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Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor 

neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3–5 years 

and no effective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and 

cellular mechanisms that cause motor neuron degeneration and ALS. Different ALS disease mechanisms have been identi-

fied and recent evidence supports a prominent role for defects in intracellular transport. Several different ALS-causing gene 

mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafficking and a picture is emerging 

on how these defects may trigger disease. This review summarizes and discusses these recent findings. An overview of how 

endosomal and receptor trafficking are affected in ALS is followed by a description on dysregulated autophagy and ER/

Golgi trafficking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into 

intracellular trafficking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues 

for therapeutic intervention.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal disease char-

acterized by the degeneration of upper and lower motor 

neurons causing muscle denervation. In the majority of 

patients, the cause of the disease is unknown and these cases 

are referred to as sporadic ALS (SALS) cases. In 5–10% of 

cases, there is a family history of ALS (FALS) [142]. The 

prevalence of ALS in most countries is around five cases per 

100,000 people [2] with a median age of onset of SALS of 

65 years, while, for genetically heterogeneous populations, 

onset is about 10 years earlier [44]. As disease progresses, 

corticospinal motor neurons, projecting from the motor cor-

tex to the brainstem and spinal cord, and bulbar and spinal 

motor neurons, projecting to skeletal muscles, degenerate. 

Consequently, muscles innervated by these neurons deterio-

rate and patients usually die from respiratory failure within 

3–5 years after symptom onset [44].

Despite the general notion that ALS is a neuromuscular 

disease, in many patients, the CNS is affected more gener-

ally. Between 5 and 15% of patients with ALS also have 

frontotemporal dementia (FTD), while up to 50% of ALS 

patients display cognitive or behavioral changes within the 

spectrum of FTD [44]. The mechanisms that cause motor 

neuron degeneration and ALS remain incompletely under-

stood. Mutations in > 30 genes have been linked to FALS, 

and on basis of the functions of these genes, different dis-

ease pathways have been proposed and investigated. For 

example, in about 60–80% of patients with FALS, the most 

common mutations are in C9ORF72 (40%), SOD1 (20%), 

FUS (1–5%), and TARBDP (1–5%) [142]. These genetic 

defects suggest changes in molecular pathways controlling; 

for example, RNA biology, protein turnover, and axonal 

transport [144].
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Interestingly, an increasing number of recent studies 

report defects in intracellular trafficking in ALS, but much 

remains unclear about the role of altered trafficking in motor 

neuron degeneration. For example, what is the precise 

effect of gene mutations on protein function and distribu-

tion? Do different affected proteins control separate steps 

of intracellular trafficking or does their function converge 

onto common pathways? In this review, we discuss differ-

ent intracellular trafficking processes that have been linked 

to the pathogenesis of ALS. These range from endosomal 

trafficking and autophagy to axonal and nucleocytoplasmic 

transport. We discuss how these processes, and the proteins 

that control them, are altered in ALS and provide directions 

for future research.

Disrupted receptor and endosomal 
tra�cking

An increasing number of trafficking defects are being linked 

to the pathogenesis of ALS. In this section, we will discuss 

the evidence for changes in receptor and endosomal traffick-

ing. In this and each of the following sections, the effects 

of individual ALS-associated genes are highlighted first, 

followed by a discussion on how these individual defects 

may be interconnected. When trafficking defects have been 

covered extensively in recent review articles, we will refer 

to these reviews and focus on the most significant findings.

One of the most impactful recent genetic findings in ALS 

is the discovery of an ALS-FTD causative mutation in Chro-

mosome 9 open reading frame 72 (C9ORF72) in the form 

of a GGG GCC  hexanucleotide repeat expansion in the first 

intron of the C9ORF72 locus (from a typical 5–10 repeats 

in controls to hundreds or more in patients) [33, 136, 143, 

177]. This mutation occurs with high frequency in individu-

als of European descent but less in other populations [76]. 

In humans, three alternatively spliced C9ORF72 transcripts 

exist, predicted to produce two polypeptide isoforms [33]. 

Different mechanisms have been proposed through which 

C9ORF72 repeat expansions contribute to ALS pathology. 

First, the hexanucleotide repeat expansion leads to genetic 

haploinsufficiency by forming stable G-quadruplex struc-

tures that disrupt transcription [50]. The repeat expansion 

may also promote hypermethylation of the locus, thereby 

further attenuating C9ORF72 expression [190]. Second, 

GGG GCC  repeat-containing RNA accumulates in nuclear 

foci [33, 58] which may lead to toxic gain of RNA function 

through sequestration of RNA-binding proteins [170]. Third, 

GGG GCC  repeat-containing RNA can undergo repeat-asso-

ciated non-ATG (RAN) translation resulting in the genera-

tion of toxic dipeptide repeat (DPR) proteins which accumu-

late in the brain in disease [118, 119].

The precise mechanism through which hexanucleotide 

expansions in C9ORF72 cause motor neuron degeneration 

is subject of intense study but remains incompletely under-

stood. However, several observations support the idea that 

surface expression, trafficking, and recycling of cell sur-

face receptors are affected in C9ORF72 ALS/FTD patient 

cells. For example, in induced motor neurons (iMNs) from 

C9ORF72 ALS/FTD patients, elevated cell surface levels 

of the NMDA receptor NR1 and the AMPA receptor GluR1 

are found on neurites and dendritic spines compared to con-

trol iMNs. Furthermore, glutamate receptors accumulate 

at post-synaptic densities in these neurons [194]. Elevated 

levels of glutamate receptors may induce hyperexcitability 

and cell death due to increased glutamate activation (Fig. 1). 

In line with this idea, activation of Kv7 potassium chan-

nels increases the survival of C9ORF72 patient-derived and 

C9ORF72-deficient iMNs [194]. Another class of transmem-

brane receptors affected by C9ORF72 mutations are Man-

nose-6-phosphate receptors (M6PRs) [194]. In iMNs from 

patients with C9ORF72 mutations, M6PRs cluster and move 

at slower rates as compared to control [194]. Another study 

shows that M6PRs localize in the cytosol of C9ORF72 ALS/

FTD fibroblasts in contrast to their perinuclear localization 

in control cells [5]. Given the role of M6Rs in targeting 

lysosomal enzymes to lysosomes these changes could affect 

lysosomal degradation (Fig. 1).

Elevated cell surface levels of NMDA and AMPA recep-

tors and defective trafficking of M6PRs in C9ORF72 patient-

derived and C9ORF72-deficient iMNs could result from 

defects in multiple steps of the intracellular trafficking path-

way. Interestingly, several studies show that endocytosis and 

recycling mechanisms are impaired in C9ORF72 ALS/FTD. 

For example, decreased expression of Vps26, a component 

of the retromer complex [22], found in C9ORF72 ALS/FTD 

fibroblasts could lead to abnormal endosomal recycling 

[5]. Furthermore, knockdown of C9ORF72 in SH-SY5Y 

cells causes impaired endocytosis of tropomyosin receptor 

kinase receptor B (TrkB) [47]. In addition, multiple lines 

of experimental evidence link C9ORF72 to Rab-GTPases. 

Rab-GTPases control different steps of the intracellular traf-

ficking pathways including vesicle formation, movement and 

membrane fusion (for review, see [162, 199]).

Rab-GTPases alternate between two conformational 

states: the activated guanosine tri-phosphate (GTP)-bound 

state and the guanosine di-phosphate (GDP)-bound inac-

tive state. Exchange of GDP with GTP is catalyzed by Rab 

guanine-nucleotide exchange factors (GEFs) that act at 

specific membranes and facilitate GDP release. In contrast, 

GAPs (GTPase activating proteins) catalyze GTP hydroly-

sis to GDP [162, 199]. It has been found that C9ORF72 

contains a DENN-like domain [100, 196] which acts as 

an Rab-GEF [77]. In addition, C9ORF72 binds several 

of the over 60 human Rab-GTPases. To investigate with 
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which Rab-GTPases C9ORF72 can interact, four groups 

performed interactome experiments. In SH-SY5Y cells, 

C9ORF72 colocalizes and co-immunoprecipitates (IPs) 

with Rab1, Rab5, Rab7, and Rab11 [47]. Another study, 

using C9ORF72 overexpression in COS-7 cells, did not find 

interactions with the above-listed Rab-GTPases but with a 

large number of other Rabs (Rab5A, 8A, 10, 13, 15, 18, 19, 

27A, 28B, Rab7L1, 38, 40A, and 42) [5]. However, another 

very recent study in HEK293 cells reported interactions 

between C9ORF72 and Rab3A, 3B, 3C, and 3D, but not 

with Rab1A, Rab7A and Rab5A [53]. Finally, a fourth study 

did not detect any of these interactors nor other proteins 

involved in autophagy or endocytosis in neuronal cells (N2A 

cells) overexpressing C9ORF72. Instead, this study reports 

an enrichment for proteins with mitochondrial functions 

[15]. One explanation for these discrepancies is that inter-

actome composition is strongly influenced by bait expression 

levels, experimental set-up, or cell type. Nevertheless, these 

observations support a strong link between C9ORF72 and 

Rab-GTPases.

In iMNs, C9ORF72 strongly colocalizes with Rab5-

positive endosomes (Fig. 1) and rarely with Lamp1-posi-

tive late endosomes/lysosomes [194]. Density gradients 

reveal that C9ORF72 co-segregates with light fractions 

(positive for EEA1) but not with heavy fractions (positive 

for Lamp1) [194], suggesting that C9ORF72 acts primar-

ily on early endosomes. Interestingly, in C9ORF72 ALS/

FTD iMNs from patients and spinal motor neurons in 
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Fig. 1  Effects of ALS-associated C9ORF72 repeat expansions. 

C9ORF72 hexanucleotide repeat expansions lead to C9ORF72 haplo-

insufficiency, and RNA and dipeptide repeat protein (DPR)-mediated 

toxic gain of function mechanisms that affect motor neurons (MNs) 

by deregulating endosomal and receptor trafficking leading to reduced 

protein degradation and enhanced aggregation, reduced survival, and 

glutamate toxicity. For several of these defects, it is unknown if they 

are caused by C9ORF72 loss and/or gain of function phenotypes. 

Only, for defects where evidence is compelling enough the precise 

mechanism (C9ORF72 loss or gain of function) is mentioned below. 

a M6P receptors (M6PR) are transported at slower rates and display 

subcellular mislocalization in C9ORF72 patient-derived induced (i)

MNs. Since M6PR contributes to protein degradation by delivering 

cargo to lysosomes, M6PR mistrafficking may cause reduced protein 

degradation. b In MNs, C9ORF72 localizes to Rab5-positive early 

endosomes and acts as a Rab-GEF. In iMNs from C9ORF72 ALS 

patients and in spinal motor neurons in Nestin-Cre;C9orf72fl/fl mice, 

the number of Lamp1-, 2-, and 3-positive lysosomes is decreased. 

Together, these data support a model in which C9ORF72 haploin-

sufficiency inhibits endosomal maturation and consequently induces 

a decrease in the number of lysosomes and in protein degradation. c 

C9ORF72 patient-derived and C9ORF72 deficient iMNs show hyper-

excitability and enhanced cell surface expression of glutamate recep-

tors, which may lead to glutamate toxicity. d C9ORF72 loss- and 

gain-of-function mechanisms may cooperate. Reduced protein degra-

dation as a result of C9ORF72 haploinsufficiency may facilitate the 

enhanced accumulation of toxic DPRs or other ALS-associated pro-

teins in MNs. e Impaired endocytosis of TrkB receptors in C9ORF72 

patient-derived MNs negatively affects neuronal survival. This figure 

was created using Servier Medical Art templates, which are licensed 

under a Creative Commons Attribution 3.0 Unported License; https ://

smart .servi er.com

https://smart.servier.com
https://smart.servier.com
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Nestin-Cre;C9orf72 fl/fl mice, the number of Lamp1-, 2-, 

and 3-positive vesicles is decreased, as compared to control 

[194]. This implicates C9ORF72 in the control of protein 

degradation. For protein degradation through the endosomal 

pathway (for autophagy, see Sect. 3), early endosomes need 

to mature. The transformation from early to late endosomes 

requires a so-called Rab5/Rab7 conversion. Conversion 

from Rab5 to Rab7 on early endosomes involves interac-

tions between activated Rab-GTPases and Vsp26, Vsp29, 

and Vsp35 [105]. Therefore, disturbed Rab function and 

decreased Vsp26 levels [5] due to C9ORF72 haploinsuf-

ficiency may converge during this step of endosomal matu-

ration. In all, these observations support a model in which 

reduced C9ORF72 expression maintains early endosomes 

in an inactive state, preventing maturation and eventually 

protein degradation. Reduced degradation may have sev-

eral consequences. As outlined above, it could contribute 

to hyperexcitability and glutamate toxicity. Furthermore, 

changes in TrkB signalling may promote MN degeneration, 

as these receptors normally regulate cell survival [193]. 

TrkB has been shown to signal from Rab5- and Rab7-

positive endosomes [67]. Decreased endocytosis of TrkB 

receptors in neurons with decreased C9ORF72 expression 

could affect signalling cascades regulating neuronal survival 

(Fig. 1). Finally, reduced protein degradation may contribute 

to the accumulation of proteins or DPRs in aggregates, a 

hallmark of ALS pathology [15] (Fig. 1).

Disrupted receptor trafficking in ALS has also been linked 

to TDP-43 (TAR-DNA-binding protein of 43 kDa). TDP-43 

binds RNA and modulates multiple RNA processes includ-

ing RNA synthesis, splicing, stability, and transport [103]. 

It is likely to function in multi-protein/RNA complexes [51, 

102, 153], is involved in regulation and biogenesis of miR-

NAs [21, 82], and binds DNA which leads to repression of 

gene transcription [1]. In normal brain, TDP-43 localizes 

to the cell nucleus [124]. However, SALS cases and most 

FALS cases (together over 95% of ALS patients) display 

cytoplasmic TDP-43 inclusions accompanied by nuclear 

depletion of the protein in affected cells [107, 161]. In addi-

tion, some FALS patients have TDP-43-specific gene muta-

tions that affect TDP-43 localization and function [151]. 

Most of the work linking TDP-43 to intracellular receptor 

trafficking derives from experiments that use knockdown 

or overexpression of TDP-43. TDP-43 knockdown leads to 

reduced ErbB4 and EGFR1 cell surface expression because 

of delayed surface recovery following receptor activa-

tion [150], which suggests defects in receptor recycling. 

EGF–EGFR signalling promotes survival, maturation, and 

outgrowth of neurons [25, 90] and, therefore, decreased 

EGFR1 cell surface expression, as a consequence of TDP-

43 knockdown, is likely to affect neuronal survival or axonal 

innervation.

TDP-43 depletion in Drosophila affects BMP receptors. 

BMP signalling occurs on the early endosomes from where 

BMP receptors enter either the recycling pathway to the 

cell surface or are targeted for endo-lysosomal degrada-

tion [36]. Deshpande et al. show that synaptic growth is 

facilitated through the phosphorylation of MAD down-

stream of BMP receptors. MAD phosphorylation is sig-

nificantly decreased in Drosophila motor neurons follow-

ing overexpression or depletion of TDP-43 [35]. On basis 

of these observations, the authors suggest that reduced 

signalling of BMP receptors caused by non-equilibrated 

TDP-43 levels induces receptor missorting towards the 

early/recycling endosomes ultimately affecting neuronal 

and synaptic growth [35].

Alsin-2 is another gene that has been linked to defective 

endosomal trafficking in ALS. Alsin-2 (ALS2) is a 185 kDa 

protein which contains an ATS1/RCC1-like domain, a 

RhoGEF domain, and a vacuolar protein sorting 9 (VPS9) 

domain. Alsin-2 functions as a guanine-nucleotide exchange 

factor (GEF) for Rab5 and localizes with Rab5 on the early 

endosomal compartments. At least 12 different mutations 

in ALS2 have been reported in juvenile ALS and primary 

lateral sclerosis (PLS). These mutations have been described 

as frameshift, missense, or nonsense mutations [26]. Of 

these, two mutations found in the RCC-1 domain result in 

frame shift mutations that cause juvenile ALS (ALS2) [92, 

132, 192]. Co-expression of Rab5 and a truncated form of 

Alsin-2 (containing MORN motifs and the VPS9 domain) 

prevents endosomal fusion. To establish the role of ALS2, 

effects on endosomal trafficking were studied in an Alsin-

2−/− mouse model. Hippocampal neurons of Alsin-2−/− mice 

show accumulation of Rab5-positive endosomes, decreased 

Rab5 mobility, and increased colocalization of Rab5 with 

Lamp1. In addition, Alsin-2−/− hippocampal neurons show 

faster degradation of AMPA receptors following stimula-

tion [94]. These experiments suggest that Rab5 endosomes 

remain in their GDP-bound state and, consequently, interact 

to a lesser extent with downstream effectors. Inactive down-

stream effectors, such as the sorting machinery or motor 

proteins, could lead to decreased transport, decreased sorting 

(either into the recycling or the degradative pathway), and 

affect receptor activation due to decreased recycling.

Some ALS mutations are thought to affect endosomes at 

the level of lysosomal degradation. ALS-associated muta-

tions in charged multivesicular body protein 2B (CHMP2B) 

and spastic paraplegia-11 (SPG11) have been reported to 

deregulate endosomal trafficking towards degradation. 

Loss-of-function of SPG11 affects endo-lysosomal homeo-

stasis, anterograde trafficking, and lysosomal turnover [34]. 

CHMP2B is a subunit of the endosomal-sorting complex 

required for transport-III (ESCRT-III) which is required 

for the formation and fission of intra-luminal vesicles in 

the late endosomes/multivesicular bodies. Proteins within 
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intra-luminal vesicles are then delivered to lysosomes 

for degradation via endo-lysosomal fusion. Mutations 

in CHMP2B lead to lysosomal storage pathology and a 

decrease in neuronal endo-lysosomal motility. Interestingly, 

this trafficking defect could be rescued by knockdown of the 

FTD risk factor TMEM106B [43]. Mutations of CHMP2B 

and SPG11 could increase susceptibility to neuronal death 

by deregulation of protein degradation.

Exome sequencing revealed that mutations in valosin-

containing protein (VCP/p79 or ALS14) account for 1–2% 

of FALS [79]. VCP/p97 regulates endo-lysosomal sort-

ing of ubiquitinated cargos such as caveolin-1 and loss of 

VCP/p97 accelerates the accumulation of autophagosomes. 

[133]. Therefore, VCP/p97 mutations may affect maturation 

and degradation of autophagosomes and endo-lysosomes 

through impaired fusion with lysosomes [79, 133].

Another protein that may link ALS and processes such 

as endosomal trafficking and protein degradation is Fig4. 

Fig4 is a member of the SAC phosphatase family which 

removes the 5-phosphate from PI(3,5)P2 to form PI(3)P 

[24, 42, 48, 146, 178]. Phosphatidylinositol 3-phosphate 

(PI(3)P) and its subclasses mediate several cellular func-

tions such as membrane identity, endosomal trafficking, 

signalling, autophagy, and degradation [109]. The genera-

tion of these distinctive pools of PI3-phosphates occurs via 

three classes of PI3-kinases and different PI(3)Ps can local-

ize to distinct endosomal compartments and thereby define 

membrane identity [109]. Fig4 forms a complex with two 

other proteins: VAC14, a scaffolding protein, and FAB1, a 

kinase that generates PI(3,5)P2 from PI(3)P [78]. Mutations 

in FIG4 have been found in patients with ALS [29, 131] 

and at least 14 rare non-synonymous FIG4 variants were 

detected in ALS cases in a group of 201 central European 

ALS patients [131]. ALS variants include two protein-trun-

cation mutations, two mutations in consensus splice sites, 

and six missense mutations, all suspected to interfere with 

protein function [29]. However, the contribution of FIG4 

variants to ALS needs further genetic confirmation since 

no deleterious FIG4 variants have been reported in larger 

cohorts. In addition, some non-penetrant FIG4 variant car-

riers have been described [131]. Nevertheless, Fig4 is an 

interesting candidate and its altered expression or function 

may affect endosomal maturation in ALS. For example, the 

conversion from PI(3)P to PI(3,5)P2 is crucial for endosomal 

maturation, since Rab5/Rab7 conversion and the synthesis 

of PI(3,5)P2 from PI(3)P regulate transformation from early 

to late endosomes. PI(3,5)P2 has been shown to modulate 

several important functions at late endosomes/lysosomes, 

and thereby cargo degradation [130, 183]. Future studies 

should focus on establishing whether ALS-associated FIG4 

variants affect PI(3,5)P2 levels and thereby disrupt the deg-

radative pathway, e.g., by impaired endosomal maturation.

In conclusion, several of the gene defects that have been 

identified in ALS patients suggest a role for defective endo-

somal and receptor trafficking in the pathogenesis of this 

neuromuscular disease. Evidence is strongest for patients 

carrying hexanucleotide repeat expansions in C9ORF72. 

C9ORF72 is a Rab-GEF, binds a large number of different 

Rab-GTPases, and has a role in vesicle transport. C9ORF72 

ALS/FTD patient cells show defects in lysosomal degra-

dation and cell surface accumulation of receptors such as 

glutamate receptors. This may lead to enhanced neuronal 

excitability and glutamate toxicity. Furthermore, C9ORF72 

loss of function is likely to cooperate with gain of func-

tion mechanisms, leading, for example, to accelerated DPR 

accumulation. Manipulation of the expression of TDP-43 

and Alsin-2 also induces receptor and endosomal trafficking 

defects, while it will be interesting to assess whether FIG4, 

VCP, CHMP2B, or SPG11 variants associated with ALS 

affect these pathways, as well. Overall, these observations 

suggest a central role for receptor and endosomal trafficking 

in the pathogenesis of ALS.

Autophagy dysregulation

A key pathological hallmark of ALS is the mislocalization 

of (disease-associated) proteins and the formation of protein 

aggregates [15]. Defective protein degradation contributes to 

these pathological events and abnormal autophagy has been 

linked to ALS. Autophagy is an important protein degrada-

tion pathway involved in the clearance of protein aggregates 

and damaged organelles. It is highly dependent on intracel-

lular transport of vesicles (e.g., lysosomes and autophago-

somes) by motor proteins and, therefore, discussed in this 

review. Three types of autophagy have been described: 

microautophagy, macroautophagy, and chaperone-medi-

ated autophagy. Macroautophagy is the main pathway used 

to eradicate damaged organelles and proteins [61] and is 

discussed below in relation to a few key ALS-associated 

proteins. For a more extensive discussion on the role of 

autophagy in ALS, see [45, 139].

Autophagy is initiated by the assembly of an isolation 

membrane with a cup-like shape. This membrane, the so-

called phagophore, is built at the phagophore-assembly 

site (PAS) which is a nucleated site reported to be on ER, 

ER–mitochondria, ER–plasma membrane, as well as the 

plasma membrane, Golgi complex, and recycling endosomes 

(for review, see [38, 61]). The molecular details of phago-

phore nucleation are incompletely understood, but involve 

recruitment of ATG proteins to the PAS. There, ATG pro-

teins interact with other proteins, and according to these 

interactions, ATGs are grouped into five complexes (for 

review, see [38, 61]). One of these complexes, the class 3 
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PI3-Kinase complex, is targeted by superoxide dismutase 1 

(SOD1). SOD1 is a homo-dimeric metalloprotein that dis-

mutates free superoxide radicals that cause oxidative stress. 

Over 180 mutations have been found in SOD1. VPS34 

converts PI into PI(3)P and interacts with Beclin1, p115, 

ATG14, and PI3-Kinase in one complex. Mutant SOD1 

impedes the vesicle nucleation step of autophagy through 

abnormal interaction with Beclin-1 and, consequently, desta-

bilization of the Beclin-1–Bcl-xL complex [98].

Fused in sarcoma (FUS) is a DNA/RNA-binding protein 

with functional homology to TDP-43 [96]. It associates with 

the transcription machinery and influences transcription ini-

tiation and promoter selection [93]. Many FUS mutations in 

ALS affect its nuclear localization signal (NLS) and mutant 

FUS is thought to act through both gain- (protein aggrega-

tion) and loss-of-function (nuclear depletion) mechanisms 

[95, 107]. FUS is a major component of cytoplasmic stress 

granules and these FUS-containing stress granules colocal-

ize with autophagosomes. When mutant FUS is overex-

pressed in primary neurons, autophagy is decreased, while, 

simultaneously, the number of FUS-positive stress granules 

is increased [147]. Another study shows that overexpression 

of FUSP525L and FUSR522G impairs autophagy in neuronal 

cell lines and primary cortical neurons. Here, mutant FUS 

expression results in the formation of fewer omegasomes, 

which are precursors to autophagososomes. In addition, 

these precursors recruit less ATG9 and lipidated LC3-II, 

required for autophagy initiation and elongation. Therefore, 

mutant FUS appears to inhibit autophagy by interfering with 

early autophagosome formation.

Several lines of evidence link TDP-43 to autophagy. 

TDP-43 aggregates colocalize with autophagy markers 

such as LC3 and p62/SQSTM1 (Sequestosome 1 (SQSTM1, 

also known as ubiquitin-binding protein p62) [70]. Further-

more, VCP and optineurin (OPTN), which colocalize with 

TDP-43, p62/SQSTM1, and ubiquitin, colocalize in spinal 

motor neurons of sporadic ALS patients [11]. Furthermore, 

elevated levels of LC3 have been found in skin biopsies of 

patients carrying the TDP-43A315T mutation, suggesting that 

ALS-associated TDP-43 mutations may enhance autophagy 

[180]. In all, these data link SOD1, FUS, and TDP-43 muta-

tions to autophagy dysregulation, suggesting that part of the 

pathogenic effects of these mutations may derive from their 

ability to affect protein or organelle removal.

In C9ORF72 ALS/FTD patients, p62, a protein targeting 

cargo for autophagy, accumulates in the cerebellum, hip-

pocampus, and neocortex, suggesting impaired autophagy [3, 

30, 108]. P62 interacts with C9ORF72 [152], and increased 

levels of p62 are detected in C9ORF72 patient-derived fibro-

blasts [5]. Furthermore, following C9ORF72 knockdown in 

neurons, autophagy is impaired and both p62 and TDP-43 

accumulate in aggregates [152]. This accumulation may be 

explained by defective Rab signalling as several of the Rabs 

that are involved in the formation of autophagosomes bind 

the Rab-GEF C9ORF72 (such as Rab1A, 8A, and 39B) [31, 

182]. In addition, C9ORF72 forms a complex with SMCR8 

and WDR41 [152], which act as GDP/GTP exchange fac-

tors for Rab8A and Rab39B. Another Rab-GTPase linked 

to C9ORF72-mediated autophagosome formation is Rab1A 

[5]. C9ORF72 interacts with Rab1A and the ULK1 complex 

to regulate initiation of autophagy [182]. Two studies, using 

HeLa and SH-SY5Y cells, report that depletion of C9ORF72 

reduces the formation of LC3-positive autophagosomes [47, 

182], which are double-membrane vesicles that deliver cargo 

to lysosomes for degradation, while overexpression increases 

autophagy [182]. Other work reports increased levels of p62 

and LC3 in Western Blots from C9ORF72 patient fibro-

blasts. Similarly, analysis of mouse embryonic fibroblasts 

(MEFs) and neuronal precursors from C9ORF72−/− stem 

cells shows an increase in LC3 [175]. This study suggests 

that higher levels of LC3 would indicate higher levels of 

autophagy. However, transmission electron microscopy of 

iMNs from C9ORF72 ALS patients reveals swollen and, 

therefore, likely non-functional, autophagosomes. This 

could indicate disrupted degradation of autophagosomes and 

decreased autophagy [5]. Another study reports increased 

autophagy flux caused by an increase in transcription fac-

tor EB (TFEB), a master regulator of lysosome biogen-

esis [154]. Consistent with increased autophagy flux, this 

study detects a decrease in p62 levels in brain tissue from 

C9ORF72−/− mice and in C9ORF72−/− MEFs [175]. The 

apparent discrepancies between these different studies may 

result from the use of different cell types (i.e., HeLa cells, 

SH-SY5Y cells, MEFs, neuronal precursors, and iMNs) 

or from the use of different experimental approaches to 

decrease or deplete C9ORF72 (ranging from siRNA-medi-

ated knockdown to depletion of C9ORF72 in KO mice and 

patient-derived C9ORF72 iMNs with lower C9ORF72 

expression, RNA foci and DPRs). Nevertheless, these data 

link disrupted autophagy to C9ORF72 hexanucleotide repeat 

expansions and C9ORF72 loss of function. Reduced pro-

tein degradation may contribute to the accumulation of pro-

teins or DPRs in aggregates, a hallmark of ALS pathology 

[15] (Fig. 1). Therefore, in C9ORF72 ALS/FTD, loss and 

gain of function phenotypes (e.g., glutamate toxicity and 

impaired clearance of toxic DPRs) may cooperate to induce 

MN degeneration, as has been suggested on basis of work 

in C9ORF72 patient-derived deficient iMNs [194]. Here, 

the authors suggest that C9ORF72 haploinsufficiency may 

trigger defects in lysosomal biogenesis that impair the clear-

ance of DPRs, generated from C9ORF72 repeat expansions, 

thereby exacerbating the toxic effects of these polypeptides.

Mutations in ubiquilin-2 (UBQLN2) cause X-linked 

juvenile and adult-onset ALS and ALS/dementia [185]. 

ALS-associated mutations in UBQLN2 cause a failure in 
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the delivery of cargo to the proteasome leading to defective 

protein degradation and cell toxicity [27].

Mitophagy is removal of damaged mitochondria through 

autophagy. This removal is regulated by the PINK1-PAR-

KIN pathway which poly-ubiquitinates damaged mitochon-

dria to promote mitophagy. This ubiquitination recruits 

Tank-binding kinase 1 (TBK1) which phosphorylates 

OPTN and p62, both of which serve as autophagy adaptors 

for ubiquitinated proteins targeting them to the phagophore 

[129, 134, 188]. Mutations in OPTN (aka FIP-2) are associ-

ated with normal tension glaucoma and ALS. OPTN binds 

ubiquitin and functions as an autophagy receptor [184]. The 

addition of poly-ubiquitin chains by PINK-PARKIN, as well 

as phosphorylation by TBK1, promotes the rapid recruitment 

of OPTN, nuclear dot protein 52 kDa (NDP52), SQSTM1/

p62, and Tax1-binding protein 1 (TAX1BP1) to damaged 

mitochondria, and this recruitment is blocked by inhibi-

tion or deletion of TBK1. TBK1 loss of function has been 

reported to cause FTD/ALS [60, 129], possibly by affecting 

autophagosome formation due to reduced phosphorylation 

and recruitment of OPTN and p62. Following phosphoryla-

tion and association with damaged mitochondria, OPTN 

recruits LC3 via its LC3-interacting region (LIR) domain, 

resulting in autophagosome formation around mitochondria 

[69, 97, 188]. At a later stage in autophagy, OPTN binds 

the myosin VI motor protein, facilitating autophagosome 

maturation and fusion to lysosomes (see below within the 

C9ORF72/SMCR8/WDR41 pathway) [174].

In addition to its role in autophagy, TBK1 is an NF-kB 

effector by phosphorylating the NF-kB inhibitors alpha/

NFKBIA, IKBKB, or RELA to translocate NF-kB to the 

nucleus. NF-kB activation can occur during signalosome 

assembly downstream of OPTN [200]. The NF-kB protein 

complex is crucial for the regulation neuronal survival and 

acts downstream of TrkB activation [8, 23] linking TBK1 to 

survival signalling downstream TrkB receptors.
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Fig. 2  ALS-associated mutations disrupt axonal transport by affect-

ing motor and cytoskeletal proteins. a ALS-associated mutations in 

the C-terminal part of kinesin-5A (KIF-5A), a member of the kine-

sin family, cause ALS. These mutations are thought to affect cargo 

binding. Other ALS-associated mutations, such as in SOD1 or FUS, 

affect kinesins indirectly, e.g., by altering expression levels or phos-

phorylation state. Mutations in  p150Glued, a subunit of the dynein/

dynactin complex, have been implicated in ALS and affect binding 

of  p150Glued to microtubules. Defective motor proteins have been 

firmly linked to ALS pathogenesis and may affect motor neuron 

physiology by dysregulating the transport of essential cargo such as 

mitochondria, autophagosomes, growth factors, and signalling cues. 

b Accumulation of cytoskeletal proteins such as neurofilaments is a 

pathological hallmark of ALS. ALS-associated mutations in SOD1, 

FUS, TDP43, and C9ORF72, but also in cytoskeletal proteins, such 

as neurofilament heavy chain (NFH), peripherin (PRPH), and tubulin 

beta-4A (TUB4A), cause accumulation of cytoskeletal proteins, dis-

ruption of neurofilament network assembly, decreased re-polymeri-

zation, and reduced actin-binding abilities. Eventually, these defects 

will disrupt cargo transport and, consequently, affect synaptic trans-

mission, energy supply, and signalling cascades. This figure was cre-

ated using Servier Medical Art templates, which are licensed under 

a Creative Commons Attribution 3.0 Unported License; https ://smart 

.servi er.com

https://smart.servier.com
https://smart.servier.com
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In conclusion, the identification of ALS-associated 

genetic defects in SOD1, FUS, TDP-43, C9ORF72, TBK1, 

and OPTN, and the abnormalities in protein homeostasis 

and autophagosomes associated with these defects sup-

port an important role for dysregulated autophagy in ALS 

pathogenesis. Most studies show reduced autophagy due to 

hexanucleotide expansions or C9ORF72 loss of function, 

but other data hint at enhanced autophagy. Therefore, further 

work is needed to dissect the precise autophagy defects asso-

ciated with C9ORF72 pathology. Similarly, while mutant 

SOD1, FUS, and TDP-43 affect autophagy and TBK1 and 

OPTN play a role in autophagy, the precise pathological 

effects of ALS-associated mutations in these genes remain 

incompletely understood. However, it is clear that altered 

autophagy plays a key role in ALS pathogenesis and contrib-

utes to motor neuron degeneration by inducing a failure to 

remove toxic proteins and damaged organelles, and allowing 

accumulation of proteins in aggregates.

Altered transport to and from ER and Golgi 
in ALS

In Sects. 2 and 3, a role for C9ORF72 in endosomal trans-

port and autophagy was discussed. However, C9ORF72 

has also been linked to disrupted ER–Golgi transport in 

ALS. Once synthesized, proteins targeted for the secretory 

pathway enter the endoplasmic reticulum (ER). There, pro-

teins are folded by ER-resident enzymes and chaperones 

[17]. Correctly folded proteins leave the ER at specialized 

sites called ER exit sites (ERES) via coat protein complex 

II (COPII)-coated vesicles and form tubular-like structures 

known as the ER–Golgi intermediate compartment (ERGIC) 

and subsequently fuse with the Golgi [6, 145]. COPII-coat-

mediated transport between the ER and Golgi is facilitated 

by Rab1 and Rab2, while trafficking from ERGIC back to 

the ER is regulated by Rab2 in a COPI-dependent fashion 

or by Rab6 in a COP-independent manner [18, 68]. In the 

ERGIC, additional sorting takes place where proteins are 

either transported further towards the Golgi or are recycled 

back to the ER [64, 111]. Several lines of experimental evi-

dence suggest that dysregulation of C9ORF72 may impact 

these different transport routes. First, C9ORF72 associates 

with Rab1 and may modulate COPII-dependent ER–Golgi 

transport [47]. Furthermore, C9ORF72 knockdown impairs 

endocytic trafficking from the plasma membrane to Golgi 

[5]. This is in line with the interaction of C9ORF72 with 

Rab11 endosomes, which mediate recycling from the plasma 

membrane through the trans-Golgi network (TGN) [47]. 

Finally, C9ORF72 is GEF for Rab8 [152], which regulates 

vesicular traffic between the TGN and the basolateral plasma 

membrane [73]. Another ALS-associated protein known to 

interact with Rab8 is OPTN [173]. It has been hypothesized 

that ALS mutations in OPTN affect trafficking of Rab8-pos-

itive endosomes [122]. Together, these data link ALS-asso-

ciated proteins via Rab-GTPases to intracellular trafficking 

to and from ER/Golgi. The precise functional effect of ALS 

mutants on this trafficking and the underlying molecular 

mechanisms require further study.

Members of the vesicle-associated membrane protein-

associated protein (VAP) family, such as VAPA and VAPB, 

are present in the ER and regulate ER and Golgi transport 

to maintain Golgi complex identity and ER morphology, as 

well as lipid transfer [99, 137, 160, 171]. In addition, VAPB 

interacts with ER–Golgi recycling proteins and modulates 

the delivery of membrane to dendrites [91]. A dominant 

missense mutation, P56S, in the MSP domain of VAPB 

causes FALS8 [127].  VAPBP56S accumulates in inclusions 

containing disrupted ER [135, 171]. Furthermore, it recruits 

wild‐type VAPA/B into such inclusions. It has, therefore, 

been proposed that  VAPBP56S has a dominant‐negative effect 

on VAP function [171]. Interestingly, VAP protein levels are 

reduced in SALS patients, SOD1 mutant mice, and ALS 

patient‐derived MNs [4, 113, 171]. YIF1A, a transmembrane 

protein that plays an important role in secretion [12, 195], 

binds to VAPB and the ALS-mutant  VAPBP56S [91]. YIF1A 

cycles between the ER and Golgi and is mainly localized 

to the ERGIC. However, following expression of the ALS-

mutant  VAPBP56S, YIF1A fails to localize to the ERGIC 

causing the disruption of this structure. This event has been 

suggested to contribute to motor neuron degeneration [91].

Mutations in SOD1 affect trafficking at the Golgi in 

several ways. For example, the ALS-associated mutations 

SOD1A4V, SOD1G85R, and SOD1G93A disrupt the secre-

tory pathway. In one study, BDNF was used as a marker 

of ER–Golgi protein secretion in the presence of SOD1 

mutant protein and BDNF levels were significantly higher 

in conditioned medium of untransfected cells, cells express-

ing  SOD1WT or EGFP controls as compared to medium 

from  SOD1A4V,  SOD1G85R, and  SOD1G93A transfected 

cells. In contrast, intracellular levels of BDNF in  SOD1A4V, 

 SOD1G85R, and  SOD1G93A transfected cells were higher as 

compared to controls, hinting at defects in secretion [9]. In 

addition to defects in secretion, the  SOD1A4V mutation trig-

gers ER stress causing inclusions and apoptosis, while over-

expression of COPII rescues the above-mentioned SOD1-

mutant phenotypes. This suggests that misfolded SOD1 

interferes with ER-to-Golgi trafficking via COPII vesicles. 

Overall, these defects in the secretory pathway and the 

resulting accumulation of secretory proteins could explain 

how SOD1-induced ER stress leads to apoptosis [9].

In addition to the secretory pathway, SOD1 mutations 

inhibit transport from ERGIC to Golgi, but not from ER to 

ERGIC [159]. ER-to-ERGIC transport is affected by mutant 

TDP-43 and mutant FUS. Both affect Rab1-dependent traf-

ficking of COPII vesicles, which disrupts transport from ER 
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to ERGIC. Interestingly, overexpression of Rab1 rescues this 

defect [104, 159]. TDP-43 is localized at the cytoplasmic 

face of the ER membrane, while FUS localizes within the 

ER, inhibiting transport at two different sites [159]. Even 

though the exact mechanism through which Rab1 traffick-

ing is affected remains elusive, disrupted vesicle trafficking 

from Golgi has been reported to cause Golgi fragmenta-

tion, a hallmark of many neurodegenerative diseases, includ-

ing ALS [55, 56, 62]. It has been shown that depletion of 

Golgi-associated Rabs causes destabilization of the Golgi 

[57]. Interestingly, Golgi-associated vesicular trafficking 

is inhibited in cells expressing different ALS-mutant pro-

teins (SOD1, FUS, TDP-43, and OPTN [10, 39, 159, 165]). 

Defective ER–Golgi transport precedes all other cellular 

pathologies in addition to fragmentation, including ER 

stress, protein aggregation, inclusion formation, and apop-

tosis [9]. Overall, these data suggest that altered ER–Golgi 

transport may be one of the first disease mechanisms through 

which ALS-mutant proteins affect motor neuron function 

and survival.

Apart from protein folding and quality control, the ER 

forms structural connections with mitochondria, which 

facilitate a number of cellular functions such as energy 

metabolism,  Ca2+ homeostasis and lipid metabolism. Inter-

estingly, mitochondria-ER contact sites occur on acetylated 

microtubules [54] (see Sect. 5). The disruption of ER–mito-

chondria associations has been linked to Alzheimer’s dis-

ease [7] and ALS. VAPB proteins localize to the ER and 

interact with mitochondrial protein tyrosine phosphatase-

interacting protein-51 (PTPIP51) to regulate ER–mito-

chondria interactions. TDP-43, both wild-type and ALS 

mutants TDP-43M337V, TDP-43Q331K, TDP-43A382T, or TDP-

43G348C, perturb ER–mitochondria interactions by disrupting 

VAPB–PTPIP51 binding [164]. In addition to TDP-43, FUS 

also affects ER–mitochondria interacting sites. FUS activates 

GSK3-β which disrupts VAPB–PTPIP51 and ER–mitochon-

dria interactions [163]. It is, therefore, tempting to speculate 

that mutations in VAPB, TDP-43, and FUS may contribute 

to ALS pathogenesis by interfering with energy metabolism 

at the level of ER–mitochondria interactions.

In conclusion, trafficking pathways from and to the ER 

and Golgi complexes, and between ER and Golgi, are a 

major target in ALS. In part, these defects involve Rab-

GTPases and their effectors. The precise molecular details 

of how these defects result in motor neuron degeneration 

remain largely unknown. However, defective trafficking from 

Golgi can lead to Golgi fragmentation, a major hallmark 

of ALS and other neurodegenerative diseases. Interestingly, 

some of the reported defects (ER-to-ERGIC) can be res-

cued by Rab1 overexpression, highlighting Rab-GTPases 

as potential therapeutic targets. Moreover, perturbations 

in ER–mitochondria contacts as a consequence of VAPB, 

TDP-43, or FUS mutations could affect energy metabolism, 

 Ca2+ homeostasis, and lipid metabolism.

Disrupted axonal transport in ALS

Axonal transport of cargo such as mitochondria, signalling 

endosomes, or proteins between the cell body and distant 

cellular sites, e.g., synapses, is essential for neuronal func-

tion and survival (Fig. 2). Defects in axonal transport are 

linked to ALS and mutations in different proteins that form 

the axonal transport machinery have been reported in ALS 

patients. Changes in axonal transport are one of the first 

pathological hallmarks of ALS and may be an early and key 

pathogenic event. Two main classes of axonal transport are 

distinguished, i.e., slow and fast axonal transport, both of 

which appear to be affected in ALS. These types of transport 

differ with respect to the speed by which cargo is moved, but 

both are mediated by the same molecular machinery. Axonal 

cargo is moved in antero- and retrograde directions by motor 

proteins, such as kinesins and dynein, along microtubule pol-

ymers. Other proteins linked to axonal transport have been 

implicated in ALS, but, here, we focus on affected motor 

proteins and the cytoskeleton for which genetic and patho-

logical evidence is strongest. For a more extensive overview 

and discussion on axonal transport defects, specific cargos, 

and other transport proteins in ALS, we refer to the other 

recent reviews [83, 179].

The human kinesin superfamily of molecular motor pro-

teins contains 45 members which mediate both slow and 

fast anterograde axonal transport. Strongest evidence for the 

involvement of kinesins in ALS pathogenesis is provided by 

three studies that reveal mutations in kinesin-5A (KIF5A) 

that cause ALS [20, 198, 126] (Fig. 1). This work identi-

fies mutations in the KIF5A C-terminus which binds cargo-

adaptor proteins [123, 140]. These mutations are, therefore, 

predicted to cause disruption of cargo-binding inducing loss-

of-function phenotypes [20]. This hypothesis is in line with 

the observation that Kif5a−/− mice show neurodegeneration 

and paralysis [191]. Intriguingly, mutations in the kinesin 

motor domain and coiled-coil domain within the N-terminal 

part of KIF5A have been reported in Hereditary spastic para-

plegia (HSP) and Charcot–Marie–Tooth (CMT) patients [65, 

80]. This indicates that KIF5A may be a central target in 

motor neuron disease.

Kinesins are likely to also be affected indirectly in ALS, 

for example by mutations in FUS and SOD1. Mutations 

in FUS dysregulate KIF5C, KIF1B, and KIF3A mRNA 

expression [72] and could thereby modulate cargo transport. 

ALS-associated SOD1 and FUS mutants also impair fast 

axonal transport [59, 117, 149]. Furthermore, disruption of 

anterograde transport by misfolded human SOD1H46R pro-

tein in isolated squid axoplasm involves p38 MAP Kinase 
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(p38 MAPK) activation and kinesin-1 phosphorylation [16]. 

p38 MAPK phosphorylates kinesin-1, thereby inhibiting its 

translocation along microtubules [117]. Inhibition of p38 

MAPK protects mutant SOD1-expressing motor neurons 

[37]. How p38 MAPK inhibition acts neuroprotective is 

unknown but may involve effects on kinesin activity.

Retrograde axonal transport is facilitated by the motor 

protein dynein 1 [71]. Dynein 1 is composed of two homodi-

merized dynein heavy chain and multiple dynein interme-

diate and light chains [87]. The function of this complex 

is regulated by adapter complexes including dynactin. The 

dynactin complex contains  p150Glued together with other 

proteins. Mutations in DCTN1, which encodes p150Glued, 

are reported in both SALS and FALS patients [120] (Fig. 1). 

These ALS-causing mutations impede binding of  p150Glued 

to microtubules, resulting in dysfunctional dynein/dynac-

tin-mediated transport of cargos such as autophagosomes 

[75, 101]. As described earlier for kinesins, mutations in 

 p150Glued or other components of the dynein/dynactin com-

plex have been linked to various neurological disorders, 

several of which show motor neuron deficits [83, 179]. 

Motor neurons from SOD1G93A transgenic mice display 

defective dynein-mediated retrograde transport, both in vitro 

and in vivo, linking SOD1 mutations to dynein-mediated 

transport [14, 84]. Thus, defects in motor proteins are firmly 

linked to ALS pathogenesis and are predicted to affect motor 

neuron physiology through disruption of the transport of car-

gos such as mitochondria, growth factors, and RNA, thereby 

affecting energy metabolism, survival, and local translation.

Proper axonal transport not only relies on motor proteins 

but also on cytoskeletal components such as neurofilaments 

and microtubules. The accumulation of neurofilaments is a 

pathological hallmark of both FALS and SALS [121, 186] 

(Fig. 1). The deletion of neurofilament in SOD1 transgenic 

mice delays disease onset and reduces progression of ALS 

pathology. This indicates that neurofilaments contribute to 

motor neuron toxicity [186]. Accumulation of neurofila-

ments or disruption of neurofilament growth could lead to 

stalling of cargo transport in neurons. Interestingly, the accu-

mulation of neurofilaments in ALS may be caused by defects 

in kinesins and dynein, since neurofilament oligomers are 

transported by these motor proteins [138, 166].

Several different mutations in cytoskeletal proteins have 

been reported in ALS. These have been proposed to induce 

motor neurodegeneration by disturbing the cytoskeleton and 

disrupting cargo transport. For example, motor neurons of 

ALS patients with mutations in neurofilament heavy chain 

(NFH) display accumulations of phosphorylated neurofila-

ment proteins that could disrupt axonal transport [115, 121]. 

Mutations in peripherin (PRPH) may act through a similar 

pathogenic mechanism. Peripherin is a neuronal intermedi-

ate filament protein and an ALS-causing frameshift muta-

tion in PRPH disrupts neurofilament network assembly [63]. 

Furthermore, periperin localizes to Bunina bodies, which are 

small eosinophilic intra-neuronal inclusions in the remaining 

lower motor neurons [114], which could affect cargo trans-

port. Furthermore, ALS-causing mutations in tubulin β-4A 

(TUB4A) destabilize the microtubule network and reduce 

re-polymerization [158], therefore possibly affecting trans-

port of cargo and microtubule assembly. Mutant SOD1 also 

affects microtubule dynamics, in part by interacting with 

tubulin or microtubule-associated proteins (for review [83, 

179]).

Studies showing dysregulation or the therapeutic poten-

tial of HDAC6 (a class IIb histone deacetylase involved in 

microtubule stability [32]) in ALS further highlight the 

role of microtubules in ALS. ALS-associated mutations 

in FUS and TDP-43 regulate HDAC6 expression [49, 86, 

112]. Acetylation of α-tubulin is important for the binding 

of molecular motor proteins to microtubules [141, 148] and 

deletion of HDAC6 significantly slows disease progression 

and prolongs survival in mutant SOD1G93A mice [167]. 

These data identify HDAC6 inhibition as a potential thera-

peutic strategy in ALS. This is supported by the observation 

that HDAC6 inhibition reverses axonal transport defects in 

iPSC-generated motor neurons derived FUS-ALS patients 

[66].

In addition to the microtubule cytoskeleton, proteins 

such as profilin and cofilin have been implicated in ALS and 

indicate a role for the actin cytoskeleton. Profilin (PFN1) 

promotes nucleotide exchange on actin converting mono-

meric ADP–actin to ATP–actin [116]. PFN1–ATP–actin 

complexes bind to the fast-growing end of actin filaments 

regulating filament growth [172]. Patients with mutations in 

PFN1 display atrophy of the limbs and it has been suggested 

that PFN1 contributes to ALS pathogenesis by altering actin 

dynamics resulting in axon outgrowth inhibition [189]. This 

is consistent with the finding that the ALS-associated PFN1 

mutants C71G and M114T display reduced actin binding and 

inhibit axon outgrowth of embryonic motor neurons [189]. 

In addition, PFN1 mutants cause the formation of ubiqui-

tinated, insoluble aggregates that colocalize with TDP-43 

[189]. C9ORF72 interacts with cofilin (CFL1), a key reg-

ulator of actin dynamics [19]. Knockdown of C9ORF72 

expression reduces axonal growth and actin dynamics [157]. 

Reduced C9ORF72 levels observed in ALS could affect 

actin dynamics and thereby, for example, cargo trafficking 

along the actin cytoskeleton at axonal branches or synapses 

[13].

In summary, retrograde and anterograde axonal transport 

is crucial for the distribution of cargo in motor neurons. 

ALS-associated defects in motor proteins and the cytoskel-

eton, that both are required for cargo transport, are predicted 

to cause various molecular and cellular perturbations, e.g., 

in receptor signalling, synaptic function, gene regulation, 

energy metabolism, or lysosomal degradation that could lead 
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to motor neuron degeneration. However, our understanding 

of how defective motor and cytoskeletal proteins cause ALS 

and specifically affect MNs is rather incomplete. Further 

studies are needed to fill this void. Genetic and experi-

mental evidence for a role for disrupted axonal transport 

in ALS pathogenesis is strong and has provided several 

starting points for the development of therapeutic strategies 

(for an overview see [83, 179]). For example, inhibition of 

p38 MAPK protects motor neurons from degeneration and 

HDAC6 depletion has positive effects on ALS disease pro-

gression and survival. However, further work is needed to 

implement these and other strategies. For examples, HDAC6 

not only regulates axonal transport but is also known to 

play a crucial role in the clearance of protein aggregates 

by autophagy [81]. Therefore, strategies need to be devel-

oped that specifically affect the transport-mediated effects 

HDAC6.

Nucleocytoplasmic transport

A major pathological hallmark of ALS is the nuclear deple-

tion and cytoplasmic accumulation of TDP-43, which is 

observed in over 95% of ALS patients [107, 161]. Consistent 

with this pattern of protein re-distribution, impaired nucleo-

cytoplasmic transport has emerged as a disease mechanism 

in ALS and other neurodegenerative diseases (for review, 

see [46, 85]). Several lines of experimental evidence have 

recently implicated defects in nucleocytoplasmic trans-

port in ALS. These include the presence of mutations in 

the nuclear localization signals (NLS) of proteins such as 

FUS and hnRNPA1 [40, 96, 106]. FUS causes toxicity in 

part through the formation of abnormal aggregates in the 

nucleus and cytoplasm of affected neurons and glial cells 

in ALS patients with FUS mutations [95, 107]. Most of 

the reported FUS mutations in ALS are missense muta-

tions affecting its C-terminal NLS [96]. Interestingly, the 

ALS-associated protein aggregates that form as a result of 

impaired nucleocytoplasmic trafficking may themselves 

also interfere with nucleocytoplasmic transport of protein 

and RNA [187]. Finally, repeat expanded C9ORF72 has 

been proposed to affect trafficking between the nucleus and 

cytoplasm in different ways. As discussed before, disease-

associated repeat expansions in C9ORF72 induce motor 

neuron degeneration and ALS in part through toxic gain of 

function mechanisms. These include the accumulation of 

mutant transcripts and DPRs. Expanded repeat-containing 

C9ORF72 transcripts accumulate in affected motor neurons, 

and other cells in the brain and spinal cord. Several studies 

suggest that these stable hexanucleotide repeat-containing 

C9ORF72 RNA species sequester RNA-binding proteins and 

nuclear pore complex (NPC) components (e.g., RanGAP1). 

This disturbs the function and nucleocytoplasmic traffick-

ing of these and other proteins [197]. Mislocalization and 

accumulation of NPC proteins have also been observed in 

ALS cases linked to other mutations, such as SOD1 [88, 

155]. Another mechanism by which C9ORF72 repeat expan-

sion affects nucleocytoplasmic transport is the generation of 

DPRs. DPRs have been proposed to block the central chan-

nel of the nuclear pore [156]. However, how exactly RNA 

accumulation or DPRs disrupts nucleocytoplasmic transport 

remains incompletely understood (for review, see [52, 85]).

Central to nucleocytoplasmic transport is the NPC, a large 

protein complex that spans the membranes of the nuclear 

envelope and that is composed of about 30 different nucle-

ophorins. A direct link between the NPC and C9ORF72 

is provided by work identifying components of the NPC 

(nucleophorins and nuclear transport receptors) as genetic 

modifiers of C9ORF72-related neurodegeneration and the 

binding of these components to DPRs (for review, see [85]). 

Reduced expression or mislocalization of components of 

the NPC and nuclear import factors, i.e., importins, in ALS 

brain and spinal cord tissue [88, 125, 128, 169] or caused 

by TDP-43 aggregation in vitro [28] further implicates 

transport through the NPC in ALS pathology. Interestingly, 

mutations in the endosomal-sorting complexes required for 

transport (ESCRT) III subunit CHMP2B are causative for 

ALS [43]. Genetic ablation of ESCRT-III in yeast leads to 

clustering of defective NPCs due to mis-assembly [181]. It 

will, therefore, be interesting to assess whether CHMP2B 

mutations lead to defects in NPC assembly surveillance and 

thereby motor neuron degeneration.

In conclusion, defects in nucleocytoplasmic transport are 

increasingly recognized as a key event in the pathogenesis 

of ALS. Evidence for changes in nucleocytoplasmic traffick-

ing are particularly strong in C9ORF72 ALS/FTD. These 

include mislocalization of proteins forming or associating 

with the NPC and clogging of the NPC by DPRs. Despite 

this recent progress, our understanding of how defective 

nucleocytoplasmic transport leads to motor neuron degen-

eration and ALS remains rather incomplete. Furthermore, 

the relative importance of this proposed disease mechanism 

in comparison to the other ALS disease mechanisms remains 

to be established. Fundamental insight into the process of 

nucleocytoplasmic transport will help to dissect the role of 

defects in this process in ALS. This is exemplified by recent 

work, suggesting that the nuclear export signals (NES) of 

TDP-43 and FUS are not functional and that these proteins 

may leave the nucleus by passive diffusion. Retention to 

synthesized RNAs sequesters them inside the nucleus and 

limits cytoplasmic diffusion [41]. This would suggest that 

defects in active nuclear export of TDP-43 and FUS only 

play a minor role in ALS and helps to understand how these 

proteins accumulate in the cytoplasm in ALS.
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Conclusions

Intracellular trafficking defects observed in ALS range from 

accumulation or mislocalization of cell surface receptors or 

disturbed ER/Golgi trafficking to perturbations in motor 

proteins and the cytoskeleton. This review highlights that 

these defects result from changes in molecular and cellular 

processes that are often not isolated events but rather steps 

of a continued trafficking pathway. A particular phenotype, 

such as protein accumulation, may be explained by changes 

in several of the steps of the trafficking process. For exam-

ple, cell surface receptor accumulation could result from 

altered Rab function, defects in motor proteins carrying this 

cargo, or from changes in the cytoskeleton. In addition, these 

defects may also indirectly affect other processes. For exam-

ple, downregulation of Rabs can result in altered expression 

of their effectors. This may induce up- or downregulation of 

Rab proteins in complementary networks [176] and cause 

defects such as uncontrolled budding or fusion of vesicles 

[74, 110].

While evidence is accumulating that trafficking defects 

significantly contribute to motor neuron death and ALS, 

our understanding how trafficking is affected and how these 

changes lead to ALS and could eventually be counteracted to 

treat this disease is rather incomplete. This situation is exem-

plified by a large number of recent studies on C9ORF72 

ALS/FTD. C9ORF72 repeat expansions are known to lead 

to reduced C9ORF72 expression which is thought to affect 

protein degradation. At the same time, decreased C9ORF72 

expression may trigger hyperexcitability through effects on 

glutamate receptors and thereby induce neuronal death. 

While the precise contribution of C9ORF72, loss of func-

tion to motor neuron degeneration remains unclear, the 

pathogenic gain of function effects of C9ORF72 repeat 

expansions, such as the formation of RNA foci and DPRs, 

also targets intracellular trafficking, e.g., axonal transport 

and nucleocytoplasmic trafficking. Finally, C9ORF72 

loss and gain of function mechanisms may interact. It has 

been suggested that while C9ORF72−/− mice do not show 

overt neurodegeneration [89], reduced C9ORF72 activity 

could impair the clearance of DPRs and thereby enhance 

the effects of these toxic proteins [194]. Future work is 

needed that systematically dissects the downstream effects 

of C9ORF72 repeat expansions and other ALS mutations on 

different aspects of intracellular transport. High-resolution 

live imaging, humanized culture models, and manipulation 

strategies such as CRISPR/CAS to perform gene knockout 

or induce epitope tags to endogenously label proteins of 

interest should be part of the toolbox to further explore the 

contribution of trafficking defects in ALS.

Many open questions with respect to intracellular traf-

ficking and ALS remain. For example, how do intracellular 

transport and protein aggregates interact and which are the 

functional consequences of this interaction. Protein aggre-

gation is a pathological hallmark of ALS. TDP-43 aggre-

gates are found in the majority of patients, while several 

other ALS-associated proteins are prone to aggregate, e.g., 

SOD1, FUS, and DPRs. Defects in intracellular trafficking 

are linked in several ways to disturbed protein homeosta-

sis. First, in some cases, mutant proteins accumulate and 

start to form aggregates because of defects in transport, e.g., 

nucleocytoplasmic transport. Second, disrupted protein deg-

radation due to perturbed intracellular trafficking may facil-

itate aggregate formation and stability. Third, aggregates 

can inhibit intracellular transport, e.g., axonal transport or 

nucleocytoplasmic trafficking. Thus, it is clear that intracel-

lular trafficking contributes to aggregate formation, while 

aggregates disturb intracellular transport, but the precise 

molecular and functional details of these interactions remain 

to be dissected. While this review has focused on neuronal 

trafficking, non-neuronal cells such as glia cells may also 

contribute to ALS pathogenesis and trafficking defects. For 

example, activated microglia-conditioned medium induces 

neurite beading in cultured MNs via NMDA-R signalling. 

This signalling inhibits mitochondrial complex IV and a 

subsequent decline in ATP reduces fast axonal transport 

and accumulation of tubulin, neurofilament, kinesins, and 

dynein prior to MN death [168]. Therefore, further studies 

are needed to examine whether the intracellular trafficking 

defects observed in MNs are also at play in relevant popula-

tions of non-neuronal cells.

Finally, it is clear that at least some aspects of intracel-

lular trafficking play a key role in ALS pathogenesis. Studies 

have begun to use these observations as starting points for 

designing novel therapeutic strategies for ALS (e.g., inhibi-

tion of p38 MAPK or HDAC6). Further insight into the role 

of defective intracellular transport will, therefore, undoubt-

edly provide further targets for the design of therapeutic 

interventions for ALS in the future.
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