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Cellidentity is governed by the complex regulation of gene expression, represented
as gene-regulatory networks'. Here we use gene-regulatory networks inferred from
single-cell multi-omics data to performinsilico transcription factor perturbations,
simulating the consequent changes in cell identity using only unperturbed wild-type

data. We apply this machine-learning-based approach, CellOracle, to well-established
paradigms—mouse and human haematopoiesis, and zebrafish embryogenesis—

and we correctly model reported changes in phenotype that occur as aresult of
transcription factor perturbation. Through systematic insilico transcription factor
perturbation in the developing zebrafish, we simulate and experimentally validate a
previously unreported phenotype that results from the loss of noto, an established
notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a.
Together, these results show that CellOracle can be used to analyse the regulation of
cellidentity by transcription factors, and can provide mechanistic insights into
development and differentiation.

The expansion of single-cell technologies into perturbational omics is
enabling the development of methods to characterize cellidentity. For
example, single-cellRNA sequencing (scRNA-seq) coupled with pooled
CRISPR screens offers much promise for analysing the genetic regula-
tion of cellidentity>*, but cannot be readily used in many biological con-
texts. Computational methods to simulate single-cell phenotypes after
perturbation are emerging, although many approaches still require
experimental perturbation datafor model training, and thus their scale
and applicationare limited®. Moreover, previous deep-learning-based
models represent a ‘black box’, which restricts the interpretation of
gene-regulatory mechanisms that underlie the simulated biological
events. In this respect, gene-regulatory network (GRN) modelling
approaches are promising as they reconstruct systematic gene-gene
associations from unperturbed single-cell omics data® ™. However,
previous methods for analysing GRNs largely focus on the static net-
work structure, and determining how a static GRN governs cellidentity
during dynamic biological processes therefore remains a challenge.
Scalable andinterpretable approaches are required to understand how
gene-regulatory mechanisms relate to observed complex single-cell
phenotypes.

Here we present a strategy that overcomes these limitations by
combining computational perturbation with GRN modelling. Cel-
I0racle integrates multimodal data to build custom GRN models that
are specifically designed to simulate shifts in cell identity following
transcription factor (TF) perturbation, providing a systematic and
intuitive interpretation of context-dependent TF function in regulat-
ing cell identity. We apply CellOracle to well-characterized biological
systems: haematopoiesis in mice and humans; and the differentiation
of axial mesoderm into notochord and prechordal plate in zebrafish.
Inhaematopoiesis, we show that CellOracle recapitulates well-known

cellfateregulationgoverned by TFs. Furthermore, we apply CellOracle
tosystematically perturb TFs across zebrafish development, recover-
ing known and putative regulators of cell identity. Focusing on axial
mesoderm, we predict and validate a prechordal plate phenotype after
loss of function (LOF) of the prototypical notochord regulator, noto.
Moreover, we also simulate and validate a role for the TF /hxIa in the
development of axial mesoderm. Together, these results show that
CellOracle can be used to infer and interpret cell-type-specific GRN
configurations at high resolution, enabling mechanistic insights into
theregulation of cellidentity. CellOracle code and documentation are
available at https://github.com/morris-lab/CellOracle and datacanbe
explored at https://celloracle.org.

Insilico gene perturbation using CellOracle

To gain mechanistic insight into the regulation of cell identity, we
developed aninsilico strategy to simulate changesin cellidentity upon
TF perturbation. CellOracle uses custom GRN modelling (Extended
DataFig.1a) to simulate global downstream shifts in gene expression
following knockout (KO) or overexpression of TFs. These simulated
values are converted into a vector map of transitions in cell identity,
which enables simulated changes in cell identity to be intuitively visu-
alized within a low-dimension space (Fig. 1a and Methods). In silico
perturbation involves four steps. (1) Cell-type- or cell-state-specific
GRN configurations are constructed using cluster-wise regularized
linear regression models with multi-omics data. (2) Using these GRN
models, shifts in target gene expression in response to TF perturba-
tion are calculated. This step applies the GRN model as a function to
propagate the shiftin gene expression rather than the absolute gene
expression value, representing the signal flow from TF to target gene.
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Fig.1|Overview of CellOracle and application to haematopoiesis.

a, Simulation of cell-state transitionsinresponseto TF perturbation. First,
CellOracle constructs custom transcriptional GRNs using scRNA-seq and
scATAC-seq data (left). Accessible promoter and enhancer peaks from
scATAC-seq dataare then combined with scRNA-seq datato generate
cluster-specific GRN models (middle). CellOracle simulates the changein cell
stateinresponse toa TF perturbation, projecting the results onto the cell
trajectory map (right). b, Force-directed graph of 2,730 myeloid progenitor
cells from Paul et al.'. Twenty-four cell clusters (Louvain clustering) were
organized into six main cell types. Mk, megakaryocytes. ¢, Differentiation
vectors foreach cell projected onto the force-directed graph.d, CellOracle
simulation of cell-state transition in SpiZ KO simulation. Summarized cell-state
transition vectors projected onto the force-directed graph. Vectors for each

This signal is propagated iteratively to calculate the broad, down-
stream effects of TF perturbation, allowing the global transcriptional
‘shift’ to be estimated (Extended Data Fig. 1b—d). (3) The cell-identity
transition probability is estimated by comparing this shift in gene
expression to the gene expression of local neighbours. (4) The transi-
tion probability is converted into a weighted local average vector to
represent the simulated directionality of cell-state transition for each
cell following perturbation of candidate TFs. In the final calculation
step, the multi-dimensional gene expression shift vector is reduced

late GMP to early granulocyte

Negative PS sum in GM lineage

cellareshownintheinset. e, Spi1 KO simulation vector field with perturbation
scores (PSs).f, Gatal KO simulation with perturbation scores. g, Schematic of
Spil-Gatallineage switching. MPP, multipotent progenitor. h, Detail of Gatal
simulation for the granulocyte branch. Left, cell-state transition vectors for
eachcell. Right, summarized vectors. i, Systematic KO simulation result of 90
TFsinthe GM and ME lineage is summarized as ascatter plot of the sum of
negative perturbationscores (showninlogscale). Dashed lines represent
cut-offvalues corresponding to false-positive rate (FPR) = 0.01. Genes are
classified into four categories on the basis of their previously reported functions
(Supplementary Table 2). The asterisk refers to Supplementary Fig. 11, where
we expand onthe predicted phenotype. All scores can be explored through our
web application (https://celloracle.org).

to atwo-dimensional (2D) vector, allowing for more robust predic-
tions against noise (Extended Data Fig. 1e). We purposefully limit the
simulation output datatoa 2D vector representing the predicted shift
incellidentity because our goalis to model changesinidentity rather
than predicting absolute changes in gene expression levels. Further
details of the CellOracle algorithm are provided in the Methods, includ-
ing validation of the range of simulated values; null or randomized
model analysis; and hyperparameter evaluation (Supplementary
Figs.2-10).
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GRN inference and benchmarking with CellOracle

The CellOracle GRN model must represent regulatory connections as
adirected network edge to support signal propagationin response to
TF perturbation. Thus, we developed a custom GRN modelling method
motivated by previous approaches that incorporate promoter and
TF-bindinginformation with scRNA-seq data to infer a directional GRN”
(Extended DataFig.1aand Methods). First, using single-cell chromatin
accessibility data (single-cell assay for transposase-accessible chroma-
tin using sequencing; scATAC-seq), we incorporate flexible promoter
and enhancer regions, encompassing proximal and distal regulatory
elements. Thisinitial step uses the transcriptional start site (TSS) data-
base (http://homer.ucsd.edu/) and Cicero, an algorithm that identifies
co-accessible scATAC-seq peaks, to distinguish accessible promoters
and enhancers™. The DNA sequence of these elements is then scanned
for TF-binding motifs, generating a ‘base GRN structure’ of all potential
regulatory interactionsinthe species of interest (Extended DataFig. 1a,
left). This processis beneficial asit narrows the scope of possible regula-
tory candidate genes before modelfitting (below) and helps define the
directionality of regulatory edges in the GRN. To support GRN infer-
ence without requiring sample-specific scATAC-seq datasets, we have
assembled a base GRN from a mouse scATAC-seq atlas®. We have also
created general promoter base GRNs for ten commonly studied spe-
cies (Supplementary Table1and Methods). These base GRNs are built
into the CellOracle library and provide an alternative solution when
ScATAC-seq data are unavailable.

In the second step of CellOracle GRN inference, we use scRNA-seq
data to identify active connections in the base GRN, generating
cell-type- or cell-state-specific GRN configurations for each cluster.
In this step, we build a machine-learning model to predict the expres-
sion of target genes on the basis of TF expression (Extended DataFig.1a,
right). Because CellOracle uses genomic sequences and information
on TF-binding motifs to infer the base GRN structure and directional-
ity, it does not need to infer the causality or directionality of the GRN
from expression data. This approach allows CellOracle to adopt a
relatively simple modelling method for GRN inference—aregularized
linear machine-learning model. Crucially, this strategy enables the
above signal propagation to simulate TF perturbation. Tosupport the
use of a linear model, the gene expression matrix of sScRNA-seq data
is divided into several clusters in advance so that a single data unit
for each fitting process represents a linear relationship rather than
non-linear or mixed regulatory relationships. Furthermore, aBayesian
or bagging strategy enables the certainty of connection to be presented
as adistribution; this allows weak or insignificant connections to be
removed from the base GRN (Extended Data Fig. 1a, right), producing
acell-type- or cell-state-specific GRN configuration.

To benchmark our GRN inference method, we generated a com-
prehensive transcriptional ground-truth GRN using 1,298 chromatin
immunoprecipitation followed by sequencing (ChIP-seq) datasets for
80regulatory factors across 5 different tissues™. In addition to bench-
marking against diverse GRN inference algorithms, we also assessed the
performance of our approach using different base GRNs, datasources
and cell downsampling (Extended Data Fig. 2). Inference performance
as assessed by the area under the receiver operating characteristic
(AUROC) ranged from 0.66 to 0.85 for the promoter base GRN and
0.73t0 0.91for the scATAC-seqbase GRN. Altogether, thisbenchmark-
ing demonstrates the accuracy of our transcriptional GRN modelling
method with a diverse range of datasources. Combined with our signal
propagation strategy, CellOracle can effectively interrogate network
biology and cell-identity dynamics through in silico perturbation.

GRN analysis and TF KO in haematopoiesis

For validation, we aimed to reproduce known TF regulation of mouse
haematopoiesis, a well-characterized differentiation paradigm®, by

744 | Nature | Vol 614 | 23 February 2023

applying CellOracle to a 2,730-cell scRNA-seq atlas of myeloid pro-
genitor differentiation’® (Fig. 1b and Extended Data Fig. 3a). We con-
structed GRN models for each of the 24 myeloid clusters identified,
representing megakaryocyte and erythroid progenitors (MEPs) and
granulocyte-monocyte progenitors (GMPs), differentiating toward
erythrocytes, megakaryocytes, monocytes and granulocytes (Fig. 1c).
Totest whether the CellOracle simulation could recapitulate known TF
regulation of cell identity, we performed in silico gene perturbation
using the inferred GRNs, and compared the CellOracle KO simulation
results with previous biological knowledge and ground-truth KO data.

First, Spil (also known as PU.I) and Gatal KO simulation is used to
illustrate the CellOracleinsilico perturbation analysis. The TF perturba-
tionsimulationis visualized as a vector map onthe 2D trajectory space
(Fig.1d and Supplementary Video 1), representing a potential shift in
cellidentity in response to TF perturbation. To enable the simulation
results to be assessed systematically and objectively, we also devised
a‘perturbation score’ metric, which compares the directionality of the
perturbation vector to the natural differentiation vector (Extended
DataFig.4). Anegative perturbation score suggests that TF KO delays
orblocks differentiation (Extended Data Fig. 4b-d, purple). Conversely,
apositive perturbation score suggests that the differentiation and KO
simulation vectors share the same direction, indicating thatloss of TF
function promotes differentiation (Extended Data Fig. 4b-d, green).
Spil KO simulation yielded positive perturbation scores for MEPs,
whereas GMPs had negative perturbation scores (Fig. 1e), suggesting
that Spil KO inhibits GMP differentiation and promotes MEP differentia-
tion. Inverse perturbation score distributions were produced for the
Gatal KO simulation (Fig.1f). Comparing these predictions to previous
reports”®; PU.1directs commitment to the neutrophiland monocyte
lineages?°, whereas GATA1 promotes the differentiation of erythroid
cells* and eosinophil granulocytes?2*. Overall, CellOracle accurately
simulated the myeloid lineage switching governed by Gatal and Spil
(refs.>*?7; Fig.1g), including arelatively mild Gatal KO phenotypein
early granulocyte differentiation (Fig. 1h), which cannot be inferred
from the low levels of Gatal expression in granulocytes (Extended
DataFig.3d). However, CellOracle did not detect a previously reported
depletion of erythrocyte progenitors after Spil KO*2, probably owing
to changes in cell proliferation that are not predicted by the method.

We next evaluated eight additional TFs that have established rolesin
myeloid differentiation: KifI (also known as EkIf), Gfilb, Flil, Gfil, Gata2,
Lmo2, Runxl and Irf8 (refs.’>?). CellOracle also correctly reproduced
their reported KO phenotypes (Extended Data Figs.5and 6), whichwe
extended totwo additional datasets of mouse and human haematopoie-
sis (Extended DataFigs.7 and 8 and Supplementary Figs.13 and 14).In
addition, we scaled up our simulation to all TFs that passed filtering
(Methods) to systematically perturb 90 TFsinthe dataset in the context
of granulocyte-monocyte (GM) and megakaryocyte-erythroid (ME)
differentiation. The reported cell-fate-regulatory functions of these
TFs fallinto three major categories: (1) ME lineage differentiation; (2)
GM ineage differentiation; and (3) ME and GM lineage differentiation
and maintenance of haematopoietic stem cell (HSC) identity (Sup-
plementary Table 2). We ranked the TFs on the basis of the sum of the
negative perturbation score in the KO simulation, representing the
potential of a TF potential to promote differentiation (Methods and
Extended Data Fig. 3f).

To summarize this systematic TF perturbation, the summed negative
perturbation scores are shown on a scatter plot (Fig. 1i). The dashed
lines represent cut-off values calculated with a randomized vector
(Extended Data Fig. 3g). The distribution of negative perturbation
score sums for all TF KOs was highly consistent with known TF functions
indifferentiation. Forexample, TFsinvolved in ME lineage differentia-
tion are enriched on the top left side of the scatter plot. By contrast,
GM differentiation factors are found at the bottom right. TFs that
regulate both lineages are located on the top right side, whereas the
lower-ranked factors are enriched for TFs that have not been reported
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toregulate blood differentiation (Fig. 1i). Overall, 85% of the top 30 TFs
ranked by this objective, systematic perturbation strategy are reported
regulators of myeloid differentiation (Supplementary Table 2). Of
the remaining TFs, several have no reported phenotypes in haema-
topoiesis at present, and therefore represent putative regulators.
We note that the negative perturbation score metric does not always
convey allinformation of the vector field, which might oversimplify the
role of aTF.For example, ElfI has anegative perturbationscoreinboth
the ME and the GM lineage, and its function is unclear on the summa-
rized perturbation score plot; however, closer inspection of the vector
reproduced its reported phenotype in the ME lineage, highlighting
the importance of investigating the simulation output (Supplemen-
tary Fig.11). Finally, we directly compared the output of CellOracle to
existing methods for identifying regulatory TFs using gene expres-
sion and chromatin accessibility, demonstrating the unique insights
into context-dependent TF regulation that CellOracle can provide
(Supplementary Figs.15and 16).
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cell-state transition vectors, perturbation scores and estimated cell density
(Markov simulation). Right, schematics of simulated phenotype. Ery,
erythrocyte.d, Ground-truth experimental cell density plot of wild-type (WT)
cells, CebpaKO cellsand Cebpe KO cellsin the force-directed graph embedding
space. Estimated kernel density dataare shownasa contour lineonascatter
plottodepict cell density. e, Cell-type proportionsinthe WT and ground-truth
KOsamples. Gra, granulocyte; KDE, kernel density estimation; Mo, monocyte.

We further validated CellOracle simulation by focusing on several
genes for which experimental KO scRNA-seq data are available: Cebpa,
Cebpeand Tall (refs.'®*°). Cebpais necessary for theinitial differentia-
tion of GMPs, and its loss leads to a marked decrease in differentiated
myeloid cells,accompanied by anincreasein erythroid progenitors. By
contrast, Cebpeis not required for initial GMP differentiation, but itis
essential for the subsequent maturation of GMPs into granulocytes'.
Notably, when we compare the simulation results to the experimental
KO cell distribution, we must again consider the effects of TF pertur-
bation in the context of natural cell differentiation (Fig. 2a). Thus, we
performed aMarkov random walk simulation based on the differentia-
tion and simulation vectors to estimate how TF perturbation leads to
changesin cell distribution (Supplementary Fig.17 and Methods). For
Cebpa, CellOracle simulation predicted that differentiationis inhibited
at GMP-late GMP clusters, whereas early erythroid differentiation is
promoted (Fig.2b). The simulation recapitulates the experimental cell
distribution (Fig. 2b,d). For Cebpe, CellOracle again correctly modelled
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Fig.3|CellOracle KO simulation with zebrafish embryogenesis data.

a, Two-dimensional force-directed graph of the axial mesoderm (AM)
sub-branch (n=1,669 cells) ina published zebrafish embryogenesis atlas
(Farrell etal.®). Arrows indicate notochord cell differentiation (top) and
prechordal plate differentiation (bottom). b, Conversion of URD-calculated
pseudotime (left) into a2D pseudotime gradient vector field (right). c, Degree
centrality scores were used torank the top 30 TFsin notochord (left) and

the inhibition of differentiation at the entry stage of granulocyte dif-
ferentiation (Fig. 2c), consistent with experimental KO data (Fig. 2d).
We also analysed a single-cell atlas of mouse organogenesis®® to
simulate the loss of Tall function (Extended Data Fig. 9a-d). CellOra-
cle reproduced the inhibited differentiation of haematoendothelial
progenitors in the Tall KO* (Extended Data Fig. 9e-h). In addition,
CellOracle showed thatloss of Tall in later stages of erythroid differ-
entiation does not block cell differentiation (Extended Data Fig. 9i,j),
consistent with previous conditional Tall KO experiments at equivalent
stages®. Together, these results show that CellOracle effectively simu-
lates cell-state-specific TF function, corroborating previous knowl-
edge of the mechanisms that regulate cell fate in haematopoiesis and
ground-truth in vivo phenotypes. Furthermore, systematic KO simu-
lations demonstrate that CellOracle enables objective and scalablein
silico gene perturbation analysis.

Systematic TF KO simulations in zebrafish

Next, we applied CellOracle to systematically perturb TFs across
zebrafish development. We made use of a38,731-cell atlas of zebrafish
embryogenesis published in a study by Farrell et al.*>, comprising 25
developmental trajectories that span zygotic genome activation to
early somitogenesis. We first inferred GRN configurations for the 38 cell
typesand statesidentified in the Farrell et al. study™, splitting the main
branching trajectory into four sub-branches: ectoderm; axial meso-
derm; other mesendoderm; and germ layer branching point (Extended
Data Fig.10a,b). In the absence of scATAC-seq data, we constructed
a base GRN using promoter information from the UCSC database,
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obtaining information on TF-binding motifs from the Danio rerio
CisBP motif database (Methods). Our benchmarking has shown that
thisapproach producesreliable GRN inference (Extended DataFig. 2).
After preprocessing and GRN inference, we performed KO simulations
forall TFswithinferred connections to atleast one other gene (n =232
‘active’ TFs; Methods). The results of these simulations across all devel-
opmental trajectories can be explored at https://www.celloracle.org.
Our systematic TF KO simulation provides a valuable resource for
identifying regulators of early zebrafish development and enables
candidates to be prioritized for experimental validation. To further
examine this comprehensive perturbation atlas, we focused on axial
mesoderm differentiation, spanning 4.3 to 12 h post-fertilization
(hpf) (Fig. 3a,b and Extended Data Fig. 10a,b). This midline structure
bifurcates into notochord and prechordal plate lineages, represent-
ing a crucial patterning axis®, and has been extensively character-
ized, in part through large-scale genetic screens™. For these lineages,
we performed systematic TF KO simulation and network analysis for
232 candidate TFs (Extended Data Fig.10c). CellOracle ranked noto, a
well-characterized TF regulator of notochord development, asthe top
TF onthebasis of degree centrality, along with other known regulators
of notochord development (Fig. 3c). Degree centrality is a straight-
forward measure that reports how many edges (genes) are directly
connected toanode (TF); highly connected nodes are likely to be essen-
tial for a biological process®**. In zebrafish floating head™™ (flh™/")
mutants, which lack a functional noto gene (notois also known as flh)*,
axialmesoderm does not differentiate into notochord, and assumes a
somitic mesoderm fate instead>s. Noto LOF simulation correctly repro-
duced theloss of notochord (Fig. 3d-fand Extended Data Fig.10d-f),
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UMAP plot. Noto and twist2 are expressed in notochord, whereas gsc marks the
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treatments and controls (left, flA"/* mutants (10 hpf) and controls; right, noto
crispants (10 hpf) and tyrcrispants). Cluster compositions are presented as the
proportion of each group normalized to the whole cell number. Inboth flh"/"

in addition to enhanced somite differentiation (Extended Data
Fig.10g-k). Moreover, CellOracle predicted a previously unknown (to
our knowledge) consequence of noto LOF: enhanced prechordal plate
differentiation (Fig. 3e,f). We also noted that later stages of notochord
differentiation received a positive perturbation score, indicating that
continued expression of notois notrequired for notochord differentia-
tion. Alternatively, this finding could suggest that downregulation of
notois required for notochord maturation.

Experimental validation of noto LOF

Next, we experimentally validated the predicted expansion of pre-
chordal plate after noto LOF. First, we generated a38,606-cell wild-type

mutants and noto crispants, the notochord s significantly depleted (fIh™/":
P=5.55x107%% noto: P=1.39 x107®, chi-square test) and the prechordal plate is
significantly expanded (fIh"/": P=1.07 x 10*; noto: P=5.01x 1078, chi-square
test. ***P<0.001; ****P< 0.0001). d-g, flh"/" mutant or noto crispant data
projected onto the WT axial mesoderm UMAP plot.d, Cluster annotation and
samplelabel projected onto the UMAP plot. e, Kernel cell density contour plot
shows control cell density (left) and fIh™/* mutant cell density (right). f, Cluster
annotation and sample label projected onto the UMAP plot. g, tyrcrispantcell
density (left) and noto crispant cell density (right) shown on the kernel cell
density contour plot.

(WT) reference atlas from dissociated WT embryos at 6, 8 and 10 hpf
(2 technical replicates per stage) and used Seurat’s label transfer
function® to cluster and label the WT reference cells according to the
annotations in Farrell et al.>* (Extended Data Fig. 11). Subsetting the
axialmesoderm clusters showed the expected bifurcation of cellsinto
notochord and prechordal plate, accompanied by upregulation of
marker genes (Fig. 4a,b). For visualization of axial mesoderm cells,
we used a uniform manifold approximation and projection (UMAP)
transfer function to enable comparable data visualization between
different samples (Methods).

For experimental perturbation of noto, we generated and dissoci-
ated pools of 25 flh™"*' mutant embryos, recognized at 10 hpf by the
lack of notochord boundaries, and sibling controls (flh™* and flh*'*)
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for scRNA-seq. We integrated these datasets and projected them onto
the WT axial mesoderm reference atlas. In agreement with previous
observations, we observed a significant depletion of cells labelled as
notochord in flh™" mutants (-98%, relative to control, P=5.55 x 1072,
chi-square test; Fig. 4c, left), concomitant with an expansion of the
somite cluster (+41.3%; P=5.90 x 10?; Extended Data Fig. 11e, left).
Furthermore, as predicted by noto LOF simulation, we observed asig-
nificant expansion of the prechordal plate cluster in flh"™/* mutants
(+38.6%; P=1.07 x107*; Fig. 4c, left). Plotting cell density revealed
stalled notochord differentiation and bifiurcation of the mid axial
mesoderm, with excess prechordal plate cells (Fig. 4d,e), consistent
with the noto LOF simulation (Fig. 3e,f). To orthogonally validate these
results, we produced noto LOF with amodified CRISPR-Cas9 protocol
that we have previously used to achieve near-complete gene disruption
inF,embryos injected with two noto-targeting guide RNAs (gRNAs)*°
(Methods). The resulting noto ‘crispants’ were dissociated at 10 hpf
(9,185 cells, n=2biological and n =3 technical replicates) and compared
by single-cell analysis to controls that targeted the tyrosinase gene
(tyr), which is not expressed until later in development (n = 46,440
single cells, n =3 biological and n =5 technical replicates; Extended
DataFig.11b). Analysis of cell-type composition confirmed a significant
depletion of notochord, with an expansion of somitic mesoderm and
prechordal plate (Fig. 4c, right, Fig. 4f,g and Extended Data Fig. 11e,
right) in noto crispants, highly consistent with our flA™/" mutant analy-
sis. Together, inaddition to further validating the performance of Cel-
I0racle, these results highlight the ability of this approach to identify
experimentally quantifiable phenotypesin well-characterized mutants
that may have been previously overlooked owingto areliance on gross
morphology. We next sought to identify new LOF phenotypes in axial
mesoderm development.

Discovery of axial mesoderm regulators

To identify novel TFs required for axial mesoderm differentiation,
we prioritized TFs according to predicted KO phenotypes, focusing
on early-stage differentiation before evident lineage specification
(Extended Data Fig. 12a). The resulting ranked list contains several
known notochord regulators, including noto (Fig. 5a, red and Supple-
mentary Table 2), confirming CellOracle’s capacity to model known
developmental regulation. However, itisimportant to note that some
known notochord regulators, such as foxa3 (ref.*!), were not identified
astheyarefiltered outin thefirst steps of data processing owing to low
expression. Systematic perturbationsimulations for all lineages canbe
found at https://celloracle.org. As well as the axial mesoderm, we also
performed anin-depth analysis of the adaxial mesoderm, which gives
rise to somites. Overall, more than 80% of the top 30 TFsin this analysis
were associated with somite differentiation (Supplementary Table 3).

Inaddition to known TFs, we identified several TFs with no previously
reported role in axial mesoderm differentiation (Fig. 5a, black). We
further prioritized candidate genes for experimental validation by GRN
degree centrality, gene enrichment score in axial mesodermand aver-
age gene expression value, selecting lhxla, sebox and irx3a (Extended
DataFig.12b). CellOracle predicts impaired notochord differentiation
for all three genes after their LOF (Fig. 5b and Supplementary Fig. 19).
However, no LOF studies describing axial mesoderm phenotypes that
relate tothese genes have, toour knowledge, beenreportedin zebrafish.
Mouse LhxI (Lim1) KO embryos lack anterior head structures and kid-
neys*. In zebrafish, sebox (mezzo) has been implicated in mesoderm
and endoderm specification*’, whereas irx3a (ziro3) morphants exhibit
changes in the composition of pancreatic cell types**.

We generated [hxla, sebox and irx3a crispants (Supplementary
Fig. 20b-d). We performed initial single-cell analyses at 10 hpf, inte-
grating crispant scRNA-seq datasets with the control gRNA reference
atlas described above. We observed significant changes in cell-type
composition and notochord marker expression in lhxIa crispants
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(Extended Data Fig.12c,d and Supplementary Table 4). Notably, we
found a more considerable reduction in the expression of late noto-
chord genes relative to broad notochord markers, suggesting that
loss of lhx1a function inhibits the differentiation and maturation of
notochord cells. We observed a slight yet significant reduction in the
expression of the notochord markers twist2, nogl and tbxta in sebox
crispants (Extended Data Fig.12e,fand Supplementary Table 4), con-
firming CellOracle’s predictions that lhx1a and sebox are regulators of
axial mesoderm development. /rx3a crispants showed no significant
phenotypeincell-type composition but exhibited aslight reductionin
twist2 expression in the notochord (Extended Data Fig. 12g,h).

We extended lhx1a LOF characterization by performing four inde-
pendent biological replicates for [hxIa crispants (n = 45,582 cells) and
tyr crispants (n=76,163 cells, 5 biological and 7 technical replicates).
CellOracle predicted inhibition of early axial mesoderm differentiation
after [hxIadisruption, depleting both notochord and prechordal plate
lineages (Fig. 5b). Indeed, the [hxIa crispants exhibited inhibition of
axial mesoderm differentiation (Fig. 5c—e): a significant expansion
of the early notochord cluster (+70.2%; P=1.34 x 10~>), with a con-
comitant reduction of later notochord (-15.3%; P=3.83 x107*) and
prechordal plate clusters (—24.7%; P=1.28 x1077). These phenotypes
werereproducible acrossindependent biological replicates (Extended
DataFig. 13e), validating the predicted inhibition of early axial meso-
derm differentiation (Fig. 5a,b).

To further analyse the lhxIa LOF axial mesoderm phenotype, we
investigated global changes in gene expression across all cell types
using non-negative matrix factorization (NMF), amethod to quantify
gene module activation® (Supplementary Table 5 and Methods). We
observed that a module corresponding to the early notochord was
significantly activated in lhxIa crispants (P=2.62 x 102 Fig. 5f,g). The
top geneinthis moduleis admp (Extended Data Fig. 13f, left), whichis
significantly upregulated in lAxIa crispant cells (P= 6.69 x 107*¢; Fig. 5h)
and encodes aknown negative regulator of notochord and prechordal
plate development*. By contrast, the late notochord module received
asignificantly lower score in the [AxIa crispant cells (P=1.04 x107;
Fig.5g, bottom). This module comprises late notochord marker genes,
such as twist2 and nogl (Extended Data Fig. 13f, right), which showed
significantly lower expression in [hxIa crispant cells (P=4.52 x107%
and P=4.95 x107'%, respectively; Fig. 5h). Further, lhx1a crispant cells
exhibited a higher somite module score (P=5.19 x 10% and Supple-
mentary Table 5), suggesting that notochord cells may be redirected
towards a somitic identity after /hxIa LOF. Overall, the NMF analysis
supports the hypothesis that loss of [hxIa function induces global
changes in gene expression that are related to inhibited notochord
differentiation.

Finally, we confirmed the [hxIa LOF phenotype using orthogonal
approaches. Hybridization chain reaction (HCR) RNA fluorescence
in situ hybridization for noglI (late notochord) and for gsc and twist2
(prechordal plate and notochord, respectively) showed that these
genes were significantly downregulated in lhxIa crispants (Fig. 5i-k).
These results were further confirmed by quantitative reverse transcrip-
tion PCR (qRT-PCR) and whole-mount in situ hybridization against
nogl (Supplementary Fig.22). Together, this experimental validation
confirms thesignificantand consistent disruption of axial mesoderm
development after loss of [hxIa function. In summary, these results
demonstrate the ability of CellOracle to accurately predict known TF
perturbation phenotypes, provideinsightinto previously characterized
mutants and reveal regulators of established developmental processes
inwell-studied model organisms.

Discussion

The emerging discipline of perturbational single-cell omics enables
regulators of cellidentity and behaviour to be modelled and predicted®.
For example, scGen combines variational autoencoders with latent
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previous computational perturbation approaches because they rely
on complex black-box models; thus, the simulations lack any means
tointerpret how gene regulation relates to cellular phenotype. On
the other hand, previous GRN analyses relied largely on static graph
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theory and could not consider cellidentity as adynamic property. Here
we presentastrategy that overcomes these limitations by integrating
computational perturbation with GRN modelling. CellOracle uses GRN
models toyield mechanisticinsights into theregulation of cell identity;
simulationand vector visualization based on the custom network model
enables the interpretable, scalable and broadly applicable analysis of
dynamic TF function.

We validated CellOracle using variousin vivo differentiation mod-
els, verifying its efficacy and its robustness to complex and noisy
biological data. CellOracle simulates shifts in cell identity by consid-
ering systematic gene-to-gene relationships for each cell state using
multimodal data, generating a complex context-dependent vector
representation thatis not possible using differential gene expression
or chromatinaccessibility alone. For example, the role of Gatal ingran-
ulocyte differentiation would probably not be predicted givenits low
expressioninthis cell type. However, CellOracle could corroborate this
relatively mild Gatal phenotype. Furthermore, CellOracle correctly
reproduced the reported early-stage-specific cell-fate-regulatory
role of Tall in erythropoiesis, which is impossible to uncover on the
basis of the constitutive expression of Tall throughout all erythroid
stages. This capacity of CellOracle means that it could identify previ-
ously unreported phenotypes. For example, the LOF simulation of a
well-characterized regulator of zebrafish axial mesoderm develop-
ment, noto, predicted a previously unreported expansion of the pre-
chordal plate, which we experimentally validated. This case suggests
that noto has arole in suppressing alternate fates, which could only
be predicted by the integrative simulation using the GRN and cell
differentiation trajectory together. Finally, although we focus on TF
KO and LOF in this study, we have also recently demonstrated that
CellOracle can be used to simulate TF overexpression*s.

We note some limitations of the method. First, CellOracle visualizes
the simulation vector within the existing trajectory space; thus, cell
statesthat do not existinthe input scRNA-seq data cannotbe analysed.
Nevertheless, existing single-cell data collected after severe develop-
mental disruption do not report the emergence of new transcriptional
statesinthe context of loss of gene function, which suggests extensive
canalization even during abnormal development®, supporting the use
of CellOracle to accurately simulate TF perturbation effects. Second,
we emphasize that TF simulation is limited by input data availability
and data quality. For example, a perturbation cannot be simulatedifa
TF-binding motifis unknown or TF expressionis too sparse, as we note
in the case of foxa3in zebrafish*..

Our application of CellOracle to systematically simulate TF pertur-
bation hasrevealed regulators of a well-characterized developmental
paradigm: the formation of axial mesoderm in zebrafish. Although
zebrafish axial mesoderm has been well-characterized through
mutagenesis screens, arole for Lhxla in these developmental stages
is likely to have gone unreported owing to the absence of gross mor-
phological phenotypical changes at 10 hpf after disruption of lhx1a
(ref.*). However, our ability to predict and validate such a phenotype
showcases the power of single-cell computational and experimental
approaches, enabling finer-resolution dissection of gene regulation
even in well-characterized systems. Moreover, CellOracle provides
information atintermediate steps ina given developmental pathway,
obviating the need for gross morphological end-points. Indeed, each
simulation can be thought of as many successive predictions along a
lineage, although we stress that experimental validation is essential
to validate CellOracle’s predictions where possible. However, apply-
ing these approaches to emerging systems or where experimental
interventionis not feasible promises to accelerate our understanding
of how cellidentity isregulated. For example, in the context of human
development, we have recently applied CellOracle to predict candi-
date regulators of medium spiny neuron maturation in human fetal
striatum®’, demonstrating the power of in silico perturbation where
experimental approaches cannot be deployed.
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Methods

CellOracle algorithm overview

The CellOracle workflow consists of several steps: (1) base GRN con-
struction using scCATAC-seq data or promoter databases; (2) SCRNA-seq
data preprocessing; (3) context-dependent GRN inference using
scRNA-seq data; (4) network analysis; (5) simulation of cell identity
following TF perturbation; and (6) calculation of the pseudotime gradi-
entvector field and the inner-product score to generate perturbation
scores. Weimplemented and tested CellOraclein Python (versions 3.6
and 3.8) and designed it for use in the Jupyter notebook environment.
CellOracle codeis opensource and available on GitHub (https://github.
com/morris-lab/CellOracle), along with detailed descriptions of func-
tions and tutorials.

Base GRN construction using scATAC-seq data
In the first step, CellOracle constructs a base GRN that contains
unweighted, directional edges between a TF and its target gene.
CellOracle uses the regulatory region’s genomic DNA sequence and
TF-binding motifs for this task. CellOracle identifies regulatory can-
didate genes by scanning for TF-binding motifs within the regulatory
DNA sequences (promoter and enhancers) of open chromatin sites.
This process is beneficial as it narrows the scope of possible regula-
tory candidate genes in advance of model fitting and helps to define
the directionality of regulatory edges in the GRN. However, the base
network generated in this step may still contain pseudo- or inactive
connections; TF regulatory mechanisms are not only determined by
the accessibility of binding motifs but may also be influenced by many
context-dependent factors. Thus, scRNA-seq data are used to refine
this base network during the model fitting process in the next step of
base GRN assembly.

Base GRN assembly canbe divided into two steps: (i) identification of
promoter and enhancer regions using scATAC-seq data; and (ii) motif
scanning of promoter and enhancer DNA sequences.

Identification of promoter and enhancer regions using scATAC-seq
data. CellOracle uses genomic DNA sequence information to define
candidate regulatoryinteractions. To achieve this, the genomic regions
of promoters and enhancers first need to be designated, which weinfer
from ATAC-seq data. We designed CellOracle for use with scATAC-seq
data to identify accessible promoters and enhancers (Extended Data
Fig.1a, left panel). Thus, scATAC-seq datafor aspecific tissue or cell type
yield abase GRN representing a sample-specific TF-binding network.
In the absence of a sample-specific scATAC-seq dataset, we recom-
mend using scATAC-seq data from closely related tissue or cell types
tosupporttheidentification of promoter and enhancer regions. Using
broader scATAC-seq datasets produces a base GRN corresponding to
ageneral TF-binding network rather than asample-specific base GRN.
Nevertheless, this base GRN network will still be tailored to a specific
sample using scRNA-seq data during the modelfitting process. The final
product will consist of context-dependent (cell-type or state-specific)
GRN configurations.

To identify promoter and enhancer DNA regions within the
SCATAC-seq data, CellOracle first identifies proximal regulatory DNA
elements by locating TSSs within the accessible ATAC-seq peaks.
This annotation is performed using HOMER (http://homer.ucsd.
edu/homer/). Next, the distal regulatory DNA elements are obtained
using Cicero, a computational tool that identifies cis-regulatory
DNA interactions on the basis of co-accessibility, as derived from
ATAC-seq peak information'?, Using the default parameters of Cicero,
we identify pairs of peaks within 500 kb of each other and calculate a
co-accessibility score. Using these scores as input, CellOracle then
identifies distal cis-regulatory elements defined as pairs of peaks with
ahigh co-accessibility score (>0.8), with the peaks overlapping a TSS.
Theoutputisabedfilein which all cis-regulatory peaks are paired with

the target gene name. This bed file is used in the next step. CellOracle
canalso use other input data types to define cis-regulatory elements.
For example, adatabase of promoter and enhancer DNA sequences or
bulk ATAC-seqdatacanserve asanalternativeif available asa.bedfile.

For the analysis of mouse haematopoiesis that we present here, we
assembled the base GRN using a published mouse scATAC-seq atlas con-
sisting of around 100,000 cells across 13 tissues, representing around
400,000 differentially accessible elements and 85 different chromatin
patterns®, Thisbase GRNis builtinto the CellOracle library to support
GRN inference without sample-specific sSCATAC-seq datasets. In addi-
tion, we have generated general promoter base GRNs for several key
organisms commonly used to study development, including 10 species
and 23 reference genomes (Supplementary Table 1).

Motif scan of promoter and enhancer DNA sequences. This step
scans the DNA sequences of promoter and enhancer elements toiden-
tify TF-binding motifs. CellOracle internally uses gimmemotifs (https://
gimmemotifs.readthedocs.io/en/master/), a Python package for TF
motifanalysis. For each DNA sequence in the bed file obtained in step
(i) above, motif scanning is performed to search for TF-binding motifs
inthe input motif database.

For mouse and human data, we use gimmemotifs motif'v.5 data. Cel-
I0racle also provides a motif dataset for ten species generated from
the CisBP v.2 database (http://cisbp.ccbr.utoronto.ca).

CellOracle exportsabinary datatable representing a potential con-
nectionbetweena TF anditstarget geneacross all TFsand target genes.
CellOracle alsoreports the TF-binding DNA region. CellOracle provides
pre-built base GRNs for ten species (Supplementary Table 1), which can
be used if scATAC-seq data are unavailable.

scRNA-seq data preprocessing

CellOracle requires standard scRNA-seq preprocessing in advance
of GRN construction and simulation. The scRNA-seq data need to be
preparedinthe AnnData format (https://anndata.readthedocs.io/en/
latest/). For datapreprocessing, we recommend using Scanpy (https://
scanpy.readthedocs.io/en/stable/) or Seurat (https://satijalab.org/
seurat/). Seurat data must be converted into the AnnData format using
the CellOracle function, seuratToAnndata, preserving its contents.
In the default CellOracle scRNA-seq preprocessing step, zero-count
genes are first filtered out by UMI count using scanpy.pp.filter_
genes(min_counts=1). After normalization by total UMI count per cell
using sc.pp.normalize_per_cell(key_n_counts="n_counts_all’), highly
variable genes are detected by scanpy.pp.filter_genes_dispersion(n_
top_genes=2000~3000). The detected variable gene set is used for
downstream analysis. Gene expression values are log-transformed,
scaled and subjected to dimensional reduction and clustering. The
non-log-transformed gene expression matrix (GEM) is also retained,
asitisrequired for downstream GRN calculation and simulation.

Context-dependent GRN inference using scRNA-seq data

In this step of CellOracle GRN inference, a machine-learning model is
built to predict target gene expression from the expression levels of
the regulatory genes identified in the previous base GRN refinement
step. By fitting models to sample gene expression data, CellOracle
extracts quantitative gene-gene connection information. For signal
propagation, the CellOracle GRN model must meet two requirements:
(1) the GRN model needs to represent transcriptional connections as
adirected network edge; and (2) the GRN edges need to be a linear
regression model. Because of this second constraint, we cannot use
pre-existing GRNinference algorithms, such as GENIE3 and GRNboost
(refs.™"). CellOracle leverages genomic sequences and information on
TF-binding motifs to infer the base GRN structure and directionality,
anditdoes not need toinfer the causality or directionality of the GRN
from gene expression data. This allows CellOracle to adopt arelatively
simple machine-learning model for GRNinference—aregularized linear
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machine-learning model. CellOracle builds a model that predicts the
expression of atarget gene on the basis of the expression of regulatory
candidate genes:

X;=

= ) bixit ¢

IM>

{

where x;is single target gene expression and x; is the gene expres-
sion value of the regulatory candidate gene that regulates gene x;. b;;
is the coefficient value of the linear model (but b;;=0ifi=/),and ¢
istheintercept for thismodel. Here, we use the list of potential regula-
tory genes for each target gene generated in the previous base GRN
construction step (ii).

X; € {xo, X, ...X;} =Regulatory candidate TFs of gene x;

The regression calculationis performed for each cell cluster in par-
allel after the GEM of scRNA-seq data is divided into several clusters.
The cluster-wise regression model can capture non-linear or mixed
regulatory relationships. Inaddition, L2 weight regularizationis applied
by the Ridge model. Regularization not only helps distinguish active
regulatory connections fromrandom, inactive, or false connectionsin
the base GRN but also reduces overfitting in smaller samples.

The Bayesian Ridge or Bagging Ridge model provides the coefficient
value as a distribution, and we can analyse the reproducibility of the
inferred gene-gene connection (Extended DataFig. 1a, right). Inboth
models, the output is a posterior distribution of coefficient value b:

n
x; ~ Normal [ Zi b x+c;, e}
pn
b~Normal(y,, 0,)

where y, is the centre of the distribution of b, and g, is the standard
deviation of b. The user can choose the model method depending on
the availability of computational resources and the aim of the analysis;
CellOracle’s Bayesian Ridge requires fewer computational resources,
whereas the Bagging Ridge tends to produce better inference results
than Bayesian Ridge. Using the posterior distribution, we can calculate
Pvalues of coefficient b; one-sample t-tests are applied to b to estimate
the probability (the centre of b = 0). The Pvalue helps to identify robust
connections while minimizing connections derived from random noise.
Inaddition, we apply regularization to coefficient b for two purposes:
(i) to prevent coefficient b from becoming extremely large owing to
overfitting; and (ii) to identify informative variables through regu-
larization. In CellOracle, the Bayesian Ridge model uses regularizing
prior distribution of b as follows:

b~ Normal(0, ;)

0y ~ Gamma(107%,10°)

o, is selected to represent non-informative prior distributions. This
model uses data in the fitting process to estimate the optimal regu-
larization strength. In the Bagging Ridge model, customregularization
strength can be manually set.

Forthe computationalimplementation of theabove machine-learning
models, we use a Python library, scikit-learn (https://scikit-learn.org/
stable/). For Bagging Ridge regression, we use the Ridge class in the
sklearn.linear_model and BaggingRegressor in the sklearn.ensemble
module. The number of iterative calculations in the bagging model can
beadjusted depending on the computational resources and available
time. For Bayesian Ridge regression, we use the BayesianRidge class in
sklearn.linear_module with the default parameters.

Simulation of cell identity following perturbation of regulatory
genes

The central purpose of CellOracleis to understand how a GRN governs
cell identity. Toward this goal, we designed CellOracle to make use of
inferred GRN configurations to simulate how cell identity changes
following perturbation of regulatory genes. The simulated gene expres-
sionvaluesare converted into 2D vectors representing the direction of
cell-state transition, adapting the visualization method previously used
by RNA velocity®. This process consists of four steps: (i) data preprocess-
ing; (ii) signal propagation within the GRN; (iii) estimation of transition
probabilities; and (iv) analysis of simulated transition in cell identity.
(i) Data preprocessing

For simulation of cell identity, we developed our code by modify-
ing Velocyto.py, a Python package for RNA-velocity analysis (https://
velocyto.org). Consequently, CellOracle preprocesses the scRNA-seq
dataper Velocyto requirements by first filtering the genes and imputing
dropout. Dropout can affect Velocyto’s transition probability calcula-
tions; thus, k-nearest neighbour (KNN) imputation must be performed
before the simulation step.

(ii) Within-network signal propagation

This step aims to estimate the effect of TF perturbation on cell identity.
CellOracle simulates how a ‘shift’ininput TF expression le%gs toa‘shift’
initstarget gene expression and uses a partial derivative . Aswe use
alinear model, the derivative % is a constant value ancfag"lready cal-
culated as b;;in the previous step if the genejjis directly regulated by
genei:

And we calculate the shift of target gene Ax; in response to the shift
of regulatory gene Ax;:

ox,
A.X_'i = 6_x,Ax’ = bi,iji'

As we want to consider the gene-regulatory ‘network’, we also con-
sider indirect connections. The network edge represents a differenti-
ablelinear function shown above, and the network edge connections
between indirectly connected nodes is a composite function of the
linear models, which is differentiable accordingly. Using this feature,
we can apply the chain rule to calculate the partial derivative of the
target genes, even between indirectly connected nodes.

n n
%_ l_l axk+1_ l_l bk
- - Jk+1r
ox; k=0 0x; k=0

where

Xy € {xo, X3, ...x,} = Gene expression of ordered network
nodes on the shortest path from gene i to gene;.

For example, when we consider the network edge from gene O to 1
to 2, the small shift of gene 2 in response to gene O can be calculated
using theintermediate connection withgene1 (Supplementary Fig.1).
0x, 05 O0x
—~f=——"x—==h..xXh
ox, 0x, Ox 17712

ox:
Ax,= TX(Z)AXO =bg 1b,,,0%

Insummary, the small shift of the target gene can be formulated by
the multiplication of only two components, GRN model coefficient b;;
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and input TF shift Ax;. In this respect, we focus on the gradient of gene
expression equations rather than the absolute expression values so
that we do not model the error or the intercept of the model, which
potentially includes unobservable factors within the scRNA-seq data.

The calculation above is implemented as vector and matrix
multiplication. First, the linear regression model can be shown as
follows.

X'=X-B+C,

wherethe Xe R*V isa gene expression vector containing N genes,
CeR™ is the intercept vector, B € RV is the network adjacency
matrix, and each element b;;is the coefficient value of the linear model
fromregulatory gene i to target gene;.

First, we set the perturbation input vector AX;, . € RN, asparse
vector consisting of zero except for the perturbation target genei. For
the TF perturbation target gene, we set the shift of the TF to be simu-
lated. The CellOracle function will produce an error if the user enters
agene shift corresponding to an out-of-distribution value.

Next, we calculate the shift of the first target gene:

AXsimulated,nzl = AXinput -B.

However, we fix the perturbation target gene i value, and the Ax;
retains the same value as theinput state. Thus, the following calculation
willcorrespond to both the first and the second downstream gene shift
calculations.

AXimutated,n=2 = Asimutated,n=1" B-

Likewise, the recurrent calculation is performed to propagate the
shift from gene to gene in the network. Repeating this calculation for
niterations, we can estimate the effects on thefirst to the nthindirect
target gene (Extended Data Fig. 1b-d):

AXsimulated,n = AXsimulated,nfl *B.

CellOracle performs three iterative cycles in the default setting,
sufficient to predict the directionality of changesin cellidentity (Sup-
plementary Figs. 4 and 5). We avoid a higher number of iterative calcu-
lations as it might lead to unexpected behaviour. Of note, CellOracle
performs the calculations cluster-wise after splitting the whole GEM
into gene expression submatrices on the basis of the assumption that
each cluster has aunique GRN configuration. Also, gene expression val-
ues are checked between each iterative calculation to confirm whether
the simulated shift correspondsto abiologically plausible range. If the
expression value for a gene is negative, this value is adjusted to zero.
The codeinthis stepisimplemented fromscratch, specifically for Cel-
I0racle perturbations using NumPy, a python package for numerical
computing (https://numpy.org).

(iii) Estimation of transition probabilities

Fromthe previous steps, CellOracle produces asimulated gene expres-
sion shift vector AXguiaced € RV" representing the simulated initial
gene expression shift after TF perturbation. Next, CellOracle aims to
project the directionality of the future transition in cell identity onto
the dimensional reduction embedding (Fig. 1a, right and Extended
DataFig.1e).Forthistask, CellOracle uses asimilar approach to Velocyto
(https://github.com/velocyto-team/velocyto.py). Velocyto visualizes
future cell identity on the basis of the RNA-splicing information and
calculated vectors from RNA synthesis and degradation differential
equations. CellOracle uses the simulated gene expression vector
AXimulared instead of RNA-velocity vectors.

First, CellOracle estimates the cell transition probability matrix
PeRMM (Mis number of cells): p.;» the element in the matrix P, is
defined as the probability that cell i will adopt asimilar cell identity to

celljafter perturbation. To calculate p;;, CellOracle calculates the Pear-
son’s correlation coefficient between d;and r;;:

_exp(corr (r;,d)/T)
Pi= Y exp(corr (r;,d)/T)’

where d;is the simulated gene expression shift vector AX . jzced € R
forcelli,andr; € RV is a subtraction of the gene expression vector
X € R¥N between cell i and celljin the original GEM. The value is nor-
malized by the Softmax function (default temperature parameter Tis
0.05). The calculation of p;; uses neighbouring cells of cell i. The KNN
method selects local neighbours inthe dimensional reduction embed-
ding space (k=200 as default).

(iv) Calculation of simulated cell-state transition vector

The transition probability matrix Pis converted into a transition vector
V, imulated € RYZ representing the relative cell-identity shift of cell iin
the 2D dimensional reduction space, as follows: CellOracle calculates
the local weighted average of vector 1, ; € R"?, V;,; denotes the 2D
vector obtained by subtracting the 2D coordinatesin the dimensional
reduction embedding between cell i and cellj (cellj € G).

Vi simulated = Z p,'j ViJ
Jj<G

(v) Calculation of vector field

The single-cell resolution vectorV, g .1aeq iS to0 fine to interpret the
results in a large dataset consisting of many cells. We calculate the
summarized vector field using the same vector averaging strategy as
Velocyto. The simulated cell-state transition vector for each cell is
grouped by grid point to get the vector field, Vi ecoriela= RS (Lis
grid number, default L is 40). vgy;q € R, an element in the V, . co; fielr IS
calculated by the Gaussian kernel smoothing.

Ugrid = z,-e,., Ka(g' Vi,simulated) Vi,simulated'

where the g € R? denotes grid point coordinates, H is the neighbour
cells of gand K, is the Gaussian kernel weight:

2
=llvo— vyl ]

Ka(UO’ Ul) = exp( 202

Calculation of pseudotime gradient vector field and inner-
productscore to generate a perturbation score

Toaid theinterpretation of CellOracle simulation results, we quantify
the similarity between the differentiation vector fields and KO simula-
tion vector fields by calculating their inner-product value, which we
term the perturbation score (PS) (Extended Data Fig. 4). Calculation
ofthe PSincludes the following steps:

(i) Differentiation pseudotime calculation

Differentiation pseudotime is calculated using DPT, a diffusion-map-
based pseudotime calculation algorithm, using the scanpy.tl.dpt func-
tion (Extended Data Fig. 4a, left). CellOracle also works with other
pseudotime data, such as Monocle pseudotime and URD pseudo-
time data. For the Farrell et al.* zebrafish scRNA-seq data analysis, we
used pseudotime data calculated by the URD algorithm, as described
previously*.

(ii) Differentiation vector calculation based on pseudotime data

The pseudotime dataare transferred to the nby n2D grid points (n =40
as default) (Extended DataFig.4a, centre). For this calculation, weimple-
mented two functions in CellOracle: KNN regression and polynomial
regression for the data transfer. We choose polynomial regression when
the developmental branch is a relatively simple bifurcation, as is the
case for the Paul et al.’* haematopoiesis data. We used KNN regres-
sionforamore complex branchingstructure, suchas the Farrell et al.*
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zebrafish development data. Then, CellOracle calculates the gradient
of pseudotime data on the 2D grid points using the numpy.gradient
function, producing the 2D vector map representing the direction of
differentiation (Extended Data Fig. 4a, right).
(iii) Inner-product value calculation between differentiation and KO
simulation vector field
Then, CellOracle calculates the inner-product score (perturbation score
(PS)) between the pseudotime gradient vector field and the perturba-
tionsimulation vector field (Extended Data Fig. 4b). The inner product
between the two vectors represents their agreement (Extended Data
Fig. 4c), enabling a quantitative comparison of the directionality of
the perturbation vector and differentiation vector with this metric.
(iv) PS calculation withrandomized GRN model to calculate PS cut-off
value
CellOracle also produces randomized GRN models. The randomized
GRNs can be used to generate dummy negative control data in Cel-
I0racle simulations. We calculated cut-off values for the negative PS
analysis in the systematic KO simulation. First, the negative PS is cal-
culated for all TFs using either a normal or arandomized vector. The
scoredistribution generated from the randomized vector was used as
anulldistribution. We determined the cut-off value corresponding toa
false-positive rate of 0.01 by selecting the 99th percentile value of PSs
generated withrandomized results (Extended Data Fig. 3g).

Network analysis

In addition to CellOracle’s unique gene perturbation simulation, Cel-
I0racle’s GRN model can be analysed with general network structure
analysis methods or graph theory approaches. Before this network
structure analysis, we filter out weak or insignificant connections. GRN
edgesareinitially filtered on the basis of Pvalues and absolute values of
edge strength. The user can define a customvalue for the thresholding
according to the data type, data quality and aim of the analysis. After
filtering, CellOracle calculates several network scores: degree central-
ity, betweenness centrality and eigenvector centrality. It also assesses
network module information and analyses network cartography. For
these processes, CellOracle uses igraph (https://igraph.org).

Validation and benchmarking of CellOracle GRN inference

To test whether CellOracle can correctly identify cell-type- or
cell-state-specific GRN configurations, we benchmarked our new
method against diverse GRN inference algorithms: WGCNA, DCOL,
GENIE3 and SCENIC. WGCNA is a correlation-based GRN inference algo-
rithm, whichis typically used to generate a non-directional network>3;
DCOL isaranking-based non-linear network modelling method**; and
GENIE3 uses an ensemble of tree-based regression models, and aims
to detect directional network edges. GENIE3 emerged as one of the
best-performing algorithms in a previous benchmarking study®. The
SCENIC algorithm integrates a tree-based GRN inference algorithm
with information on TF binding’.

Preparation of input data for GRN inference

We used the Tabula Muris scRNA-seq dataset for GRN construction
input data*®. Cells were subsampled for each tissue on the basis of
the original tissue-type annotation: spleen, lung, muscle, liver and
kidney. Datafor each tissue were processed using the standard Seurat
workflow, including data normalization, log transformation, finding
variable features, scaling, principal component analysis (PCA) and
Louvain clustering. The data were downsampled to 2,000 cells and
10,000 genes using highly variable genes detected by the correspond-
ing Seurat function. Cell and gene downsampling were necessary to
run the GRN inference algorithms within a practical time frame: we
found that some GRN inference algorithms, especially GENIE3, take a
long time with alarge scRNA-seq dataset, and GENIE3 could not com-
plete the GRNinference calculation even after several days if the whole
dataset was used.

GRNinference method

After preprocessing, the exact same data were subjected to each GRN
inference algorithm to compare results fairly. We followed the pack-
age tutorial and used the default hyperparameters unless specified
otherwise. Details are as follows. WGCNA: we used WGCNA v.1.68 with
R 3.6.3. WGCNA requires the user to select a ‘power parameter’ for
GRN construction. We first calculate soft-thresholding power using
the ‘pickSoftThreshold’ function with networkType="signed”. Other
hyperparameters were set to default values. Using the soft-thresholding
power value, the ‘adjacency’ function was used to calculate the GRN
adjacency matrix. The adjacency matrix was converted into a linklist
object by the ‘getLinkLis’ function and used as the inferred value of
the WGCNA algorithm. DCOL: we used ninet v.1.4 with R 3.6.3. The
‘ninet’ function was used with default parameters to make the DCOL
network. The edge list was extracted using the ‘as_edgelist’ function.
DCOL infers an undirected graph without edge weights. We assigned
the value 1.0 for the inferred network edge and 0.0 for other edges.
The assigned value was used as the output of the DCOL algorithm.
GENIE3: we used GENIE3 v.1.8.0 with R 3.6.3. The GRN weight matrix
was calculated with the processed scRNA-seq data using the ‘GENIE3’
functionand converted into a GRN edge and weight list by the ‘getLin-
kList’ function. GENIE3 provides a directed network with network
weight. The weight value was directly used as the inferred value of the
GENIE3 algorithm. SCENIC: we used SCENIC v.1.2.2 with R3.6.3. The
SCENIC GRN calculationinvolves multiple processes. The calculation
was performed according to SCENIC’s tutorial (https://rdrr.io/github/
aertslab/SCENIC/f/vignettes/SCENIC_Running.Rmd). First, we created
theinitialize settings configuration object with ‘initializeScenic’. Then
we calculated the co-expression network using the ‘runGenie3’ func-
tion, following the GRN calculation with several SCENIC functions;
runSCENIC_1_coexNetwork2modules, runSCENIC_2_createRegulons
and runSCENIC_2_createRegulons. We used the ‘10kb’ dataset for the
promoter information range. The calculated GRN information was
loaded with the ‘loadInt’ function, and the ‘CoexWeight’ value was used
as theinferred value of the SCENIC algorithm.

Ground-truth data preparation for GRN benchmarking
Cell-type-specific ground-truth GRNs were generated in the same man-
ner as in a previous benchmarking study®. Here, we selected tissues
commonly available in the Tabula Muris scRNA-seq dataset, mouse
sci-ATAC-seq atlas dataand ground-truth datasets: heart, kidney, liver,
lung and spleen. The ground-truth data were constructed as follows. (i)
Download allmouse TF ChIP-seq data as bed files from the ChIP-Atlas
database (https://chip-atlas.org). (ii) Remove datasets generated under
non-physiological conditions. For example, we removed ChIP-seq
datafromgene KOs or adeno-associated virus treatment. (iii) Remove
data that include fewer than 50 peaks. (iv) Select peaks detected in
multiple studies. (v) Group data by TF and remove TFs if the number
of detected target genesis less than ten peaks. (vi) Convertdataintoa
binary network: each network edgeis labelled either O or 1, represent-
ingits ChIP-seqbinding between genes. These steps yielded tissue- or
cell-type-specificground-truth datafor 80 TFs, corresponding to1,298
experimental datasets.

GRN benchmarking results

GRNinference performance was evaluated by the AUROC and the early
precision ratio (EPR), following the evaluation method used in a pre-
vious benchmarking study®. CellOracle and SCENIC outperformed
WGCNA, DCOL and GENIE3 based on AUROC (Extended Data Fig. 2a).
This is because CellOracle and SCENIC filter out non-transcriptional
connections (that is, non-TF-target gene connections) and other
methodologies detect many false-positive edges between non-TFs.
CellOracle with a scATAC-seq atlas base GRN performed better than
CellOracle with apromoter base GRN and SCENIC. This difference was
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mainly derived from sensitivity (or true-positive rate). With scATAC-seq
data, CellOracle captures a higher number of regulatory candidate
genes. Considering EPR, representing inference accuracy for top k
network edges (k = number of network edges with the label ‘1’ in the
ground-truth data), CellOracle performed well compared to other
approaches (Extended Data Fig. 2b): GENIE3 and WGCNA assigned a
high network edge weight to many non-transcriptional connections,
resulting in many false-positive edges for the highly ranked inferred
genes.

The CellOracle GRN construction method was analysed further to
assess the contribution of the base GRN. We performed the same GRN
benchmarking with ascrambled motifbase GRN or no base GRN. For the
scrambled motifbase GRN, we used scrambled TF-binding-motif data
for thebase GRN construction. For the nobase GRN analysis, selection
of regulatory candidate genes was skipped, and all genes were used as
regulatory candidate genes. As expected, the AUROC scores decreased
when we used the scrambled motifbase GRN (ranked 12/13 in AUROC,
11/13 in EPR; Extended Data Fig. 2a,b), decreasing even further in the
no base GRN model (13/13; Extended Data Fig. 2a,b). The scrambled
motif base GRN did not detect many regulatory candidate TFs, pro-
ducing lower sensitivity. However, the scrambled motif base GRN can
still work positively by removing connections from non-TF genes to
TFs, functioning to filter out false-positive edges, and resulting in a
better score relative to the no base GRN model. In summary, the base
GRN is primarily important to achieve acceptable specificity, and the
ScATAC-seq base GRN increases sensitivity.

Next, we used CellOracle after downsampling cells to test how cell
number affects GRN inference results. Cells were downsampled to
400,200,100, 50, 25and 10 cells and used for GRN analysis with the
scATAC-seqbase GRN. GRNs generated with 400,200,100 and 50 cells
received comparable or slightly reduced AUROC scores. The AUROC
score decreased drastically for GRNs generated with 25 and 10 cells
(Extended DataFig. 2c). EPR was relatively robust even with small cell
numbers (Extended Data Fig. 2d).

We performed additional benchmarking to investigate data
compatibility between the base GRN and scRNA-seq data sources.
A tissue-specific base GRN was generated separately using bulk
ATAC-seq data®. We focused on the same five tissue types as above.
Unprocessed bulk ATAC-seq data were downloaded from the NCBI
database using the SRA tool kit (spleen: SRR8119827; liver: SRR8119839;
heart: SRR8119835; lung: SRR8119864; and kidney: SRR8119833). After
FASTQC quality check (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), fastq files were mapped to the mm9 reference
genome and converted into bam files. Peak calling using HOMER
was used to generate bed files from the bam files. Peak bed files were
then annotated with HOMER. Peaks within 10 kb around the TSS were
used. Peaks were sorted by the ‘findPeaks Score’ generated by the
HOMER peak-calling step, and we used the top 15,000 peaks for base
GRN construction. These peaks were scanned with the gimmemotifs
v.5 vertebrate motif dataset, which is the same motif set we use for
SCATAC-seq base GRN construction.

We compared benchmarking scores between GRN inference results
generated from different base GRNs. Overall, GRN construction per-
formedbest when the samettissue type for ATAC-seq base GRN construc-
tion and scRNA-seq was used (10/13 in AUROC, 11/13 in EPR; Extended
DataFig.2e,f). Thescore was lower with different tissue types combined
betweenthebase GRN and scRNA-seq data. Insummary, benchmarking
confirmed that our GRN construction method performs well for the
task of transcriptional GRN inference.

CellOracle evaluation

Evaluation of simulation value distribution range. We investigated
arange of simulated values to confirm that the signal propagation
step does not generate an out-of-distribution prediction. Specifical-
ly, we assessed the distribution of the sum of the simulated shift and

original gene expression, which correspond to the simulated expression
level (termed ‘simulation gene expression level here for explanatory
purposes: Xsimulation gene expression level — Xorigina] + AXsimu]ated,)' We evaluate all
genes, comparing the simulation gene expression level with the original
gene expression distribution. To detect out-of-distribution data, we
calculated the maximum exceedance percentage, representing the
percentage difference of the maximum value of the simulated gene
expression level compared to the maximum value of the wild-type
gene expression value. The higher maximum exceedance indicates a
bigger difference between simulated and wild-type values, identifying
out-of-distribution values. For the Spi1 KO simulation with the Paul
etal. haematopoiesis dataset’®, we present the top four genes showing
the maximum exceedance values (Supplementary Fig. 2). The simula-
tion expression levels of even these genes appear very similar to the
original wild-type distributions of gene expression. For example, in
the Ly86 simulated value distribution, 99.963% of all cells are within
the wild-type gene expression range. Only 0.037% of cells exhibit a
Ly86 gene simulation value outside the wild-type distribution, but
the maximum differenceis only 3.2%. We designed CellOracle to simu-
late a minimal relative shift vector rather than an out-of-distribution
prediction, confirmed by this analysis. The functions we have used
for these analyses are implemented in CellOracle. Users can check
simulation value distributions, and CellOracle will produce awarning
if out-of-distribution simulations occur.

To further explore the minimum number of cells with minor
out-of-distribution values, we generated asimulation vector in which
the out-of-distribution values are clipped into the wild-type distribu-
tion range. The simulated cell-identity shift vector of clipped values
isindistinguishable compared to the original results (Supplementary
Fig.2b-e), confirming that the CellOracle simulationis notrelying on
these out-of-distribution values. The out-of-distribution value can be
clippedifwe add ‘clip_delta_X=True’ in the CellOracle signal propaga-
tion function. Thus, users can ensure the simulation is not relying on
out-of-distribution values.

CellOracle simulation results generated with randomized GRN
or no signal propagation

We performed KO simulation with randomized GRN models to clarify
the necessity of the GRN signal propagation simulation. In addition,
we calculated cell-identity vectors without the signal propagation
step; the cell-identity shift vector was calculated solely on the basis of
input TF expression loss, thus representing the information from the
expression pattern of only asingle TF. The vector map in Supplementary
Fig. 3 shows Gatal KO simulation results and Spil KO simulation results
with an intact GRN coefficient matrix, randomized GRN matrix or no
GRN signal propagation. The randomized GRN analysis results and
no GRN signal propagation results show only slight cell-identity shift
vectors (Supplementary Fig. 3b,c,e,f). Although very subtle vectors
can be observed, most expected simulation results are not obtained.
Thus, we confirmed that the GRN signal propagation strategy has an
essential role in the CellOracle KO simulation.

Evaluation of signal propagation number

We next tested the number of iterations at the signal propagation step.
We performed KO simulations using two independent mouse haema-
topoiesis datasets: Paul et al.'° and Dahlin et al.’®. For several TFs, we
tested different numbers of signal propagation rounds in the KO simula-
tionsacrossindependent clusters. First, focusing on the Paul dataset,
simulation vector fields for Spil and Gatal, with 0,1and 3 rounds of
signal propagation, were investigated (Supplementary Fig. 4). The
simulation under hyperparameter n =0 shows the vector calculated
without any signal propagation within the GRN; that is, the vector is
calculated from only the difference of the input TF gene expression
shift. This n = 0 simulation shows almost no phenotype, showing the
necessity of the GRN signal propagation process. Next, acomparison
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of vector fields from n=1and n = 3 simulations shows similar results.
Thisis not surprising given the following. (1) Most coefficient valuesin
the GRN are small, ranging between —-1and 1 (Supplementary Fig. 4d).
(2) Accordingly, the signal will be attenuated over the propagation pro-
cessinmost cases. (3) This also means that the first signal propagation
step will produce the most significant shifts relative to the later steps.
However, whenscrutinizing the vectors, we observe amore evident shift
incellidentity around the late GMP cluster and the early granulocytes
inthen =3 Gatal KO vectorscomparedton =1vectors. Theresults sug-
gest that the second and third rounds of signal propagation increase
the sensitivity to detect small shifts by adding the second and third
rounds of downstream gene effects, respectively.

To quantify these observations and determine whether there is an
ideal number of signal propagation rounds, we investigated the L1-norm
of AX, representing the sum of the magnitudes of each simulated gene
expression shift. The L1-norm of AXis almost saturated at then=3in
most cases (Supplementary Fig. 4c). We also performed these analy-
ses with the Dahlin haematopoiesis dataset™ (Supplementary Fig. 5).
Overall, the results are consistent with our analysis of the Paul data.
Again, we observe that the L1-norm of AXis saturated at relatively small
nvalues in most cases. However, Cebpa is an outlier in this analysis,
in which the delta X length gradually and continuously increases as n
increases. We next examined the vector field of Cebpa with various n
(Supplementary Fig. 6). Despite such divergence of the L1-norm of AX,
the vector field of Cebpa showed consistent results, suggesting that
the calculation strategy for cell-identity shift is robust using the local
neighbour vectors (Extended Data Fig. 1e).

Altogether, at n =3, the simulated shift vectors almost converge,
producing consistent results. In rare cases, the L1-norm of AX might
show divergence with n. However, the n =3 simulation results are
consistent with higher n values, which might generate unexpected
behaviour owing to signal divergence. On the basis of these analyses,
werecommend that users performthreeiterations for the signal propa-
gation step.

Selection of dimensionality reduction method

CellOracle simulation with UMAP and t-SNE using Paul et al. haema-
topoiesis data. We used UMAP and ¢t-distributed stochastic neighbour
embedding (¢-SNE) for the perturbation simulation analysis to show
how the choice of dimensionality reduction affects CellOracle results.
We used Scanpy to construct UMAP or ¢-SNE plots using the Paul et al.
haematopoiesis dataset’. In the UMAP (Supplementary Fig. 7a), we
observe asimilar trajectory that agrees with the force-directed graph
(Fig.1b). However, monocyte and granulocyte branches on the UMAP
arerelatively lessresolved. This notwithstanding, the simulation results
using the UMAP (Supplementary Fig. 8, top) lead to the same conclu-
sion as Fig. 1. For example, in the Gatal KO simulation, we correctly
predictinhibited differentiation along the MEP lineage whereas GMP
differentiation is promoted. Furthermore, we predict inhibited GMP
to granulocyte differentiation, consistent with our force-atlas-based
presentationin Fig.1h.In comparison, the overall structure of the ¢-SNE
graphis consistent with the force-directed and UMAP graphs, although
itlacksresolution (Supplementary Fig. 7b). However, the ¢-SNE results
still agree with Fig. 1, just at alower resolution (Supplementary Fig. 8,
bottom). In conclusion, we stress that the choice of the dimensional
reduction algorithm is crucial to sensitively analyse the cell differen-
tiation trajectory.

Guidance for selecting the dimensionality reduction method. For
the force-directed graph calculation, we recommend using Scanpy’s
sc.pl.draw_graph function®® or SPRING®. Both internally use force
atlas 2 (ref.®"). Compared to UMAP, force-directed graphs can capture
more fine-branching structures but can be unstable if the data have
many branches that can overlap. To avoid branch overlap, PAGA cell
trajectoryinformation can be used toinitiate the force-directed graph

calculation: https://scanpy.readthedocs.io/en/stable/tutorials.html#
https://github.com/theislab/paga.

Werecommend using force-directed graphs as afirst choice because
they generally produce a high-resolution lineage structure. However,
werecommend UMAP as areliable alternative if overlapping branches
are observed. In our CellOracle tutorial, we show the detailed guide
and code for the dimensionality reduction implementation, includ-
ing data preprocessing: https://morris-lab.github.io/CellOracle.
documentation.

CellOracle KO simulation with unrelated cell-type base GRNs

To assess how base GRN performance relates to scATAC data source,
we performed TF KO simulations in haematopoiesis using the ‘general’
mouse sScATAC-seq atlas”base GRN versus a heart-specificbase GRN to
representan unrelated cell type (Supplementary Fig. 9). The simulation
vectors using the mismatched heart base GRN are weaker, although
stillingeneral agreement. We reason that evenif the base GRN retains
some edges that are not active in the scRNA-seq data, CellOracle can
still work robustly. However, simulation with the heart base GRN fails
todetectthe early granulocyte phenotypeinthe Gatal KO and almost
allshiftsin the Cepba KO, suggesting reduced sensitivity with the mis-
matched base GRN.

We also assess the mean degree centrality (the number of genes to
whichaTFisconnected)intheinferred GRNs for each of four TFs (Sup-
plementaryFig.10). With the inappropriate heartbase GRN, CellOracle
fails to build network edges for some genes, resulting in alow degree
centrality score and reduced simulation sensitivity. We recommend
starting CellOracle analysis with the general GRN and comparing its
performance against tailored base GRNs.

Markov simulation based on CellOracle simulation vector

To estimate cell distribution in response to gene perturbation, we
need to consider both the differentiation hierarchy and the perturba-
tion vector together. We performed a Markov random walk simula-
tion as described previously*? (https://github.com/velocyto-team/
velocyto.py) with some modifications. First, our Markov simulation
used the CellOracle cell-identity transition vector in addition to the
differentiation vector; the transition probability matrix for these vec-
torswas applied alternatively to consider both effects. Second, cellsin
early differentiation stages were selected and used for the initial state
of our Markov simulation, whereas the previous study used the whole
population as the initial state®>. The Markov simulation analysis with
data from another study® is shown in Supplementary Fig. 17 to show
typical simulation results and their interpretation.

CellOracle analysis with previously published scRNA-seq and
SCATAC-seq data

Paul et al. mouse haematopoiesis scRNA-seq data. The GEM was
downloaded with Scanpy’s data loading function, scanpy.datasets.
paull5(). After removing genes with zero counts, the GEM was nor-
malized by total UMI counts ((scanpy.pp.filter_genes(min_counts=1),
scanpy.pp.normalize_per_cell(key_n_counts="n_counts_all’)). Highly
variable genes, including 90 TFs, detected by scanpy.pp.filter_genes_
dispersion(flavor="cell_ranger’, n_top_genes=2000, log=False),
were used for the following downstream analysis: the GEM was
log-transformed, scaled and subjected to PCA (scanpy.pp.loglp(),
scanpy.pp.scale(), scanpy.tl.pca(svd_solver="arpack’)). We calculated
the force-directed graph dimensional reduction databased onthe PAGA
graph®forinitialization (scanpy.tl.paga(), scanpy.tl.draw_graph(init_
pos="paga’)). Cells were clustered using the Louvain clustering method
(scanpy.tl.louvain (resolution=1.0)). Clusters were annotated manually
using marker gene expression and the previous annotations from Paul
et al.’* We removed dendritic cell (DC) and lymphoid cell clusters to
focus on myeloid cell differentiation. GRN calculation and simulation
were performed as described above, using the default parameters.
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For the base GRN, we used the base GRN generated from the mouse
sci-ATAC-seq atlas dataset®.

Cell density was visualized using a kernel density estimation (KDE)
plot.First, we performed random downsampling to 768 cells to adjust
the cellnumber between WT and KO samples. KDE was calculated with
the scipy.stat.gaussian_kde function. The calculated KDE was visual-
ized with the matplotlib.pyplot.contour function. We used the same
contour threshold levels between all samples.

Although we did not focus on the network structure in the main text,
we examined CellOracle GRN models using graph theory approaches
before the simulation analysis. Graph theory analysis revealed that
these inferred GRN configurations resemble a scale-free network the
degreedistribution of which follows apower law, a characteristic con-
figuration of biological networks®® (Extended Data Fig. 3b). Further,
we assess GRNs using degree centrality—a basic measure of how many
genes a TF connects to®. Using the MEP cluster as an example, 27 out
of 30 genes with a high degree centrality score in the MEP_O GRN are
confirmed known regulators of MEP lineage differentiation or stemand
progenitor cell function (Extended Data Fig. 3c and Supplementary
Table 2). Analysis of additional clusters yielded similar agreement with
previous literature, confirming that CellOracle GRN inference captures
biologically plausible cell-state-specific GRN structures, consistent
with previous biological knowledge. All network analysis and simula-
tionresults can be explored at https://www.celloracle.org.

Pijuan-Sala et al. mouse early gastrulation and organogenesis
scRNA-seq data. We applied CellOracle to ascRNA-seq atlas of mouse
gastrulation and organogenesis by Pijuan-Sala et al.>°. This single-cell
profiling of WT cells highlighted a continuous differentiation trajec-
tory across the early development of various cell types (Extended Data
Fig.9a).Inaddition, the developmental effects of Tal1 KO, a TF known
to regulate early haematoendothelial development®*%*, were investi-
gated in this study. We validated the CellOracle simulation using these
Tall KO ground-truth scRNA-seq data. The data were generated from
seven chimeric E8.5 embryos of WT and Tal1 KO cells (25,307 cells and
26,311 cells, respectively). We used the R library, MouseGastrulation-
Data (https://github.com/MarioniLab/MouseGastrulationData), to
download the mouse early gastrulation scRNA-seq dataset. Thislibrary
provides the GEM and metadata. We used the Tall chimera GEM and
cell-type annotation, “cell type.mapped”, provided by thislibrary. Data
were normalized with SCTransform®®. The GEM was converted to the
AnnDataformat and processed in the same way asthe Paul et al. dataset.
For the dimensionality reduction, we used UMAP using the PAGA graph
for theinitialization (maxiter=500, min_dist=0.6). We removed the ex-
traembryonic ectoderm (ExE), primordial germ cell (PGC) and stripped
nucleiclusters which lie outside the main differentiation branch. After
removing these clusters, we used the WT cell data for the simulations
(24,964 cells). GRN calculations and simulations were performed as
described above using the default parameters. We used the base GRN
generated from the mouse sci-ATAC-seq atlas dataset. We constructed
cluster-wise GRN models for 25 cell states. Then, we simulated TalI KO
effects using the WT scRNA-seq dataset. For the late-stage-specific
Tall conditional KO simulation, we set Tall expressiontobe zerointhe
blood progenitor and erythroid clusters to analyse the role of Tall in
late erythroid differentiation stages (Extended Data Fig. 9i,j).

Farrell et al. zebrafish early development scRNA-seq data. GEM,
metadata and URD trajectory data were downloaded from the Broad
Institute Single Cell Portal (https://tinyurl.com/7dup3b5k). We used
the cell clustering data and developmental lineage data from Farrell
etal.* The GEM was already normalized and log,-transformed, which
we converted to non-log-transformed databefore CellOracle analysis.
The GEM had human gene symbols, which we converted back to ze-
brafish gene symbols using gene name datain ZFIN (https://zfin.org).
We used URD dimensional reductionembedding data. To use the URD

differentiation trajectory in the CellOracle simulations, we ran several
preprocessing and calculations. We first identified cells with URD co-
ordinate data (n=26,434 cells). The “EPL/periderm and primordial
germ cell” cluster, which represents 1.7% of the total population, was
also excluded from our analysis because it is located outside the main
differentiation trajectory branch. The whole URD structure (n = 25,711
cells) was splitinto four sub-branches to simplify the calculations (Ex-
tended DataFig.10b). Then, we converted the original URD coordinates,
a3D matrix, intoa 2D matrix using PCA (sklearn.decomposition.PCA)
because CellOracle requires 2D dimensional reduction embedding
data. The GEM was converted into the AnnData format. At the variable
gene detection step, we selected the top 3,000 genes. GRN calculation
and simulations were performed as described above using the default
parameters. We did not calculate pseudotime because the pseudotime
data calculated with URD were available. The pre-calculated pseudo-
time datawere used to calculate the 2D development vector field. For
base GRN construction, we used UCSC TSS and promoter dataand the
zebrafishreference genome (https://useast.ensembl.org/Danio_rerio/
Info/Index), danRerl11 (the bed file is included in the CellOracle pack-
age). The promoter DNA sequence was scanned with CisBP version2
motif dataset to generate the base GRN (http://cisbp.ccbr.utoronto.ca).

For screening novel regulators of axial mesoderm cell identity, we
prioritized candidate genes as follows. First, we performed CellOracle
KO simulations for 232 active TFs, which had at least one gene edge in
the constructed GRN modelin the axial mesoderm branch (Extended
Data Fig. 12a, step 1). We focused on the early differentiation stage by
selecting cells between digitized pseudotime 0 and 3 (Extended Data
Fig.12a, step 2). For this analysis, we focused on negative perturbation
scores to identify candidate TFs. A large negative perturbation score
indicates a predicted inhibition or block in differentiation following
TF KO; thus, we reasoned that these TFs might have a positive role in
differentiation (Extended DataFig.12a, step 3). To prioritize TFs accord-
ing to the predicted differentiation inhibition effects, we ranked TFs
according to the sum of their negative perturbation scores, resultingin
the 30 geneslisted in Fig. 5a. Next, we surveyed the GRN degree central-
ity scores of 30 candidate genes in the notochord cluster GRN because
wereasoned that those genes with higher GRN degree centrality result
inamorereliable simulation. Then, we calculated the gene specific-
ity score comparing the axial mesoderm sub-branch and the other
sub-branches using the Scanpy function, sc.tl.rank_genes_groups().
Although gene specificity does not necessarily relate to gene func-
tion, we assumed that specific gene expression would simplify the
interpretation of experimental results and reduce the likelihood of
unexpected phenotypes from clusters other than axial mesoderm.
Finally, we analysed mean expression, assuming perturbation experi-
ments with highly expressed genes would be more robust, especially
in the CRISPR-Cas9-based F,embryo analysis. After removing previ-
ously reported genes, we selected candidate genes that exist in the
50th percentile of these scores (Extended Data Fig.12b, highlighted in
agreyrectangle), resulting in lhxIa, sebox, irx3a, creb3l1 and zic2a. We
finally selected three candidates, lhx1a, sebox and irx3a, and removed
creb3l(1 and zic2a from the first LOF experiment list, according to the
following rationale: creb3!I gene sequences are similar to creb3(2;
thus, it was challenging to design specific sgRNAs to target this gene;
creb3[2was previously reported to regulate axial mesoderm develop-
ment. Although zic2a narrowly passed the gene specificity threshold
described above, we found that zic2a expression was high in the other
mesendoderm sub-branch and the ectoderm sub-branches; thus, we
excluded this gene from our downstream analyses.

Dahlin et al. mouse haematopoiesis scRNA-seq data. Mouse hae-
matopoiesis scRNA-seq data from Dahlin et al.’® were downloaded
from the PAGA GitHub repository (https://github.com/theislab/
paga). The GEM was normalized by total UMI counts after remov-
ing genes with zero counts ((scanpy.pp.filter_genes(min_counts=1),
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scanpy.pp.normalize_per_cell(key_n_counts=‘n_counts_all’)). Highly
variable genes were detected and used for the following downstream
analysis: (scanpy.pp.filter_genes_dispersion(flavor="cell_ranger’, n_
top_genes=3000, log=False)). The GEM was log-transformed, scaled
and subjected to PCA and Louvain clustering (scanpy.pp.loglp(),
scanpy.pp.scale(), scanpy.tl.pca(svd_solver=‘arpack’), scanpy.
tl.louvain(resolution=1.5)). The original force-directed graph reported
in Dahlin et al.** was used for the CellOracle simulation. GRN calculation
and simulation were performed using the default parameters. For the
base GRN, we used the mouse sci-ATAC-seq atlas dataset™.

Setty et al. human haematopoiesis scRNA-seq data. Human
haematopoiesis scRNA-seq were downloaded from the Human Cell
Atlas: https://data.humancellatlas.org/explore/projects/091cf39b-
01bc-42e5-9437-f419a66c8a45 (Setty et al.)*”. The GEM was normalized
by total UMI counts after removing genes with zero counts ((scanpy.
pp.filter_genes(min_counts=1), scanpy.pp.normalize_per_cell(key n_
counts="n_counts_all’)). Highly variable genes were detected and
used for the following downstream analysis: (scanpy.pp.filter_genes_
dispersion(flavor="cell_ranger’, n_top_genes=3000, log=False)). The
GEM was log-transformed, scaled and subjected to PCA and Louvain
clustering (scanpy.pp.loglp(), scanpy.pp.scale(), scanpy.tl.pca(svd_
solver="arpack’), scanpy.tl.louvain(resolution=1.5)). The force-directed
graph was calculated with SPRING (https://kleintools.hms.harvard.edu/
tools/spring.html). We removed DC and lymphoid cell clustersin line
with the Paul et al.’® data analysis. GRN calculation and simulation were
performed using the default parameters. For the base GRN, we used the
base GRN generated using the Buenrostro et al. human haematopoiesis
SCATAC-seq data described below®,

Buenrostro et al. human haematopoiesis scATAC-seq data. Hu-
man haematopoiesis scATAC-seq data from Buenrostro et al.*® were
used to constructahuman haematopoiesis base GRN. The scATAC-seq
peak data and count matrix was obtained from the Gene Expression
Omnibus (GEO), with accession code GSE96769, and processed with
Cicero (v.1.3.4) to obtain co-accessibility scores as follows: After re-
moving peaks with zero counts, cells were filtered by the peak count
(min count =200, max count =30,000). The data were processed
using Cicero functions (detect_genes(), estimate_size_factors(), pre-
process_cds(method ="LSI"), reduce_dimension(reduction_method
=‘UMAP’, preprocess_method = "LSI")). Then Cicero co-accessibility
scores were calculated using run_cicero() with human chromosome
lengthinformationimported by data("human.hgl9.genome"). Output
peak and co-accessibility scores were used for CellOracle base GRN
construction. CellOracle annotated the TSS site in the peaks, and the
TSS peaks and cis-regulatory peaks with co-accessibility scores > 0.8
were used for motif scanning. We used the gimmemotifs vertebrate
v5 motif dataset, which is CellOracle’s default for mouse and human
motif scanning.

TF motifenrichmentanalysis was performed using ChromVar®®. The
ChromVar score matrix, which includes 2,034 cells and 1,764 motif
data, was processed with scanpy to generate aforce-directed graph and
Louvain clustering (scanpy.tl.pca(), scanpy.tl.louvain(resolution=0.5),
scanpy.tl.draw_graph()). The cluster was annotated using cell source
FACS gate sample labels. The score fold change was calculated and
visualized as a volcano plot (Supplementary Fig. 16). The statistical
test was performed using the two-tailed Wilcoxon rank-sum test with
Bonferroni correction.

Comparison between CellOracle haematopoiesis KO simulation
results and previous reports

CellOracle KO simulation results for 12 key TFs that regulate myeloid
differentiation are shown in Figs.1and 2, Extended Data Figs. 5 and 6
and Supplementary Figs. 13 and 14. The simulation results were com-
pared with previous reports (summarized in Supplementary Table 2).

Inthese figures, the summary of the simulation results is shownin the

right column with the mark (*), which indicates that the simulation

results agree with the previously reported role or phenotype of the

TF. We note that the input haematopoiesis data focus on the myeloid

lineage; thus, the simulation results show relative cell-identity shifts

within the myeloid lineage only. For example, Spil has an important

rolenot only inthe myeloid lineage but also in other cell types, such as

HSCs and lymphoid lineages®. However, we cannot simulate the role

inthese cell typesif they are not present in the input data.

(1) KIf1(KLFI)
Klf1 promotes differentiation towards the ME lineage, promoting
erythroid cell differentiation in particular®. CellOracle simulation
results agree withthisrole (Extended DataFig. 5aand Supplementary
Figs.13eand 14e).

(2) Gatal (GATAI)
Gatal promotes ME lineage differentiation and also promotes gran-
ulocyte differentiation'>’°, Both the Paul et al.' and Dahlin et al.*®
data simulation results reproduce these Gatal roles. (Fig. 1f and
Supplementary Fig.13b). In the Setty et al. dataset®, the ME lineage
phenotype is reproduced, but the granulocyte phenotype is not
observed (Supplementary Fig. 14b). We speculate that this is because
the Setty dataset includes few mature granulocytes.

(3) Gata2 (GATA2)
Gata2is akey factor in maintaining stemness in MPPs". Simulation
resultsinall dataagree with thisrole for Gata2 (Extended DataFig. 6a
and Supplementary Figs. 13i and 14g).

(4) Spil (SPI1)
Spil promotes GM lineage differentiation. The inhibition of Spi1 shifts
cellidentity from the GM to the ME lineage™”". Simulationresultsin
all datasets agree with this role of Spil (Fig. 1e and Supplementary
Figs.13aand 14a).

(5) Cebpa (CEBPA)
Cebpa promotes GM lineage differentiation while inhibiting ME line-
age differentiation'®”?, and promoting granulocyte differentiationin
particular®. Simulation results using the Paul et al.” and Dahlin et al.*
datasets agree with this role for Cebpa (Fig. 2b and Supplementary
Fig.13c). Although the ME lineage phenotype is not detected using
the Setty et al. dataset®, the GM lineage phenotype is successfully
reproduced (Supplementary Fig. 14c).

(6) Cebpe (CEBPE)
Cebpepromotes granulocyte lineage differentiation°, Simulation
results in all datasets agree with this role of Cebpe (Fig. 2c and Sup-
plementary Figs. 13d and 14d).

(7) Gfil (GFII)
Gfil promotes granulocyte lineage differentiation™®”*7, Simulation
results using the Paul et al.' and Dahlin et al.’® datasets agree with
thisrole of Gfil (Extended Data Fig. 5c and Supplementary Fig.13g).

(8) Gfilb (GFIIB)
Gfilb promotes ME lineage differentiation®. Simulation results
in all data suggest that Gfilb promotes erythroid differentiation
(Extended DataFig. 5b and Supplementary Fig.13f). The Mk pheno-
type is unclear in the simulation, probably owing to the small
numbers of Mk cells.

9) Irf8 (IRFS)
IrfSpromotes GM lineage differentiation. In particular, Irf8 promotes
monocyte differentiation as alineage switchbetween monocyte and
granulocyte bifurcation®. Simulation results in all data agree with
the role of Irf8 (Extended Data Fig. 5d and Supplementary Figs. 13h
and 14f).

(10) Lmo2 (LMO2)
Lmo2is a central factor in maintaining stemness in the MPP com-
partment®. Simulation results using the Dahlin et al. data*® agree
withthisrole. (Supplementary Fig.131). However, simulation results
using Paul et al. data' showed a different phenotype in erythrocyte
cells, suggesting that Lmo2is also crucial for promoting erythroid
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differentiation (Extended Data Fig. 6d). A function of Lmo2in pro-
moting erythroid differentiation was also reported”.

(11) Runx1 (RUNXI)
Runxl is an central factor in maintaining stemness in the MPP com-
partment” Simulation results in all datasets agree with this role of
RunxI (Extended Data Fig. 6b and Supplementary Fig. 13j).

(12) Fli1 (FLIT)
Fli1has context-dependent roles. Flil is akey factor for Mk differen-
tiation®, and for maintaining stemness in the stem and progenitor
comparment’®. The simulations consistently reproduce these phe-
notypes (Extended Data Fig. 6¢c and Supplementary Figs. 13k and
14h). In addition, a previous study reported that loss of Flil causes
dysregulation in later differentiation stages’, consistent in simula-
tions using the Paul et al. dataset™ (Extended Data Fig. 6¢).

Zebrafish lines

The zebrafish experiments were approved by the Institutional Animal
Care and Use Committees at Washington University in St Louis. All
animal experiments followed all relevant guidelines and regulation.
The following zebrafish lines were used in this study: AB* and floating
head™" (flh/noto) mutants®. Sample sizes and developmental stages
are stated below. Randomization was not performed as experimental
groups were determined by genotype. Blinding was performed for the
generation and analysis of the single-cell data.

CRISPR-Cas9-based mutagenesis of F,embryos

Togenerate somatic gene deletions in early zebrafish embryos, we used
CRISPR-Cas9 with two or three sgRNAs as described previously’. In
brief, sgRNAs were designed using CHOPCHOP (http://chopchop.cbu.
uib.no/) to target 5’ exons and the functional domain of each selected
TF and synthesized (IDT) (Supplementary Fig.20b). sgRNA sequences
arelisted in Supplementary Table 6. Duplex sgRNA was prepared by
mixing equimolar amounts of Alt-R crRNA and Alt-tracrRNA (IDT) in
IDT Duplex Buffer, heating to 95 °C and slowly cooling to room tem-
perature (RT) for 20 min. For the final mix of ribonucleoprotein com-
plex (RNPs), around 4 pM duplex sgRNA was assembled with around
5 UM CRISPR-Cas nuclease (Alt-RS.p. HiFi Cas9 Nuclease V3) in3 MKCI
0.025% and phenol red solution. The activity of HiFi Cas9 and selected
sgRNAs was confirmed with regular PCR, Sanger sequencing and capil-
lary electrophoresis, as described previously*’. In brief, DNA from eight
embryos for each combination of Cas9 and sgRNAs was extracted at
10 hpf. PCR amplification was performed with primers complementary
tosequences 250 bp upstream and downstream of the PAM sequences
(Supplementary Table 6). In addition, tracking of indels by decompo-
sition (TIDE)” analysis was used to predict the percentage of indels
at the target locus (Supplementary Fig. 20c¢). flA"/** mutant embryos
were generated by crossing heterozygotes and selecting mutants on
the basis of their morphology at 10 hpf.

Embryo collection and processing

Zebrafish embryos were produced by natural matings and injected at
the one-cell stage with around 2-4 nl of RNP solution into the blastodisc.
Embryos wereincubated at 28 °C after removing those damaged during
theinjection process. After 9 hpf,embryos were enzymatically dechori-
onated and deyolked as previously described®. In brief, embryos were
dechorionated by incubation in 1 mg ml™ pronase, washed with ‘blue
water’ and then transferred into plastic Petri dishes coated with 2%
agarose withmethylene blue water. Deyolking was performed manually
by ‘squeezing’ the yolk out of the blastoderm cap with a closed pair of
forcepsinserted between the embryonicblastoderm and the yolk. The
layer of cells detached from the yolk was transferred toa1.5-ml Eppen-
dorftubewith 50 pl of DMEM/F12 medium. For each experiment, 40-50
individual CRISPR-Cas9-targeted embryos (crispants) were prepared
for dissociationinto single-cell suspensions. Cell dissociation was per-
formed according to the previous report (Farrell et al.)*. DMEM/F12

mediumwas added to the Eppendorftube to bring the total volume to
200 pl. Cells were mechanically dissociated by flicking the tube 15 times
and pipetting 3 times. The cell mixture was spun at 300g for 2 min and
twice washed with PBS + 0.1% BSA. The same procedure was followed
to collect and dissociate cells from WT and fIh"/" mutant embryos.

RNA extraction and qRT-PCR

Total RNA was extracted from approximately 50 embryos for each
experimental condition, homogenized in Trizol (Life Technologies)
and further purified following Qiagen RNEasy Mini Kit instructions®.
One microgram of total RNA was used to synthesize cDNA with the
iScriptkit (BioRad) following the manufacturer’s protocol. SYBR green
(BioRad) qRT-PCR reactions were runina CFX Connect Real-Time PCR
detection system (BioRad) with three technical replicates. The primers
used are listed in Supplementary Table 6.

Whole-mountinsitu hybridization

Anantisense RNA probe for nogl was generated from plasmid pBSKII®!,
previously linearized with Notl, and used as a template for in vitro
transcription using NEB T7 RNA polymerase and RNTPs labelled with
digoxygenin (DIG) (Roche). WISH was performed according to a previ-
ousreport®2, In brief, embryos were fixed overnight in 4% paraformal-
dehyde (PFA) in phosphate-buffered saline (PBS), rinsed in PBS + 0.1%
Tween 20 (PBT) and dehydrated in methanol. Embryos were then rehy-
drated in PBT and incubated for at least 2 h in hybridization solution
(HM) with 50% formamide (in 0.75 M sodium chloride, 75 mM sodium
citrate, 0.1% Tween 20, 50 ug ml™ heparin (Sigma) and 200 pg ml™
tRNA) at 70 °C, then hybridized overnight at 70 °C with antisense probes
diluted approximately 1 ng pl™ in hybridization solution. Embryos were
washed through aseries of 10 min, 70 °C washes in HM diluted with 2x
SSCbuffer (0.3 Msodium chloride and 30 mM sodium citrate) oncein
each of the following: 75% HM, 50% HM, 25% HM and 100% 2x SSC. The
same gradual change from SSC to PBT was performed for the subse-
quentwashes. Embryos were blocked at RT for several hours in PBT with
2% goat serum and 2 mg ml™ bovine serum albumin (BSA), then incu-
bated overnightat 4 °C with anti-DIG antibody (Roche 11093274910) at
1:5,000 on a horizontal shaker (40 rpm). Embryos were rinsed six times
for 15 min per wash in PBT, and then in staining buffer (PBT+100 mM
Tris pH 9.5, 50 mM MgCl, and 100 mM NaCl) before staining with BM
Purple solution (Roche).

HCR

HCRwas performed accordingto the protocols provided by Molecular
Instruments (https://www.molecularinstruments.com). Embryos were
fixed at 10 hpfwith 4% PFA, dehydrated with methanol and rehydrated
asdescribed for WISH above. Embryos were pre-hybridized in hybridi-
zation buffer (Molecular Instruments) for 1 hat 37 °C and subsequently
incubated in 200 pl of hybridization solution containing 1 pg of probes
overnightat37 °C.Embryos were then washed four times in wash buffer
(Molecular Instruments) followed by two washes in 5x SSCT, containing
5% SSCbuffer (Thermo Fisher Scientific) and 0.1% Tween 20 (Sigma). For
the pre-amplification step, embryos were incubated in amplification
buffer (Molecular Instruments) for more than 1 h. At the same time,
hairpin mixtures were prepared by heating 12 pmol of hairpin 1 (H1)
and 2 (H2) for eachsampleto 95 °C for 90 s, followed by cooling in the
dark for 30 minat RT. Hl1 and H2 were mixed and then added to 200 pl
amplification buffer. Embryos were incubated in the hairpin mixture
at RT overnight in the dark. On the third day, embryos were washed
more than4 timesin 5x SSCT and either stored at 4 °C or mounted for
microscopy.

Microscopy

Embryos subjected to HCR were mounted in 3% low-melt agarose
in glass-bottomed 35-mm Petri dishes. Alternatively, embryos were
manually deyolked and flattened on a glass slide with one to two
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drops of 3% methylcellulose. Images of the anterior and posterior
body regions were taken by acquiring around 200-pm z-stacks with
al-um step, using a10x objective lens on a modified Olympus IX81
inverted spinning disc confocal microscope equipped with Voltranand
Cobolt steady-state lasers and a Hamamatsu ImagEM EM CCD digital
camera.

Image quantification with IMARIS software

Individual confocal 3D datasets were analysed with IMARIS 9.9 software
(Bitplane). On the basis of the DAPI signal, radii were determined by
taking half of the longest diameter of each nucleus, which was meas-
ured asasingle spot using the ‘spots’ view in IMARIS. These parameters
were applied in all images used for quantification. Nuclei positive for
specific probes withina selected areawereidentified using the ‘spots’
view as spots with asignalin the specific channel that overlapped with
DAPI spots. Analysis was performed on eight embryos: four anterior
and four posterior per experimental group.

10X Chromium procedure

For single-cell library preparation on the 10X Genomics platform, we
used: the Chromium Single Cell 3’ Library & Gel Bead Kit v2 (PN-120237),
Chromium Single Cell 3’ Chip kit v2 (PN-120236) and Chromiumi7 Mul-
tiplex Kit (PN-120262), according to the manufacturer’sinstructionsin
the Chromium Single Cell 3’ Reagents Kits V2 User Guide. Before cell
capture, methanol-fixed cells were placed onice, then spun at 3,000
rpmfor 5 minat4 °C, followed by resuspension and rehydrationin PBS,
as described previously®. A total of 17,000 cells were loaded per lane
of the chip, aiming to capture 10,000 single-cell transcriptomes. The
resulting cDNA libraries were quantified on an Agilent TapeStation
and sequenced on an Illumina NextSeq 550.

10X Chromium scRNA-seq data processing

10X alignment and digital GEM generation. The Cell Ranger v5.0.1
pipeline (https://support.10xgenomics.com/single-cell-gene-
expression/software/downloads/latest) was used to process datagener-
ated using the 10X Chromium platform. Cell Ranger processes, filters
andaligns reads generated with the Chromium single-cellRNA sequenc-
ing platform. Following this step, the default Cell Ranger pipeline was
implemented, and the filtered output datawere used for downstream
analyses.

Zebrafish scRNA-seq data processing

We used the R package Seurat (v.4.0.1) to process scRNA-seq data. Cells
were filtered by RNA count and percentage of mitochondrial genes
to remove low-quality cells. Data were normalized using the Seurat
NormalizeData() function. Variable genes were identified using the
FindVariableFeatures() function with nfeature =2,000. Data were
integrated by applying Seurat functions, SelectIntegrationFeatures(),
FindIntegrationAnchors() and IntegrateData() using default param-
eters. After datascaling, PCA and clustering were performed. The data
after cell calling may include cells with very low mRNA counts gener-
ated from non-cell GEMs and ambient RNA. To remove such non-cell
GEM data, we assessed the RNA count distribution to remove clusters
with anabnormal RNA count distribution. Scaling, PCA, clustering and
t-SNE were performed again after removing the cells above. t-SNE was
calculated using the first 30 principal components. We applied the
same pipelinetothe WT reference, flh mutant and crispant sScRNA-seq
data.

After data integration and standard scRNA-seq preprocessing, the
whole WT reference scRNA-seq data were annotated as follows. The
segmentation labels generated in the Farrell et al.** zebrafish scRNA-seq
dataweretransferred to the new scRNA-seqdatausing the Seurat func-
tion, FindTransferAnchors and TransferData, with default parameters.
We manually adjusted the cell annotation to account for differences
in the timing of cell collection. We generated cell-type annotations

for the clustering data generated in the previous step by referring to
the Farrell et al. dataset annotation labels. The WT reference cell-type
annotations were transferred to the other scRNA-seq data using the
same Seurat label transfer functions.

To compare cellidentity on the same 2D embedding space, we used
UMAP and the UMAP transfer function. We first calculated UMAP
with axial mesoderm clusters in WT reference datasets. Using this
pre-trained UMAP model, we projected KO and control axial meso-
derm data onto the same UMAP 2D embedding space constructed
with WT reference data.

Cell density was visualized using aKDE plot. First, we performed ran-
dom downsampling to adjust the cellnumber between the LOF control
samples. (i) Whole-cell populations were randomly subsampled into
asubset to have an equal cellnumber to the smaller dataset. (ii) Then,
axialmesoderm cells were selected and subjected to KDE calculation.
KDE was calculated with the scipy.stat.gaussian_kde function. The
calculated KDE was visualized with the matplotlib.pyplot.contour
function. We used the same contour threshold levels between the LOF
and control samples.

Inaddition to the UMAP transfer analysis above, the WT data, lhxla
crispant and tyr crispant data were analysed with UMAP without
data transfer (Supplementary Fig. 21). The 10 hpf axial mesoderm
cell data were integrated using Seurat functions (SelectIntegration-
Features(), FindIntegrationAnchors(), and IntegrateData() with
default parameters), and then UMAP graph and Louvain cluster
were calculated (RunPCA(), FindNeighbors(reduction = "pca”, dims
=1:30), RunUMAP(reduction = "pca”, dims = 1:30, min.dist = 1),
FindClusters(resolution =1.5)).

NMF

We performed NMF with our lhxIa crispants scRNA-seq dataset accord-
ing to a previous report®. The normalized UMI counts were standard-
ized, log-transformed and subjected to NMF calculation with sklearn.
decomposition.NMF(n_components=40). Each module was manually
annotated by its cluster enrichment and gene ontology calculated with
the top 30 genes with high module weight. Gene annotation, weight and
ontology are provided in Supplementary Table 3. Gene ontology was
calculated with the g:Profiler API (https://biit.cs.ut.ee/gprofiler/page/
apis). The background was set to all genes used in the NMF calculation.
Clusters governed by a single gene were excluded from our analysis.

Statistical testing

Details of all statistical tests performed are provided in Supplementary
Table 4. Scipy stat module (scipy version 1.7.0) was used for statistical
analysis. In summary, we selected the statistical method as follows:
(i) chi-square test was used to analyse the relationships of categorical
variables; (ii) Wilcoxon rank-sum test (Mann-Whitney Utest) was used
whenthe datadistribution type was not apparent; (iii) in cases in which
the datadistribution followed a Gaussian distribution, a t-test was used.
Where multiple comparisons were made, the Bonferroni correction
was applied. An alternative hypothesis (one-tailed or two-tailed) was
selected depending on the aim of the analysis.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Alldata, including sequencing reads and single-cell expression matri-
ces, areavailable from the GEO under accession codes GSE72859 (ref.™),
GSE112824 (ref.*?) and GSE145298 for the zebrafish profiling from this
study; and from ArrayExpress under accession codes E-MTAB-7325
(Talr” chimeras) and E-MTAB-7324 (wild-type chimeras). Simulations
can be explored at https://celloracle.org.
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Code availability

CellOracle code, documentation and tutorials are available at GitHub:
https://github.com/morris-lab/CellOracle.
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Extended DataFig.1|Overview of the CellOracle workflow. (a) Overview of
the CellOracle context-dependent GRN model construction method. First,
genomic DNA sequence and TF-binding-motifinformation provide all potential
regulatory links to construct a ‘base GRN.’ CellOracle uses scATAC-seq data to
identify accessible promoter and enhancer DNAsequencesin thisstep. The
DNAsequence of these regulatory elements is scanned for TF-binding motifs,
generatingalist of potential regulatory connections betweena TF and its
target genes (left). Next, active connections (described below), dependent on
cellstate or celltype, are identified fromall potential connectionsin the base
GRN. CellOracle builds machine-learning (ML) models for this step that predict
the quantitative relationship between the TF and the target gene. The ML
modelfitting results present the certainty of connection asadistribution,
enabling theidentification of GRN configurations by removinginactive
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ii) Calculate unitary vector between cell of interest and neighbor cells
in cell trajectory embedding space

V,: Coordinate of cell A in 2D embedding
VA =(13.1,41) V_ =(90,-21)

cell A

B

V, - Vector from point V, to V,
VA_B= VB - VA= (-22.1,-6.2)

iv) Repeat step (i) ~ (iii) for all cells using
cluster specific GRN models

to get cell state transition vector map for
each cell.

Vector map represents simulated small
initial cell identity shift in response to

TF perturbation.

connections fromthe base GRNstructure. (b—d) Overview of signal propagation
simulation. CellOracle leverages aninferred GRN model to simulate how target
geneexpressionchangesinresponse tothe changesinregulatory gene expression.
(b) Theinput TF perturbation (shownin yellow) is propagated side-by-side
within the network model. (¢) Input data and GRN coefficient matrix format
usedinthesignal propagation calculation. (d) Leveraging the linear predictive
ML algorithm features, CellOracle uses the GRN model as afunction to perform
thesignal propagation calculation. Iterative matrix multiplication steps enable
the estimation ofindirect and global downstream effects resulting from the
perturbation of asingle TF. (e) After signal propagation, the simulated gene
expression shift vectoris convertedintoa2D vector and projected onto the low-
dimensional space. Details are described in the Methods.



Article

a AUROC b EPR
Heart_0 4 0.842 B/ 0.6 0.56 0.779 O 0.528 0.496 Heart 0 0 0 0
Kidney_o 0.684 0 0 6 0.59 0 0.566 0.504 Kidney_o 0 (0] 3
Kidney_l 0) 0.66 0.59 0.6 0.59 0.609 0.64 0 6 Kidney_l 0] (0] 0
Kidney 2 4 0.848 [ 0.766 0 0.729 0.562 0.605 0.498 Kidney 2 0 3 3
s Liver 0 0 0.668 0.519 0.586 0 0.6 0 o Liver 0 0 0 1
8 it
S Liver 140 0.68 0.654 0.569 0.559 0.526 0 0.496 [EEEENTVNEY 1 1 0
o o -
& Liver 2 4G 0.6 0.64 0.564 0 0.514 0.528 0.506 & Liver 2 1 1 0
< <
% Lung 04 0.9 0.70 WSl 0.865 [N 0.509 0 Z Lung 0 (0] 2 5
1o
?  Lung 14 0.905 | 0.85 RNOCEZEVENEN 0.885 WOCEZEEGY: 0 ?  Lung_1 0 0 4
Lung_2 4 0.899 | 0.842 BUA:E 0.48 (R:BEE 0.446  0.539 0.519 Lung_2 0] 2 5
Lung_3 4 0.899 0.6 0.419 MORLEE O 0.49 0.49 Lung_3 0 0 1
Spleen_0 0.89 0 0 8 0.49 0.868 K3 0 0.499 Spleen_0 0 0 0
Spleen_1{ 0.89 ¢ 0 0.494 BE:LSEN 0.68 0 0.498 Spleen_1 0 1 0
i
\ed v
& &
¥ N <¥
X 2 cy’b@e
RS SRS
CellOracle GRN model
c d
0.90 1 —e— Heart 0 1400 4 —e— Heart_0
—e— Kidney_0 —eo— Kidney_0
0.85 —eo— Kidney_1 1200 —eo— Kidney_1
0.80 —e— Kidney_2 —e— Kidney_2
—e— Liver 0 1000 4 —e— Liver 0
8 0.751 —e— Liver_1 x 800 —e— Liver_1
X .70 o— Liver_2 o —o— Liver_2
2 —e— Lung_ 0 W 600 —e— Lung_0
0.65 1 »— Lung_1 - - »— Lung_1
—e— Lung_2 400 4 —e— Lung_2
0.60
—e— Lung_3 200 —e— Lung_3
0.55 —o— Spleen_0 . . PPy —e— Spleen_0
—e— Spleen_1 0 N = Spleen_1
400 300 200 100 50 2510 400 300 200 100 50 2510
number of cells number of cells
e AUROC f EPR
Heart_0 Heart_0
Kidney 0 Kidney 0 - 1226 1354
Kidney_1 Kidney_1 1695 1227 877
Kidney_2 Kidney_2 851 739 693
© Liver_0 © Liver_0 498 517 476
3 Liver_1 3 Liver_1 406 433
o o
& Liver2 & Liver2 380 426
< <
% Lung_0 0.784 % Lung_0 46 58
“  Lung_1- 0.813 Y Lung_1 51 62
Lung_2 0.796 Lung_2 49 58
Lung_3-  0.779 0.812 0.807 Lung_3 57 63
Spleen_0-  0.803 0.784 0.812 I Spleen_0 282 300
Spleen_1 0.779 0.802 Spleen_1 289
1 1
Heart Kidney Liver Lung Spleen Heart Kidney Liver Lung Spleen
Base GRN ATAC-seq data Base GRN ATAC-seq data
Extended DataFig. 2| Benchmarking ofinferred GRN configurations. Receiver Operating Characteristic curve) heat map. The top scoreineach
(a,b) Webenchmarked the CellOracle GRN modelling method against conditionis highlighted with ared rectangle. (b) EPR (Early Precision Ratio) heat
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Extended DataFig. 3 | CellOracle analysis of Paul et al. haematopoiesis
data. (a) Force-directed graph of 2,730 myeloid progenitor cells from Paul
etal.withall clusterslabelled. DC =Dendritic Cell; Ery =Erythrocyte;
GMP=Granulocyte-Monocyte Progenitor; Gran=Granulocyte; Lym =Lymphoid;
MEP =Megakaryocyte-Erythrocyte Progenitor; Mk = Megakaryocyte;

Mo =Monocyte. Weremoved the DC and Lymphoid cell clusters to focus on
myeloid cell differentiation. (b) Degree distribution of the MEP_O cluster GRN
model. After making the GRN model for each cluster, network edges were pruned.
Then, we counted the network degree (k), representing the number of network
edgesforeachgene.P(k)is the frequency of network degree k. The relationship
betweenk and P(k) was visualized after log transformation to test whether the
datafollow a power law, in which thereisalinear relationship between log(k)
andlog(P(k)). The R-squared value (R? was calculated to quantify the degree of

thelinear relationship. The same analysis was performed on the randomized
GRN (lower panel). (c) Top 30 genes ranked by degree centrality in the MEP_O
cluster GRN. (d) Gatal gene expression (log-transformed UMI) projected onto
the force-directed graph (left) and violin plot grouped by cell-type annotation
(right). (e) Spil gene expression (log-transformed UMI) projected onto the
force-directed graph (left) and violin plot grouped by cell-type annotation
(right). (f) Systematic KO simulation of TFs in the GM (Granulocyte-Monocyte)
and ME (Megakaryocyte-Erythrocyte) lineages. The sum of the negative
perturbationscoresis calculated for each TF to quantify the perturbation effect
along eachlineage. (g) Negative PS sum cut-off value calculation. Cut-off values
were calculated for GM and ME lineage simulations based on the distribution of
PS sumscore calculated from the randomized simulation result (false-positive
rate (FPR) =0.01).
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Extended DataFig. 4 |Perturbationscore calculationandinterpretation.
(a—d) Schematic for perturbation score (PS) calculation. CellOracle calculates
aPSby comparingthe direction of the simulated cell state transition with the
direction of cell differentiation. (a) Schematic for differentiation vector
calculations. First, the pseudotime dataare summarized by grid points. Then,
CellOracle calculates a2D gradient vector of the pseudotime data representing
the directionality of differentiation pseudotime. (b) Calculation of the inner-
productvalue between the differentiation vector and gene perturbation
vectors. First, the results of the perturbation simulation are converted into the

same vector field format as the differentiation vector field, and theinner
product of these vectorsis calculated to produce a PS. (c) A positive PS
(magenta) suggests the perturbation vector and differentiation vector share
asimilar direction, thus, suggesting the TF perturbation would promote
differentiation. In contrast, anegative PS (green) represents inhibited
differentiation. (d) Schematic for perturbation score interpretation. A positive
perturbationscore (green) predicts that the perturbation promotes
differentiation. Anegative perturbationscore (purple) representsinhibited
differentiation.
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KO simulation (magenta) implies that the TF normally promotes cell
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Extended DataFig.7|Dahlin et al. mouse haematopoiesis scRNA-seq data.
a,Force-directed graph of 44,082 myeloid progenitor cells from Dahlin et al.*®
with all clusterslabelled. MPP =Multipotent Progenitor; GMP = Granulocyte-
Monocyte Progenitor; Gran = Granulocyte; LP=Lymphoid progenitor; MEP =
Megakaryocyte-Erythrocyte Progenitor; Mk =Megakaryocyte; Mo=Monocyte;
Baso =Basophil. (b) Marker gene expression (log-transformed UMI) projected
onto the force-directed graph. Procr= MPP marker; Epor=Erythrocyte marker;
Itga2b =Mk marker; Flt3=LP marker; Mpo = Gran/Mo marker; Ms4¢a2=Baso

marker. (c) Pseudotime values projected onto the force-directed graph.

(d) Differentiation vector calculated from the pseudotime gradient. ME and
GMlineages are highlighted. (e) CsfIrand Cebpe gene expression projected
onto the force-directed graph. Theright panelis amagnified area of the GM
lineage. Csf1risamonocyte marker, and Cebpeis agranulocyte marker. (f) Early
lineage bifurcation between monocytes and granulocytesis observed onthe
force-directed graph.
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A Human hematopoiesis scRNA-seq (Setty et al., 2019) b Gene expression
PROCR EPOR ITGA2B
o~
s
High
o
< i
L
Low
~
P
FA1
c Pseudotime d Differentiation vectors
MAdA
MAd A
MhAhddAa
\ AL ddd
~ AR AR
~ e BAPS .
———— -~ YTy -
-~ APt - N
PO A s Y e >
STIIZIILLIlN N il N
¥ Pt S RPN w
sk K EF PPy Y 25
o\ Pf}rrrrvG Piasss
ittt d A AL 4 4 AR A D ED U
R A A AR A A R L AR A R R RN
D R R R R RN e
AR AAAAAAARAL S A A B 5 DB DS g i)
ittt A AAARAAAIIAA AR AL R BB B DD RSO
A AAAAAAARA A A2 0 AR A B DD D
AR A A FRFRFFFY YYYT L s
Py FEEVY ¥ TR
B R
G rreee
1 EFEFFFFVY
FEFF VY
FEIFFFY
* FEFEFFFY
el
144 dadd
44 dddd
rrrvy
rrry
Yrey
Yvyry
vy
Ty
“yy
¢ Erythrocyte
e CSF1R CEBP: f
High
B GMP Monocytes
' . N
\
Low
Granu Io!ytes
FA1
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Monocyte Progenitor; Gran = Granulocyte; MEP =Megakaryocyte-Erythrocyte  geneexpression projected onto the force-directed graph. Theright panelisa

Progenitor; Mk=Megakaryocyte. (b) Marker gene expression (log-transformed  magnified areaofthe GM lineage. The CSFIRis amonocyte marker,and CEBPE
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Erythrocyte marker; /ITGA2B=Mk marker; FLT3=LP marker; MPO = Gran/Mo granulocytesis observed onthe force-directed graph.




A Mouse gastrulation and organogenesis scRNA-seq dataset (Pijuan-Sala et al. 2019)
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Extended DataFig.9|CellOracle validation using experimentally
measured cell density in Tal1KO in Pijuan-Sala et al. gastrulation and
organogenesis scCRNA-seqdata. (a) UMAP plot of chimeric E8.5 embryos of
wild-type (WT) and TalIKO cells (25,307 cellsand 26,311 cells, respectively)

fromapublished scRNA-seqatlas of mouse gastrulation and organogenesis®.

(b) Tall gene expression (log-transformed UMI) projected onto the UMAP
plot. (c) Pseudotime gradient vector field used in the perturbation score (PS)
calculations. Developmental pseudotime was calculated using the DPT
method with WT chimerascRNA-seq dataand then convertedintoa2D
gradient vector field. (d) PS and cell transition vector field of the Tal1 KO
simulation. (e) The magnified area of erythrocyte differentiation predicts
inhibition or arrest of cell differentiation at the haematoendothelial
progenitor stage. (f) The Markov random walk simulation result predicts high
cell density in the haematoendothelial progenitor cluster and lower cell
density at later stages, indicating that Tal1 KO would induce differentiation

arrestatthe haematoendothelial progenitor stage. (g) Experimentally
measured Tall KO data. The kernel cell density of whole chimera (left), WT
(middle), and Tal1KO cells (right) were calculated after downsampling each
condition (25,307 cells) to control for sample size. Ascatter plot of whole
chimera cellsis shown as background (light grey) to highlight the overall cell
trajectory structure. (h) The bar plot shows the celltype compositionin each
sample (right panel). Overall, the experimental result aligns with the simulated
predictions. Therelative fold change between WT and KO samplesis also
showninSupplementary Table 4. (i) Perturbation score and cell transition
vector field of the Tall conditional KO simulationin the erythroid lineage. Tall
expression wassetto zerointhe Blood progenitor and Erythrocyte clusters;
CellOracle simulates KO effects in later erythroid differentiation stages.

(j) The Markov simulation result shows uniform cell density, predicting that
Tal1KO would notinduce differentiation arrestin a conditional KO targeting
later stages of erythroid differentiation.



b

@ Zebrafish embryogenesis data (Farrell et al., 2018) Axial mesoderm Ectoderm
® 03.8-OBLONG £200 - TFs after VG
® 04.3-DOME = selection
® 04.8-30% ) < mm TFs in GRN
® 053-50% “Q, \ 0 model
® 06.0-SHIELD E E E_E - [Fsoxpessed
o ® 07.0-60% Germ layer g 3 888 s1;5/eac:|r|s o
by ’ Other mesendoderm  branching point T <8 > °
= . o 08.075% s 9p g £ §'§ Elg'
09.0-90% g YU EgE=
. e 10.0-BUD = g3 S
s 11.0-3-Somite N % eP o
3 % 5
=, 12.0-6-Somite \L\
d noto KO simulation vector field in Notochord lineage € noto KO simulation vector field in Prechordal plate lineage
Simulation with Simulation with Simulation with Simulation with
normal GRNs randomized GRNs normal GRNs randomized GRNs
Ea
0
/
7
%
f noto/flh KO simulation Notochord cluster Prechordal_Plate cluster
A "
<
2
7
-Z o~
A
H =
h Pseudotime
® 17 0.7
®3 Ventral
71 mesoderm ® 26 Endoderm 06
- ® 12 ) 73 '
Paraxial
') ® 34 |mesoderm 74 05
5] » N N
| - Frmetanas g @5 75 | Intermediate g
® 18 © 76 0.4
52 | Ventrolateral 78
mesoderm 0.3
® 58 :
2
6 0.2
FA1 FA1
i Somite lineage j Somite lineage k noto KO simulation in somite lineage
pseudotime gradient vector
& @
S § 13
§
g 0
5
£%13
o

FA1

Extended DataFig.10|See next page for caption.



Article

Extended DataFig.10|CellOracle noto LOF simulation with Farrell et al.
zebrafish embryogenesis data. (a) 2D force-directed graph of a published
atlas* of zebrafishembryogenesis (n =25,711 cells). (b) Main trajectory
partitioned into four sub-branches. (c) Bar plots depicting the number of TFs
after variable gene selection (black), the number of TFs with >1 network edge in
theinferred GRN model (dark grey), and the number of TFs expressed in >1% of
cells (light grey). (d) CellOracle noto LOF simulation result (left) and simulation
results witharandomized GRN model (right) for the notochord lineage.
Simulated cell state transitions for each cell were converted to a vector field
and visualized with ascatter plot (shownin grey). (e) Noto LOF simulation for

the prechordal plate lineage. (f) CellOracle noto LOF simulation vectoris shown
atsingle-cellresolution. Cellsin the Notochord cluster are shownin orange,
while the Prechordal Plate cells are showninblue. Theright panelis the magnified
area. (g) Force-directed graph of the Other mesendoderm sub-branch with cell
clusterannotations fromthe Farrell etal. study® (n =10,265 cells). (h) Pseudotime
dataare projected onto the force-directed graph. (i) The Somite lineage, defined
inthe previous Farrell etal. study®, isinred. (j) Pseudotime gradient vector
field calculated for the Somite lineage. (k) Noto LOF simulation vector field in
thecells of the Somite lineage are shown with perturbationscores.
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Extended DataFig.11|Zebrafish scRNA-seq experiments for noto LOF
analysis. (a) Schematicillustration of zebrafish scRNA-seq experiments.

(1) Thereference dataset was generated using cells from 6, 8, and 10 hpf wild-
type (WT) embryos. To assess noto LOF, we also assayed (2) flh"/* mutants and
(3) noto/flh crispants at 10 hpf (-25 embryos per sample; Methods). (b) Cell
cluster composition comparing tyrcrispant (control) with WT cells, showing
similar cell distributions. After dataintegration, cell-type labels were transferred
fromthe whole WT 6, 8,and 10 hpfreference data (see Methods). (c) Sample
label projected onto the ¢-SNE plot. flh™/" mutant and control sample (left,

n=>57,175cells, 2 independent biological replicates for each sample), and t-SNE
plotofnoto crispantand tyrcrispantsamples (right, n = 9,185 cells, 2 biological,
3technicalreplicates for noto crispant; n=46,440 cells,n =3 independent
biological, Stechnical replicates for tyrcrispant). (d) Cluster annotation label
projected onto the ¢-SNE plot. WT zebrafish cells (left,n =38,606 cells, two
technical replicates per stage), flh™"* mutant and control sample (middle),
noto crispantand tyr crispant samples (right). (e) Cell cluster composition
comparing LOF samples with the control samples.
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Extended DataFig.12|Zebrafish notochord regulator screening with
CellOracle and initial experimental validation. (a) Overview of the systematic
LOF simulation and quantification method. CellOracle LOF simulation was
performed for232 TFsinthe Notochord lineage to calculate the perturbation
score (PS). The sum of the negative PS was calculated for each TFin the selected
areabetween digitized pseudotime O to 3, before lineage specification.

(b) Degree centrality score in the Notochord cluster GRN (left), gene expression
specificity scorein the Axialmesoderm sub-branch (middle), and mean
expression valuein the Axial mesodermsub-branch (right) were calculated
forthetop 30 TFsselectedin the systematic simulation to further prioritize
candidate genes for experimental validation. We selected genesin the top

50% ofthese scores. Please refer to the Methods for the detailed selection
procedure. We selected three candidates for experimental validation: lhxIa,
sebox, and irx3a. (c,e,g) Cell cluster compositioninaxial mesodermcells,
comparing LOF (lhxIa, sebox, and irx3a) samples with control samples. Cell
cluster composition comparison was performed with a Chi-square test,
Two-tailed Bonferroni correction. lhxlaexperiment: Early axial mesoderm

p=0.000229717, Early Notochord p=1.08x10"*, Notochord p = 4.38x107¢,
Prechordal Plate p =1.42x107'°. Sebox experiment: Early axial mesoderm
p=3.01x10"%, Early Notochord p =2.87x107%, Notochord p =4.38x10°¢,
Prechordal Plate p =4.17x107°. The left panels show cluster compositionin the
merged data, and the right panels show individual scRNA-seq batch. [hxIa LOF
produced the most significant changesin cell composition. (d,f,h) Comparison
of notochord marker gene expression between LOF and control samples.
scRNA-seq gene expressionin the Notochord lineage clustersis shownasa
violin plot. Late-stage notochord markers, twist2 and nogl, or broad/early
notochord markers, noto and tbxta, are visualized. Statistical tests: Wilcoxon
rank-sum test, two-tailed with Bonferroni p-value correction. lhxla
experiment: twist2p =7.118x107%, nogl p = 7.757x10°, noto p = 7.718x10™",
sebox experiment: twist2p = 8.022x107°, nogl p =3.184x107, thxta

p =1.551x10". irx3a experiment: twist2p = 0.000012. (c) n =720 cellsand 1,686
cells for [hxIacrispantand tyrcrispant, respectively. (e) n=1,216 cellsand 1,703
cellsfor sebox crispant and tyr crispant, respectively. (g) n=1,176 cellsand 1,651
cells for irx3acrispant and tyr crispant, respectively.
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