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Summary

Epidemiological, neuropathological and functional neuroimaging evidence implicates global and

regional derangements in brain metabolism and energetics in the pathogenesis of cognitive

impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic

activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in

cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that

overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network

dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond

adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how

derangements related to chronic positive energy balance, such as diabetes, set the stage for

accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that

target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have

shown efficacy in animal models and preliminary studies in humans.

Brain energy metabolism and cognitive impairment

Several converging lines of evidence suggest a critical role for alterations in global and

regional brain metabolism and energetics in the pathogenesis of cognitive impairment.

Epidemiological evidence has implicated global disorders of metabolism (such as obesity

and type II diabetes mellitus) in cognitive aging1 and Alzheimer’s disease (AD).2,3

Functional neuroimaging, including functional magnetic resonance imaging (fMRI) and 2-

deoxy-2[(18)F]fluoro-D-glucose (FDG) positron emission tomography (PET) studies, have

demonstrated regional metabolic changes correlating with cognitive impairment.4,5 Animal

studies have established several links between these conditions, demonstrating

mitochondrial and metabolic alterations in the brains of cognitively impaired animals6,7,8

and abnormal cognition and neuronal changes 9,10,11 in the brains of metabolically

impaired animals. On the other hand, data suggest that manipulations that improve global

energy metabolism (such as caloric restriction and exercise) may be effective in

preventing12,13 or reversing14,15 cognitive impairment and attenuating the atrophy16,17

associated with brain aging and AD in humans and animals.18,19,20
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A separate line of research implicates brain network dysfunction in cognitive impairment.

Our complex cognitive functions and behavior are the emergent property of the brain’s

hierarchical organization,21 which is based on nerve cells anatomically and functionally

linked to form microcircuits, which in turn interconnect to constitute large-scale brain

networks.22 The brain is organized in such a way that information processing takes place

efficiently and economically in terms of metabolic costs.23 This suggests a fundamental link

between brain energetics and network function, which is consistent with the fact that

network dysfunction develops in the course of cognitive aging and AD, in parallel with

metabolic derangements.

How could brain network dysfunction be linked to global or regional energetic

derangements? Recent evidence has reinforced the old idea that neurodegenerative diseases,

in particular AD, preferentially target specific networks.24,25,26 Within brain networks, a

small number of nodes, referred to as connector hubs, have disproportionately numerous

connections through which they integrate the functions of distant microcircuits.26 Connector

hub nodes are vital for information flow over a whole network; their dysfunction from

regional metabolic derangements secondary to neurodegenerative pathology may critically

affect a network’s function22 resulting in phenotypic manifestations at the levels of

cognition and behavior. Moreover, it has become evident that aging alters the way networks

process information and handle cognitive tasks globally,23 in parallel with global changes in

brain metabolism.

In this article, we review research on the relation of the brain’s organization in microcircuits

and networks to the spread of AD on a background of aging-related changes in energy

metabolism. We consider the evidence for adaptive changes in microcircuit and network

activation in response to pathologic processes, such as the balance of excitatory/inhibitory

synaptic activity and neurotrophic factor production, and show how these adaptations relate

to regional neuroenergetics. Finally, we relate these processes to whole-organism energetics

and show how a positive energy balance caused by excessive caloric intake and a sedentary

lifestyle favors cognitive aging and the AD cascade by impairing adaptive responses.

Selective vulnerability in AD: connectivity and energetics

A body of neuroimaging research has established that manifestations of early AD relate to

specific network dysfunction resulting from atrophy27 and hypometabolism within critical

nodes.28 MRI-documented atrophy in early AD is most prominent in medial temporal lobe

(MTL), extending over time into inferior temporal, temporal pole, inferior parietal, superior

frontal, posterior medial cortex (PMC, consisting of posterior cingulate cortex and

precuneus), inferior frontal, and superior parietal regions.29 Hypometabolism on FDG-PET

evolves temporally through a similar regional pattern.30 The early involvement of parietal

cortex correlates with decline in processing visuospatial information,31 whereas, the early

involvement of MTL and PMC nodes of the episodic memory and default mode networks

are responsible for key AD deficits in episodic and semantic memory (Figure 1). It is still

unclear what determines this selective regional vulnerability in AD. Nevertheless, mounting

evidence suggests that pathologic changes spread into regions that are energetically

challenged and receive neuronal projections from regions already exhibiting pathology.

We share the view that a cohesive narrative for the temporal progression of AD cannot be

constructed without reference to connectivity and energetics.26 Connectivity is necessary

(although not sufficient) to explain the differential spatial and temporal spread of the two

pathological landmarks of AD: extracellular deposits of amyloid β-peptide (Aβ), assuming

various plaque formations, and intracellular neurofibrillary tangles, NFTs, consisting of

hyperphosphorylated self-aggregating tau.24,32,33 There are conspicuous anatomical
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connections between sequentially affected areas in AD. Aβ deposition occurs at a constant

slow rate at various neocortical locations in some older individuals34 (Figure 2). NFTs, on

the other hand, appear first at the subiculum and entorhinal cortex (layer II/III and layer IV)

accompanied by synaptic and cellular loss.24,32 Cells in layer II and adjacent parts of layer

III affected by NFTs are precisely those that receive lateral connections from (transmodal)

neocortex, and, in turn, project to the hippocampus proper or cornu ammonis (CA).24,35

Layer III neurons generate the glutamatergic perforant path pathway that terminates on

distal dendrites of CA1 neurons, while layer II neurons project to CA3 pyramidal neurons

that, in turn, give rise to the Schaffer collateral pathway that terminates on the apical

dendrites of CA1 neurons. The loss of enthorhinal neurons deprives the hippocampus of

neocortical input35 and directly impairs its function and plasticity.36 On the other hand, the

affected cells in layer IV send lateral connections to transmodal neocortex;24 loss of these

cells deprives the PMC and other transmodal cortices from hippocampal input.

Neocortical involvement in AD can be largely attributed to connectivity to MTL allocortex;

transmodal areas directly linked to it are the most vulnerable, whereas motor and primary

sensory areas that are not directly connected to it are least affected24 (Figure 1). This

selective vulnerability is not attributable to cytoarchitecture: transmodal areas not directly

linked to MTL (such as the portion of anterior cingulate cortex, which is linked with motor

areas) are spared.37 Moreover, lack of involvement of a brain region in AD does not imply

resistance to neurodegenerative cascades in general, since frontoinsular and anterior

cingulate areas are spared in AD but degenerate in behavioral variant Frontotemporal

Dementia.38 Supporting the notion that connectivity determines regional vulnerability in

AD, a pattern of involvement similar to the cortex is seen in the thalamus: Aβ deposits and

NFTs are confined to nuclei with limbic connections.39

What could the mechanisms be for the spread of AD through anatomical connections?

Cellular and animal studies have shown that soluble Aβ oligomers accumulate at the

synapses40, where they impact a delicate balance of excitation/inhibition41,42, impair long

term potentiation43 and facilitate long-term depression (two types of synaptic plasticity

critical for learning and memory).44,45 Axons and synapses are selectively vulnerable to

intracellular accumulation of pathologic substrates and may be the site where the nerve cell

death process is triggered.46 Aβ oligomer accumulation in synapses may, therefore, result in

tau hyperphosphorylation and aggregation in axons, which may be transferred to the

neuronal soma in the form of a NFT, far from the site of Aβ deposition.

While connectivity partly explains the spread of AD, it does not account for the origin of the

disease in specific neocortical and MTL areas. Instead, this localization may partly be

accounted for by aging and age-related metabolic disease, which render MTL neurons

particularly vulnerable to the energetic stress related with AD extracellular and intracellular

deposits. Neuroimaging evidence suggests reduced efficiency of energy metabolism and

disproportionate metabolic cost for cognitive processing in the hippocampus,

parahippocampal gyrus and amygdala (as well as PMC, frontal and temporal transmodal

nodes).23 Animal studies have shown that hippocampal pyramidal neurons have the highest

energy requirements of any neurons in the brain47 and may therefore be at risk under

conditions of unmet metabolic needs. Aging-related cognitive impairment in rats is

associated with down-regulation of insulin signaling and glucose utilization pathways.48 In

hippocampal pyramidal neurons, aging and chronic hyperinsulinemia synergistically up-

regulate the gene for the glucocorticoid receptor (GR) and genes for inflammatory/immune

pathways and down-regulate insulin signaling genes, thereby blocking glucose utilization

and decreasing mitochondrial function.6 The end-result of chronic hyperinsulinemia is MTL

atrophy.49
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Turning our attention to affected neocortical areas, the PMC and medial prefrontal hubs of

the default mode network show early functional impairment in AD,5,50 associated with Aβ
deposition.51,52 We view this vulnerability as the result of their recruitment to compensate

for failing hippocampal function with aging and in the early stages of AD. Successful

memory encoding depends on the dynamic balance of hippocampal activation and PMC

deactivation.53 PMC deactivation decreases with age-related cognitive impairment53 and

successful memory encoding can only be maintained by hippocampus hyperactivation.

Similarly, in aging and early AD, greater activation of the hippocampus, PMC and frontal

areas is required for successful memory retrieval.54,55 This increased hippocampal

recruitment presumably translates into a chronic increase of the energy requirements of its

neurons. With AD progression (clinically at the stage of late MCI), PMC deactivation during

encoding is attenuated further,56, especially among APOE ε4 carriers, suggesting that it

represents an aspect of AD pathophysiology. Given that unrestrained episodic retrieval and

semantic processing occupy brain activity whenever the brain is not engaged in specific

cognitive tasks [representing the “default” functional state of the brain], this lack of

deactivation translates into a chronic increase in the energy requirements of default network

nodes. Eventually, atrophy due to neuronal death occurs in affected default mode network

nodes resulting in severe hypometabolism.28

Excitatory and inhibitory signaling dysregulation in aging and AD

Given that much of the energy consumed by neurons is used for synaptic signaling,57

neuronal energetics are intricately linked to neurotransmission. The vast majority of the

brain’s neurons and synapses deploy either the excitatory neurotransmitter glutamate or the

inhibitory neurotransmitter GABA, while other neurotransmitters (serotonin,

norepinephrine, dopamine and acetylcholine) and neuropeptides (somatostatin,

corticotrophin-releasing hormone, neurokinins, etc.) fine tune the activity in neural

networks.58 Nerve cell microcircuits within different brain regions are organized in a

fundamentally similar fashion (Figure 3). Glutamate released from presynaptic terminals

activates AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate) receptors

resulting in depolarization of the postsynaptic membrane and Ca2+ influx through NMDA

(N-methyl-D-aspartate) receptor channels and voltage-dependent Ca2+ channels (Figure 4).

Ca2+ serves as a second messenger that activates cascades of enzymes (protein kinases,

nitric oxide synthase and proteases) and transcription factors (CREB, AP1 and others) that

mediate rapid or delayed biochemical and structural changes, and may also increase the

resistance of the neurons to disease. Perturbations in the balance between glutamatergic and

GABAergic signaling occur early in the development of age-related cognitive impairment

and AD, resulting from and contributing to disturbed cellular metabolism. Moreover, normal

synaptic activity reduces Aβ production and protects synapses against Aβ-related alteration.
59

An inhibitory imbalance (induced by GABA receptor agonists or glutamate receptor

antagonists) impairs synaptic plasticity and associated learning and memory processes in

animals and human subjects.60 Conversely, excitatory imbalance resulting from excessive

glutamate receptor activation and/or reduced GABAergic signaling can result in seizures and

degeneration of synapses and neurons.61 Complex microcircuit alterations affecting

regional excitatory/inhibitory balance do occur in aging and AD in the hippocampus and

cortex. Studies in animals have demonstrated that aging decreases GABAergic signaling in

the hippocampus,62 resulting in excitatory imbalance, while at the same time aging impairs

neuronal glucose uptake, causes mitochondrial dysfunction, and activates glucocorticoid

pathways6 rendering neurons vulnerable to glutamate-induced damage.63 The excitatory

imbalance of aging may be exacerbated by AD, since Aβ promotes membrane

depolarization and renders human cortical neurons vulnerable to glutamate-mediated Ca2+
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overload in vitro,64 which may lead to emergence of hyperactive neuronal clusters in the

vicinity of plaques, as has been demonstrated in a rat model of AD.42 The emergence of

such clusters may account for the increased metabolism in nodes of the default mode

network associated with high regional PIB binding, which is seen transiently in the AD

before atrophy prevails.28 The excitatory imbalance in AD may also result in increased

occurrence of epilepsy in AD patients.65 Paradoxically, AD may also cause a regional

inhibitory imbalance: hippocampal synaptic plasticity is impaired in AD mice due to

reduced NMDA receptor activity,66 whereas Aβ can reduce seizure-like activity in cultured

hippocampal neurons induced by GABA receptor antagonists.67 To reconcile these facts, we

should note that, in mouse models of AD, there is initially increased hippocampal and

cortical excitability followed by GABAergic sprouting, increased inhibitory transmission

and impaired synaptic plasticity.41

The expression of genes encoding proteins involved in the regulation of neuronal

excitability is altered in brain aging and AD. Age-related modifications of gene promoter

regions are associated with reduced expression of genes encoding proteins involved in

synaptic plasticity (e.g., glutamate and GABA receptor subunits, synaptic vesicle proteins)

and cellular Ca2+ homeostasis (Ca2+ binding proteins, Ca2+ dependent kinases and Ca2+

transporters) in humans.68 Alterations in the expression of genes involved in synaptic

plasticity and Ca2+ metabolism regulation have been documented in animal models of aging

and AD and older humans.69,70 The down-regulation of inhibitory signaling and Ca2+

binding proteins may render the neurons vulnerable to Ca2+ overload. Our group has

recently demonstrated that chronic experimental silencing of cortical neurons in vitro results

in molecular changes similar to those seen in aging and AD, including reduced expression of

genes involved in GABAergic transmission, inhibitory neuropeptides, calcium buffering,

and calmodulin- and CREB-mediated signaling.71

The events downstream of perturbed network activity and dysregulated cellular energy

metabolism that lead to neuronal death may also include accumulation of DNA damage and

impaired removal of damaged proteins and organelles. For example, the expression of genes

involved in DNA repair and removal of damaged proteins are suppressed in multiple regions

in the mouse brain during aging.72 Physiological levels of glutamate receptor activation up-

regulates DNA repair gene expression73 and induces the movement of proteasomes from

dendritic shafts into synaptic spines74 in cultured rat neurons, protecting themagainst the

accumulation of damaged DNA and proteins. Nerve cell microcircuit perturbations in AD

may impair these important housekeeping processes.

The survival and growth of neurons is supported by neurotrophic factors produced by

neurons or glial cells. Brain-derived neurotrophic factor (BDNF) is produced by neurons

throughout the brain, where it is released in an activity-dependent manner (Figure 5A).

BDNF plays pivotal roles in synaptic plasticity, learning and memory and neurogenesis, and

can protect neurons against metabolic and oxidative insults.46 In addition, BDNF enhances

intracellular energy availability to cultured mouse neurons by increasing expression of

glucose transporters and stimulating amino acid transport.75 Studies of transgenic mouse

models of AD indicate that large Aβ oligomers suppress BDNF production,76 disrupt its

ability to activate the transcription factor CREB,77 and block the retrograde trafficking of

BDNF from synaptic terminals to the nucleus impairing its ability to promote neuronal

survival.78 Selective blockade of NMDA receptors mimics the abnormal molecular

phenotypes of electrically silenced neurons, and treatment with BDNF reverses the

perturbations caused by chronic suppression of neuronal activity. These findings suggest

that activity-dependent neurotrophic signaling is impaired in brain aging and AD. Indeed, it

was reported that cerebrospinal fluid BDNF declines in humans with aging and even more

so in AD patients.79
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Molecular alterations in AD are associated with perturbed neuronal energy

metabolism

The process of Aβ oligomer formation in neuronal rat cultures generates hydrogen peroxide

and hydroxyl radical, which then induce lipid peroxidation in the plasma membrane of

neurons and glial cells and impair the function of ion-motive (Ca2+ and Na+/K+) ATPases

and glucose transporters; as a result cellular Ca2+ and energy homeostasis are perturbed and

synaptic function is impaired (Figure 4).80 In addition, AD pathogenesis may be linked with

excessive accumulation of Ca2+ in the endoplasmic reticulum, which contributes to synaptic

dysfunction and neuronal degeneration.81 In vivo imaging of intracellular Ca2+ levels in

cortical neurons in a mouse model of AD revealed that some neurons are hypoactive,

whereas neurons in the vicinity of Aβ plaques are hyperactive.42 The latter findings are

consistent with the excitoxicity/energy depletion hypothesis of neuronal degeneration in AD.
46

Impairment of mitochondrial function occurs in vulnerable neurons in MCI and AD and

likely results from a combination of factors including Aβ oligomer accumulation, oxidative

stress and a deficit in neurotrophin signaling.82 A reduction in the activity of several

mitochondrial enzymes (e.g., α-ketoglutarate, pyruvate and isocitrate dehydrogenases) is

evident in brain tissue samples from AD patients,83 and experimental findings in animal

models of aging and AD suggest that mitochondrial dysfunction is both necessary and

sufficient for impaired cognitive function.7,8 Mitochondria are located in presynaptic

terminals and dendrites where they play important roles in local Ca2+ signaling and

associated processes involved in synaptic plasticity.82,84 These synapse-associated

mitochondria may be particularly vulnerable, and so may be compromised early in the AD

process.

Perturbed cellular energy metabolism and associated oxidative stress are also involved in the

hyperphosphorylation and self-aggregation of tau. In a mouse model of Down syndrome

with a subset of triplicated human chromosome 21 ortholog genes (including amyloid

precursor protein, APP), mitochondrial membrane potential and ATP production are reduced

in brain cells and tau is hyperphosphorlyated due to an increase in GSK3β and JNK

activities.85 Among the many kinases that can phosphorylate tau, data from AD mouse

models strongly implicate GSK3β in the pathogenesis of AD.86 GSK3β may play important

roles in Aβ processing87 and in linking perturbed cellular energy metabolism and cognitive

decline in aging and AD. Agents that inhibit GSK3β reduce tau hyperphosphorylation,

enhance cognitive function and reduce Aβ production in mouse models of AD.88 GSK3β
suppression enhances glucose uptake by several cell types89 and increases brain insulin-like

growth factor 1 (IGF-1), which is decreased in AD,90 in mouse model of AD. These data

suggest an important link between AD pathogenesis and brain energy metabolism amenable

to pharmacologic interventions.

Impact of energy intake and expenditure on cognitive aging

High-energy diets and diabetes may have adverse effects on cognitive function in aging and

AD, whereas dietary energy restriction may have beneficial effects (Figure 5). Here we

review experimental data in animals supporting these claims. In rhesus monkeys, aging is

associated with decreased number (or activity) of functional mitochondria in the

hippocampus and a negative correlation exists between metabolic syndrome severity and

oxidative function of these mitochondria.6 Rodents fed with fats and/or simple sugars

exhibit poor learning and memory compared to animals on lower energy diets,9 and even in

young animals excessive weight impairs some cognitive domains.10 On the other hand, in a

mouse model of accelerated aging, caloric restriction attenuated age-related deficits in
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learning and memory.91 Life-long caloric restriction in mice prevents age-related declines

in learning,92 and preserves spatial and non-spatial and working memory in aged rats.93

Even when initiated in mid-life, dietary energy restriction preserves cognitive functions in

aging mice.94 In mouse models of AD, high-energy diets exacerbate Aβ deposition and

memory impairment,95 whereas dietary energy restriction prevents96 or attenuates97 the

development of cognitive impairment and Aβ and tau pathologies.

Three general mechanisms by which excessive energy intake adversely affects cognitive

function are increased oxidative stress, inflammatory processes and impaired adaptive

cellular stress responses. Oxidative damage to proteins and DNA is elevated in brain cells of

animals on high-energy diets98 and reduced in animals on low energy diets.99 High-energy

diets promote inflammatory processes in the brain associated with cognitive impairment.100

On the other hand, dietary energy restriction protects neurons and synapses in animal

models in which neurotoxicity is mediated by oxidative stress.101 Alternate day fasting

reduced brain damage and improved functional outcome in an animal model of stroke by a

mechanism involving suppression of brain inflammation. The effectiveness of dietary

restriction was reduced in older animals, perhaps as a result of age-related impairment of

adaptive cellular stress response pathways.102

Particularly interesting is emerging evidence that excessive dietary energy intake impairs,100

whereas dietary energy restriction increases BDNF signaling.102 Animal studies in which

BDNF or its receptor trkB have been genetically manipulated, or BDNF has been

administered to the brain, have demonstrated major roles for BDNF in synaptic plasticity,

learning and memory and neuronal resistance to oxidative, metabolic and excitotoxic insults

relevant to cognitive dysfunction and AD.46 BDNF also enhances neurogenesis in the

hippocampus, which may contribute to maintenance of hippocampal neurons and

preservation of cognitive function during aging.103 Leptin receptor mutant diabetic mice that

have reduced BDNF levels exhibit cognitive impairment and impaired synaptic function and

neurogenesis.11 BDNF signaling also plays major roles in energy metabolism and cognitive

function in humans as demonstrated by the cases of human subjects with BDNF

haploinsufficiency104 and with de novo trkB mutations105 who are obese, insulin resistant

and cognitively impaired.

Impaired cellular energy metabolism accompanies increased oxidative stress, as indicated by

reduced expression and/or activity of mitochondrial proteins and oxidative genomic damage.
106 The most common metabolic disease, diabetes impairs learning and memory in animals

by inducing multiple alterations in hippocampal microcircuits, including reduced dendritic

spine density, impaired synaptic plasticity and reduced neurogenesis.11 Diabetes may impair

cognitive function, in part, by hyperactivation of the hypothalamic-pituitary-adrenal axis and

lowering glucocorticoid levels can restore cognitive function, synaptic plasticity and

neurogenesis.11 The links between diabetes and AD are complex and likely also involve

inflammatory mechanisms: in double-mutant AD transgenic and diabetic mice, the onset of

diabetes exacerbates AD-like cognitive dysfunction without an increase in brain Aβ burden,

but in association with cerebrovascular inflammation.107

Animal studies have demonstrated benefits of exercise on cognitive function during normal

aging and in models of insulin resistance/diabetes and AD, and have elucidated the

underlying mechanisms (Figure 5). Several studies have documented beneficial effects of

exercise in mouse models of AD, such as improved cognitive performance.18 Exercise

reduces glucocorticoid levels and enhances hippocampal neurogenesis.19 Mild metabolic

challenges associated with exercise induce the expression of genes encoding proteins that

enhance the ability to resist perturbations and cellular plasticity, therefore enhancing

learning. Exercising rats exhibit increased levels of proteins involved in cellular energy
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metabolism and synaptic plasticity in the hippocampus.20 The hippocampal transcriptome of

old mice that have been running lifelong exhibit greater learning-induced activation of

synaptic plasticity and mitochondrial function genes, and down-regulation of oxidative

stress and lipid metabolism genes; running also modulates genes involved in cell

excitability, energy metabolism, and insulin signaling.108 We should take particular notice

of the fact that exercise impacts cognition by enhancing learning. This may explain why

certain studies have failed to show a beneficial effect of exercise on cognition independent

of cognitive stimulation.109

In regards to the cellular and molecular mechanisms underlying the cognition-enhancing

effects of exercise, BDNF plays a pivotal role. Even short-term exercise may improve

memory in rats, associated with increased hippocampal BDNF.110 Exercise and caloric

restriction each increase hippocampal dendritic spine density and BDNF levels in diabetic

mice and exercise significantly enhances the effect of caloric restriction on spine density and

BDNF levels.111 Exercise-induced BDNF may strengthen existing synapses, promote

synaptogenesis and stimulate neurogenesis.19,46 The effects of exercise may not occur

simultaneously across cognitive domains; instead, memory retention appears best

immediately after a period of exercise, associated with BDNF elevation, whereas memory

acquisition is improved after a post-exercise delay.112 A second crucial mediator of the

brain effects of exercise is the peripherally produced IGF-1, which induces plastic and

neuroprotective brain changes and stimulates hippocampal neurogenesis.113 Finally, two

proteins that play important roles in cognitive processes, mitogen-activated protein kinase

and the transcription factor CREB (cyclic AMP response element-binding protein), are also

increased in the hippocampus of rats in response to exercise.114

Energy-based therapeutic interventions in cognitive aging and AD

Thus far, most of the funds for basic and translational research on AD have been invested in

developing treatments to halt the production of Aβ or enhance its removal, which have, thus

far, failed in clinical trials. Here we consider alternative approaches that show promise in

preclinical and preliminary clinical studies and aim at prophylaxis and slowing of cognitive

decline based on modulating adaptive cellular stress response pathways and energy

metabolism.

The considerable evidence that diabetes is a risk factor for cognitive impairment and AD has

led to preclinical studies aimed at establishing the efficacy of anti-diabetic treatments in

animal models.93,96,115 At the cellular level, insulin was shown to decrease binding of Aβ
oligomers at the synapses and the oxidative stress and synaptic spine deterioration they

cause.116 Several small studies have suggested that insulin treatment improves cognitive

function in patients with MCI or AD. In one study, subcutaneous insulin-treated patients

with coincident AD exhibited significantly less cognitive decline compared to placebo-

treated patients.117 In another study, intranasal insulin improved cognitive performance in

AD patients.118 Despite the disappointment caused by the negative trial of the insulin-

sensitizing agent rosiglitazone in AD,119 modulation of insulin signaling pathways

continues to appear as a promising target for AD therapeutics. Particularly promising for the

treatment of cognitive impairment and AD, particularly in insulin resistant subjects, are the

GLP-1 (glucagon-like peptide 1) receptor agonists. GLP-1 receptors are widely expressed in

neurons throughout the brain and data suggest that their activation enhances synaptic

plasticity and cognitive performance and promotes neuronal survival.120 Recent preclinical

studies have demonstrated beneficial effects of GLP-1 receptor agonists in animal models of

AD, including protective and restorative effects on synaptic plasticity and cognitive

function.115,121 Similarly, treatment of AD mice with sitagliptin (which inhibits the

enzyme that inactivates GLP-1 in the blood, DPP4) resulted in increased brain levels of
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GLP-1, ameliorated memory deficits and reduced levels of oxidative stress.122 A protease-

resistant analog of GLP-1 called Exendin-4 was developed and is now widely used for

treatment of diabetes. Because of its dual actions on glucose metabolism and neurons

affected in AD, clinical trials to test the efficacy of Exendin-4 in human subjects with MCI

and early AD have recently been initiated.

Given the multiple neuroprotective actions of neurotrophic factors, such as nerve growth

factor (NGF) and BDNF, they have great potential as therapeutic agents in AD, as well as

against aging-related cognitive decline. Unfortunately, they exert pleiotropic effects and it is

difficult to deliver them at the site of pathology. Therefore, small molecules selectively

targeting specific neurotrophin receptors show greater promise for modulating neurotrophin

signaling via systemic delivery.123 An alternative approach is gene therapy.

Intraparenchymal NGF gene delivery to the basal forebrain of aged rhesus monkeys restored

cholinergic neuronal markers to levels of young monkeys,124 whereas NGF gene transfer

into the septum of aged rats increased the number of cholinergic neurons and acetylcholine

release.125 NGF and recombinant hNGF-61 were successfully delivered via ocular and

intranasal administration to transgenic AD mice, in which they suppressed AD pathology.

126,127 In aged rats and non-human primates, local BDNF delivery reverses neuronal

atrophy and ameliorates age-related cognitive impairment, whereas in transgenic AD mice,

BDNF gene delivery reverses synapse loss, partially normalizes aberrant gene expression,

improves cell signaling and restores learning and memory.128

Finally, there is a potential for sustaining and restoring functional circuits in the aging brain

by providing neurons with chemicals that elevate levels of the energy substrates adenosine

triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+). Best known for its

ability to preserve ATP levels in muscle cells thereby enhancing endurance, creatine can

also protect neurons against oxidative and metabolic insults, including Aβ toxicity,129 in

vitro or against traumatic brain injury in vivo.130 Administration of nicotinamide, which

increases cellular NAD+ levels in the brain, improved cognitive function in old rats131 and

in a mouse model of AD.132 Preliminary human studies suggest that dietary niacin, which

consists of nicotinamide and nicotinic acid, can reduce the risk of age-related cognitive

decline and AD.133 Another approach to enhancing neuronal bioenergetics is to target

mitochondrial potassium channels; our group has recently demonstrated improvements in

cognitive function and reductions in Aβ and tau pathologies in AD mice treated with the

mitochondrial potassium channel opener diazoxide 134. Because creatine, nicotinamide and

diazoxide are all approved for use in humans, clinical trials in subjects with MCI and AD

could be initiated without delay.

Conclusions

From this review, it is evident that multiple mechanisms that largely depend on the

organism’s state of energy metabolism adaptively modify neuronal and brain networks. The

value of a lifestyle that stimulates the brain’s adaptive responses via regular exercise,

moderation of dietary energy intake and intellectual vigor cannot, in our view, be overstated.

The available evidence suggests that these three brain-healthy habits protect cells against the

adversities of aging and AD by engaging cellular stress response pathways that induce the

expression of genes encoding proteins involved in cytoprotection and synaptic and

neurogenic plasticity (Figure 5A). Approaches that enable such brain-healthy lifestyles

should be developed and widely implemented. Novel patterns of food intake should be

considered in light of the recent evidence that alternate day caloric restriction diets can be

adhered to and improve health dramatically.135 Finally, from a drug discovery for AD

perspective we propose an alternative focus to Aβ metabolism, to the levels of whole body

and cellular energy metabolism and stimulation of adaptive cellular stress responses.
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Pharmacological approaches should also pursue reasonable targets, such as agents that

suppress inflammation or enhance mitochondrial function.136 Whether these conceptual

changes are going to be successful in preventing and treating cognitive aging and AD is an

open question and a challenge.
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Figure 1.

Spread of the neuropathology in AD. Neurofibrillary tangles and neurodegeneration first

appear in entorhinal cortex, and then in other medial temporal lobe (MTL) structures;

fibrillary Aβ deposits and plaques first appear in transmodal areas [such as the posterior

medial cortex (PMC), the inferior parietal lobule (IPL) and the lateral temporal lobe and

temporal pole] that maintain reciprocal connections (illustrated by yellow arrows) with the

entorhinal cortex. Spread of neurofibrillary tangles and neurodegeneration (illustrated by

blue arrows) does not correlate with the spread of fibrillary Aβ deposition and plaque

formation.
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Figure 2.

Evolution of cognitive ability with age, in the presence or absence of AD pathology:

schematic progression of pathology, brain network dynamics and clinical manifestations.

SCI: subjective cognitive impairment; MCI: mild cognitive impairment; AD: clinical

Alzheimer’s disease; NFTs: neurofibrillary tangles; PMC: posterior medial cortex; MTL:

medial temporal lobe.
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Figure 3.

Basic organization of neuronal microcircuits that control information flow through all brain

regions involved in cognitive processing. The major excitatory projection neurons are

glutamatergic with long axons that synapse on dendrites of other glutamatergic neurons that

may, in turn, project their axons to a different brain region. GABAergic interneurons receive

excitatory inputs from glutamatergic neurons and form synapses on the cell bodies of the

same or other glutamatergic neurons. Glutamatergic neurons also receive synaptic inputs

from noradrenergic, serotonergic and cholinergic neurons whose cell bodies are located in

the locus ceruleus, raphe nucleus and basal forebrain, respectively. Neurons in all brain

regions also interact with glial cells including astrocytes and microglia which produce

trophic factors and cytokines which may normally play important roles in synaptic plasticity.

However, excessive production of pro-inflammatory cytokines and reactive oxygen species

(ROS) by glial cells has been implicated in the pathogenesis of cognitive impairment and

AD.
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Figure 4.

Mechanisms of synaptic dysfunction in aging and Alzheimer’s disease. The β-amyloid

precursor protein is axonally transported and so is present in high amounts in presynaptic

terminals. In properly functioning synapses the APP is proteolytically cleaved in the middle

of the Aβ sequence by the α-secretase, thereby preventing the production of Aβ. During

normal aging, and more so in AD, APP is cleaved at the N- and C-termini of Aβ by β-

secretase and γ-secretase, respectively, resulting in the production and self-aggregation of

Aβ. Aggregation of Aβ on the membrane generates ROS resulting in membrane lipid

peroxidation, which then impairs the function of membrane ion-motive ATPases thereby

promoting membrane depolarization and Ca2+ influx through NMDA receptor channels and

voltage-dependent Ca2+ channels. Sustained elevation of cytoplasmic Ca2+ levels promotes

depletion of presynaptic glutamate stores resulting in impaired synaptic transmission and

damage to axons and dendrites. In addition, perturbed mitochondrial function caused by

aging, oxidative stress and Aβ results in energy depletion in neurons which exacerbates

synaptic dysfunction and degeneration of neurons. Further contributing to the demise of

neurons in AD is dysregulation of endoplasmic reticulum (ER) function that results in

depletion of ER Ca2+ stores and accumulation of misfolded proteins.
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Figure 5.

The impact of lifelong ‘brain healthy’ and unhealthy lifestyles on late life hippocampal

plasticity and cognitive function. Information from multimodal sensory association cortices

enters the hippocampus from the entorhinal cortex via perforant path axons which synapse

on dendrites of dentate granule neurons. The axons of granule neurons synapse on dendrites

of pyramidal neurons which, in turn, may synapse on additional pyramidal projection

neurons which then exit the hippocampus and innervate neurons in regions of the cerebral

cortex involved in the long-term storage and processing of memories. A. Behaviors believed

to promote healthy brain aging include moderation of dietary energy intake, regular exercise

and engaging in intellectually challenging occupations and hobbies. Data suggest that these

behaviors increase activity in hippocampal circuits and impose a mild cellular stress on

neurons resulting in the activation of signaling pathways that induce the production of

neurotrophic factors such as BDNF. As a consequence, synaptic plasticity and neurogenesis

are enhanced and the resistance of neurons to aging and disease processes is increased. B.

Behaviors that may contribute to cognitive impairment include excessive dietary energy

intake, a sedentary lifestyle and a low level of cognitively challenging experiences. The

latter lifestyle promotes diabetes and obesity, and can impair hippocampal synaptic

plasticity and neurogenesis, thereby rendering neurons vulnerable to dysfunction and

degeneration during aging.
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