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Background: Impairment in cognitive function is a recognized outcome of

traumatic brain injury (TBI). However, the degree of impairment has variable

relationship with TBI severity and time post injury. The underlying pathology is

often due to di�use axonal injury that has been found even in mild TBI. In this
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study, we examine the state of white matter putative connectivity in patients

with non-severe TBI in the subacute phase, i.e., within 10 weeks of injury and

determine its relationship with neuropsychological scores.

Methods: We conducted a case-control prospective study involving 11 male

adult patients with non-severe TBI and an age-matched control group of

11 adult male volunteers. Di�usion MRI scanning and neuropsychological

tests were administered within 10 weeks post injury. The di�erence in

fractional anisotropy (FA) values between the patient and control groups

was examined using tract-based spatial statistics. The FA values that were

significantly di�erent between patients and controls were then correlated with

neuropsychological tests in the patient group.

Results: Several clusters with peak voxels of significant FA reductions (p< 0.05)

in the white matter skeleton were seen in patients compared to the control

group. These clusters were located in the superior fronto-occipital fasciculus,

superior longitudinal fasciculus, uncinate fasciculus, and cingulum, as well as

white matter fibers in the area of genu of corpus callosum, anterior corona

radiata, superior corona radiata, anterior thalamic radiation and part of inferior

frontal gyrus. Mean global FA magnitude correlated significantly with MAVLT

immediate recall scores while matrix reasoning scores correlated positively

with FA values in the area of right superior fronto-occipital fasciculus and left

anterior corona radiata.

Conclusion: The non-severe TBI patients had abnormally reduced FA values in

multiple regions compared to controls that correlated with several measures

of executive function during the sub-acute phase of TBI.

KEYWORDS

traumatic brain injury, di�usion MRI, fractional anisotropy, neuropsychological test,

tract-based spatial statistic

Introduction

Traumatic brain injury (TBI) poses an increased risk for

early decline in neurological function, either temporarily or, in

worse situations, could result in permanent incapacitation (1–

3), making it a vital public health concern (4–6). TBI is often

classified asmild, moderate or severe according to injury severity

(7). Moderate TBI is often collectively classified with severe level

of brain injury, categorizing it as a hybrid moderate-to-severe

TBI (7) or in some cases, with the mild type of brain injury,

Abbreviations: TBI, Traumatic Brain Injury; TBSS, Tract-Based Spatial

Statistics; CT, Computed Tomography; MRI, Magnetic Resonance

Imaging; FA, Fractional Anisotropy; GCS, Glasgow Coma Scale; WASI,

Wechsler Abbreviation Scale of Intelligence; MAVLT, Malay version of

the Auditory Verbal Learning Test; WCST, Wisconsin Card Sorting Test;

RCFT, Rey Complex Figure Test; CTMT, Comprehensive Trail Making

Test; FSL, FMRIB’s Software Library; FDT, FMRIB’s Di�usion Toolbox; BET,

Brain Extraction Tool; TFCE, Threshold-Free Cluster Enhancement; FEW,

FamilyWise Error; AD, Alzheimer’s Disease.

mild-to-moderate TBI (8). In terms of timing post injury, the

categories include acute (within 1 week), subacute (1 week to

3 months), and chronic (more than 3 months) (9). However,

the grading of TBI often does not reflect the severity of the

actual injury and the subsequent impact on cognitive function

(10). The majority of current categories are founded on clinical

evaluations that are often poor predictors of long-term disability

(11). A novel strategy based on multimodal quantifiable data

(such as imaging and biomarkers) and risk-labels would be

advantageous for patients as well as clinical TBI research (11).

Regardless of the severity of brain injury, TBI is often

accompanied by diffuse axonal injury, a form of shearing injury

in which the white matter of the brain is damaged (12, 13).

However, due to its microscopic size, the resulting diffuse

axonal injury is hardly detectable on computed tomography

(CT) and conventional magnetic resonance imaging (MRI).

Diffusion MRI has been proposed as the best technique to detect

microstructural changes to white matter, enabling diffuse axonal

injury to be more easily identified (14, 15).

Diffusion MRI is an indirect measure of white matter

integrity obtained by quantifying changes in the diffusivity of
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water molecules within fiber tracts (16). Theoretically, in a

healthy brain, water molecules preferentially move parallel to

axonal fibers where the diffusion is constrained and restricted.

This condition is referred to as anisotropic diffusion (14) and

is indicated by higher fractional anisotropy (FA) values. On the

other hand, in the injured brain, where fiber tracts are disrupted,

water molecules tend to move more freely in all directions

making the diffusion relatively unconstrained, thus referred

to as isotropic diffusion (17, 18) and indicated by lower FA

values. Computed from diffusion MRI, the FA index represents

fiber tract integrity through the relative differences of diffusion

along and across axonal fibers, where reduction in FA values

corresponds with a local loss of structural white matter integrity

(19). Thus, recent studies used FA as a relevant biomarker to

detect diffuse axonal injury, which may have prognostic value

in TBI (20, 21). Another parameter measured in diffusion MRI

is mean diffusivity (MD), which is the average of the diffusion

measurements along the three axes (7).

Diffuse axonal injury, a result of acceleration and

deceleration of the brain inside the hard skull causing shearing

of the long axonal fibers, is frequently found in all types of brain

injury and comparatively examined together with cognitive

performance; whether in mild TBI (22–25) or severe TBI (26). A

study on moderate-severe TBI patients performed five decades

after injury using diffusion MRI and voxel-based morphometry

revealed a persistence of brain microstructural alterations

with late cognitive sequelae (27). A metaanalysis of 20 studies

concluded that while diffusion MRI parameters are associated

with cognitive performance, most findings were based on single

studies and in need of replication (28). Therefore, the main

aim of this study was to add to this body of knowledge in

investigating the level of impairment of white matter integrity

in patients with non-severe TBI in the subacute phase. This

study also aimed to analyze the correlation between FA values

and neuropsychological scores in this group of patients. The

findings of this research could aid in the development of new

diagnostic criteria for TBI patients.

Materials and methods

Patients

This study involved 11 male patients (mean age, 27.5 ±

13.2, range 18–53 years) with non-severe, comprising mild

and moderate TBI recruited from the Emergency Department,

Hospital Universiti Sains Malaysia (HUSM). The inclusion

criteria were: (i) age between 18 and 65 years old, (ii) 9

years education and above, (iii) right-hand dominant assessed

using the Edinburgh Handedness Inventory (29, 30), (iv) no

psychiatric illness and not consuming any psychiatric drugs,

(v) brain damage caused by brain injury (not due to a surgical

procedure) which is blow/ripping involving left and right side of

TABLE 1 Demographic results of TBI and healthy controls.

Patients

n = 11

Controls

n = 11

Age (years) 27.5± 13.2 28.4± 10.2

Education (years) 13.6± 3.0 15.2± 2.2

Time post injury (days) 41.3± 8.9

fronto-temporal-parietal lobes as first diagnosed by computed

tomography scan, and Glasgow Coma Scale (GCS) of 8–12

(moderate TBI) and 13–15 (mild TBI), whereas exclusion

criteria were: (i) under treatment with any medications that

may compromise working memory process, (ii) presence of

injuries to eyes and ears, and (iii) have cracked skull, scalp

injury or fractures. The etiologies of the TBI included road traffic

accident, fall, and blunt force. Age-matched control volunteers

(11 volunteers; all male; mean age 28.4 ± 10.2, range 20–52

years) were recruited from advertisements placed around the

university, social media websites, and from word of mouth

(Table 1). Inclusion criteria for healthy participants were similar

except for the absence of TBI. The study was approved by

the Human Research Ethics Committee of Universiti Sains

Malaysia (USMJEPeM/15110486), and all subjects provided

written informed consent.

Study design and study procedures

This is a case-control prospective study. TBI patients

had CT scans performed immediately following injury.

Diffusion MRI scanning was performed within 10 weeks

post injury. Neuropsychological assessment was performed

during the MRI scanning appointment in both patients and

age-matched controls.

Neuropsychological assessment

Several tests were administered to assess executive function,

verbal and visual memory, visuoperception and processing

speed, all common deficits following TBI. The assessment was

held within 10 weeks of injury for moderate TBI patients

and included the Wechsler Abbreviation Scale of Intelligence

(WASI) block design for motor skill and matrix reasoning

test for visuo-spatial problem solving (31), the validated Malay

version of the Auditory Verbal Learning Test (MAVLT) for

verbal memory (32), the Wisconsin Card Sorting Test (WCST)

to measure problem-solving and perseverative responding (33),

the Rey Complex Figure Test (RCFT) to assess visuospatial

or constructional ability and visual memory (34), and the

Comprehensive Trail Making Test (CTMT) for visuomotor

speed and maintenance of cognitive set-shifting (35).
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Data acquisition and imaging parameters

Whole-brain conventional and diffusion imaging were

acquired on a 3.0 T Philips Achieva MRI scanner (Netherlands),

available in the Department of Radiology, HUSM with a 32-

channel SENSE head coil for pulse transmissions and signal

reception. T1-weighted images were obtained via conventional

MR imaging with the following protocol (TR = 7.4ms, TE =

3.4ms, FOV = 250 × 250, matrix size = 228 × 227). Diffusion-

weighted images were sensitized with a b-value of 1,000 s/mm2,

using echo-planar (EPI) sequence (TR= 10,726ms, TE= 76ms,

slice thickness = 2.3mm, FOV = 230 × 230mm, matrix size =

96× 94).

Data pre-processing

Data preprocessing and analysis were performed using

FMRIB’s Software Library [FSL; (36)] version 5.0.9; Oxford

Center for Functional MRI of the Brain (FMRIB), UK;

http://www.fmrib.ox.ac.uk/fsl/. Diffusion images were initially

registered to the b = 0 image by affine transformation to

minimize the distortion caused by the effect of motion and

eddy current in the gradient coils using the eddy current

correction function in FMRIB’s Diffusion Toolbox v3.0 (FDT).

The registered images were skull-stripped using the Brain

Extraction Tool [BET (37)] and FA images generated using the

FDT (38).

After the removal of skull and non-brain tissues, next

step were involved calculating diffusion tensor by fitting the

tensor model at each voxel using a simple least square

fit to the diffusion data (39). This step produced 10

outputs include of tensor eigenvalues (that when calculated

represented diffusion magnitude/strength in the primary,

secondary and tertiary diffusion directions), eigenvectors

(described diffusion orientation represented by principal and

radial directions), mean diffusivity (MD) (molecular diffusion

rate), fractional anisotropy (FA) map (the variance of the 3

eigenvalues/magnitude normalized which measure the strength

of directional preference), mode of the anisotropy (MO) images

as well as an image of raw T2 signal with no diffusion weighting

(SO) (40). This step was achieved through DTIFIT.

Upon completing DTIFIT step for each participant

diffusion data, the output of FA map from patient

and control participant were selected and copied into a

new-empty directory.

Tract-based spatial statistics (TBSS)

Voxelwise statistical analysis of the diffusion-weighted data

was carried out using tract-based spatial statistics [TBSS; (39)],

part of FSL. The approach is to align multiple FA images using

voxelwise non-linear registration with intermediate degrees

of freedom, and then projecting the data onto a tract

skeleton (39).

After fractional anisotropymaps calculation for each subject,

voxel-wise statistical analysis was carried out through TBSS.

All FA images underwent non-linear registration by aligning

them to an FMRIB58_FA 1 × 1 × 1mm standard space

image. This step involved one registration being carried out per

subject and commonly gives good alignment results. Next, the

standard space FA images were merged into a single 4D image

to create a mean FA image so that it can be fed into the FA

skeletonisation step. This would generate a mean FA skeleton

that represents the center of all tracts common to the entire

group (2). The mean FA skeleton map was visually inspected.

A good registration result could be identified by the majority of

the tracts of each subject being reasonably well-aligned to the

relevant parts of the skeleton. Next, this was thresholded to a

standard value of 0.2 to includemajor white matter pathways but

to exclude enough peripheral tracts where there was significant

inter-subject variability and partial volume effects with gray

matter (2). The aligned FA image for each subject was then

projected onto the resulted binary skeleton mask by filling the

skeleton with FA values from the closest relevant tract center.

The resulting skeletonised data was then fed into voxelwise

cross-subject statistics.

Statistical analysis

Group comparison was performed using Randomize tool

v2.9 from FSL. The Threshold-Free Cluster Enhancement

(TFCE) option was used to define the clusters (39). The

TFCE method is technically more robust than cluster-

based thresholding as well as it does not necessarily

opt to decide arbitrary initial cluster-forming threshold.

Monte Carlo permutation testing was performed where it

generated n = 1,000 random permutations. The statistical

threshold was set at p < 0.05 FamilyWise Error (FWE)

corrected. Areas corresponding to significant clusters were

identified using the JHU White-Matter Tractography atlas.

Mean FA values were obtained from the skeleton map of

each subject.

Statistical test on non-imaging data were performed using

SPSS version 26.0 (Statistical Package for the Social Sciences)

(IBM Corp., Armonk, NY, United States). The Shapiro-Wilk

W-test was used to test for normality distribution of all

continuous variables. Group differences for IQ, block design

and matrix reasoning (subtests of WASI-II), MAVLT, WCST

and RCFT delayed recall scores were examined using the

independent two-sample t-test since the data were normally

distributed using a significance level of p < 0.05, and for

non-normal distribution of RCFT immediate recall and CTMT

scores as well as age and education level were examined using

the Mann-Whitney U test. The relationship between imaging
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TABLE 2 Site and type of lesion in TBI patients during initial CT scan.

Patient Age Affected

hemisphere

Lesion

1 53 Left Subarachnoid hemorrhage around left

frontal and parietal lobes. No brain

parenchyma injury

2 19 Left Left EDH

3 18 Left Left frontal contusion, left small EDH

4 18 Left Left frontal contusion, small right

temporal contusion

5 19 Left Left thin EDH, left temporal

contusion (bilateral temporal

contusions)

6 22 Left Left temporal base EDH

7 53 Left Left parietal contusion, traumatic

SAH

8 19 Right Right thin frontal EDH

9 29 Left Left temporal EDH

10 25 Right Right frontal contusion

11 27 Left Left convexity acute SDH

SAH, subarachnoid hemorrhage; EDH, extradural hemorrhage; SDH,

subdural hemorrhage.

metrics and neuropsychological measures was explored using

Pearson’s correlation.

Results

Demographic and neuropsychological
test results of TBI and healthy controls

Three out of the 11 TBI patients sustained mild TBI while

the rest had moderate TBI. Table 1 shows the demographic

characteristics of TBI and healthy control groups while Table 2

shows the site and type of lesion of TBI patients. The mean age

and education level were not significantly different between the

two groups.

Neuropsychological performances
between TBI patients and healthy
controls

Neuropsychological performance between TBI and healthy

groups showed that several assessments reached statistically

significant difference between the two groups (Table 3), which

included WASI’s IQ and Matrix Reasoning tests, MAVLT

immediate recall, and both RCFT immediate and delayed recall.

CTMT almost reached significant difference statistically (p =

TABLE 3 Neuropsychological performance for TBI and control groups.

TBI group Control group p-value

Mean SD Mean SD

IQ 93.4 11.7 103.6 9.2 0.033

Block design 49.1 6.4 51.0 9.7 0.591

Matrix Reasoning 42.5 12.7 53.8 4.5 0.016

MAVLT_immediate recall 42.8 11.5 53.1 6.1 0.019

MAVLT_delayed recall 8.9 3.9 11.4 2.1 0.083

WCST 84.7 19.0 88.4 26.6 0.716

RCFT_immediate recall 40.01 20.2 59.7 6.5 0.040

RCFT_delayed recall 38.1 17.4 54.0 9.4 0.017

CTMT 33.8 17.5 43.3 9.1 0.056

MAVLT, malay-version of auditory verbal learning test; WCST, wisconsin card sorting

test; RCFT, rey complex figure test; CTMT, comprehensive trail making test. Significant

values for comparison between healthy subjects and patient are in bold.

0.056) while other tests showed no significant performance

difference between the groups.

FA di�erences between TBI and healthy
control groups

Results of whole-brained TBSS comparative analysis of DTI

between 11 TBI and 11 healthy controls revealed multiple

areas of significant FA reductions in TBI patients as compared

to control (Figure 1). A few long association fibers were

affected including superior fronto-occipital fasciculus, superior

longitudinal fasciculus, uncinate fasciculus, and cingulum, as

well as white matter fibers in the area of genu of corpus

callosum, anterior corona radiata, superior corona radiata,

anterior thalamic radiation and part of inferior frontal gyrus.

Detailed information for each cluster, the anatomic location,

voxel coordinates and total number of voxels is presented in

Table 4. There were no significant areas where FA values were

increased in patients compared to controls.

Based on the whole-brain group comparison of FA values,

we selected 9 areas in the brain as our regions of interest (ROI).

Figure 2 illustrates the masks of ROIs. We obtained the mean FA

values of the whole-skeletonized brain and all the selected ROIs.

Whole-brain and several ROIs reached statistical significance

with p < 0.005 (Table 5).

Correlation between FA values and
neuropsychological assessments in TBI
patients

Correlation analysis was performed between the FA values

within the ROIs with the neuropsychological scores that were
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significantly different between the TBI and control groups while

controlling for age and years of education factors. Results

showed that the mean global FAmeasure correlated significantly

with MAVLT immediate recall scores (r = 0.675, p = 0.001).

The correlation of global FA maps with other psychological test

scores did not reach statistical significance.

For the correlation using the ROIs, matrix reasoning scores

correlated positively with FA values in the area of right superior

fronto-occipital fasciculus (r = 0.45, p= 0.045) and left anterior

corona radiata (r = 0.47, p = 0.036) while having negative

correlation in the area of right superior longitudinal fasciculus

(r =−0.49, p= 0.030) (Figure 3).

FIGURE 1

TBSS analysis of white matter skeleton. Voxels demonstrating

significantly (p < 0.05) decreased FA values for the subjects with

TBI compared with the control group are shown in red-yellow.

Voxels were thickened into local tracts and overlaid on the white

matter skeleton (green).

A positive correlation was also found between memory

performance assessed by MAVLT immediate recall with the FA

FIGURE 2

Masks of nine ROIs selected from the results of whole-brain

group comparison overlaid on MNI152 template brain.

TABLE 5 Group di�erences in mean FA from the whole skeletonised

brain and the ROIs.

TBI group Control group p-value

Mean SD Mean SD

FA global 0.579 0.021 0.623 0.015 0.000

FA genu of CC 0.180 0.004 0.185 0.001 0.000

FA right SFOF 0.077 0.004 0.083 0.002 0.000

FA left ACR 0.175 0.008 0.182 0.006 0.017

FA right SLF 0.177 0.007 0.178 0.006 0.767

FA right UF 0.125 0.008 0.133 0.005 0.020

FA right ATR 0.186 0.008 0.190 0.008 0.184

FA left SCR 0.158 0.005 0.160 0.006 0.576

FA right cingulum 0.093 0.004 0.096 0.004 0.142

FA left IFG 0.047 0.003 0.051 0.005 0.076

Significant values for comparison between healthy subjects and patient are in bold.

TABLE 4 Anatomic location of decreased FA clusters in the TBI groups compared to controls.

Hemisphere Anatomic location Voxel coordinates p-value Cluster size

X Y Z

Genu of corpus callosum 98 153 85 0.034 2,324

Right Superior fronto-occipital fasciculus 67 125 94 0.035 2,090

Left Anterior corona radiata 114 156 79 0.046 474

Right Superior longitudinal fasciculus 41 144 77 0.048 432

Right Uncinate fasciculus 59 136 61 0.046 148

Right Anterior thalamic radiation 59 166 89 0.049 88

Left Superior corona radiata 107 115 117 0.045 58

Right Cingulum 78 94 103 0.05 49

Left Inferior frontal gyrus 115 157 59 0.05 16

Genu of corpus callosum 101 151 71 0.049 14
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FIGURE 3

Correlation between FA and matrix reasoning scores in the region of right superior fronto-occipital fasciculus, left anterior corona radiata and

right superior longitudinal fasciculus in TBI patients.

skeletonized genu of corpus callosum (r = 0.62, p = 0.004) and

right superior fronto-occipital fasciculus (r = 0.50, p = 0.026).

Results presented in Figure 4. No other correlation reached

statistical significance in both groups.

Correlation between MD values and
neuropsychological assessments in TBI
patients

Utilizing identical ROIs as per FA analysis, correlation

analysis performed between MD values with psychological

measurement revealed that the right superior longitudinal

fasciculus had significant positive correlation with

RCFT immediate recall (r = 0.593, p = 0.015) and

RCFT delayed recall (r = 0.640, p = 0.002). Results are

presented in Figure 5. Other correlation did not reach

statistical significance.

Discussion

In this study, we used diffusion MRI to assess the level of

impairment of structural white matter integrity in the brain

of non-severe, mild-moderate TBI. Although primary CT scan

findings showed parenchymal injury of the left side of the brain

in the majority of the TBI patients, TBSS analysis revealed

that white matter disruptions extended across to the right

hemisphere. Whole-brain diffusion analysis revealed a global

decrease in mean FA values in patients with the involvement

of several white matter tracts. Anatomical peak voxels based

on cluster analysis showed that the FA reductions were on

both sides of the brain. While CT scan is the mainstay of

imaging for initial assessment of acute TBI (41) and is of

value in assessing bones as well as detecting acute subarachnoid

or acute parenchymal hemorrhage, it is inferior in detecting

potential cerebral pathology in TBI patients (42). A study

on TBI patients found that out of 450 patients with GCS
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FIGURE 4

Correlation between FA and MAVLT immediate recall in the region of genu of corpus callosum and right superior fronto-occipital fasciculus in

TBI patients.

score 13–15 and normal CT scan findings, 120 had positive

MRI scans (43), while a systematic review with network

metaanalysis revealed that diffusion MRI has higher sensitivity

and accuracy compared to conventional CT and traditional

MRI (44). Nevertheless, significant challenges remain for clinical

use of diffusion MRI as a biomarker for TBI, since the FA

or MD maps generated by DTI require statistical, not visual,

interpretation (7).

The cluster analysis comparison found that some regions

had significantly reduced FA values compared to healthy

controls. The regions were superior fronto-occipital fasciculus,

superior longitudinal fasciculus, uncinate fasciculus, and

cingulum, as well as white matter fibers in the area of genu

of corpus callosum, anterior corona radiata, superior corona

radiata, anterior thalamic radiation and part of inferior frontal

gyrus. Some major fiber tracts involved have been reported by

previous TBI studies (2, 25, 41) as well as meta-analysis (9).

Long tract fibers such as superior fronto-occipital fasciculus,

superior longitudinal fasciculus and commissural fibers namely

corpus callosum are particularly vulnerable to injury (45) and

potentially causes disruption to information flow between brain

areas that they interconnect.

These findings suggest that the white matter impairment

may not be confined to a single region of the brain and could

lead to stretching and distortion of axons as well as pathological

changes in the myelin that evolves throughout the post-injury

time course (46). Superior and inferior longitudinal fasciculus,

and cingulum (14, 15), were areas reported to have significant

FA value reduction that correlated with poor neuropsychological

scores. Notably, the zones with altered FA seem to favor frontal

regions; this could be possibly due to biomechanical factors

tending to increase themechanical distortion in the anterior part

of the brain following TBI. The nature of the injury could play

a role; a contre-coup injury in a motor vehicle accident often

results in frontal lobe injury (47). Our sample of TBI patients,

the majority of whom are motor vehicle accident patients,

support this observation. The frontal and temporal lobes are

areas known to be involved in memory including working

memory (48), verbal memory and executive functioning (49),

and the frontomedial circuits are important in the processing of

episodic memory (50). There also seems to be a preponderance

of right side FA reductions in our study. While white matter

asymmetry has been shown to be a sequelae of traumatic brain

injury (51), in our study, this may be attributed to the side

of physical impact. However, the small sample size disallows

further conclusion to be made as to whether it is due to an

inherent aspect of TBI.

Our results further showed a significant reduction of Matrix

Reasoning tests, andMAVLT Immediate that are consistent with

findings of previous studies (26, 52). and both RCFT Immediate

and Delayed Recall (53) scores in TBI patients compared to

healthy controls.
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FIGURE 5

Correlation between MD and RCFT immediate and delayed scores in the right superior longitudinal fasciculus in TBI patients.

The neuropsychological scores obtained in our study

correlated with the reduced FA values in the areas where clusters

were found in the TBSS analysis comparing TBI patients with

controls. The MAVLT immediate recall was the most affected

with positive correlation with the global FA difference between

TBI and controls, and was found to specifically correlate with the

FA in the genu of corpus callosum and right SFOF. Our results

also showed positive correlation between matrix reasoning

scores and FA values in the right SFOF and left ACR. Reviews

and meta-analyses of the relationship between diffusion MRI

findings and cognition found studies that support the positive

relationship between FA values and cognitive scores especially

in the domains of attention, memory and executive function

(9, 54, 55). These meta-analyses also found that the strong

relationship was not overly dependent on time post-injury.

Reduced FA and increased MD in the subacute phase have been

attributed to oedema and inflammation, while in the chronic

phase, is suggestive of axonal injury followed by demyelination

or gliosis (7).

On the other hand, our study found negative correlation

between FA and matrix reasoning in the right SLF, while

correlations performed using MD scores revealed positive

correlation with RCFT immediate and delayed recall with the

right SLF. A few previous studies also found instances of

negative correlation, meaning having better cognitive score with

reduced FA (9) in the acute stage (56) and years after injury

(57). While the positive correlation between MD and RCFT

scores, and the negative correlation between FA and matrix

reasoning seem paradoxical, possible explanation may be that

the relationship between FA and MD with neuropsychological

scores are also affected by attentional and emotional factors

as well as recruitment of neural resources in response to the

task demand (58). Jantzen et al. (59) performed fMRI on post-

concussion subjects and found higher BOLD activity in spatially

larger brain region in a sequencing task compared to controls.

Previous studies have yielded mixed findings of the

association between cognitive impairment and DTI parameters.

We tested the TBI patients within 10 weeks post injury. Another

study in TBI patients who had suffered severe and diffuse brain

injury still performed worse than controls in the chronic (more

than 2 years) stage of recovery (60). A meta-analysis by Roberts

et al. (61) found a consistent relationship between DTI and

cognitive functioning in pediatric patients more than 4 weeks

but not in <4 weeks after TBI. A more recent study on geriatric
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age group patients showed that mild TBI with relatively high

rates of neural degradation might put the patients at higher risk

of developing Alzheimer’s disease (AD), due to TBImodification

of brain function along AD-like trajectories (62). Using machine

learning, the acute assessment of cognitive performance has

been shown to be able to prognosticate the occurrence of AD-

like patterns of brain atrophy (22). A study by Wada et al. (25)

found correlation between cognitive scores and FA values close

to but not inside the reduced FA values in mild TBI patients. In

response to the damages in certain areas of the brain, the other

areas possibly undergo structural plasticity to compensate for

the decreased function (63).

Recent development in this area have evidenced the possible

existence of functional information in white matter (64), as

shown by resting-state BOLD signals in white matter reflecting

neural coding and information processing (65) as well as

activation of white matter in direct response to perceptual

and motor tasks (66–68). This functional connectivity of white

matter is suggested to have a role in cognitive function (64).

A limitation of our study is the small sample size and male

only gender which raises the possibility of bias. However, taken

together with previous studies, it should be able to add to

existing knowledge of subacute non-severe TBI in a different

population. The limitation aspect of diffusion MRI should

be considered. A false-negative result may occur because of

crossing fibers or partial volume effect (69). We also used a

diffusion MRI sequence with 32 diffusion directions. While a

higher number of diffusion directions would be more sensitive

in detecting white matter changes, the length of time it takes

to scan in the patient group makes it less practical. In terms

of management of TBI patients, although a group analysis

approach may seem of little value in view of variabilities

in anatomy, vulnerability to injury and injury mechanisms,

standardization of acquisition and processing of MRI, as well

as behavioral and cognitive assessments as biomarkers should

be able to provide a clearer picture of TBI and its cognitive

sequelae (70).

Conclusion

In conclusion, the present study shows that patients

with non-severe TBI have abnormally reduced FA values in

multiple regions suggesting disruption of white matter tracts.

The neuropsychological scores in these patients significantly

correlated with the clusters of reduced FA values in specific areas.
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