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Abstract: Developmental dyslexia has been hypothesized to result from multiple causes and exhibit
multiple manifestations, implying a distributed multidimensional effect on human brain. The disrup-
tion of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it
remains unknown if developmental dyslexia affects the human brain WM in a multidimensional man-
ner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach
was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls.
Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract
five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffu-
sivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier
achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from con-
trols. Notably, the most discriminative features that contributed to the classification were primarily
associated with WM regions within the putative reading network/system (e.g., the superior longitudi-
nal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum),
the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle,
corona radiata, and corticospinal tract). These results were well replicated using a logistic regression
classifier. These findings provided direct evidence supporting a multidimensional effect of develop-
mental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/
regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results
demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic
individuals. Hum Brain Mapp 00:000–000, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Developmental dyslexia is a common neurodevelopmen-
tal disorder that is characterized by unexpected difficulty
in reading acquisition despite normal intelligence,
adequate educational opportunities, and intact sensory
abilities [Peterson and Pennington, 2012]. This disorder
occurs in approximately 7% of school-aged children across
cultures [Shaywitz et al., 1990; Zhang et al., 1998]. Dyslexia
usually persists into adulthood and severely affects aca-
demic performance, career development and quality of life
[Maughan et al., 2009]. Accurate identification of dyslexic
individuals and ascertaining the neural substrates of dys-
lexia remain challenging [Gabrieli, 2009].

Reading is a complex task that relies on the recruitment
of and communication between multiple regions [Wandell
and Yeatman, 2013]. The disconnection hypothesis was pro-
posed for the etiology of dyslexia, and it highlighted the
disruption of inter-regional connectivity/communication
(i.e., disconnection) as the main cause for dyslexia, rather
than the structural/functional anomalies in focal regions
[Klingberg et al., 2000; Paulesu et al., 1996]. This hypothesis
has been supported by functional imaging studies that
showed reduced functional connectivity during reading-
related tasks or resting states in multiple regions, such as
the inferior parietal region, angular gyrus, fusiform gyrus,
and inferior frontal cortex [Farris et al., 2011; Finn et al.,
2014; Horwitz et al., 1998; Koyama et al., 2013; Paulesu
et al., 1996; Pugh et al., 2000; Schurz et al., 2015; Shaywitz
et al., 2003; van der Mark et al., 2011]. Diffusion magnetic
resonance imaging (MRI) studies further revealed abnor-
malities in multiple white-matter (WM) tracts (i.e., struc-
tural connectivity) in dyslexic populations, including the
superior longitudinal fasciculus/arcuate fasciculus, inferior
longitudinal fasciculus, corona radiata, internal capsule,
and corpus callosum [Beaulieu et al., 2005; Boets et al.,
2013; Deutsch et al., 2005; Klingberg et al., 2000; Rimrodt
et al., 2010; Steinbrink et al., 2008; Vandermosten et al.,
2012a). Notably, these dyslexic WM studies mainly per-
formed univariate analyses, in which multiple WM voxels
or tracts were compared/analyzed independently.

On the other hand, there has been a multidimensional def-
icit theory for the etiology of dyslexia, hypothesizing how
the dyslexia is caused by cognitive/neural deficits [Penning-
ton, 2006]. In contrast to the single deficit theory (i.e., phono-
logical deficit theory), the multidimensional deficit theory
argues that the reading difficulty results from deficits of mul-
tiple cognitive and neural domains, and these cognitive and
neural systems are jointly affected in a multidimensional
manner by dyslexia. This flexible theory is able to better deal
with the diverse manifestations of dyslexia as well as the

individual differences among dyslexic subjects [McGrath
et al., 2011; Pennington et al., 2012; Willcutt et al., 2010].
Given that distinct cognitive processes are related to different
WM connections, it is likely that a multidimensional pattern
of WM anomalies is associated with dyslexia, according to
this multidimensional deficit theory. However, to date, it
remains untested whether developmental dyslexia affects the
human brain WM in such a multidimensional manner. In
addition, it also remains unknown whether WM connectivity
can be used to discriminate dyslexic children from normal
controls at the individual level, which is an important clinical
question for identifying dyslexic individuals.

These issues can be well addressed by multivariate
machine learning approaches. Specifically, the machine learn-
ing approaches can yield a classifier to determine the category
of an unknown individual by taking multitype and multire-
gional brain features into account jointly. These techniques,
therefore, serve as a nature tool to evaluate the multidimen-
sional hypothesis [Ecker et al., 2010; Li et al., 2014]. In addi-
tion, they allow for inferences of pattern differences between
groups [Davatzikos, 2004; Haynes and Rees, 2006]. The MRI-
based machine learning approach has been increasingly
applied in studies of various neuropsychiatric disorders, such
as Alzheimer’s disease [Liu et al., 2014], autism [Anderson
et al., 2011], and depression [Zeng et al., 2012]. However,
brainWMdifferences between dyslexic and normal individu-
als have never been investigated using these approaches.

In this study, we applied a machine learning approach to
investigate the WM anomalies in dyslexic children. Structural
MRI and diffusion tensor imaging (DTI) data was acquired to
extract multitype WM features at macrostructural (i.e., WM
tissue volume) and microstructural levels (i.e., WM diffusion
parameters). A linear support vector machine (LSVM)
method was applied to classify dyslexic and control children
using these WM imaging features. By discriminating dys-
lexics from controls using multitype and multiregional WM
features jointly, if successful, this study will demonstrate that
(1) the WM features can be used to distinguish dyslexics and
controls, therefore, supporting the disconnection hypothesis;
(2) the WM features across multiple types and regions are
jointly altered in dyslexia, therefore, supporting the multidi-
mensional deficit theory. Furthermore, the discriminative
WM features derived from the machine learning classifier
may shed light on the effect of WM connectivity in dyslexia.

MATERIALS AND METHODS

Participants

Thirty-three dyslexic children and 34 typically develop-
ing controls were included in this study. Dyslexia was
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determined using two standardized reading tests, which
were conducted during the primary school period, as
described below. Five dyslexic children and 1 control child
were excluded because of severe head motion during MRI
scanning (visually checking the motion-artifacts on the T1-
weighted images). Therefore, the final image analysis
included 61 children (28 dyslexics and 33 controls; Table
I). All participants were right-handed [Oldfield, 1971]
native Mandarin speakers who attended school regularly.
Normal or corrected-to-normal vision and hearing were
confirmed in each subject. The participants’ parents
reported no evidence of current or past major neurological
or psychiatric disorders (e.g., attention deficit hyperactivity
disorder) for any individual. All children had normal IQs,
with scores above 85 on the Chinese version of the Wechs-
ler Intelligence Scale for Children (C-WISC) [Gong and
Cai, 1993] or above the 10th percentile on the Raven’s
Standard Progressive Matrices [Raven, 1998]. The dyslexic
and control groups were matched for age (dyslexic: 10.0–
14.7 years; control: 10.1–14.7 years; P5 0.47), gender (dys-
lexic: 16 males; control: 16 males; P5 0.50), and nonverbal
IQ, which is based on Picture Completion in C-WISC
(P5 0.86). Written informed consent was obtained from
the children and their parents after the details of the study
were comprehensively explained. The Institutional Review
Board of Beijing Normal University Imaging Center for
Brain Research approved the protocol.

Dyslexia Criteria and Behavioral Tests

Previously established criteria in Mainland China were
used to identify dyslexic children [Lei et al., 2011; Shu
et al., 2003; Xue et al., 2013; Zhang et al., 2012]. Specifi-
cally, the standardized character recognition (CR) and
word-list reading (WLR) tests were administered during a
primary school period. A child was categorized as dyslexic

if the CR z-score was below 21.5 standard deviations (SD)
of the norm or the WLR z-score was below 21.5 SD of the
norm and the CR z-score was below 21.0 SD of the norm.
CR and WLR z-scores were above 20.5 SD of the norm in
control children.

For the participants who were in the primary school
when applying the MRI scan (22 dyslexics and 25 controls
in total), the standardized CR and WLR tests were per-
formed concurrently with the MRI scanning. The other
participants, who were in the middle school when apply-
ing the MRI scan (6 dyslexics and 8 controls in total), were
determined by their earlier standardized scores in the
period of primary school, since there was no available
norm for the CR and WLR scores of the middle school.
Given the well-observed persistence of the dyslexic status,
this strategy is likely acceptable and has been widely used
in a series of previous studies (Boets et al., 2013; Shaywitz
and Shaywitz, 2005; Shaywitz et al., 1999; Vandermosten
et al., 2010].

In addition, a battery of cognitive tests was administered
within one week of MRI scanning to evaluate the persist-
ence of poor reading performance. This battery included 5
reading-related tests: (1) reading fluency (RF) to measure
the efficiency of reading comprehension of sentences [Xue
et al., 2013]; (2) phoneme deletion (PD) to measure phono-
logical awareness [Li et al., 2012a); (3) rapid automatized
naming (RAN) to measure the efficiency of phonological
representation retrieval [Lei et al., 2011]; (4) morphological
production (MP) to measure morphological awareness
[Shu et al., 2006]; and (5) digit recall (DR) to measure pho-
nological working memory.

MRI Acquisition

All scans were performed using a 3T Siemens Tim Trio
MRI scanner in the Imaging Center for Brain Research,

TABLE I. Demographics and behavioral profiles of the participants

Dyslexic group
(N5 28)

Control group
(N5 33)

Group comparison
(P value)

Age (years) 11.6 (1.55) 11.8 (1.33) 0.473
Gender (M:F) 16:12 16:17 0.500
Nonverbal IQa,b 10.4 (2.5) 10.4 (1.9) 0.859
CR (correct response) 95.2 (18.2) 131.2 (10.6) < 0.001
WLR (words/min) 73.4 (22.7) 107.9 (19.3) < 0.001
RF (characters/min) 211.2 (114.2) 397.5 (133.5) < 0.001
PD (correct response) 14.8 (6.3) 21.9 (3.3) < 0.001
RAN (seconds) 19.6 (5.2) 14.2 (3.1) < 0.001
MP (correct response) 19.4 (4.5) 25.6 (2.7) < 0.001
DR (correct response) 16.0 (2.8) 18.8 (1.8) < 0.001

CR: character recognition; WLR: word-list reading; RF: reading fluency; PD: phoneme deletion; RAN: rapid automatized naming; MP:
morphological production; DR: digit recall.
aThe nonverbal IQ was based on performance of the Picture Completion in C-WISC.
b28 dyslexic and 30 control children were included; 3 other control children did not finish the C-WISC.

r White Matter Disconnection in Dyslexia r

r 3 r



Beijing Normal University. Three-dimensional T1-weighted
images with high resolution were obtained using a 3D
magnetization prepared rapid gradient echo (MPRAGE)
sequence with the following parameters: slice thickness,
1.33 mm; no gap; 144 sagittal slices; repetition time (TR),
2530 ms; echo time (TE), 3.39 ms; flip angle, 78; acquisition
matrix, 256 3 192; field of view (FOV), 256 3 192 mm2;
and resolution, 1 3 1 3 1.33 mm3. DTI was acquired using
a single-shot echo-planar imaging-based sequence with the
following parameters: slice thickness, 2.2 mm; no gap; 62
axial slices; TR, 8,000 ms; TE, 89 ms; flip angle, 908; 2
repetitive acquisitions; acquisition matrix, 128 3 128; FOV,
282 3 282 mm2; resolution, 2.2 3 2.2 3 2.2 mm3; 30 non-
linear diffusion weighting directions with b5 1,000 s/mm2

and one image without diffusion weighting (i.e., b5 0 s/
mm2). An experienced radiologist reviewed all MR images
to assess image quality and ensure the absence of visible
neurological anomalies (e.g., white matter hypointensity).

Image Processing

WM volume

A WM volume (WMV) map in the Montreal Neurologi-
cal Institute (MNI) space was generated for each individ-
ual using the VBM8 toolbox (http://dbm.neuro.uni-jena.
de/vbm/) [Kurth et al., 2010] in SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/). This processing procedure on the
structural MR images included: (1) correcting for bias-field
inhomogeneity; (2) spatially normalizing (affine-only trans-
formation); (3) segmenting into gray matter (GM), WM
and cerebrospinal fluid (CSF) density maps by using the
new-segment approach [Ashburner and Friston, 2005]; (4)
warping the resultant WM density images to a Diffeomor-
phic Anatomical Registrations Through Exponentiated Lie
Algebra (DARTEL) template using the high-dimensional
DARTEL algorithm; (5) applying the modulation by multi-
plying the WM density map with the linear and nonlinear

Figure 1.

The classification schematic flow using the combined WM features. A nested LOOCV was

applied for feature selection and classifier training. For details, please see Supporting Information

Figure 1.
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components of Jacobian determinant, which resulted in the
WMV maps representing the absolute WM volume of the
native space. This WMV metric has been widely applied
in previous neuroimaging literatures [Li et al., 2012b;
Radua et al., 2011], some of which were directly relevant
to dyslexia [Krafnick et al., 2014; Silani et al., 2005].

WM diffusion metrics

Processing of the diffusion MRI dataset was imple-
mented using PANDA (http://www.nitrc.org/projects/
panda/), which is a pipeline toolbox for diffusion MRI
analysis [Cui et al., 2013]. The procedure included skull-
stripping, simple-motion and eddy-current correction, dif-
fusion tensor/parameter calculation, and spatial normal-
ization. Fractional anisotropy (FA), mean diffusivity (MD),
axial diffusivity (AD), and radial diffusivity (RD) maps in
the MNI space were generated for each individual. FA,
MD, AD, and RD are the most commonly used diffusion
parameters and represent the fraction of total diffusion
that can be attributed to anisotropic diffusion, the overall
degree of diffusivity, the diffusivity along the direction of
WM tracts, and the diffusivity perpendicular to the direc-
tion of WM tracts, respectively [Beaulieu, 2002].

The WM volume and diffusion metrics (i.e., FA, MD,
AD, and RD) characterize macrostructural (e.g., atrophy or
lesions) and microstructural (e.g., degree of myelination or
axonal organization) WM properties, respectively [Beaulieu,
2002; Hugenschmidt et al., 2008]. The regional values for
these metrics were extracted using the White Matter Parcel-
lation Map (WMPM), which is a prior WM atlas defined in
the MNI space [Mori et al., 2008]. The mean of WMV, FA,
MD, AD, and RD were calculated for each WMPM region.
Here, a total of 50 WMPM regions were selected (Support-
ing Information Figure S1), and these areas were defined as
the “core white matter” [Mori et al., 2008]. The remaining
peripheral WM regions near the cortex were excluded
because they are highly variable across individuals.

The LSVM-Based Classification

An LSVM method was applied to classify dyslexic indi-
viduals from controls using the combined features from
the WMV and diffusion metrics. The leave-one-out cross-
validation (LOOCV) was adopted to evaluate the classifi-
cation performance, which provides a good estimation for
the generalizability of the classifiers, particularly when the
sample size is small [Pereira et al., 2009]. The schematic
overview for the LSVM-based classification framework is
shown in Figure 1 and Supporting Information Figure 2.

Feature fusion

The five WM metric values (i.e., WMV, FA, MD, AD,
and RD) for the 50 WMPM regions were concatenated to
yield a single raw feature vector for each subject [Wee
et al., 2011]. A combination of multitype features likely

improves discrimination performance because distinct fea-
tures putatively capture different aspects of WM tissue,
which are potentially complementary for discrimination
[Dai et al., 2012; Ross and Jain, 2003; Wee et al., 2011].

Feature selection

The selection of the discriminative features and elimination
of the noninformative features were widely employed to
boost classification performance [Dai et al., 2012; Dosenbach
et al., 2010]. This study applied a nested-LOOCV using the
outer loop to estimate classification accuracy and the inner
loop to determine the optimal feature selection [Hahn et al.,
2015; Whelan et al., 2014]. Feature selection using inner
LOOCVs avoids overfitting for the final classifier training.

Supporting Information Figure 2 illustrates the selection
of N2 1 subjects as the training set for each outer LOOCV
fold, and the remaining subject was used as the test sample,
where N is the number of all subjects. Inner LOOCVs were
further applied in each of the outer LOOCV folds. A two-
sample t-test was performed on each of the features in the
training set for each of the inner LOOCVs (N2 2 subjects),
which yielded a P value for each feature. A P threshold was
applied, and the features below the P threshold were
retained. The features with higher P values were discarded.
A P threshold from 0 to 1 with a 0.01 interval was applied
for each inner LOOCV, resulting in 99 inner LOOCVs in
total, and 99 classification accuracies were obtained for each
inner LOOCV. In theory, the neighboring P thresholds
should lead to very similar classification accuracies for the
corresponding inner LOOCVs. We averaged the classifica-
tion accuracy values across the first-order neighborhood for
each P threshold as the final classification accuracy, which is
essentially similar to smoothing step in image processing, to
control for outlier or noise effects. Specifically, the first-order
neighborhood contained the two neighboring thresholds
that were directly adjacent to the target P threshold (e.g., for
the P threshold of 0.50, its first-order neighborhood was
composed of 0.49, 0.50, and 0.51 thresholds). The P thresh-
old with the highest classification accuracy for the inner
LOOCV was defined as the optimal threshold based on the
refined classification accuracy values, and this threshold
value was applied to the training set (N2 1 subjects) of the
outer LOOCV fold for the final classifier training.

LSVM implementation

The LSVM is one of the most widely used supervised
machine-learning methods, which aims to obtain a classi-
fier with high prediction power through minimizing the
empirical classification error on training data while taking
into account the complexity of the model [Burges, 1998;
Vapnik, 1995]. We applied the LIBSVM toolbox for Matlab
to implement the LSVM classification (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/) [Chang and Lin, 2011]. The C

parameter, which controls the tradeoff between empirical
classification error and generalization of the model, was set
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at the default value (C51). Specifically, each subject here
was represented as a point in a multidimensional space,
with each dimension corresponding to a feature. The LSVM
algorithm uses a subset of data (i.e., training set) as input
to identify a hyperplane in this multidimensional space,
which best separates the input data into two categories
matching with the known class labels. The hyperplane is
represented as a decision function y5f(x), in which y is the
classification score and x is the multidimensional feature
vector. Once the decision function is learned from the train-
ing data, it will be applied to predict the class of new test-
ing samples. In this study, any testing child with a positive
classification score was classified as healthy control and a
negative score as dyslexic. A true healthy control who
obtained a negative LSVM classification score, therefore,
would be misclassified as dyslexic and a true dyslexic child
with a positive score would be misclassified as control.

Finally, the resultant discriminative weight for each fea-
ture was used to represent the feature contribution/impor-
tance to the classification [Dai et al., 2012; Ecker et al.,
2010; Mourao-Miranda et al., 2005].

Evaluation of Classification Performance

Accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were computed
to quantify our classification performance. Specifically,
accuracy is the proportion of subjects who were correctly
classified into the dyslexic or control group. Sensitivity and
specificity are the proportion of dyslexics and controls clas-
sified correctly. PPV and NPV are the proportion of correct
dyslexic predictions and control predictions, respectively.

Furthermore, we used receiver operating characteristic
(ROC) analysis to evaluate the performance of the classi-
fiers. The area under the ROC curve (AUC) represents the
classification power of a classifier, and a larger AUC indi-
cates a better classification power [Fawcett, 2006]. The
ROC curve was generated using sequentially thresholding
at the classification score of each subject.

The permutation test was applied to determine whether
the accuracy and AUC obtained above were significantly
higher than values expected by chance. Specifically, we
permuted the class labels (dyslexic or control) across the
entire sample 1,000 times without replacement, and the
entire classification procedure was reapplied each time.
The P value for the accuracy or AUC was calculated by
dividing the number of permutations that showed a higher
value than the actual value for the real sample by the total
number of permutations (i.e., 1,000).

We computed the differences in the accuracy or AUC
between the classifiers with multitype and single-type fea-
tures during each of the permutations above to determine
whether the classifier using the combined multitype features
(i.e., WMV, FA, MD, AD, and RD) performed significantly
better than the classifiers using each single-type feature. Sim-
ilarly, the P value for the difference in the accuracy or AUC

was calculated by dividing the number of permutations that
had a higher value than the actual difference from the real
sample by the total number of permutations (i.e., 1,000).

Discriminative Features and Their

Contributing Weights

Feature selection in each fold of the outer LOOCV was
implemented using a slightly different sample subset,
which led to a different set of selected features across folds.
The “consensus” features that were selected on all folds of
the outer LOOCV were defined as the discriminative fea-
tures as described previously [Dai et al., 2012; Dosenbach
et al., 2010; Zeng et al., 2012]. The discriminative weight for
each feature was defined as the average of their absolute
weights across all folds. A higher absolute value of the dis-
criminative weight indicates a greater contribution of the
corresponding feature to the classification [Dai et al., 2012;
Ecker et al., 2010; Mourao-Miranda et al., 2005].

Validation

We reapplied logistic regression [Whelan et al., 2014],
another widely used classification model, to validate the
robustness of our results for discriminating dyslexic and
control children. Similar to the LSVM, the logistic regres-
sion also aims to obtain a linear classifier with a decision
function y5f(x), in which y is the classification score and x
is the multidimensional feature vector. The training and
predicting framework is the same as the LSVM. In contrast,
the logistic regression predicts the probability that a sample
belongs to one class, rather than a hard label. The probabil-
ity was defined as P5 ey/(11 ey), and the predicted label
will be 1 (i.e., controls) if the probability is bigger than 0.5,
and otherwise 21 (i.e., dyslexics). In terms of algorithm
implementation, the logistic regression applies the maxi-
mum likelihood estimation to achieve the optimal classifier,
rather than maximizing the margin as the LSVM.

Specifically, the logistic regression used the same com-
bined WM features, with the nested-LOOCV and feature
selection procedure remaining the same. It was implemented
using the open-source Waikato Environment for Knowledge
Analysis (WEKA) software (http://www.cs.waikato.ac.nz/
ml/weka/), with all parameters being set as default values
(e.g., it performed iterations until convergence; the ridge in
the log-likelihood was 1.0 E2 8). The matlab codes for classi-
fication frameworks (i.e., LSVM and logistic regression) pro-
posed in this study have been made publicly available:
https://github.com/ZaixuCui/HBM_Dyslexia_Classification.

RESULTS

Cognitive Performance

Demographics and behavioral results are summarized in
Table I. The dyslexic children scored significantly lower
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than the controls in the two diagnostic tests, as expected
(i.e., CR and WLR tests; both P< 0.001). Dyslexic children
also performed significantly worse on the RF, PD, RAN,
MP, and DR tests (all P< 0.001), indicating the persistence
of poor reading ability at the time of MRI scanning.

Classification

The LSVM classifier accurately discriminated dyslexic
children from controls using the combined WMV, FA,
MD, AD and RD features. Specifically, the accuracy, sensi-
tivity, specificity, PPV and NPV were 83.61%, 75.00%,
90.91%, 87.50%, and 81.08%, respectively. The permutation
tests revealed P< 0.001 for accuracy (Figure 2B), which

suggests that the prediction accuracy was significantly
higher than chance.

The classification results are shown as an ROC curve
using each subject’s classification score as a threshold in
Figure 2A. The AUC was 0.86, which was significantly
higher than chance (P< 0.001), indicating excellent dis-
criminative power (Figure 2C).

The classification became worse using the single-type
metric (WMV, FA, MD, AD, or RD) (Table II and Figure
2A). The permutation test revealed significantly higher
accuracy and AUC for the combined features (COMB)
compared with the FA, MD or RD feature (COMB vs. FA:
Paccuracy5 0.052, PAUC5 0.010; COMB vs. MD: Paccuracy5

0.016, PAUC< 0.001; COMB vs. RD: Paccuracy5 0.013,
PAUC< 0.001). A trend was also observed for the

Figure 2.

Classification results. (A) The ROC curves for the classifiers with distinct features. The AUC for

the combined features and WMV, FA, MD, AD and RD features were 0.86, 0.74, 0.67, 0.55, 0.73

and 0.64, respectively. The two histograms are the permutation distribution of the accuracy (B)

and AUC (C) for the combined features-based classifier. The values obtained using the real labels

are indicated by the arrows.
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WMV and AD features (COMB vs. WMV: Paccuracy5 0.204,
PAUC5 0.088; COMB vs. AD: Paccuracy5 0.148, PAUC5

0.038).

In addition, we used the 10-fold cross-validation to re-
estimate the classification performance (See Supporting
Information Table 1 and Figure 3). The resultant LSVM
accuracy and AUC were lower than the LOOCV cross-
validation, but still significantly higher than by chance.

Correlation Between Classification Score and

Cognitive Performance

Figure 3A and 3B display the classification scores for all
subjects. Individuals with negative scores were classified
as dyslexic, and individuals with positive scores were clas-
sified as controls. Seven dyslexic children were misclassi-
fied as controls, and 3 controls were misclassified as
dyslexics. The classification scores (i.e., the distance to the
classification hyperplane) were significantly correlated
with CR (r5 0.54, P< 0.001) and WLR performance

TABLE II. Classification results of the LSVM classifier

using combined WM features or a single WM feature

Feature
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
PPV
(%)

NPV
(%)

Combined 83.61 75.00 90.91 87.50 81.08
WMV 70.49 64.29 75.76 69.23 71.43
FA 62.30 57.14 66.67 59.26 64.71
MD 54.10 57.14 51.52 50.00 58.62
AD 72.13 71.43 72.73 68.97 75.00
RD 55.74 39.29 69.70 52.38 57.50

PPV: positive predictive value; NPV: negative predictive value.

Figure 3.

Correlations between the classification and reading perform-

ance. A significant correlation between the classification scores

(distance from hyperplane) from the LSVM classifier with com-

bined WM features and character recognition (CR) performance

(A) or word list reading (WLR) performance (B) was observed

across all individuals. Similarly, a significant correlation between

the classification scores from the logistic regression classifier

and CR performance (C) or WLR performance (D) was

observed across all individuals. Here, individuals with positive

scores were classified as healthy, and participants with negative

scores were classified as dyslexic.
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(r5 0.53, P< 0.001) across all subjects, which further sup-
ports the validity of the classifier. After regressing out the
group factor, there was no significant correlation between
the classification scores and CR (r520.01, P5 0.95) or
WLR performance (r5 0.13, P5 0.34), suggesting that the
classification scores cannot account for within-group var-
iance of the reading skills.

Discriminative WM Features

There were 43 discriminative WM features for the LSVM
classifier, which included 31 WMVs, 1 FA, 4 MDs, 4 ADs,
and 3 RDs (Table III). Specifically, the 31 WMV features
were derived from 12 bilateral WM regions: the corticospi-
nal tract, medial lemniscus, inferior cerebellar peduncle,
superior cerebellar peduncle, cerebral peduncle, anterior
limb of the internal capsule, posterior limb of the internal
capsule, retrolenticular part of the internal capsule, sagittal
stratum, external capsule, cingulate part of the cingulum,
and crus of fornix; 2 left WM regions, the superior corona
radiata, and superior fronto-occipital fasciculus; 2 right WM
regions, the posterior thalamic radiation and inferior fronto-
occipital fasciculus; and 3 middle WM regions, the middle
cerebellar peduncle, pontine crossing tract, and splenium of
corpus callosum. The only WM region for the FA feature
was the body of fornix. The 4 regions for the MD feature
included the body of fornix, left external capsule and infe-
rior fronto-occipital fasciculus, and right inferior cerebellar
peduncle. The 4 regions for the AD feature were the left
superior corona radiata, external capsule, superior longitu-
dinal fasciculus, and right anterior corona radiata. The 3
WM regions for the RD feature were the body of fornix,
right inferior cerebellar peduncle, and retrolenticular part of
the internal capsule.

Validation

The logistic regression classifier discriminated dyslexic
children from controls with an accuracy of 73.77%, sensi-
tivity of 67.86%, specificity of 78.79%, PPV of 73.08%, and
NPV of 74.29%. The AUC was 0.80. The permutation test
also indicated that the accuracy and AUC were signifi-
cantly higher than chance (Paccuracy5 0.012; PAUC< 0.001).

Individual classification scores of the logistic regression
classifier were also correlated with the CR (r5 0.44,
P< 0.001) and WLR scores (r5 0.44, P< 0.001) across all
subjects, as shown in Figure 3C and 3D. After regressing
out the group factor, there was no significant correlation
between the classification scores and CR (r5 0.04, P5 0.73)
or WLR performance (r5 0.14, P5 0.28). Forty discrimina-
tive WM features were observed, including 29 WMVs, 1
FA, 4 MDs, 3 ADs, and 3 RDs. Notably, all 40 features
were recognized as the discriminative features for the
LSVM classifier (43 in total, excluding the following three
features: the WMV of the left superior cerebellar peduncle
and splenium of corpus callosum and the AD of the left

TABLE III. The discriminative features of LSVM

classifier

WMPM regions Metric
Discriminative

weight

Body of fornix FA 0.356
Cingulum (cingulate part) (L) WMV 0.203
Superior fronto-occipital

fasciculus (L)
WMV 0.187

Superior cerebellar peduncle (L) WMV 0.186
Posterior limb of internal

capsule (R)
WMV 0.184

Anterior limb of internal
capsule (R)

WMV 0.180

External capsule (L) MD 0.172
Middle cerebellar peduncle WMV 0.164
Body of fornix RD 0.149
Cingulum (cingulate part) (R) WMV 0.146
Superior longitudinal

fasciculus (L)
AD 0.142

Cerebral peduncle (R) WMV 0.130
Inferior cerebellar peduncle (R) WMV 0.125
Superior corona radiata (L) WMV 0.123
Crus of fornix (L) WMV 0.111
Posterior limb of internal capsule

(L)
WMV 0.105

Sagittal stratum (L) WMV 0.104
External capsule (L) AD 0.102
Inferior cerebellar peduncle (R) MD 0.090
Splenium of corpus callosum WMV 0.087
Retrolenticular part of internal

capsule (R)
WMV 0.084

Anterior corona radiata (R) AD 0.082
Retrolenticular part of internal

capsule (L)
WMV 0.080

Superior corona radiata (L) AD 0.072
Body of fornix MD 0.069
Corticospinal tract (L) WMV 0.067
Superior cerebellar peduncle (R) WMV 0.066
Inferior fronto-occipital

fasciculus (R)
WMV 0.065

Pontine crossing tract WMV 0.063
Inferior fronto-occipital

fasciculus (L)
MD 0.060

Sagittal stratum (R) WMV 0.055
External capsule (R) WMV 0.051
Retrolenticular part of internal

capsule (R)
RD 0.049

External capsule (L) WMV 0.044
Crus of fornix (R) WMV 0.039
Corticospinal tract (R) WMV 0.039
Medial lemniscus (L) WMV 0.038
Posterior thalamic radiation (R) WMV 0.037
Medial lemniscus (R) WMV 0.032
Inferior cerebellar peduncle (L) WMV 0.030
Inferior cerebellar peduncle (R) RD 0.028
Anterior limb of internal

capsule (L)
WMV 0.025

Cerebral peduncle (L) WMV 0.023

L: left; R: right.
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superior longitudinal fasciculus). Notably, the AD of the
left superior longitudinal fasciculus was selected on the 59
folds of the outer LOOCV (out of the 61 folds in total),
and was quite close to be a discriminative feature for the
logistic regression classifier, as well.

Notably, the discriminative weights for these identified
features were significantly correlated between the two
classifiers (r5 0.73, P< 0.001) (Figure 4).

DISCUSSION

This study demonstrated that dyslexic children could be
distinguished from healthy controls by jointly using multi-
type and multiregional WM features, indicating a multidi-
mensional effect on WM connectivity and, therefore,
supporting the multidimensional deficit theory for develop-
mental dyslexia. Notably, a set of discriminative features
were consistently recognized using two distinct classification
models (i.e., LSVM and logistic regression), which were pri-
marily associated with WM regions within the putative
reading network/system (e.g., the superior longitudinal fas-
ciculus, inferior fronto-occipital fasciculus, and thalamocorti-
cal projections), the limbic system (e.g., the cingulum and
fornix), and the motor system (e.g., the cerebellar peduncle,
corona radiata, and corticospinal tract). These WM results
provide direct support for the disconnection hypothesis of
dyslexia and shed light on the neural mechanisms underly-
ing human reading and dyslexia. Finally, the proposed WM
imaging-feature-based classification for dyslexia implied an
alternative way for identifying dyslexic individuals, which
offered valuable implication in clinical setting.

The Most Discriminative WM Connections/

Regions: The Putative Reading System

Human reading includes a series of complex cognitive
components that involve visual, phonological, and semantic

processes. Therefore, effective communication between spe-
cific brain areas is likely required. Dysfunction in WM con-
nections between reading-related gray matter regions have
been previously hypothesized for dyslexia, that is, the dis-
connection hypothesis [Klingberg et al., 2000].

In line with this hypothesis, a number of DTI studies
using between-group comparisons have shown disrupted
WM integrity in the temporo-parietal and frontal areas of
dyslexic subjects [Deutsch et al., 2005; Rimrodt et al., 2010;
Vandermosten et al., 2012a). For example, disruption of
the superior longitudinal fasciculus/arcuate fasciculus was
observed repeatedly in dyslexia, which likely underlies the
phonological processing deficits [Vandermosten et al.,
2012a). Compatibly, the left superior longitudinal fascicu-
lus/arcuate fasciculus was found to be highly associated
with reading development in normal children: the longitu-
dinal morphometric change of this particular tract was
predictive to reading abilities at the end time point [Myers
et al., 2014], and vice versa, its structural coherence at the
initial time point showed the potential to predict the longi-
tudinal change of reading abilities [Gullick and Booth,
2015]. In contrast, Hoeft and colleagues revealed that the
right superior longitudinal fasciculus, rather than the left
one, is able to marginally predict the long-term reading
gains in children with dyslexia, although its prediction
performance is worse than the functional activation fea-
tures [Hoeft et al., 2011].

Less consistently, other investigations also reported
dyslexia-related abnormalities in other WM tracts, such as
the inferior longitudinal fasciculus, inferior fronto-occipital
fasciculus, external capsule, internal capsule, and corpus
callosum [Frye et al., 2008; Frye et al., 2011; Niogi and
McCandliss, 2006; Rollins et al., 2009; Yeatman et al.,
2012]. These WM tracts together with the superior longitu-
dinal fasciculus are likely responsible for communication
within a putative reading system that involves the frontal,
temporo-parietal, occipito-temporal, and thalamocortical
regions in the two hemispheres [Ben-Shachar et al., 2007].

Figure 4.

Discriminative WM regions. (A) Discriminative WMPM regions for the LSVM classifier. (B) Dis-

criminative WMPM regions for the logistic regression classifier. (C) Correlation of discriminative

weights for the overlapped features between the LSVM and logistic regression classifiers.
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These previously reported WM tracts/regions (e.g., the
superior longitudinal fasciculus, inferior longitudinal fasci-
culus, superior corona radiata, external capsule, internal
capsule, and corpus callosum) were largely found to be
discriminative in the current study. For example, the left
superior longitudinal fasciculus was found to be signifi-
cantly discriminative in the LSVM, and almost in the logis-
tic regression analysis. In addition, the bilateral sagittal
stratum and inferior fronto-occipital fasciculus were signif-
icantly discriminative in both LSVM and logistic regres-
sion analyses. These two WM regions both contain a
substantial part of the inferior longitudinal fasciculus
[Mori et al., 2008], and therefore, it is likely that the infe-
rior longitudinal fasciculus significantly contributes to the
successful classification. The currently observed discrimi-
nability for the two prominently studied WM tracts in pre-
vious reading literatures, that is, the superior longitudinal
fasciculus and inferior longitudinal fasciculus, further
highlights their essential role in human reading.

The Most Discriminative WM Connections/

Regions: The Limbic System

The present machine learning study also revealed novel
findings in dyslexia-related WM regions/connections.
First, a nontrivial role of major tracts within the limbic sys-
tem in dyslexia was observed: specific segments of the for-
nix and cingulum were very discriminative. However,
these tracts were rarely mentioned in previous dyslexic
studies. This discrepancy may be due to the method differ-
ence (univariate vs. multivariate comparison). The
machine learning approach used in this study was likely
to provide a more sensitive way to capture the anomalies
of these tracts in dyslexia. Anatomically, the fornix and
cingulum constitute efferent and afferent major fibers of
the hippocampus, a critical structure for memory forma-
tion [Paz-Alonso et al., 2013; Ullman, 2004] and working
memory [Winston et al., 2013]. Numerous animal fornix-
transection and human neuroimaging studies have demon-
strated a very strong linkage of the fornix with both work-
ing memory [Douet and Chang, 2015; Murray et al., 1989]
and long-term memory [Douet and Chang, 2015]. Taken
together, the observation for these memory-related tracts
support a possible contribution of particular memory defi-
cit in dyslexia, likely serving as one of the affected cogni-
tive domains in terms of the multidimensional deficit
theory.

In fact, previous behavioral studies have repeatedly
found impaired scores of working memory in dyslexic
individuals [Landerl et al., 2013; Shu et al., 2006; Wagner
and Torgesen, 1987]. In addition, specific deficits in long-
term memory have also been reported in dyslexic children
[Ho et al., 2006; Hulme et al., 2007; Li et al., 2009]. At the
neural level, abnormal functional activation around hippo-
campus has been observed during working memory per-
formance in adolescents and young adults with dyslexia

[Wolf et al., 2010]. Also, hippocampal morphometry was
found abnormal in dyslexic adults [Casanova et al., 2005].
These findings consistently implied a role of memory com-
ponent in dyslexia, being supportive of our current find-
ings for these limbic WM tracts.

In addition to those directly related findings in dyslexia,
there are other indirect evidence in normal reading stud-
ies. For example, hippocampal volume was found to con-
tribute significantly when predicting form-sound
association, an important component of reading [He et al.,
2013]. In addition, a few candidate genes of dyslexia have
been found to express mainly in hippocampus and sur-
rounding areas [Poelmans et al., 2011], which also influ-
ence the volume of cingulum [Scerri et al., 2012]. These
indirect findings further implied the involvement of hip-
pocampal and limbic tracts in reading, and therefore,
likely in reading disabilities.

The Most Discriminative WM Connections/

Regions: The Motor System

Finally, multiple discriminative WM regions have been
associated with the motor system (e.g., corticospinal tract,
corona radiata, cerebral peduncle, cerebellar peduncle, and
medial lemniscus). This result is compatible with a recent
study that showed the involvement of cerebellar white
matter pathways in reading skills [Travis et al., 2015].
These findings favor the automatization/cerebellar theory
of dyslexia, in which impairments in cerebellar and related
structures are hypothesized to play a central role in dys-
lexia by affecting procedural learning, the acquisition of
automatic processes, and fluent processing [Nicolson and
Fawcett, 2007; Nicolson et al., 2001; Stoodley and Stein,
2011]. Consistent with this concept, cerebellar activation
was repeatedly observed during reading-related tasks
[Jobard et al., 2003; Turkeltaub et al., 2002]. Moreover,
structural anomalies of the cerebellum, such as reduced
volume or atypical asymmetry, were also observed in dys-
lexia [Eckert et al., 2003; Fernandez et al., 2013; Kibby
et al., 2008]. Particularly, reduced functional connectivity
between the cerebellum and inferior frontal gyrus/angular
gyrus was observed in dyslexic subjects during reading
and phonological processing [Horwitz et al., 1998; Stan-
berry et al., 2006]. Our results provide further evidence of
an involvement of cortico-cerebellar WM tracts in dyslexia,
which may serve as structural substrates for the disrupted
cortico-cerebellar functional connectivity.

Intriguingly, our currently observed involvement of the
limbic/memory and motor system may be associated with
reading development in Chinese children. Behaviorally,
the Chinese language is quite different with other lan-
guages, by uniquely possessing a very complex visual
structure of characters and lacking grapheme-phoneme
conversions [Chen and Kao, 2002; Shu et al., 2003]. Conse-
quently, specific cognitive resources are expected to be
more involved in Chinese reading, compared with other
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languages. For example, there is very strong involvement
of memory (e.g., approximately 3,500 characters and com-
plex visual-to-phoneme mapping rules) and motor process
(e.g., repeatedly handwriting newly learned characters)
during learning to read Chinese [Liu et al., 2013; Tan
et al., 2005]. Given these facts, it is possible that our cur-
rently observed limbic-tracts and motor-tracts are specific
to Chinese dyslexia, but the putative reading-related tracts
are generalizable to other languages. Compatibly, a couple
of brain imaging studies have revealed specific functional
neuroanatomical manifestations of dyslexia in Chinese. For
instance, Chinese dyslexic children exhibited functional
under-activations of the left middle frontal gyrus as well
as reduced gray matter volume of this region, which has
been rarely found in English dyslexia [Siok et al., 2008;
Siok et al., 2004]. This unique finding was also attributed
to the high demand of motor process for Chinese during
reading acquisition stage [Siok et al., 2008].

Notably, the above speculations for the language specific-
ity of our findings require much caution. First, the WM man-
ifestation in dyslexia has never been investigated in the
cross-linguistic context. In fact, the WM investigation even
solely in Chinese dyslexia remains scarce. Therefore, it is dif-
ficult to obtain direct clues/evidences supporting the lan-
guage specificity of our current findings. Second, even from
the functional perspective, it remains a challenge to conclude
general differences in the neurobiological manifestation of
reading and developmental dyslexia between Chinese and
other languages. For example, the above mentioned differ-
ence of functional manifestation of developmental dyslexia
between the Chinese and English might not be that massive,
according to a direct cross-linguistic comparison that
showed a common pattern of under-activation of dyslexic
readers in Chinese and English, relative to nonimpaired
readers [Hu et al., 2010]. Much more investigations are,
therefore, warranted to this field [Richlan, 2014]. To evaluate
above culture-related speculation, empirically analyzing
another non-Chinese or non-Asian dyslexic cohort would be
required. This however cannot be achieved at this point, and
warrants future investigations.

The roles of these recognized discriminative WM
regions/tracts should also be interpreted in the context of
the entire multivariate pattern, because the relationships
among features may substantially contribute to the classifi-
cation [Ecker et al., 2010]. For example, the atypical WM
patterns in dyslexia may be related to relationships
between specific subsystems (e.g., the putative reading
system, limbic system, and motor systems), given the fact
that dyslexic individuals tend to recruit other systems dur-
ing the reading process to compensate for deficits in the
original reading system [Richlan et al., 2011; Shaywitz
et al., 2003]. It would be very helpful for interpretations if
specific pattern differences of the WM discriminative fea-
tures can be explicitly presented for the dyslexic and con-
trol groups, respectively. This however can only be
possible when the number of features is quite small

(e.g.,< 3) in the machine learning framework. Given our
large number of WM features, it is almost infeasible to
analytically quantify or present the pattern differences,
because of the high-dimensional complexity of the possible
relationships among the features. Much effort is required
in the future to address this general limitation for multi-
variate machine learning studies.

Multitype Discriminative WM Features

Our results showed that the classifier using multitype
WM features (i.e., regional WMV, FA, MD, AD, and RD)
performed largely better than single WM feature-based
classifiers, suggesting that all these features were jointly
affected by the dyslexia. It should be noted that the dis-
crimination performance using combined multitype WM
features showed only a slight improvement or even a trend
compared with the WM feature of volume or AD alone
(Table I). This may relate to the limited sample size of this
study, which requires future validation. The tissue volume
and diffusion measures have been suggested to be comple-
mentary in understanding brain functions [Abe et al., 2008].
Biologically, the WMV tends to mainly reflect the number
of axons, and diffusion metrics were more specific to micro-
structural properties such as the degree of myelination or
axonal coherences [Beaulieu, 2002; Hugenschmidt et al.,
2008]. Both volumetric and diffusion abnormalities of WM
have been observed in previous dyslexic studies [Krafnick
et al., 2014; Vandermosten et al., 2012b).

Intriguingly, the majority of the observed discriminative
features in the current study are based on the WMV met-
ric, which implies a greater sensitivity of WMV for dys-
lexia. Biologically, dyslexia has been associated with
disturbed neural migration early in life [Galaburda et al.,
1985; Humphreys et al., 1990]. Intuitively, early develop-
mental anomalies during neural migration likely results in
overall changes of dyslexic brain in later life, such as the
number of neurons/axons. The volume of WM is likely to
be a sensitive marker for this phenomenon. Taken
together, the observed discriminative features, majority of
which are comprised of WMV metrics, supported a lead-
ing contribution of early developmental abnormality to the
pathology of dyslexia. The childhood WM developmental
abnormalities such as abnormal myelination (e.g., diffusion
abnormalities) may contribute to some degree, as well. It
is also possible that childhood WM developmental abnor-
malities are simply secondary to the disturbance of neural
migration in early life, resulting in subtle changes in dys-
lexic children and smaller number of diffusion metrics as
the discriminative features.

Identification of Dyslexic Children Using WM

Neuroimaging Features

Currently, the diagnosis of developmental dyslexia
mainly relies on behavioral assessment, which is typically
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time-consuming and highly depends on both examinee’s
compliance and examiner’s skills. In contrast, automated
neuroimaging-based identification can effectively avoid
these manual involvement and potential bias. More impor-
tantly, the neuroimaging-based identification framework
can provide valuable information for the neural basis of
dyslexia, that is, “biomarkers”, which are still lacking but
highly desired [Gabrieli, 2009; Wandell and Yeatman,
2013]. These relevant information can be very useful to
distinguish dyslexia from other disorders (e.g., special lan-
guage impairment) that share similar behavioral pheno-
type with dyslexia [Pennington and Bishop, 2009]. In
addition, these “biomarkers” information can be very
important to develop particular treatment for dyslexia
[Hoeft et al., 2007].

For the automated diagnosis of dyslexia with neuroi-
maging measures (e.g., electrical activities, gray matter
morphology, functional activities), there have been a few
promising results [Duffy et al., 1980; El-Baz et al., 2008;
Pernet et al., 2009; Tanaka et al., 2011]. Compared with
these previous studies, our present study had a relatively
larger sample size, and effectively avoided algorithm’s
overfitting by adopting a nested-LOOCV in the classifica-
tion framework. Most importantly, we applied the WM
connectivity features to classify dyslexic individuals from
control children, and ended up with relatively high classi-
fication accuracy. The ability to discriminate dyslexic and
control patients using multiple WM neuroimaging features
indicates the diagnostic potential of WM connectivity in
other neuropsychiatric disorders with disconnection syn-
drome [Jin et al., 2015], which deserves more attention in
future classification studies.

Limitations and Future Directions

A few methodological issues need to be addressed. First,
our classification was achieved in a small cohort, and the
generalization of our current results warrants further vali-
dation using an independent large cohort as well as other
cross-validation methods. Moreover, it would be ideal to
determine the subjects’ dyslexic/normal status by using
standardized behavioral scores concurrent with the MRI
scanning. Second, the morphometry of peripheral WM is
highly variable across individuals, and these regions were
excluded here to avoid potential errors due to spatial mis-
alignment between subjects. However, the peripheral
WMs may contain valuable discriminative features that
improve classification. Therefore, these regions should be
considered in the future. Next, many factors such as brain
atrophy, hypo- or hyper-intensity, and between-subject
misalignment due to registration errors may distort the
values of WM volume and diffusion metrics. To avoid
this, more advanced imaging techniques and sophisticated
algorithms are desired. Finally, this study focused on dis-
tinguishing school-aged dyslexic children from age-
matched healthy controls. Whether the current results are

applicable to adults or preschool children is not known.
Therefore, caution should be exercised when extrapolating
our findings across the lifespan.
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