
That mathematical modelling has an integral 
role in the resolution of engineering and 
physics problems that impinge on our daily 
life is undisputed. By contrast, the role of 
mathematics in generating mechanistic 
insight into biological problems, includ-
ing the development and growth of solid 
tumours, is less well known. This probably 
reflects either a lack of collaboration with 
experimentalists, or perhaps that the math-
ematical models have been unintelligible 
to most biomedical researchers! The main 
aim of this Timeline article is to redress 
this imbalance by celebrating the major 
achievements that have been made through 
combining mathematical models with bio-
logical models of cancer and to show how 
cross-disciplinary collaboration can acceler-
ate progress in understanding and treating 
this disease (Timeline). With limited space 
we must be selective, therefore, this article 
focuses on mathematical models of car-
cinogenesis, avascular and vascular tumour 
growth and angiogenesis to best illustrate 
this process.

Application of mathematical models
When applied to experimental data, statistical 
techniques can reveal whether a particular 
intervention produces a significant response 
or whether a correlation exists between 
observable phenomena. Establishing why 
such correlations arise requires the statement 
of hypotheses postulating which physical 
processes are involved and how they interact. 
The biological experiments needed to test 
such hypotheses can be time-consuming, 
expensive and/or impossible with existing 
technology. In such cases, mathematical 

modelling can have an intermediate role, 
by providing an independent check of the 
consistency of the hypotheses: if a model is 
unable to reproduce the observed phenom-
ena, then the original hypotheses should be 
revised before continuing. Mathematical 
models can also improve experimental 
design by highlighting which measure-
ments are needed to test a particular theory 
and whether additional information can be 
gained by collecting supplementary data.

These ideas are summarized in FiG. 1, 
which also provides a guide to the stages 
involved in model building. Mathematical 
modelling is an iterative process that should 
not end with the first set of predictions and 
its success relies on continued collaboration 
between experimentalists and theoreticians. 
An excellent illustration of the benefits of 
such interactions is provided by a math-
ematical model developed by Gatenby and 
Gawlinski1 to test the acid-mediated invasion 
hypothesis for tumour spread. The model 
predicted that under certain circumstances 
a gap would arise between the advancing 
tumour front and the regressing normal  
tissue, a prediction that was subsequently 
verified experimentally.

When challenged by sceptics who ques-
tion whether mathematical models of cancer 
will ever be used as predictive tools, we 
should take heart from the cardiac models 
developed by Noble, Hunter and colleagues2 
that have secured approval from the US Food 
and Drug Administration for drug testing. 
With such models for inspiration, the con-
struction of similar ones for cancer becomes 
a more attainable, albeit challenging, vision 
for the future.
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Carcinogenesis and cancer incidence
Armitage and Doll’s multistage theory3 is 
one of the earliest models of cancer initiation 
and was motivated by the analysis of cancer 
mortality statistics4. The theory states that 
the age distribution of a cancer will increase 
with a power of age that is one less than the 
number of changes (not necessarily muta-
tions) needed for its progression3. Therefore, 
the incidence rate I(t) of cancer at age t is 
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I(t) = ktn  
(1)

where n is the number of stages through 
which a cell must pass before becoming 
malignant and k is a constant of propor-
tionality. Therefore, seven cellular changes 
are necessary for cancers with incidence 
rates that increase with the sixth power of 
age. Although Armitage and Doll’s theory 
provides an excellent description of cancers 
of the colon, stomach and pancreas, it fails 
to describe the incidence of others, includ-
ing breast and prostate cancer. Additionally, 
it provides no mechanistic insight into the 
functional changes responsible for disease 
progression.

By analysing similar incidence data for 
retinoblastoma, Knudson5 proposed that 
only two ‘hits’ or changes are needed to 
cause the disease: children with familial 
retinoblastoma are born with the first hit, 
increasing their chances of acquiring the 
second hit and explaining why they present 
with retinoblastoma earlier than those with 
sporadic disease. The identification of 
the RB1 tumour suppressor gene in 1987 
confirmed Knudson’s two-hit hypothesis. 
This theory of loss of tumour suppression 
has helped to characterize the inactivation 
of other tumour suppressor genes such as 
adenomatous polyposis coli (APC) in colon 

cancer and TP53, which is mutated in more 
than 50% of human tumours.

Although providing excellent descriptions 
of cancer incidence data, these models and 
their extensions are unable to link the data 
with the functional changes associated with 
tumour progression. Newer models, based 
on Hanahan and Weinberg’s ‘Hallmarks 
of cancer’ (ReF. 6), are now being used to 
investigate how the sequence and timing of 
mutations and the environmental conditions 
influence tumour progression7–9. others10 are 
developing models of somatic evolution or 
studying the effect of chromosomal instability 
and microsatellite instability on tumour initi-
ation11,12. For example, Komarova et al.11 used 
optimal control theory to identify, from a set 
of physically realistic, time-varying mutation 
rates (or controls), the mutation rate that ena-
bles a population of cancer cells to most rap-
idly attain a given size. Their analysis showed 
that, for most choices of parameter values, 
the optimal strategy for the tumour could be 
characterized by a mutation rate that is ini-
tially high and reduces over time. This predic-
tion is consistent with the behaviour of many 
cancers that show a high degree of genetic 
instability during early growth and stabilize as 
the disease progresses. By exploiting increases 
in computing power and the availability of 
large data sets, Siegmund et al.12 have recently 
applied statistical methods to DNA methy-
lation patterns to infer the genetic evolution 
of colorectal cancer cells at several sites in the 
tumour. As the ancestral trees from different 
sites revealed a common ancestor at the time 
of transformation, they went on to conclude 
that the cancers were probably initiated by 
a period of rapid clonal expansion, rather 
than being established at different times by 
different cells.

Avascular tumour growth
The earliest spatio-temporal models of 
avascular tumour growth13,14 describe how 
the size and structure of three-dimensional 
multicellular spheroids (McS) change when 
culture conditions are manipulated15. The 
simplicity and reproducibility of the experi-
mental assays for McS, the availability of 
reliable data on the size and composition 
of the spheroids and information about the 
spatial distributions of key metabolites (such 
as oxygen and glucose) and chemothera-
peutic drugs, made McS attractive subjects 
for mathematical modelling. It is also likely 
that, during their discussions with biologists, 
these pioneering mathematicians were fur-
ther motivated when they realized that anal-
ogous models had already been developed to 
describe a range of physical systems, includ-
ing the expansion of metals in response to 
heat and the freezing of liquids. In each case 
the size of the material of interest (tumour, 
metal or solid) changes over time and its 
growth rate is regulated by the transport of a 
diffusible species (oxygen or glucose for the 
tumour, temperature change for the metal 
and liquid) through the material.

Today, these early models of McS can 
seem extremely simple, and perhaps even 
naive, particularly in comparison to the 
detailed computational models that are cur-
rently being developed to study solid tumour 
growth (discussed below). For example, the 
spheroids are assumed to be radially sym-
metric and their growth regulated by a sin-
gle, diffusible growth factor that is supplied 
externally (such as oxygen) or produced 
internally (such as tumour necrosis factor). 
The distribution of a growth factor in the 
spheroid regulates its local dynamics, with 
expansion when cell growth exceeds death 

Timeline | History of mathematical modelling of cancer

1954 1971 1972 1976 1977 1985 1988 1991 1996 1997 1998 2000 2002 2004

Knudson’s 
two-hit 
hypothesis of 
cancer initiation 
published5

Armitage and 
Doll propose 
multistage 
theory of cancer4

Diffusion-limited 
growth of tumour 
spheroids 
modelled by 
Greenspan14

Wheldon et al. use a 
linear-quadratic 
model to propose 
treatment protocols 
for radiotherapy66

Gatenby and 
Gawlinski propose 
reaction-diffusion 
model of tumour 
invasion1

Baxter and Jain develop a 
model to explain the 
therapeutic effect of 
increased interstitial 
pressure in solid tumours78

Anderson and 
Chaplain develop a 
discrete model of 
tumour angiogenesis43

Mathematical model of blood 
flow through vascularized 
tumour proposed by 
McDougall and co-workers44,45

Greenspan 
proposes first 
biomechanical 
model of avascular 
tumour growth23 

Stochastic model 
of angiogenesis 
developed by 
Stokes and 
Lauffenburger42

Spatial model of 
tumour 
angiogenesis 
proposed by Balding 
and McElwain36

Ward and King 
develop first 
mixture model of 
avascular tumour 
growth26

Prototype models 
for gliomas 
developed by 
Swanson and 
co-workers73,71

First multiscale 
models of vascular 
tumour growth 
presented by Alarcon 
and co-workers84,59,62

The differently coloured boxes denote models of the same type: red for models of carcinogenesis; dark blue for models of avascular tumour growth; light blue for models 
of angiogenesis.
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and regression otherwise. By integrating 
these contributions over the tumour volume 
we arrive at the following equation, which 
relates the time evolution of the tumour 
radius R(t) to c(r,t), the distribution of 
growth factor in the spheroid: 
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dR
dt

1
R2

R

F(c)r2dr
r = 0
∫=

 
(2)

In this equation, the function F(c) models 
the influence of the growth factor c on the 
net cell growth rate at each point in the sphe-
roid. For example, if c represents oxygen or 
glucose then we can assume that F increases 
as c increases, and that it approaches a maxi-
mum value for large values of c. The spatial 
distribution of c is determined by solving a 
diffusion equation in the form: 
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∂c
∂t

D
r2 r2 – g(c,R)= ∂c

∂r
∂
∂r

 
(3)

where D represents the diffusion coefficient 
of c, and g(c,R) describes its local rate of con-
sumption. As for F(c), this function is growth 
factor-specific and might depend on whether 
the cells are proliferating, quiescent or dying. 
The distribution of the growth factor can 
also be used to predict spheroid structure. 
For example, threshold values of oxygen can 
delineate regions of cell proliferation (high 
oxygen), quiescence (intermediate oxygen) 
and necrosis (low oxygen) (FiG. 2). Models 
of the above form show excellent qualitative 
and quantitative agreement with experimen-
tal data on McS (FiG. 2). Typically, an initial 
exponential growth phase is superseded by 
a transient, linear phase during which the 
width of the outer proliferating rim remains 
constant, until eventually the tumour reaches 
an equilibrium size at which the net rates 
of cell growth and death balance. Analytic 
expressions for the size of the spheroid at the 
onset of quiescence and the width of its outer, 
proliferating rim during the linear growth 
phase can be used to estimate model param-
eters and predict the effect of changing the 
concentration of the key growth factor being 
supplied to the spheroid16. The agreement 
between the experimental data on McS and 
the dynamics of the mathematical models 
indicates that the models provide a realistic 
description of the biological processes that 
regulate the growth of McS. Such agree-
ment does not constitute a ‘proof ’ that these 
mechanisms alone regulate the McS. other 
models, based on different assumptions, may 
show equally good agreement with these 
data. We illustrate this point in FiG. 2, where 
we present results obtained from using a 
continuum model developed by owen and 
co-workers17 and results from an alternative, 

discrete, cell-based model from Jiang and 
co-workers18.

In such situations, in which different 
theoretical approaches seem to be equally 
compatible with the experimental data, it  
can be difficult to decide which approach  
is the better one. In practice, this depends on 
the questions that the model is being used 
to address and the type of data available. In 
general, cell-based models can be more easily 
extended to account for additional data on 
subcellular signalling pathways and/or the 
cell cycle, whereas continuum models con-
tain fewer parameters and, as a result, should 
give better fits to the data. Additionally, if 
simulations from the different approaches 
yield qualitatively different behaviour (such 
as their predicted response of an McS to 
exposure to a particular drug), then these can 
be used to design experiments that will dis-
criminate between the two types of models.

owing to their simplicity, the early 
models of McS have limited applicability. 
For example, the spheroids are assumed to 
comprise a single population of cells, and sto-
chastic effects are ignored, so that the emer-
gence of different clonal subpopulations can 
not be investigated. Equally, cell metabolism 
is assumed to be controlled by a single dif-
fusible species, whereas in practice multiple 
metabolites are involved. In particular, as 
tumour cells become starved of oxygen they 
switch from aerobic to anaerobic respiration.

The extensions and modifications to 
Greenspan’s original model of McS are 
now so numerous that it is impossible to 
do justice to them here (for details see 
ReFS 19–22). Important developments 
include relaxing the assumption of radially 
symmetric growth23–25 and distinguishing 
different cell populations within the sphe-
roid26. For example, whereas Greenspan23 
used analytical techniques to predict how 
the invasive boundary of a tumour initially 
develops, cristini and colleagues25 used 
sophisticated numerical methods to solve  
the system of nonlinear equations and relate 
the irregular shapes adopted by the tumour 
to the values of key model parameters. They 
predicted that highly vascularized tumours 
would remain compact in shape while they 
grew, whereas those with limited nutrient 
availability would develop invasive fingers, 
leading to tumour fragmentation. 

Although the initial focus of McS mod-
els was on diffusible growth factors, the 
introduction of cell movement and pressure 
marked a conceptual change to accom-
modate mechanical effects. For example, 
in the model presented by Greenspan in 
1976 (ReF. 23) pressure gradients, gener-
ated by differences in cell proliferation and 
death, cause cells to move from regions of 
high cell proliferation and pressure (near 
the tumour periphery) to regions of net cell 
death and lower pressure (at the tumour 

Figure 1 | from biological hypothesis to test-
able prediction by mathematical modelling. 
a | The modelling cycle, highlighting its iterative 
and multidisciplinary nature. Analysis of experi-
mental data is used to generate biological 
hypotheses that are then formulated as a math-
ematical model. Preliminary model validation 
involves establishing consistency between 
model solutions and the experimental data. If 
this is not obtained, then the original hypotheses 
and mathematical model must be revised until 
there is qualitative agreement. Parameter values 
can be estimated by fitting the model to the data 
and the model used to generate new, experi-
mentally testable predictions. b | The stages 
involved in the development and validation of a 
mathematical model.
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centre). Additionally, either surface tension 
or cell–cell adhesion is assumed to maintain 
the compact nature of the tumour mass 
and counter the expansive forces that are 
associated with tumour growth. routine 
model analysis reveals that the strength of 
cell–cell adhesion — the affinity of the cells 
to remain as a coherent mass — strongly 
influences spheroid morphology: strong 
cell–cell adhesion yields radially symmet-
ric spheroids, and weak adhesion yields 
irregular, fractal-like spheroid boundaries. 
This suggests that mutations that weaken 
cell–cell adhesion might be a characteristic 
feature of highly invasive tumours.

other authors have developed biome-
chanical models in which the tumour is 
seen as a mixture of interacting phases, for 
example cells and extacellular fluid cultured 
in suspension26,27 or embedded in a tissue 
matrix. Several independent models28–30 have 
shown that the growth-induced compres-
sion of a compliant tissue matrix (or gel) that 
surrounds a tumour spheroid can generate 
restraining forces that arrest the growth of 
the spheroid, even when nutrients are freely 
available. Further, stiffer tissues give rise to 
smaller spheroids. These results suggest that 
knowledge of the mechanical properties of 
a tumour and its surrounding tissue might 
be important for characterizing invasive 
potential. They also explain how therapies 
designed to alter the mechanical proper-
ties of the tissue stroma by, for example, 
neutralizing the action of matrix-degrading 
proteases, might retard invasion. In practice, 
the tissue stroma surrounding a tumour is 
heterogeneous and subject to continuous 
remodelling31,32. New mathematical models 
that link stromal remodelling and tumour 
growth are needed to explain how processes 
such as collagen deposition, cross-linking 
and degradation by stromal fibroblasts con-
tribute to tumour growth and how they could 
be manipulated for therapeutic advantage.

Models such as those presented above are 
continuum models because they describe 
how cell populations and concentrations 
change and, in contrast to discrete cell-based 
models, they do not distinguish between 
individual cells. Therefore, continuum 
models share several common features: the 
tumours are seen as continuous masses that 
contain a small number of distinct popula-
tions, stochastic effects are usually neglected 
and subcellular phenomena are ignored. As 
such, they are well suited to studying the 
growth kinetics of tumour spheroids that 
contain a large number of cells but less well 
suited to small clusters of tumour cells, such 
as metastases. For studying small spheroids, 

Figure 2 | Alternative approaches for modelling the growth of multicellular spheroids (Mcs). 
a | A cross-section through a mature human breast cancer spheroid (diameter 800 μm). The nuclei of 
proliferating cells are stained brown (bromodeoxyuridine labelling) and the hypoxic cells are stained 
red (pimonidazole staining). The hypoxic cells surround a central necrotic core, and the proliferating 
cells are concentrated in the outer, well-oxygenated areas of the spheroid. Photograph courtesy of 
C. E. Lewis, University of Sheffield, UK. b | The continuum model provides a good fit to experimental 
data for the growth of HEPA-1 spheroids18. The solid line represents the position of the outer tumour 
boundary and the dashed line the position of the necrotic boundary. Reproduced, with permission, 
from ReF. 17© (2004) Elsevier.  c | These graphs were generated from a continuum model of MCS 
growth18. They show how the distribution of tumour cells and a nutrient (oxygen in this example) in an 
MCS change over time as the MCS grows to equilibrium. At equilibrium, the rate at which nutrient-rich 
cells near the boundary proliferate balances the rate at which nutrient-starved cells near the centre 
die. The solid white lines are contours of the nutrient concentration that mark the transitions from cell 
proliferation to hypoxia (outer curve) and from hypoxia and necrosis (left-most curve). Reproduced, 
with permission, from ReF. 17© (2004) Elsevier. d | These graphs illustrate how similar results can be 
obtained by fitting a multiscale model of MCS growth to data from EMT6/Ro spheroids grown in cul-
ture medium containing 0.08 mM oxygen and 5.5 mM glucose18. They show how the number of cells 
and the spheroid volume change over time. The squares represent experimental data, the circles rep-
resent simulation results and the solid lines are the best fit assuming Gompertzian growth. Reproduced, 
with permission, from ReF 18 © (2005) Elsevier.
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discrete models (such as cellular automata) 
that view the tumour as a collection of inter-
acting cells, each assigned their own set of 
parameter values and behavioural rules, are 
gaining in popularity and have been used to 
study tumour invasion33 and the emergence 
and fixation of clonal subpopulations7,8. For 
example, in a series of papers, Anderson and 
co-workers8,33 have used cellular automata to 
investigate how the microenvironment (spe-
cifically, the local oxygen concentration and 
extracellular matrix density) influences  
(and is influenced by) the growth dynam-
ics and phenotypic diversity of a tumour8,33. 
Their simulations predicted that when oxygen 
levels are low the tumour will rapidly diverge 
from its initial phenotype and exhibit high 
levels of population diversity, with aggressive 
phenotypes quickly becoming dominant.

When comparing cell-based and con-
tinuum models of tumour growth, an 
obvious advantage of cell-based models 
is the relative ease with which parameters 
to model their behaviour can be chosen 
using measurable biological and biophysical 
quantities, such as cell growth rates during 
the cell cycle and cell membrane deforma-
tion in response to mechanical loading. 
Given that tumours growing in vitro and 
in vivo typically contain between 106 and 
1011 cells, it might be more practical to use 
a continuum rather than a cell-based model 
to simulate their development. In recent 
work, Byrne and Drasdo34 have developed 
complementary cell-based and continuum 
models of McS growth that exhibited simi-
lar growth kinetics. By fitting the profiles for 
the tumour radius and pressure distribution 
generated by each model they estimated 
parameters for the continuum model from 
parameters in the cell-based model. In 
this way, they have shown how cell-based 
models can be used as an intermediate step 
to relate measurable biophysical proper-
ties of individual cells to parameters that 
appear in continuum models of McS. More 
recently, Kim and co-workers35 have devel-
oped a new type of hybrid model in which 
a continuum model is used in regions with 
a high tumour cell density and a discrete 
model is used in regions with a tumour cell 
density that it is too low to justify the use of a 
continuum model.

tumour angiogenesis
In 1985, Balding and McElwain36 proposed 
a simple model of tumour angiogenesis to 
describe experiments in which tumour cells 
implanted in the rabbit cornea stimulated 
the formation, growth and migration  
of new blood vessels from the limbus to  

the tumour37. The model focuses on a 
generic, tumour-derived chemical, termed a 
tumour angiogenesis factor (TAF), as well as 
capillary tips and vessels that we denote by 
a, n and b, respectively. The model is set up 
so that TAF that is produced by the tumour 
cells diffuses towards neighbouring vessels 
and also undergoes natural decay. For a one-
dimensional model, with x representing the 
distance from the vasculature to the tumour 
centre, these assumptions supply the follow-
ing equation for a(x,t): 
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∂a
∂t Da – µaa= ∂2a

∂x2

 
(4)

where Da denotes the assumed constant 
diffusion coefficient of the TAF and μa its 
natural decay rate. In addition, the tumour is 
assumed to produce TAF at a constant rate so 
that the concentration of TAF at the tumour 
boundary (for example, x = L) is maintained 
at a constant value, aL. The capillary tips are 
assumed to emanate from existing vessels 
and tips at rates that increase with increasing 
TAF levels, to move by chemotaxis up spatial 
gradients of TAF and to form tip-to-tip anas-
tomosis. combining these effects we obtain 
the following equations for n(x,t): 
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∂n
∂t = –χ +∂

∂x
∂a
∂x

– µnn – υnn2(λnbb + λnnn) a
κ∂ + a

n
 
(5)

In this equation, χ is the chemotaxis 
coefficient, λnb and λnn are the rates at which 
tips emerge from existing vessels and tips, 
μn is the net rate at which capillary tips die 
and νn is the rate at which they form tip-to-
tip anastomoses. As they migrate towards 
the tumour, the capillary tips extend behind 
them a ‘snail trail’ of new vessels. Under 
these assumptions the equation for the  
vessels b(x,t) reads:
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∂b
∂t

– µbb= χn ∂a
∂x

 
(6)

where μb represents the rate at which vessels 
regress or die.

Numerical simulations of Balding and 
McElwain’s model and its subsequent exten-
sions38 reproduce many characteristic fea-
tures of angiogenesis, including acceleration 
of the developing vasculature towards the 
tumour implant and a peak in the density 
of capillary tips preceding a peak in the 
density of blood vessels39. The models have 
also been used to compare anti-angiogenic 
therapies that neutralize TAF with others that 
block endothelial cell chemotaxis or inhibit 
endothelial cell proliferation38. These effects 

can be investigated by altering the relevant 
model parameter. For example, a reduction 
in the chemotaxis coefficient χ would mimic 
the effect of a therapy that blocks endothelial 
cell chemotaxis. Alternatively (and more 
realistically), an additional reaction diffusion 
equation, similar to that for the TAF a(x,t), 
can be introduced to describe the drug of 
interest and the relevant model parameters 
modified to account for its mode of action. 
The basic models have also been extended to 
account for tumour growth during angiogen-
esis and the increase in nutrient availability 
associated with the expanding vasculature40.

Extensions of the early models of tumour 
angiogenesis to two and three spatial dimen-
sions highlight their main weaknesses41. 
For example, as the vessels are treated as 
a single model variable, only variations 
in their concentration are considered and 
details of the morphology of the vascular 
network are ignored. consequently, such 
models are unable to distinguish between 
a tissue perfused by one large vessel and 
another perfused by a large number of small 
vessels, even though the amount of oxygen 
being delivered to the two tissues might vary 
markedly. vascular remodelling and the 
effect of blood flow on the evolving vascu-
lature are also neglected. These deficiencies 
have stimulated the development of a new 
class of hybrid models that account for the 
detailed morphology of the angiogenic net-
work. Hybrid models combine two or more 
different modelling approaches. For exam-
ple, reaction-diffusion equations for nutrient 
transport and consumption can be coupled 
to a cellular automaton that describes how 
normal and tumour cells interact. Stokes 
and lauffenburger42 coupled a probabilistic 
equation for the movement of individual 
endothelial cells to a diffusion equation 
for TAF. Their simulations revealed that a 
chemotactic response to a TAF is necessary 
for stimulating directed vascular network 
growth and that a substantial level of ran-
dom motion is required for vessel anastomo-
sis and capillary loop formation — an overly 
strong chemotactic response produced 
networks largely devoid of these features. 
By obtaining independent qualitative and 
quantitative agreement of their model with 
in vitro and in vivo experiments, they not 
only demonstrated that in vitro migration 
assays can be used to test putative inhibitors 
and activators of angiogenesis but also high-
lighted an important role of mathematical 
modelling as a bridge between in vitro and 
in vivo experiments.

More recently, chaplain and co-workers43 
have developed a hybrid model in which 
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capillary tip movement is treated as a ran-
dom walk, which is biased towards higher 
levels of TAF and blood flow is included44. 
In addition to simulating angiogenic net-
works that resemble those seen in vivo, 
these models can also be used to predict the 
distribution of blood-borne chemothera-
peutic agents45.

As more information about the underly-
ing biochemistry has become available, more 
detailed mathematical models have been 
developed. For example, levine et al.46,47 

proposed a model to account for specific 
pro-angiogenic and anti-angiogenic factors 
(such as vascular endothelial growth fac-
tor A (vEGFA)), angiopoietin 1 (ANGPT1), 
ANGPT2, anti-angiogenic compounds 
(such as endostatin and angiostatin) 
and protease inhibitors, and interactions 
between the endothelial cells that line the 
blood vessels and other cell types (such as 
between pericytes and macrophages). More 
recently, Bentley et al.48 have developed 
an agent-based model to investigate how 
crosstalk between neighbouring endothelial 
cells might regulate angiogenic sprouting: 
a feedback loop is assumed to link delta-
like 4–Notch-mediated lateral inhibition to 
changes in the number of vEGF receptors 
expressed by a particular cell48. Model simu-
lations have generated several predictions 
— for example, a spatial gradient in vEGF 
is postulated to increase the rate of tip selec-
tion — and these are now being tested in the 
laboratory.

Additionally, large and complex math-
ematical models of key signalling pathways 
and regulatory networks are increasingly 
being used to study angiogenesis49,50. Wu 
et al.51 used a compartmental model to show 
that a naturally occurring and soluble form 
of vEGF receptor 1 (vEGFr1) does not 
significantly inhibit vEGF signalling and 
concluded that any observed inhibitory 
effects might be due to heterogeneity in blood 
flow. Although such models provide valuable, 
state-of-the-art descriptions of biological 
knowledge, it might be difficult to obtain 
reliable estimates of every parameter and to 
disentangle which processes are responsible 
for observed behaviours. In such situations, 
a series of increasingly detailed models of the 
same pathway might be needed and decisions 
made about which model to use based on 
the question of interest, the type of data that 
can be collected and, therefore, the number 
of system parameters that can be reliably 
estimated. Important challenges associated 
with this approach include establishing how 
different models of the same pathway are 
related, whether parameters in one model can 
be estimated from measurements of param-
eters in another and predicting how different 
pathways interact. These challenges arise 
because the alternative models are based on 
different physical assumptions: a process that 
is neglected in one model might be retained 
in another. Equally, different functions, with 
different numbers of parameters, can be used 
to describe the same biological process.

Vascular tumour growth
In contrast to avascular tumours, which 
can be easily studied in the laboratory and 
have highly reproducible growth patterns, 
vascular tumours must be grown in vivo and 
their growth dynamics are extremely diverse. 
Indeed, owing to the interplay between the 
rapidly proliferating tumour cells and the 
evolving vasculature, the composition of a 
single tumour can be highly heterogeneous 
in both space and time. For example, a func-
tioning blood vessel can, over time, become 
occluded or collapse owing to the pressure 
exerted on it by the increasing number of 
tumour cells that it supports. The associated 
reduction in nutrient supply could stimu-
late the tumour cells to produce angiogenic 
factors that will regulate the growth of new 
blood vessels into the region37,52,53. These 
factors, combined with the technical chal-
lenge of collecting information about how 
the spatial composition of a vascular tumour 
changes over time, have frustrated mathema-
ticians attempting to model vascular tumour 
growth. As a result, until recently, only a 
small number of mathematical models of 
vascular tumour growth had been proposed.

In 1999, Hahnfeldt et al.54 proposed a 
simple model, formulated as a system of 
differential equations, coupling the growth 
of the tumour mass and its vasculature: the 
maximum tumour burden was assumed to 
be proportional to the vascular volume and 
the tumour cells could stimulate the forma-
tion of new vessels through angiogenesis. 

Figure 3 | Multi-scale modelling of vascular tumour growth. a | An 
intravital microscopy image of a human colorectal carcinoma (HT29) that 
has been growing for 7 days in a dorsal skin fold window chamber in an 
immunocompromized male mouse. Vascularization of the tumour is 
shown (mean diameter 1.7 mm). Photograph courtesy of G. M. Tozer, 
University of Sheffield, UK. b | Representation of a multi-scale model that 
integrates processes acting on different time and size scales62. 
Phenomena at the tissue scale include blood flow, structural adaptation 

of the vascular network and transport of diffusible species such as oxygen 
and vascular endothelial growth factor (VEGF); at the cellular level, com-
petition between cancer and normal cells and the release of growth fac-
tors such as VEGF are implemented in simple rules for a cellular 
automaton. At the subcellular level ordinary differential equations model 
progress through the cell cycle, apoptosis and the production of key pro-
teins, such as VEGF and p53. Reproduced, with permission, from ReF. 62 
© (2009) Springer.
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After fitting their model to experimental 
data in which anti-angiogenic agents were 
administered to mice with lewis lung 
tumours they used it to predict that treat-
ment with a combination of specific doses 
of angiostatin and endostatin would yield a 
linear, additive response — a prediction that 
was verified in further in vivo experiments. 
Similar models, involving systems of dif-
ferential equations, have been developed to 
investigate the contributions of angiogenesis 
and vasculogenesis to the growth and treat-
ment of vascular tumours55,56. More detailed 
models that also account for the influence 
of vEGF and the angiopoietins on vessel 
maturation have been used to show how the 
strength of the angiogenic response affects the 
growth rate of a tumour57. In particular, low 
vessel maturation rates in tumours with  
low background vessel densities will give rise 
to slowly growing tumours that possess large 
proportions of immature vessels and might 
exhibit oscillatory growth dynamics57.

Following the model published by 
McDougall et al.44, similar hybrid models of 
vascular tumour growth have been developed 
to investigate interactions between a tumour 
and its vasculature. For example, by coupling 
a cellular automaton model with a system of 
reaction-diffusion equations for key metabo-
lites, Patel and co-workers58 studied the effect 
of vascular density and tumour metabolism 
on the invasive potential of tumour cells that 
could survive at lower pH levels than normal 
cells. The vasculature was assumed to be non-
adaptive and modelled as a series of localized 
sources (sinks) of glucose (H+ ions, which are 
representative of pH levels). Numerical simu-
lations revealed a range of vascular densities 
for which tumour growth and invasion were 
optimal: at lower densities, excessively low pH 
levels cause both normal and tumour cells to 
die and at higher densities the vessel network 
rapidly eliminates any acid that is produced, 
so it is maintained at low levels and the 
tumour cells lose their competitive advantage 
over normal cells.

In practice, the tumour vasculature is 
a highly dynamic network, with new ves-
sels being produced to meet the metabolic 
demands of under-perfused, hypoxic 
tumour regions while redundant vessels, 
with low flow, are pruned at other sites. 
various multi-scale models are now being 
developed to account for these and other 
features44,59–63. For example, Macklin and 
colleagues63 have shown that the inclusion of 
extracellular matrix degradation by tumour 
cells can hinder newly formed blood ves-
sels from penetrating the tumour mass. 
This results in the generation of vascular 

networks that encapsulate the tumour mass 
and are inefficient at delivering nutrients to 
the tumour. Alarcón and co-workers59 have 
developed a computational framework that 
couples processes that function at the sub-
cellular, cellular and tissue scales62 (FiGS 3–5). 
Although these models are complex, they 
can be used to investigate the importance of 
feedback between processes that operate at 
different spatial scales. For example, if blood 
flow is assumed to be uniform in the vascu-
lature then the tumour grows as a compact 
mass, whereas if it is heterogeneous, with the 
flow in each vessel varying as the network 

evolves, then the pattern of tumour growth is 
highly irregular59. The models also support 
the emerging concept that treatment with 
anti-angiogenic compounds can transiently 
normalize the structure and function of the 
tumour vasculature and therefore reduce  
the degree of tumour hypoxia and enhance 
the response to chemotherapy64.

mathematical models in the clinic
In addition to being a powerful tool for dis-
secting out the mechanisms that regulate 
solid tumour growth, mathematical model-
ling can contribute to the rational design 

Figure 4 | A mathematical model of vascularized tumour growth. These images show the results 
from a typical multi-scale simulation of the growth of a tumour seeded in a vascularized tissue (FiG. 3). 
Initially, the tumour expands preferentially in the direction of the blood vessels, where oxygen levels 
are high. Excessive proliferation leads to the appearance of transient regions of hypoxia, which are 
sources of vascular endothelial growth factor (VEGF) and stimulate the in-growth of new blood vessels. 
Movies of these simulations are found in Supplementary information S1–4 (movies).
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of optimal treatment protocols involving 
combinations of surgery, chemotherapy and 
radiotherapy and the development of new 
therapies65. For example, the linear-quadratic 
law, an empirical formula relating the pro-
portion of cells that survive exposure to a 
dose of ionizing radiation, forms the basis 
of many radiotherapy protocols. By extend-
ing the linear-quadratic model to account 
for exponential regrowth of the tumour 
between treatments and using elementary 
calculus, Wheldon and co-workers66 derived 
expressions for the number of rounds of 
therapy, the interval between treatments and 
the radiation dose that should be applied 
to maximize tumour cell kill while ensur-
ing that the damage to healthy tissue does 
not exceed a threshold value. other groups 
have extended the linear-quadratic model 
to account for the effects of hypoxia67, 
more complex growth laws68 and cellular 
hetero geneity69. A common weakness of 
these models is that the tumour is treated 
as a spatially uniform mass. Accordingly, 
Swanson and co-workers have recently 
incorporated the linear-quadratic model 
into a spatio-temporal, reaction-diffusion 
model of glioma growth and invasion to 
compare the efficacy of different schedules 
and radiation dose distributions70. In earlier 
work, Swanson and co-workers71 applied 
their reaction-diffusion model to magnetic 
resonance imaging (MrI) data from patients 
with glioma to simulate glioma regrowth 
following surgery. They used this model to 
predict the time to relapse and to determine 
whether chemotherapy can significantly 
extend time to replase71.

A related area in which mathematical 
modelling could have an important future 
role is the integration of images acquired 
using different modalities. For example, 
Swanson and colleagues72 reported a strong 
correlation between the invasiveness and 
degree of hypoxia of gliomas, their estimates 
of invasiveness being obtained from MrI 
data73 and their estimates of hypoxia from 
18 F-fluoromisonidazole-positron emission 
tomography (PET) images. New mathemati-
cal models that link hypoxia and invasion 
could be used, in conjunction with PET and 
MrI data, to establish a mechanistic basis for 
the observed correlation and, in the longer 
term, to guide treatment concepts.

The co-registration of images collected 
for diagnosis and/or under different condi-
tions is a related area in which mathemat-
ics could have a valuable role. consider, 
for example, X-ray images and MrI taken 
before surgery for breast cancer. During 
X-ray mammography the patient stands 

and the breast is compressed between plates 
by up to 60%; during MrI mammography 
the patient is prone and the breast hangs 
freely. Nonlinear elasticity combined with 
knowledge of the mechanical properties 
of normal and diseased breast tissue can 
be used to estimate, from the X-ray image, 
the shape the breast will take when the 
patient is prone74 so that more accurate co-
registration of the X-ray and MrI data can 
be achieved. Such information might, in the 
longer term, be used to predict the shape of 
the breast when the patient is undergoing 
surgery thereby providing precise guid-
ance on the location and size of tissue to 
be excised.

As discussed above, mathematical 
models can also be used to determine the 
mode of action of new compounds75–77 
(FiG. 5) and to identify new targets for drug 
design49,51. For example, Wu et al.51 have 
developed a multi-scale, compartmental 
model of the body that models the trans-
port of two isoforms of vEGFA (vEGF121 
and vEGF165) and their interaction with 
vEGFr1, vEGFr2 and the non-signalling 
co-receptor neuropilin 1, as well as how 

these interactions are altered by the pres-
ence of soluble vEGFr1 (svEGFr1), 
which can function as a ligand trap but has 
also been shown to interact with vEGF 
receptors. Model simulations designed to 
determine what processes are responsible 
for the observed anti-angiogenic activ-
ity of svEGFr1 have revealed that vEGF 
sequestration by svEGFr1 can not produce 
a significant anti-angiogenic effect in isola-
tion. The authors conclude that the interac-
tion of svEGFr1 with vEGFr1 in addition 
to sequestration of the ligand is probably 
needed to affect vEGFA levels.

Using a simpler, stochastic model of 
vEGFA signalling in endothelial cells, 
Alarcón and Page49 showed that tumour-
mediated overexpression of vEGFrs in 
endothelial cells of tumour vessels increases 
their sensitivity to low levels of vEGF and 
thereby endows the tumour with increased 
resistance to anti-angiogenic treatments. 
These results also suggest that compounds 
that target the processes responsible for 
vEGFr overexpression on endothelial cells 
might prevent tumours becoming resistant 
to anti-angiogenic agents.

Figure 5 | changes in tumour cell growth after drug exposure. The graphs show how tumour cell 
number and proportion of the tumour that is hypoxic change on exposure to conventional chemo-
therapy or a specific immunotherapy. The immunotherapy used in this experiment involves genetically 
engineered macrophages that, when localized in hypoxic tumour regions, release an enzyme that 
activates a pro-drug. If present at sufficiently high levels, the activated drug kills tumour cells when 
they divide.  For each treatment strategy, numerical results were obtained by introducing chemo-
therapy and immunotherapy into a multi-scale model of vascular tumour growth (FiGS 3,4) and spa-
tially averaging the data from ten simulations. The numerical results indicate that chemotherapy used 
in isolation (green line) effects a greater reduction in tumour burden than the immunotherapy (blue 
line), although the proportion of quiescent cells is higher. Combined treatment (black line) gives the 
greatest reduction in tumour size. The red line represents the growth of the untreated tumour cells. 
Movies of these simulations are found in Supplementary information S1–4 (movies).
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In earlier work, Jain and co-workers78 
developed continuum models to identify 
likely causes for poor drug delivery to vas-
cular tumours. Their models revealed that 
although irregular blood flow and perfusion 
hinder drug delivery to vascular tumours, 
increased interstitial fluid pressure has a 
more substantial role, by driving fluid radi-
ally outwards from the tumour and opposing 
the extravasation of the drugs. These predic-
tions have been confirmed by experiments 
and are stimulating the development of new 
treatments that can overcome these barriers 
to drug delivery17.

Conclusions
confronted with the vast array of math-
ematical approaches being used to study 
tumour growth19–22,79,80, it can be difficult to 
decide what type of model is best suited to a 
particular problem and what level of detail 
to include. The situation can be further 
exacerbated when we realize that different 
mathematical approaches can reproduce 
the same experimental results (FiG. 2)! In 
such cases, it may be appropriate to appeal 
to occam’s razor to develop a model that 
includes sufficient detail to address the 
question of interest but not so much that 
it becomes obscured in detail. In practice, 
close collaboration between theoreticians 
and biomedical researchers is crucial to get-
ting this balance right, because the models 
are only ever as good as the assumptions 
used to construct them and the data with 
which they are validated. Indeed, in many 
respects the form of the initial model is 
less important than starting the dialogue 
between experimentalists and modellers 
because the model is almost certain to be 
wrong. In the same way that a new experi-
mental protocol requires testing and optimi-
zation before data collection can begin, the 
mathematical model will require refinement 
before it can be applied to a real problem. To 
date, most of the mathematical modelling 
that has been carried out has been retro-
spective, being developed in response to a 
set of experimental data or to test a biologi-
cal hypothesis. If theoreticians play a more 
pro-active part in the design of experimen-
tal programmes then the models that they 
develop should complement the experimen-
tal data, and vice versa. Additionally, the 
quality and practical use of the mathemati-
cal models should also increase and con-
tribute to improved treatment and a better 
prognosis for cancer patients worldwide.

looking to the future, as technological 
advances enable more accurate and high-
throughput measurement of physical 

quantities, our reliance on mathematics is 
likely to further increase, not least because 
mathematical models, particularly multi-
scale ones, are natural frameworks for com-
bining the different types of data that will be 
collected. For example, multi-scale models 
have the potential to establish how changes 
in protein and gene expression at the sub-
cellular level influence (and are influenced 
by) processes, such as invasion and vascular 
adaptation, which occur at the tissue scale.

In conclusion, mathematical models rep-
resent a natural framework for not only test-
ing biological hypotheses and generating new 
ones but also optimizing experimental proto-
cols. As we survey the large body of research 
devoted to modelling tumour growth, it is 
clear that considerable progress has been 
made (Timeline), although its full effect has 
yet to be realized. Therefore, many of the 
tools (or models) have been developed: what 
is now needed are people who can trans-
late these prototypes into validated models 
that are specialized for particular tumours 
and drugs, with the power to generate both 
qualitative and quantitative predictions. 
The increasing number of modelling papers 
appearing in the literature81–83 indicates that 
this transition is starting to happen.
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