. The amplified products
were purified using the QIAquick PCR Purification Kit (Qiagen, 28104) and
quantified using the Qubit® 2.0 Fluorometer. The sequencing files were analysed in
the SeqScape v.2.5 software and forward and reverse sequences from both fibro-
blasts and iPSCs were aligned and compared with the PRPF31 reference sequence
gene (NG_009759.1) from GenBank to identify the PRPF31 mutations. The con-
sensus sequences from the forward and reverse sequences were then extracted from
the software and pairwise aligned against the coding PRPF31 sequence. Here the
nucleotide designated as 1 commences at position 36 of GenBank accession
number AL050369. All primer details are shown in Supplementary Data 6.

SNP array. DNA samples from the iPSCs and corresponding parental fibroblasts
were analysed using the Infinium HumanCytoSNP-12 (Illumina, WG-320-2101)
SNP array following the manufacturer’s instructions. The results were analysed
using the BlueFuse Multi 4.3 software (Illumina, San Diego, USA).

iPSC differentiation to retinal pigment epithelium. iPSC colonies were grown to
80–95% confluency and all differentiation areas were removed. mTeSR™1 media
was replaced with 2 ml of differentiation medium [Advanced RPMI 1640, (12633,
Gibco), GlutaMAX-1 (35050, Gibco), penicillin/streptomycin (Gibco, 15140) and
B-27 (Gibco, 17504)] supplemented with 10 μM SB431542 (STEMCELL™, 72232)
and 10 ng/μl Noggin (R&D Systems, 6057-NG-025) from days 0 to 5. From days 6
to 9, only 10 ng/μl Noggin (R&D Systems, 6057-NG-025) was added to the med-
ium. From days 10 to 15, the medium was supplemented with 5 ng/μl Activin A
(PeproTech, 120–14 A) and from days 16 to 21, Activin A was replaced with 3 μM
CHIR99021 (Sigma, SML1046). The cells were then fed every 2 days until the first
RPE patches appeared, normally by week 4 of differentiation. RPE patches were
mechanically picked and placed in TryPLE (10×) (Invitrogen, USA) for 30 min to
dissociate the cells, agitated by gentle pipetting at 10, 20 and 30 min. Cells were
sieved using a 100 µm cell strainer and re-plated at 4.5 × 105 cells per cm2 on 24-
well plates or 0.33 cm2 PET hanging cell culture inserts (Merck Millipore; Billerica,
USA) coated with PLO/laminin (50 ng/μl) (Sigma-Aldrich, USA).

iPSC differentiation to retinal organoids. The method for generating retinal
organoids from iPSC was based on a previously described protocol24 with minor
modifications. Briefly, iPSCs were dissociated into single cells using Accutase
(Gibco, A1110501). iPSCs were re-aggregated using low-cell adhesion 96-well
plates with U-bottomed conical well (Lipidure® COAT Plates, NOF Corp.) at a
density of 12,000 cells/well in mTeSR1 media supplemented with ROCK inhibitor
(Y-27632, Chemdea, CD0141, 20 µM). After 48 h, the media was changed to

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06448-y

14 NATURE COMMUNICATIONS |  (2018) 9:4234 | DOI: 10.1038/s41467-018-06448-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


differentiation medium (45% Iscove’s modified Dulbecco’s medium (Gibco,
12440–053), 45% Hams F12 (Gibco, 31765–029), 10% KSR (Gibco, 10828–028),
glutamax (Gibco, 35050–038), 1% chemically defined lipid concentrate (Thermo,
11905031), 450 µM monothioglycerol (Sigma, M6145), penicillin/streptomycin
(Gibco, 15140–122). This was defined as day 0 of differentiation. BMP4 (55 ng/ml,
R&D, 314-BP) was added to the differentiation medium on day 6. Half of the
medium was exchanged every third day. On day 18, the aggregates were transferred
from a 96-well plate to a low-attachment 6-well plate, and further cultured in
suspension in the neural retinal differentiation medium containing DMEM/F12
(Gibco, 31330–038), 10% foetal bovine serum (Gibco,10270–106), 1%
N2 supplement (Thermo, A1370701), 0.1 mM taurine (Sigma, T8691), 0.5 µM
retinoic acid (Sigma, R2625), 0.25 μg/ml Fungizone (Gibco, 15290–02), penicillin/
streptomycin (Gibco, 15140–122). The cells were maintained for up to 43 weeks,
with media changes every 3–4 days.

APS-MEA experiments. Recordings were performed on the BioCam4096 platform
with BioChips 4096S+ (3Brain GmbH, Lanquart, Switzerland), integrating
4096 square microelectrodes. Organoids were transferred to 33 °C artificial cere-
brospinal fluid (aCSF) containing the following (in mM): 118 NaCl, 25 NaHCO3, 1
NaH2 PO4, 3 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, and 0.5 l-glutamine, equilibrated
with 95% O2 and 5% CO2. Organoids were dissected longitudinally and placed,
with the presumed RGC layer facing down, onto the 4096 channel MEA, flattened
with a translucent polyester membrane filter (Sterlitech Corp., Kent, WA, USA).
The organoids were allowed to settle for at least 2 h. To reliably extract spikes from
the raw traces, we used a quantile-based event detection45 and single-unit spikes
were sorted using an automated spike sorting method for dense, large-scale
recordings46. Statistical significance and firing rate analyses were evaluated by using
Prism (GraphPad, CA) and MATLAB (Mathworks, MA). Light stimuli were
projected as described previously46. Broad white light pulses (200 ms, 217 µW/cm2

irradiance, 1 Hz) were presented for 5 min onto the organoids after recording of 5
min without pulsed light stimulation. The drugs cGMP (8-Bromoguanosine 3′,5′-
cyclic monophosphate, Sigma-Aldrich, MO) and GABA (γ-Aminobutyric acid,
Tocris Bioscience, Bristol, UK) were puffed in the recording chamber (final con-
centrations, cGMP 100 µM, GABA 125 µM) and 2 min before and after the puff
were recorded.

CRISPR-Cas9 correction of PRPF31 mutation in the RP11VS. Correction of
PRPF31 mutation in the RP11VS iPSCs was achieved by using the CRISPR/
Cas9 system in combination with ssODNs as homologous templates covering the
mutation site. The online design tool (http://tools.genome-engineering.org) was
used to design the sgRNA sequences and predict off-targets. The sgRNA (see
Supplementary Data 6), which targets only mutant but not wild-type PRPF31
sequences and predicted to have low off-targets, was chosen. The sgRNA was
cloned into the CRISPR/Cas9 vector (pSpCas9(BB)-2A-Puro) following the pro-
tocol from Ran et al.47. The ssODN template with wild-type PRPF31 sequences was
designed manually with 91 bp homology arms on each side of the mutation region
(Supplementary Data 6). The sgRNA-CRISPR/Cas9 vector and ssODN were co-
transfected into the RP11VS iPSCs by using Lipofectamine-3000 (Invitrogen)
according to the manufacturer’s instructions. Twenty-four hours after transfection,
puromycin (0.2 µg/ml) was added for 2 days. Four–5 days after selection, the
resistant iPSCs were dissociated into single cells using Accutase (Gibco, A1110501).
A total of 100,000 cells in mTeSR1 media supplemented with ROCK inhibitor (Y-
27632, Chemdea, CD0141, 20 µM) were plated on a 10 cm Matrigel-coated dish.
After 7 days, the colonies were picked and transferred to a cell culture 96-well plate.
When the wells became confluent, iPSCs were split in two 24-well plates for further
expansion and DNA isolation. Genomic DNA (gDNA) was isolated using QIAamp
DNA Mini Kit (Qiagen, 56304). Subsequently, PCR were performed with the
primers including PRPF31-mutation specific primers; PRPF31-WT-specific pri-
mers; PRPF31-mutation/WT primers (Supplementary Data 6). The positive clones,
which are negative for PRPF31-mutation-specific primers and positive for PRPF31-
WT-specific primers were sequenced to confirm in situ gene editing of PRPF31.

Off-target prediction and capture sequencing. sgRNA off-target sequences were
predicted using the online design tool (http://tools.genome-engineering.org). Each
sgRNA off-target sequence was blasted against the human genome reference
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Capture intervals were expanded by ~500
bp in both the 5′ and 3′ directions. Primers were designed in this region (Sup-
plementary Data 6). The PCR products were then sequenced to check the off-target
effects of sgRNA.

Measurement of trans-epithelial resistance. TER was performed using a Mil-
licell ERS-2 Voltohmmeter (Millipore, MERS00002) by measuring the resistance of
the blank transwell insert with PBS (Gibco, 14190) and the insert with RPE cells.
The shorter and longer tips of the electrode were inserted in the transwell apical
chamber and in the basolateral chamber, respectively. The resistance was measured
twice in each transwell insert. The resistance reading of the blank was then sub-
tracted from the resistance reading of the cells for each measurement. The results
were multiplied by the membrane area value using the formula: Unit area

resistance= Resistance (Ω) × effective membrane area (cm2), where the final value
was given in ohms (Ω).

Transmission electron microscopy. RPE and 3D optic cup samples were fixed
with 2% gluteraldehyde in 0.1 M sodium cacodylate buffer and sent to the trans-
mission electron microscopy facilities at Newcastle University, where samples were
post fixed in 1% osmium tetroxide, dehydrated in gradient acetone and embedded
in epoxy resin. Ultrathin sections (70 nm) were picked up on copper grids, stained
with uranyl acetate and lead citrate and imaged using a Philips CM100 trans-
mission electron microscope with high-resolution digital image capture.

Serial block face SEM. Cells were fixed overnight in 2% glutaraldehyde in 0.1 M
sodium cacodylate buffer. Once fixed, the samples were processed using the heavy
metal staining protocol adapted from Deerinck et al.48. Briefly, samples were
incubated in a series of heavy metal solutions −3% potassium ferrocyanide in 2%
osmium tetroxide, 10% thiocarbohydrazide, 2% osmium tetroxide again, 1% uranyl
acetate overnight and finally lead aspartate solution. Between each step the samples
were rinsed thoroughly in several changes of deionised water. Samples were
dehydrated through a graded series of acetone and then impregnated with
increasing concentrations of Taab 812 hard resin, with several changes of 100%
resin. The samples were embedded in 100% resin and left to polymerise at 60 °C for
a minimum of 36 h. The resin blocks were trimmed to ~0.75 mm by 0.5 mm and
glued onto an aluminium pin. In order to reduce sample charging within the SEM,
the block was painted with silver glue and sputter coated with a 5 nm layer of gold.
The pin was placed into a Zeiss Sigma SEM incorporating the Gatan 3view system,
which allows sectioning of the block in situ and the collection of a series of images
in the z-direction. Multiple regions of interest were imaged at ×2000 magnification,
3000 × 1500 pixel scan, which gave a pixel resolution of ~15 nm. Section thickness
was 50 nm in the z-direction. In the resulting z-stacks, cilia were identified and
segmented manually using Microscopy Image Browser (MIB, University of Hel-
sinki). The segmentations were imported into Amira (FEI) for construction of the
3D models.

Phagocytosis assay. Bovine rod photoreceptor outer segments (POS) (InVi-
sionBioResources, 98740) were centrifuged at 2600 × g for 4 min and the pellet was
resuspended in 100 μl of advanced RPMI (AdRPMI) 1640 medium (12633, Gibco).
The POS were incubated with 0.4 mg/ml FITC (Sigma, F7250) for 1 h at room
temperature and agitated in the dark. POS were centrifuged at 2600 × g for 4 min
and washed three times with PBS (Gibco, 14190). Then, they were resuspended in
AdRPMI 1640 (12633, Gibco)+ B-27 Supplement (Gibco, 17504)+ 10% foetal
bovine serum (FBS) (Gibco, 10270) and the staining was confirmed under a
Bioscience Axiovert microscope. RPE cells were treated with 1 × 106 POS-FITC per
cm2 and incubated for 4 h at 37 °C. For the control experiments, RPE cells were
treated with the same number of non-stained POS and incubated for the same
time. Cells were rinsed with PBS supplemented with calcium and were detached
from the wells using 200 μl of Trypsin for 5–8 min. Trypsin was neutralised by the
addition of 500 μl of AdRPMI 1640 medium+ 10% FBS and POS were centrifuged
at 300 × g. Cell pellets were resuspended in FACS buffer (PBS with 2% FBS) and
transferred to FACS tubes. 5 mM DRAQ5 (Biostatus, DR50200; 1:2500) was used
to distinguish cells from debris and outer segments. Cells were washed with 0.2%
trypan blue solution (Sigma, T8154) to quench fluorescence from bound POS,
washed with PBS and suspended in FACS buffer. Samples were analysed imme-
diately on a LSRII flow cytometer and 10,000 events were collected per sample.
Results were analysed using FacsDiva software.

RPE cytokine secretion studies. Medium from basal and apical chambers of
transwell inserts were collected from RPE cells of healthy controls and patients.
The levels of PEDF and VEGF secretion were measured by using human PEDF-
ELISA Kit (Cusabio, CSB-E08818h) and human VEGF-ELISA Kit (Life technolo-
gies KHG0111) according to the manufacturer’s instructions.

RPE characterisation by immunocytochemistry. Cells were fixed in 4% for-
maldehyde (Sigma, 47608) for 15 min at room temperature and permeabilised with
0.25% Triton X-100 (Sigma, T8787) for 15 min, followed by treatment with
blocking solution (3% BSA in PBS, Sigma, A3311) for 30 min at room temperature.
Cells were treated with primary antibodies anti-bestrophin (Abcam, ab2182, 1:300),
anti-sodium potassium ATPase (Alexa Fluor® 488 conjugate) (Abcam, ab197713,
1:50), pericentrin (Abcam, ab28144, 1:500), MERTK (Bethyl, A300-222A, 1:200),
ARL13B (Proteintech, 17711-1-AP, 1:500), collagen IV (Abcam, ab6586, 1:200),
PRPF31 (Abnova, PAB7154, 1:500) and SNRPB monoclonal antibody (Y12)
(ThermoFisher, MA5-13449, 1:500), overnight at 4 °C, and with secondary anti-
bodies anti-rabbit FITC (Sigma, T9887, 1:500) or anti-mouse FITC (Jackson
Immuno Research, 715-095-151, 1:500) and anti-mouse Cy3 (Jackson Immuno
Research, 115-165-003, 1:500) or anti-rabbit Cy3 (Jackson Immuno Research, 111-
165-003, 1:500) diluted in PBS for 1 h at room temperature. Washes with PBS were
carried out between and after treatments. Finally, cells were treated with the
nuclear stain-DAPI (Partec, 05-5005), and imaged using a Nikon A1R confocal
microscope in combination with the associated NIS Elements software. All anti-
body details are shown in Supplementary Data 6.
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Immunofluorescence and microscopy of hTERT-RPE1 and RPE. Immuno-
fluorescence staining was performed as described previously49. hTERT-RPE1 cells
were cultured as described above. Coverslips were seeded with 105 cells and serum
starved in OptiMEM for 48 h after transfection to induce ciliogenesis. Twenty-five
pmoles of siRNA was reverse-transfected using Lipofectamine RNAiMAx (Invi-
trogen). Ciliated cells were fixed in ice-cold methanol for 5 min at −20 °C, treated
with 0.05% Triton X-100 in PBS for 5 min, and blocked in 1% non-fat milk in PBS
for 30 min. Fixed cells were stained for 90 min with appropriate primary anti-
bodies. Coverslips were then washed in PBS and stained for 1 h with appropriate
Alexa Fluor-conjugated secondary antibodies (Life Technologies). Coverslips were
washed again with PBS before mounting in Prolong Gold anti-fade mountant
(Molecular Probes). mIMCD3 cells were seeded at 2.5 × 105 cells/well on sterile
glass coverslips in six-well plates and fixed in ice-cold methanol. Cells were blocked
in 1% non-fat milk in PBS for 30 min. Images were obtained using a Zeiss Apo-
Tome structured illumination microscope (SIM), equipped with a ×63 objective oil
lens, or a Nikon A1R confocal microscope with ×100 oil objective lens controlled
by NIS Elements AR 4.20.01 (Nikon) software. Optical sections were generated
through structured processing using Axiovision 4.3 (Zeiss) or NIS Elements AR
4.20.01 (Nikon) software. Images were analysed using Adobe Photoshop CS and
FIJI software. Images were assembled with Adobe Illustrator CS. All antibody
details are shown in Supplementary Data 6.

Characterisation of retinal organoids by immunocytochemistry. iPSC-derived
retinal organoids were fixed in 4% paraformaldehyde at room temperature for 20
min. Post-fixation retinal organoids were incubated overnight with 30% sucrose in
PBS, and then frozen and cryosectioned. The frozen sections were stained for a
panel of retinal-specific antibodies. Antibodies against the following proteins were
used at the indicated dilutions: RECOVERIN (Merck Millipore, AB5585, 1:800),
NRL (Santa Cruz, sc-374277, 1:800), CRALBP (Abcam, ab15051, 1:500), HuC/D
(ThermoFisher, A21271, 1:500), PKCα (BD Biosciences, 610107, 1:500), ARL13B
(Proteintech, 17711-1-AP, 1:500), PRPF31 (Abnova, PAB7154, 1:500), SNRPB
monoclonal antibody (Y12) (ThermoFisher, MA5-13449, 1:500). The following
secondary antibodies were used: anti-mouse-IgG-FITC (Jackson Immuno
Research, 715-095-151, 1:500), anti-mouse-IgG-Cy3 (Jackson Immuno Research/
115-165-003, 1:500), anti-rabbit-IgG-Cy3 (Jackson Immuno Research/111-165-
003, 1:500), anti-goat-IgG-FITC (Jackson Immuno Research/705-096-147, 1:500).
Nuclei were labelled with blue-DAPI (ThermoFisher, 62248). All antibody details
are shown in Supplementary Data 6.

Cilia length and frequency measurements in RPE cells. The length of cilia was
measured by a 3D method using Imaris 8.3 Software (Bitplane Inc). Immunocy-
tochemistry Z-stacks images of RPE samples from patients and controls were
uploaded into Imaris. Surfaces were created to cover all the length of the cilia across
the bottom and top of the stacks. The values were given in μm and a minimum of
150 cilia were independently measured for each sample. The cilia incidence was
calculated by counting the number of cilia per cell in each image. Z-stacks were
uploaded into Imaris software and spots were created for the blue (DAPI) and
green (FITC) channels to cover all nuclei and cilia of cells. The percentage of
cilia spots per nuclei spots was calculated and a minimum of 300 cells were counted
per sample.

Cilia length and frequency measurements in retinal organoids. Cryosections
from retinal organoids were stained with the ARL13B antibody (Proteintech,
17711-1-AP, 1:500). The images were obtained using Carl Zeiss laser-scanning
microscope and Zen software. Maximum intensity projections of z-stacks were
used for the analysis. The measurements were performed in MATLAB. The
workflow of the method is briefly explained as follows. CZI image files are first
imported into MATLAB workspace using the ‘bfopen’ function written by Bio-
Formats50. This allowed us to access channels individually as grayscale images.
Hysteresis thresholding is used to segment the cells and filter out noise from the
images51. The concept of this method is to use dual thresholding values, such
that all the pixels with intensity values above the upper threshold value are first
marked as cell pixels, any neighbourhood pixel above the lower threshold that is
connected to each of the first pass pixels are also classified as cell pixels. This
produces segmentation with fewer isolated points, giving a better result than a
simple high-pass thresholding. Segmented objects, such as noise, those sizes
smaller than a user selected value are then removed. Finally, a watershed-based
method is applied to the binary image to split clustered cells, details of this
method can be found in Wang et al.52. Because all the pixels of each cell are
connected and represented as a single region, an image region property mea-
suring function (regionprops) in MATLAB was used to extract the information
of each cell, such as, size, average intensity value and length. The cilia length
reported was the average length of all cilia in the image. The frequency of ciliated
cells was calculated as cilia numbers/total cell numbers (DAPI) in the same
region × 100%.

Luciferase assay to measure SHH activity. NIH3T3-GL cells (generous gift of
Fred Charron, Montreal Clinical Research Institute) were grown in DMEM sup-
plemented with 10% FCS (Sigma-Aldrich, F7524). The cells were passaged at 1:10

ratio twice every week. The cell line was tested for mycoplasma every 3 months.
These cells stably express Firefly luciferase under the control of a Gli-response
elements and Renilla luciferase constitutively. For the luciferase assay, 20,000 cells
were plated into each well of a 96-well plate and two rows each were reverse-
transfected with 25 pmoles of siRNA against PRPF31, Ptch1 and a Scrambled
control using Lipofectamine RNAimax. Twenty-four hours later, the cells were
treated with 100 nM SAG (Cayman Chemical Company, 11914) or vehicle control
for 48 h. The cells were then collected in 1XPLB buffer using the Dual Luciferase
Reporter Assay system (Promega, E1910). The assays were run on a Berthold
Mithras LB 940 plate reader with dual injector system as per the manufacturer’s
protocol. Assay results were expressed as a ratio of firefly: Renilla luciferase
activities in arbitrary units. The data were analysed by one-way ANOVA followed
by Tukey’s multiple comparison test.

RNA sequencing. Total RNA was extracted from tissue using TRIzol (Ther-
moFisher Scientific Inc). RNA samples were treated with a TURBO DNA-free™
Kit (Ambion Inc.) using the conditions recommended by the manufacturers, and
then cleaned with a RNA Clean & Concentrator™−5 spin column (Zymo
Research Corp.). RNA was tested for quality and yield using a NanoDrop
1000 spectrophotometer and an Agilent 2100 Bioanalyzer. RNA-seq analysis was
performed for all patients and all controls as triplicate biological repeats in all
cell types: fibroblasts, iPSC, iPSC-derived RPE and iPSC-derived retinal orga-
noids. To minimise bubble PCR artefacts, we used 100 ng of purified total RNA
in library preparation, following the 'TruSeq' Illumina protocol. In brief, RNA
was polyA-selected, chemically fragmented to about 200 nt in size, and cDNA
synthesised using random hexamer primers. Each individual library received a
unique Illumina barcode. RNA-seq was performed on an Illumina HiSeq 2000 or
HiSeq2500 instrument with six or eight libraries multiplexed per flow cell lane
using 100 bp paired-end reads. This resulted in an average of 250 million reads
per lane, with an average of 40 million reads per sample. Raw reads were aligned
to the human (Homo sapiens) full genome (GRCm38, UCSC mm10) using
STAR, a splice-aware aligner53. GTF transcript annotation files were down-
loaded from Ensembl. Transcripts were assembled using STAR, followed by
estimates of raw gene counts using HTSeq54. Differential gene expression was
analysed using DESeq255 with statistical significance expressed as a p value
adjusted for a false discovery rate of 0.01 using Benjamini–Hochberg correction
for multiple testing.

Alternate splicing analysis was then carried out using rMATS56. For each
comparison being made, we used the sorted BAM files produced by STAR to run
rMATS using default unpaired settings. Reported splicing changes were considered
significant if they had a p value <0.05 and a change in inclusion-level difference of
more than 5%. GO enrichment analysis was carried out on the genes found to have
significant splicing changes via clusterProfiler57. Multiple testing corrections were
carried out using the Benjamini–Hochberg method with an adjusted p value <0.05,
denoting significantly enriched gene ontology.

Production of lentiviral particles and transduction of cells. The minigene
reporter encoding the adenovirus E1A transcript was subcloned from pMTE1A
plasmid32,33 into the PmeI site of the pWPI lentiviral vector (Addgene; Trono lab).
Lentiviral particles were produced in HEK293T cells grown in DMEM medium
with 10% FBS. The cells were transfected with pWPI-E1A and the packaging
plasmids psPAX2 and pMD2.G (Addgene) using PEIpro transfection reagent
(Polyplus transfection). After 54 h, the medium containing lentiviral particles was
centrifuged at 1000 × g for 5 min and cleared using a 0.45 μm filter. The lentivirus
was concentrated using Amicon Ultra 100 kD MWCO centrifugal filter units
(Millipore) and aliquots were stored at −80 °C. For lentiviral transduction, cells
were seeded in six-well plates with 2 ml medium and infected with the con-
centrated lentivirus in the presence of 8 µg/ml polybrene (Sigma). After 24 h, the
culture medium was refreshed, and 36 h later cells were washed with PBS and
harvested.

E1A alternative splicing assays. Total RNA was extracted from cells transduced
with the E1A lentivirus using an RNA extraction kit (Macherey Nagel). E1A
alternative splicing was analysed by RT-PCR with 1 µg of the total RNA sample
using the high-capacity cDNA reverse transcription kit (Applied Biosystems) and
GoTaq DNA polymerase (Promega). PCR was performed with the 5′-end radi-
olabelled exon 1 forward primer (5′-GTTTTCTCCTCCGAGCCGCTCCGA) and
the exon 2 reverse primer (5′-CTCAGGCTCAGGTTCAGACACAGG) by using
the following programme: 95 °C for 2 min, 30 cycles of 95 °C for 30 s, 64 °C for 30 s,
72 °C for 1 min, and a final step of 72 °C for 5 min. PCR products were separated
by denaturing PAGE, visualised by autoradiography using a Typhoon Trio plus
scanner (GE Healthcare) and quantified using Quantity One software (Bio-Rad).

Western blot analysis. Cells were washed with PBS and lysed in lysis buffer (40
mM HEPES pH 7.4, 150 mM NaCl, 1% Triton X-100, 1 mM phe-
nylmethylsulfonylfluoride, 1 mM sodium orthovanadate and 0.5 mM DTT)
supplemented with phosphatase inhibitor and EDTA-free protease inhibitor
cocktails (Roche). The concentration of total protein in cleared lysates was
measured by Bradford assay and about 20 µg of each sample was analysed by
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western blotting followed by immunostaining using antibodies against SART1,
PRPF8, Snu114, PRPF31 (against its N terminus or C terminus), PRPF4 and
SF3b155, and the Amersham ECL detection kit (GE Healthcare). All antibody
details are shown in Supplementary Data 6. Uncropped blots are shown in
Supplementary Figure 11.

Analysis of snRNP levels by glycerol gradient fractionation. Nuclear extracts
(200 µg each) were diluted with an equal volume of gradient buffer (G150: 20mM
HEPES pH 7.9, 150 Mm NaCl, 1.5mM MgCl2 and 0.5mM DTT) and sedimented on
linear 4 ml 10-30% (v/v) glycerol gradients in the G150 buffer. After ultra-
centrifugation in a Sorvall TH-660 rotor for 14 h at 29,000 rpm (114,000 × g), the
gradients were separated into 24 fractions. To analyse the relative levels of snRNPs in
the nuclear extracts, proteins in the gradient fractions were digested by Proteinase K
in 20mM HEPES pH 7.9, 150 mMNaCl, 10mM EDTA, 1% (w/v) SDS for 45min at
42 °C, the RNAs were extracted by phenol/chloroform/isoamylalcohol and pre-
cipitated. The isolated RNAs were separated by denaturing 8% urea PAGE followed
by Northern blotting using 5′-end radiolabeled DNA probes against U1, U2, U4, U6
and U5 snRNAs. To analyse the association of selected splicing proteins with the tri-
snRNP, proteins were precipitated from gradient fractions and separated on NuPAGE
4−12% Bis–Tris gels (Invitrogen) followed by blotting and immunostaining using
antibodies against PRPF8, Brr2, Snu114, PRPF31 (against its C terminus), PRPF4 and
SF3b155, and the Amersham ECL detection kit (GE Healthcare). All antibody details
are shown in Supplementary Data 6.

TMT labelling for mass spectrometry. Total cell lysates were prepared from 1
million RP11VS retinal organoid or RPE cells and the corresponding Cas9-
corrected cells according to the protocol described for Pierce Mass Spec Sample
Prep Kit (Thermo Scientific). Lysates were diluted to 130 µl and sonicated using
Covaris S220 ultrasonicator (Covaris). Protein concentrations were determined
using the Pierce BCA protein assay kit and 100 µg of the total proteins from
patient or Cas9-corrected control cells were processed for isobaric tandem mass
tag (TMT) labelling using TMTduplex Isobaric Mass Tagging Kit (Thermo Sci-
entific) according to the manufacturer’s instructions. Briefly, samples were
reduced by the addition of TCEP, alkylated with iodoacetamide and acetone
precipitated. Protein pellets were resuspended in 50 mM TEAB (triethyl ammo-
nium bicarbonate) buffer followed by digestion with trypsin overnight at 37 °C.
The patient and Cas9-corrected control samples were, respectively, labelled with
TMT-127 and TMT-126 reagents for 1 h at room temperature and the reactions
were quenched by 5% hydroxylamine for 15 min. Next, 50 µg of TMT-labelled
peptides from patient and control cells were combined and cleaned up using
C18 spin columns (Harvard Apparatus). The samples were dried down by
SpeedVac (Eppendorf) and reconstituted in 100 µl buffer A (10 mM NH4OH).
Fifty microliters of peptide mixtures were separated in 80 fractions on an XBridge
BEH C18 HPLC column (150 mm × 1mm ID, 3.5 µm; Waters) using a gradient of
buffer B (10 mM NH4OH, 80% acetonitrile) over 90 min. The elution fractions
were combined to 20 fractions, dried down by SpeedVac and resuspended in 20 µl
of 0.1% trifluoroacetic acid (TFA).

LC/MS/MS analysis. Peptides in each fraction were analysed in three replicates on
either an Orbitrap Fusion or a Q Exactive HF-X mass spectrometer (Thermo Fisher
Scientific), both of which are coupled with an UltiMate 3000 RSLCnano HPLC system
(Thermo Fisher Scientific). First, the peptides were desalted on a reverse phase C18
pre-column (Dionex 5×, 0.3mm ID) for 3min. After 3min, the pre-column was
switched online with the analytical column (30 cm long, 75 μm ID) prepared in-house
using ReproSil-Pur C18 AQ 1.9 μm reversed phase resin (Dr. Maisch GmbH). Solvent
A consisted of 0.1% formic acid in H2O, and B consisted of 80% acetonitrile and 0.1%
formic acid in H2O. The peptides were eluted with buffer B (8–42% gradient) at a flow
rate of 300 nL/min over 70min. The pre-column and the column temperature were
set to 50 °C during chromatography. On the Orbitrap Fusion, a data-dependent
synchronous precursor selection (SPS)-based MS3 method was used, where the most
intense precursors in the m/z range of 400–1200 Th and with the charge state of 2–7
were selected from a survey MS1 scan for MS2 fragmentation with an isolation
window of 0.7 Th. Subsequently, up to 10 resulting MS2 top fragments were further
collected simultaneously with an isolation window of 1.6 Th for MS3 analysis. A
maximal cycle time of 4 s was maintained at all time. MS1 scans were acquired at a
resolution of 120,000 and an AGC target of 2E5. Selected precursors underwent CID
fragmentation with normalised collision energy (NCE) of 35. MS2 scans were
acquired in the ion trap in turbo scan mode with a maximum ion injection (IT) time
of 50ms and an AGC target of 1E4. MS3 scans were analysed using HCD frag-
mentation at NCE of 65 and detected in Orbitrap with a resolution of 30,000. For
samples measured on the Q Exactive HF-X, the mass spectrometer was operated in
Top20 data-dependent mode, where the most intense 20 precursors in the m/z range
of 350–1600 Th were selected for MS2 fragmentation with an isolation window of 0.8
and NCE of 32. MS2 spectra were acquired in Orbitrap with a resolution of 15,000
and a maximum IT of 64ms. AGC for MS1 and MS2 scans were 3E6 and 1E5,
respectively. Dynamic exclusion (DE) was set to 20 s for both instruments.

Data processing. MS/MS spectra were searched against a Swiss-Prot human data-
base containing 20,341 reviewed protein entries using Mascot algorithm (Matrix

Science) via Proteome Discoverer 2.2 (PD, Thermo Fisher Scientific). Precursor and
fragment ion mass tolerances were, respectively, set to 10 ppm and 0.6 Dalton for raw
files from Orbitrap Fusion or 10 ppm and 0.02 Dalton for the ones from Q Exactive
HF-X after initial recalibration. Protein N-terminal acetylation, methionine oxidation
and glutamine/asparagine deamidation were allowed as variable modifications.
Cysteine carbamidomethylation and TMT2plex on both peptide N terminus and
lysine residue were defined as fixed modifications. Minimal peptide length was set to
six amino acids, with a maximum of two missed cleavages. Mascot percolator was
applied to improve the accuracy and sensitivity of peptide identification. The false
discovery rate (FDR) was set to 1% at both the peptide spectrum match (PSM) level
and the protein level, respectively, using Mascot Percolator and a built-in Protein FDR
Validator node in PD. Quantitative measurement was based on relative abundance of
the detected TMT reporter ions in MS3 or MS2 spectra for raw files from the Orbitrap
Fusion or Q Exactive HF-X, respectively. At least two quantifiable unique peptides in
each replicate were required for protein quantification. Protein ratios were log
transformed and then median normalised based on the assumption that the majority
of the proteins are unaffected. The reported RP11VS/Cas9-RP11VS ratios are the
average of at least two replicates. To identify the differentially regulated proteins, the
corresponding Z scores were calculated and those proteins with Z scores less than
−1.5 or greater than +1.5 were defined as regulated. 1D annotation enrichment
analysis was carried out by the Perseus software version 1.6.1.3 with a
Benjamini–Hochberg FDR 2%58.

Quantification and statistical analysis. P values were calculated of normally
distributed data sets using a two-tailed Student’s t test, or one-way ANOVA
with Dunnett’s post hoc test, or two-way ANOVA with Bonferroni post hoc
tests using GraphPad Prism Software Inc. (San Diego, CA, USA). Statistical
analyses represent the mean of at least three independent experiments, error
bars represent standard error of mean (s.e.m.) or as otherwise indicated. The
statistical significance of pairwise comparisons shown on bar graphs is indicated
by n.s. not significant, *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
For cell populations, a minimum of 100 cells were counted from >10 separate
fields of view.

Data availability
The trimmed FASTQ data for all human samples were uploaded to the European

Nucleotide Archive under the accession number PRJEB22885 (human) and

PRJNA417002 (mouse). The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium via the PRIDE59 partner repository with the dataset

identifier PXD010821.
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