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Dissecting cell identity via network 
inference and in silico gene perturbation

Kenji Kamimoto1,2,3, Blerta Stringa1,3, Christy M. Hoffmann1,2,3, Kunal Jindal1,2,3, 
Lilianna Solnica-Krezel1,3 & Samantha A. Morris1,2,3 ✉

Cell identity is governed by the complex regulation of gene expression, represented 
as gene-regulatory networks1. Here we use gene-regulatory networks inferred from 
single-cell multi-omics data to perform in silico transcription factor perturbations, 
simulating the consequent changes in cell identity using only unperturbed wild-type 
data. We apply this machine-learning-based approach, CellOracle, to well-established 
paradigms—mouse and human haematopoiesis, and zebrafish embryogenesis— 
and we correctly model reported changes in phenotype that occur as a result of 
transcription factor perturbation. Through systematic in silico transcription factor 
perturbation in the developing zebrafish, we simulate and experimentally validate a 
previously unreported phenotype that results from the loss of noto, an established 
notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. 
Together, these results show that CellOracle can be used to analyse the regulation of 
cell identity by transcription factors, and can provide mechanistic insights into 
development and differentiation.

The expansion of single-cell technologies into perturbational omics is 
enabling the development of methods to characterize cell identity. For 
example, single-cell RNA sequencing (scRNA-seq) coupled with pooled 
CRISPR screens offers much promise for analysing the genetic regula-
tion of cell identity2–4, but cannot be readily used in many biological con-
texts. Computational methods to simulate single-cell phenotypes after 
perturbation are emerging, although many approaches still require 
experimental perturbation data for model training, and thus their scale 
and application are limited5. Moreover, previous deep-learning-based 
models represent a ‘black box’, which restricts the interpretation of 
gene-regulatory mechanisms that underlie the simulated biological 
events. In this respect, gene-regulatory network (GRN) modelling 
approaches are promising as they reconstruct systematic gene–gene 
associations from unperturbed single-cell omics data6–11. However, 
previous methods for analysing GRNs largely focus on the static net-
work structure, and determining how a static GRN governs cell identity 
during dynamic biological processes therefore remains a challenge. 
Scalable and interpretable approaches are required to understand how 
gene-regulatory mechanisms relate to observed complex single-cell 
phenotypes.

Here we present a strategy that overcomes these limitations by 
combining computational perturbation with GRN modelling. Cel-
lOracle integrates multimodal data to build custom GRN models that 
are specifically designed to simulate shifts in cell identity following 
transcription factor (TF) perturbation, providing a systematic and 
intuitive interpretation of context-dependent TF function in regulat-
ing cell identity. We apply CellOracle to well-characterized biological 
systems: haematopoiesis in mice and humans; and the differentiation 
of axial mesoderm into notochord and prechordal plate in zebrafish. 
In haematopoiesis, we show that CellOracle recapitulates well-known 

cell fate regulation governed by TFs. Furthermore, we apply CellOracle 
to systematically perturb TFs across zebrafish development, recover-
ing known and putative regulators of cell identity. Focusing on axial 
mesoderm, we predict and validate a prechordal plate phenotype after 
loss of function (LOF) of the prototypical notochord regulator, noto. 
Moreover, we also simulate and validate a role for the TF lhx1a in the 
development of axial mesoderm. Together, these results show that 
CellOracle can be used to infer and interpret cell-type-specific GRN 
configurations at high resolution, enabling mechanistic insights into 
the regulation of cell identity. CellOracle code and documentation are 
available at https://github.com/morris-lab/CellOracle and data can be 
explored at https://celloracle.org.

In silico gene perturbation using CellOracle
To gain mechanistic insight into the regulation of cell identity, we 
developed an in silico strategy to simulate changes in cell identity upon 
TF perturbation. CellOracle uses custom GRN modelling (Extended 
Data Fig. 1a) to simulate global downstream shifts in gene expression 
following knockout (KO) or overexpression of TFs. These simulated 
values are converted into a vector map of transitions in cell identity, 
which enables simulated changes in cell identity to be intuitively visu-
alized within a low-dimension space (Fig. 1a and Methods). In silico 
perturbation involves four steps. (1) Cell-type- or cell-state-specific 
GRN configurations are constructed using cluster-wise regularized 
linear regression models with multi-omics data. (2) Using these GRN 
models, shifts in target gene expression in response to TF perturba-
tion are calculated. This step applies the GRN model as a function to 
propagate the shift in gene expression rather than the absolute gene 
expression value, representing the signal flow from TF to target gene. 
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This signal is propagated iteratively to calculate the broad, down-
stream effects of TF perturbation, allowing the global transcriptional 
‘shift’ to be estimated (Extended Data Fig. 1b–d). (3) The cell-identity 
transition probability is estimated by comparing this shift in gene 
expression to the gene expression of local neighbours. (4) The transi-
tion probability is converted into a weighted local average vector to 
represent the simulated directionality of cell-state transition for each 
cell following perturbation of candidate TFs. In the final calculation 
step, the multi-dimensional gene expression shift vector is reduced 

to a two-dimensional (2D) vector, allowing for more robust predic-
tions against noise (Extended Data Fig. 1e). We purposefully limit the 
simulation output data to a 2D vector representing the predicted shift 
in cell identity because our goal is to model changes in identity rather 
than predicting absolute changes in gene expression levels. Further 
details of the CellOracle algorithm are provided in the Methods, includ-
ing validation of the range of simulated values; null or randomized 
model analysis; and hyperparameter evaluation (Supplementary  
Figs. 2–10).
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Fig. 1 | Overview of CellOracle and application to haematopoiesis.  
a, Simulation of cell-state transitions in response to TF perturbation. First, 
CellOracle constructs custom transcriptional GRNs using scRNA-seq and 
scATAC-seq data (left). Accessible promoter and enhancer peaks from 
scATAC-seq data are then combined with scRNA-seq data to generate 
cluster-specific GRN models (middle). CellOracle simulates the change in cell 
state in response to a TF perturbation, projecting the results onto the cell 
trajectory map (right). b, Force-directed graph of 2,730 myeloid progenitor 
cells from Paul et al.16. Twenty-four cell clusters (Louvain clustering) were 
organized into six main cell types. Mk, megakaryocytes. c, Differentiation 
vectors for each cell projected onto the force-directed graph. d, CellOracle 
simulation of cell-state transition in Spi1 KO simulation. Summarized cell-state 
transition vectors projected onto the force-directed graph. Vectors for each 

cell are shown in the inset. e, Spi1 KO simulation vector field with perturbation 
scores (PSs). f, Gata1 KO simulation with perturbation scores. g, Schematic of 
Spi1–Gata1 lineage switching. MPP, multipotent progenitor. h, Detail of Gata1 
simulation for the granulocyte branch. Left, cell-state transition vectors for 
each cell. Right, summarized vectors. i, Systematic KO simulation result of 90 
TFs in the GM and ME lineage is summarized as a scatter plot of the sum of 
negative perturbation scores (shown in log scale). Dashed lines represent 
cut-off values corresponding to false-positive rate (FPR) = 0.01. Genes are 
classified into four categories on the basis of their previously reported functions 
(Supplementary Table 2). The asterisk refers to Supplementary Fig. 11, where 
we expand on the predicted phenotype. All scores can be explored through our 
web application (https://celloracle.org).

https://celloracle.org/
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GRN inference and benchmarking with CellOracle
The CellOracle GRN model must represent regulatory connections as 
a directed network edge to support signal propagation in response to 
TF perturbation. Thus, we developed a custom GRN modelling method 
motivated by previous approaches that incorporate promoter and 
TF-binding information with scRNA-seq data to infer a directional GRN7 
(Extended Data Fig. 1a and Methods). First, using single-cell chromatin 
accessibility data (single-cell assay for transposase-accessible chroma-
tin using sequencing; scATAC-seq), we incorporate flexible promoter 
and enhancer regions, encompassing proximal and distal regulatory 
elements. This initial step uses the transcriptional start site (TSS) data-
base (http://homer.ucsd.edu/) and Cicero, an algorithm that identifies 
co-accessible scATAC-seq peaks, to distinguish accessible promoters 
and enhancers12. The DNA sequence of these elements is then scanned 
for TF-binding motifs, generating a ‘base GRN structure’ of all potential 
regulatory interactions in the species of interest (Extended Data Fig. 1a, 
left). This process is beneficial as it narrows the scope of possible regula-
tory candidate genes before model fitting (below) and helps define the 
directionality of regulatory edges in the GRN. To support GRN infer-
ence without requiring sample-specific scATAC-seq datasets, we have 
assembled a base GRN from a mouse scATAC-seq atlas13. We have also 
created general promoter base GRNs for ten commonly studied spe-
cies (Supplementary Table 1 and Methods). These base GRNs are built 
into the CellOracle library and provide an alternative solution when 
scATAC-seq data are unavailable.

In the second step of CellOracle GRN inference, we use scRNA-seq 
data to identify active connections in the base GRN, generating 
cell-type- or cell-state-specific GRN configurations for each cluster. 
In this step, we build a machine-learning model to predict the expres-
sion of target genes on the basis of TF expression (Extended Data Fig. 1a, 
right). Because CellOracle uses genomic sequences and information 
on TF-binding motifs to infer the base GRN structure and directional-
ity, it does not need to infer the causality or directionality of the GRN 
from expression data. This approach allows CellOracle to adopt a 
relatively simple modelling method for GRN inference—a regularized 
linear machine-learning model. Crucially, this strategy enables the 
above signal propagation to simulate TF perturbation. To support the 
use of a linear model, the gene expression matrix of scRNA-seq data 
is divided into several clusters in advance so that a single data unit 
for each fitting process represents a linear relationship rather than 
non-linear or mixed regulatory relationships. Furthermore, a Bayesian 
or bagging strategy enables the certainty of connection to be presented 
as a distribution; this allows weak or insignificant connections to be 
removed from the base GRN (Extended Data Fig. 1a, right), producing 
a cell-type- or cell-state-specific GRN configuration.

To benchmark our GRN inference method, we generated a com-
prehensive transcriptional ground-truth GRN using 1,298 chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) datasets for 
80 regulatory factors across 5 different tissues14. In addition to bench-
marking against diverse GRN inference algorithms, we also assessed the 
performance of our approach using different base GRNs, data sources 
and cell downsampling (Extended Data Fig. 2). Inference performance 
as assessed by the area under the receiver operating characteristic 
(AUROC) ranged from 0.66 to 0.85 for the promoter base GRN and 
0.73 to 0.91 for the scATAC-seq base GRN. Altogether, this benchmark-
ing demonstrates the accuracy of our transcriptional GRN modelling 
method with a diverse range of data sources. Combined with our signal 
propagation strategy, CellOracle can effectively interrogate network 
biology and cell-identity dynamics through in silico perturbation.

GRN analysis and TF KO in haematopoiesis
For validation, we aimed to reproduce known TF regulation of mouse 
haematopoiesis, a well-characterized differentiation paradigm15, by 

applying CellOracle to a 2,730-cell scRNA-seq atlas of myeloid pro-
genitor differentiation16 (Fig. 1b and Extended Data Fig. 3a). We con-
structed GRN models for each of the 24 myeloid clusters identified, 
representing megakaryocyte and erythroid progenitors (MEPs) and 
granulocyte–monocyte progenitors (GMPs), differentiating toward 
erythrocytes, megakaryocytes, monocytes and granulocytes (Fig. 1c). 
To test whether the CellOracle simulation could recapitulate known TF 
regulation of cell identity, we performed in silico gene perturbation 
using the inferred GRNs, and compared the CellOracle KO simulation 
results with previous biological knowledge and ground-truth KO data.

First, Spi1 (also known as PU.1) and Gata1 KO simulation is used to 
illustrate the CellOracle in silico perturbation analysis. The TF perturba-
tion simulation is visualized as a vector map on the 2D trajectory space 
(Fig. 1d and Supplementary Video 1), representing a potential shift in 
cell identity in response to TF perturbation. To enable the simulation 
results to be assessed systematically and objectively, we also devised 
a ‘perturbation score’ metric, which compares the directionality of the 
perturbation vector to the natural differentiation vector (Extended 
Data Fig. 4). A negative perturbation score suggests that TF KO delays 
or blocks differentiation (Extended Data Fig. 4b–d, purple). Conversely, 
a positive perturbation score suggests that the differentiation and KO 
simulation vectors share the same direction, indicating that loss of TF 
function promotes differentiation (Extended Data Fig. 4b–d, green). 
Spi1 KO simulation yielded positive perturbation scores for MEPs, 
whereas GMPs had negative perturbation scores (Fig. 1e), suggesting 
that Spi1 KO inhibits GMP differentiation and promotes MEP differentia-
tion. Inverse perturbation score distributions were produced for the 
Gata1 KO simulation (Fig. 1f). Comparing these predictions to previous 
reports17,18: PU.1 directs commitment to the neutrophil and monocyte 
lineages19,20, whereas GATA1 promotes the differentiation of erythroid 
cells21 and eosinophil granulocytes22–24. Overall, CellOracle accurately 
simulated the myeloid lineage switching governed by Gata1 and Spi1 
(refs. 15,25–27; Fig. 1g), including a relatively mild Gata1 KO phenotype in 
early granulocyte differentiation (Fig. 1h), which cannot be inferred 
from the low levels of Gata1 expression in granulocytes (Extended 
Data Fig. 3d). However, CellOracle did not detect a previously reported 
depletion of erythrocyte progenitors after Spi1 KO27,28, probably owing 
to changes in cell proliferation that are not predicted by the method.

We next evaluated eight additional TFs that have established roles in 
myeloid differentiation: Klf1 (also known as Eklf ), Gfi1b, Fli1, Gfi1, Gata2, 
Lmo2, Runx1 and Irf8 (refs. 15,29). CellOracle also correctly reproduced 
their reported KO phenotypes (Extended Data Figs. 5 and 6), which we 
extended to two additional datasets of mouse and human haematopoie-
sis (Extended Data Figs. 7 and 8 and Supplementary Figs. 13 and 14). In 
addition, we scaled up our simulation to all TFs that passed filtering 
(Methods) to systematically perturb 90 TFs in the dataset in the context 
of granulocyte–monocyte (GM) and megakaryocyte–erythroid (ME) 
differentiation. The reported cell-fate-regulatory functions of these 
TFs fall into three major categories: (1) ME lineage differentiation; (2) 
GM lineage differentiation; and (3) ME and GM lineage differentiation 
and maintenance of haematopoietic stem cell (HSC) identity (Sup-
plementary Table 2). We ranked the TFs on the basis of the sum of the 
negative perturbation score in the KO simulation, representing the 
potential of a TF potential to promote differentiation (Methods and 
Extended Data Fig. 3f).

To summarize this systematic TF perturbation, the summed negative 
perturbation scores are shown on a scatter plot (Fig. 1i). The dashed 
lines represent cut-off values calculated with a randomized vector 
(Extended Data Fig. 3g). The distribution of negative perturbation 
score sums for all TF KOs was highly consistent with known TF functions 
in differentiation. For example, TFs involved in ME lineage differentia-
tion are enriched on the top left side of the scatter plot. By contrast, 
GM differentiation factors are found at the bottom right. TFs that 
regulate both lineages are located on the top right side, whereas the 
lower-ranked factors are enriched for TFs that have not been reported 

http://homer.ucsd.edu/
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to regulate blood differentiation (Fig. 1i). Overall, 85% of the top 30 TFs 
ranked by this objective, systematic perturbation strategy are reported 
regulators of myeloid differentiation (Supplementary Table 2). Of  
the remaining TFs, several have no reported phenotypes in haema-
topoiesis at present, and therefore represent putative regulators. 
We note that the negative perturbation score metric does not always 
convey all information of the vector field, which might oversimplify the 
role of a TF. For example, Elf1 has a negative perturbation score in both 
the ME and the GM lineage, and its function is unclear on the summa-
rized perturbation score plot; however, closer inspection of the vector 
reproduced its reported phenotype in the ME lineage, highlighting 
the importance of investigating the simulation output (Supplemen-
tary Fig. 11). Finally, we directly compared the output of CellOracle to 
existing methods for identifying regulatory TFs using gene expres-
sion and chromatin accessibility, demonstrating the unique insights 
into context-dependent TF regulation that CellOracle can provide  
(Supplementary Figs. 15 and 16).

We further validated CellOracle simulation by focusing on several 
genes for which experimental KO scRNA-seq data are available: Cebpa, 
Cebpe and Tal1 (refs. 16,30). Cebpa is necessary for the initial differentia-
tion of GMPs, and its loss leads to a marked decrease in differentiated 
myeloid cells, accompanied by an increase in erythroid progenitors. By 
contrast, Cebpe is not required for initial GMP differentiation, but it is 
essential for the subsequent maturation of GMPs into granulocytes16. 
Notably, when we compare the simulation results to the experimental 
KO cell distribution, we must again consider the effects of TF pertur-
bation in the context of natural cell differentiation (Fig. 2a). Thus, we 
performed a Markov random walk simulation based on the differentia-
tion and simulation vectors to estimate how TF perturbation leads to 
changes in cell distribution (Supplementary Fig. 17 and Methods). For 
Cebpa, CellOracle simulation predicted that differentiation is inhibited 
at GMP–late GMP clusters, whereas early erythroid differentiation is 
promoted (Fig. 2b). The simulation recapitulates the experimental cell 
distribution (Fig. 2b,d). For Cebpe, CellOracle again correctly modelled 
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the inhibition of differentiation at the entry stage of granulocyte dif-
ferentiation (Fig. 2c), consistent with experimental KO data (Fig. 2d).

We also analysed a single-cell atlas of mouse organogenesis30 to 
simulate the loss of Tal1 function (Extended Data Fig. 9a–d). CellOra-
cle reproduced the inhibited differentiation of haematoendothelial 
progenitors in the Tal1 KO30 (Extended Data Fig. 9e–h). In addition, 
CellOracle showed that loss of Tal1 in later stages of erythroid differ-
entiation does not block cell differentiation (Extended Data Fig. 9i,j), 
consistent with previous conditional Tal1 KO experiments at equivalent 
stages31. Together, these results show that CellOracle effectively simu-
lates cell-state-specific TF function, corroborating previous knowl-
edge of the mechanisms that regulate cell fate in haematopoiesis and 
ground-truth in vivo phenotypes. Furthermore, systematic KO simu-
lations demonstrate that CellOracle enables objective and scalable in 
silico gene perturbation analysis.

Systematic TF KO simulations in zebrafish
Next, we applied CellOracle to systematically perturb TFs across 
zebrafish development. We made use of a 38,731-cell atlas of zebrafish 
embryogenesis published in a study by Farrell et al.32, comprising 25 
developmental trajectories that span zygotic genome activation to 
early somitogenesis. We first inferred GRN configurations for the 38 cell 
types and states identified in the Farrell et al. study32, splitting the main 
branching trajectory into four sub-branches: ectoderm; axial meso-
derm; other mesendoderm; and germ layer branching point (Extended 
Data Fig. 10a,b). In the absence of scATAC-seq data, we constructed 
a base GRN using promoter information from the UCSC database, 

obtaining information on TF-binding motifs from the Danio rerio 
CisBP motif database (Methods). Our benchmarking has shown that 
this approach produces reliable GRN inference (Extended Data Fig. 2). 
After preprocessing and GRN inference, we performed KO simulations 
for all TFs with inferred connections to at least one other gene (n = 232 
‘active’ TFs; Methods). The results of these simulations across all devel-
opmental trajectories can be explored at https://www.celloracle.org.

Our systematic TF KO simulation provides a valuable resource for 
identifying regulators of early zebrafish development and enables 
candidates to be prioritized for experimental validation. To further 
examine this comprehensive perturbation atlas, we focused on axial 
mesoderm differentiation, spanning 4.3 to 12 h post-fertilization 
(hpf) (Fig. 3a,b and Extended Data Fig. 10a,b). This midline structure 
bifurcates into notochord and prechordal plate lineages, represent-
ing a crucial patterning axis33, and has been extensively character-
ized, in part through large-scale genetic screens34. For these lineages, 
we performed systematic TF KO simulation and network analysis for 
232 candidate TFs (Extended Data Fig. 10c). CellOracle ranked noto, a 
well-characterized TF regulator of notochord development, as the top 
TF on the basis of degree centrality, along with other known regulators 
of notochord development (Fig. 3c). Degree centrality is a straight-
forward measure that reports how many edges (genes) are directly 
connected to a node (TF); highly connected nodes are likely to be essen-
tial for a biological process35,36. In zebrafish floating headn1/n1 (flhn1/n1) 
mutants, which lack a functional noto gene (noto is also known as flh)37, 
axial mesoderm does not differentiate into notochord, and assumes a 
somitic mesoderm fate instead38. Noto LOF simulation correctly repro-
duced the loss of notochord (Fig. 3d–f and Extended Data Fig. 10d–f),  
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Fig. 3 | CellOracle KO simulation with zebrafish embryogenesis data. 
 a, Two-dimensional force-directed graph of the axial mesoderm (AM) 
sub-branch (n = 1,669 cells) in a published zebrafish embryogenesis atlas 
(Farrell et al.32). Arrows indicate notochord cell differentiation (top) and 
prechordal plate differentiation (bottom). b, Conversion of URD-calculated 
pseudotime (left) into a 2D pseudotime gradient vector field (right). c, Degree 
centrality scores were used to rank the top 30 TFs in notochord (left) and 

prechordal plate (right). Black text denotes TFs. Grey text denotes non-TFs.  
d, Expression of noto projected onto the axial mesoderm sub-branch. e, Noto 
KO simulation vector and perturbation scores. f, Markov simulation to estimate 
cell density in the noto KO sample. The simulation predicted inhibited early 
notochord differentiation and promotion of prechordal plate differentiation, 
indicating a potential lineage switch.
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in addition to enhanced somite differentiation (Extended Data 
Fig. 10g–k). Moreover, CellOracle predicted a previously unknown (to 
our knowledge) consequence of noto LOF: enhanced prechordal plate 
differentiation (Fig. 3e,f). We also noted that later stages of notochord 
differentiation received a positive perturbation score, indicating that 
continued expression of noto is not required for notochord differentia-
tion. Alternatively, this finding could suggest that downregulation of 
noto is required for notochord maturation.

Experimental validation of noto LOF
Next, we experimentally validated the predicted expansion of pre-
chordal plate after noto LOF. First, we generated a 38,606-cell wild-type 

(WT) reference atlas from dissociated WT embryos at 6, 8 and 10 hpf 
(2 technical replicates per stage) and used Seurat’s label transfer 
function39 to cluster and label the WT reference cells according to the 
annotations in Farrell et al.32 (Extended Data Fig. 11). Subsetting the 
axial mesoderm clusters showed the expected bifurcation of cells into 
notochord and prechordal plate, accompanied by upregulation of 
marker genes (Fig. 4a,b). For visualization of axial mesoderm cells, 
we used a uniform manifold approximation and projection (UMAP) 
transfer function to enable comparable data visualization between 
different samples (Methods).

For experimental perturbation of noto, we generated and dissoci-
ated pools of 25 flhn1/n1 mutant embryos, recognized at 10 hpf by the 
lack of notochord boundaries, and sibling controls (flhn1/+ and flh+/+) 
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Fig. 4 | Experimental validation of zebrafish noto LOF predictions. a, UMAP 
plot of WT reference data for axial mesoderm (6, 8 and 10 hpf): notochord, early 
notochord, early axial mesoderm and prechordal plate clusters (n = 2,012 cells). 
Arrows indicate notochord differentiation (top) and prechordal plate differentiation 
(bottom). b, Gene expression (log-transformed unique molecular identifier 
(UMI) count) and developmental stage are projected onto the axial mesoderm 
UMAP plot. Noto and twist2 are expressed in notochord, whereas gsc marks the 
prechordal plate. c, Bar plots comparing cell cluster compositions between 
treatments and controls (left, flhn1/n1 mutants (10 hpf) and controls; right, noto 
crispants (10 hpf) and tyr crispants). Cluster compositions are presented as the 
proportion of each group normalized to the whole cell number. In both flhn1/n1 

mutants and noto crispants, the notochord is significantly depleted ( flhn1/n1: 
P = 5.55 × 10−52; noto: P = 1.39 × 10−33, chi-square test) and the prechordal plate is 
significantly expanded ( flhn1/n1: P = 1.07 × 10−4; noto: P = 5.01 × 10−18, chi-square 
test. ***P < 0.001; ****P < 0.0001). d–g, flhn1/n1 mutant or noto crispant data 
projected onto the WT axial mesoderm UMAP plot. d, Cluster annotation and 
sample label projected onto the UMAP plot. e, Kernel cell density contour plot 
shows control cell density (left) and flhn1/n1 mutant cell density (right). f, Cluster 
annotation and sample label projected onto the UMAP plot. g, tyr crispant cell 
density (left) and noto crispant cell density (right) shown on the kernel cell 
density contour plot.
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for scRNA-seq. We integrated these datasets and projected them onto 
the WT axial mesoderm reference atlas. In agreement with previous 
observations, we observed a significant depletion of cells labelled as 
notochord in flhn1/n1 mutants (−98%, relative to control, P = 5.55 × 10−52, 
chi-square test; Fig. 4c, left), concomitant with an expansion of the 
somite cluster (+41.3%; P = 5.90 × 10−29; Extended Data Fig. 11e, left). 
Furthermore, as predicted by noto LOF simulation, we observed a sig-
nificant expansion of the prechordal plate cluster in flhn1/n1 mutants 
(+38.6%; P = 1.07 × 10−4; Fig. 4c, left). Plotting cell density revealed 
stalled notochord differentiation and bifiurcation of the mid axial 
mesoderm, with excess prechordal plate cells (Fig. 4d,e), consistent 
with the noto LOF simulation (Fig. 3e,f). To orthogonally validate these 
results, we produced noto LOF with a modified CRISPR–Cas9 protocol 
that we have previously used to achieve near-complete gene disruption 
in F0 embryos injected with two noto-targeting guide RNAs (gRNAs)40 
(Methods). The resulting noto ‘crispants’ were dissociated at 10 hpf 
(9,185 cells, n = 2 biological and n = 3 technical replicates) and compared 
by single-cell analysis to controls that targeted the tyrosinase gene 
(tyr), which is not expressed until later in development (n = 46,440 
single cells, n = 3 biological and n = 5 technical replicates; Extended 
Data Fig. 11b). Analysis of cell-type composition confirmed a significant 
depletion of notochord, with an expansion of somitic mesoderm and 
prechordal plate (Fig. 4c, right, Fig. 4f,g and Extended Data Fig. 11e, 
right) in noto crispants, highly consistent with our flhn1/n1 mutant analy-
sis. Together, in addition to further validating the performance of Cel-
lOracle, these results highlight the ability of this approach to identify 
experimentally quantifiable phenotypes in well-characterized mutants 
that may have been previously overlooked owing to a reliance on gross 
morphology. We next sought to identify new LOF phenotypes in axial 
mesoderm development.

Discovery of axial mesoderm regulators
To identify novel TFs required for axial mesoderm differentiation, 
we prioritized TFs according to predicted KO phenotypes, focusing 
on early-stage differentiation before evident lineage specification 
(Extended Data Fig. 12a). The resulting ranked list contains several 
known notochord regulators, including noto (Fig. 5a, red and Supple-
mentary Table 2), confirming CellOracle’s capacity to model known 
developmental regulation. However, it is important to note that some 
known notochord regulators, such as foxa3 (ref. 41), were not identified 
as they are filtered out in the first steps of data processing owing to low 
expression. Systematic perturbation simulations for all lineages can be 
found at https://celloracle.org. As well as the axial mesoderm, we also 
performed an in-depth analysis of the adaxial mesoderm, which gives 
rise to somites. Overall, more than 80% of the top 30 TFs in this analysis 
were associated with somite differentiation (Supplementary Table 3).

In addition to known TFs, we identified several TFs with no previously 
reported role in axial mesoderm differentiation (Fig. 5a, black). We 
further prioritized candidate genes for experimental validation by GRN 
degree centrality, gene enrichment score in axial mesoderm and aver-
age gene expression value, selecting lhx1a, sebox and irx3a (Extended 
Data Fig. 12b). CellOracle predicts impaired notochord differentiation 
for all three genes after their LOF (Fig. 5b and Supplementary Fig. 19). 
However, no LOF studies describing axial mesoderm phenotypes that 
relate to these genes have, to our knowledge, been reported in zebrafish. 
Mouse Lhx1 (Lim1) KO embryos lack anterior head structures and kid-
neys42. In zebrafish, sebox (mezzo) has been implicated in mesoderm 
and endoderm specification43, whereas irx3a (ziro3) morphants exhibit 
changes in the composition of pancreatic cell types44.

We generated lhx1a, sebox and irx3a crispants (Supplementary 
Fig. 20b–d). We performed initial single-cell analyses at 10 hpf, inte-
grating crispant scRNA-seq datasets with the control gRNA reference 
atlas described above. We observed significant changes in cell-type 
composition and notochord marker expression in lhx1a crispants 

(Extended Data Fig. 12c,d and Supplementary Table 4). Notably, we 
found a more considerable reduction in the expression of late noto-
chord genes relative to broad notochord markers, suggesting that 
loss of lhx1a function inhibits the differentiation and maturation of 
notochord cells. We observed a slight yet significant reduction in the 
expression of the notochord markers twist2, nog1 and tbxta in sebox 
crispants (Extended Data Fig. 12e,f and Supplementary Table 4), con-
firming CellOracle’s predictions that lhx1a and sebox are regulators of 
axial mesoderm development. Irx3a crispants showed no significant 
phenotype in cell-type composition but exhibited a slight reduction in 
twist2 expression in the notochord (Extended Data Fig. 12g,h).

We extended lhx1a LOF characterization by performing four inde-
pendent biological replicates for lhx1a crispants (n = 45,582 cells) and 
tyr crispants (n = 76,163 cells, 5 biological and 7 technical replicates). 
CellOracle predicted inhibition of early axial mesoderm differentiation 
after lhx1a disruption, depleting both notochord and prechordal plate 
lineages (Fig. 5b). Indeed, the lhx1a crispants exhibited inhibition of 
axial mesoderm differentiation (Fig. 5c–e): a significant expansion 
of the early notochord cluster (+70.2%; P = 1.34 × 10−35), with a con-
comitant reduction of later notochord (−15.3%; P = 3.83 × 10−3) and 
prechordal plate clusters (−24.7%; P = 1.28 × 10−7). These phenotypes 
were reproducible across independent biological replicates (Extended 
Data Fig. 13e), validating the predicted inhibition of early axial meso-
derm differentiation (Fig. 5a,b).

To further analyse the lhx1a LOF axial mesoderm phenotype, we 
investigated global changes in gene expression across all cell types 
using non-negative matrix factorization (NMF), a method to quantify 
gene module activation45 (Supplementary Table 5 and Methods). We 
observed that a module corresponding to the early notochord was 
significantly activated in lhx1a crispants (P = 2.62 × 10−32; Fig. 5f,g). The 
top gene in this module is admp (Extended Data Fig. 13f, left), which is 
significantly upregulated in lhx1a crispant cells (P = 6.69 × 10−46; Fig. 5h) 
and encodes a known negative regulator of notochord and prechordal 
plate development46. By contrast, the late notochord module received 
a significantly lower score in the lhx1a crispant cells (P = 1.04 × 10−5; 
Fig. 5g, bottom). This module comprises late notochord marker genes, 
such as twist2 and nog1 (Extended Data Fig. 13f, right), which showed 
significantly lower expression in lhx1a crispant cells (P = 4.52 × 10−105 
and P = 4.95 × 10−105, respectively; Fig. 5h). Further, lhx1a crispant cells 
exhibited a higher somite module score (P = 5.19 × 10−25 and Supple-
mentary Table 5), suggesting that notochord cells may be redirected 
towards a somitic identity after lhx1a LOF. Overall, the NMF analysis 
supports the hypothesis that loss of lhx1a function induces global 
changes in gene expression that are related to inhibited notochord 
differentiation.

Finally, we confirmed the lhx1a LOF phenotype using orthogonal 
approaches. Hybridization chain reaction (HCR) RNA fluorescence 
in situ hybridization for nog1 (late notochord) and for gsc and twist2 
(prechordal plate and notochord, respectively) showed that these 
genes were significantly downregulated in lhx1a crispants (Fig. 5i–k). 
These results were further confirmed by quantitative reverse transcrip-
tion PCR (qRT-PCR) and whole-mount in situ hybridization against 
nog1 (Supplementary Fig. 22). Together, this experimental validation 
confirms the significant and consistent disruption of axial mesoderm 
development after loss of lhx1a function. In summary, these results 
demonstrate the ability of CellOracle to accurately predict known TF 
perturbation phenotypes, provide insight into previously characterized 
mutants and reveal regulators of established developmental processes 
in well-studied model organisms.

Discussion
The emerging discipline of perturbational single-cell omics enables 
regulators of cell identity and behaviour to be modelled and predicted5. 
For example, scGen combines variational autoencoders with latent 

https://celloracle.org/
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space vector arithmetic to predict cell infection response. However, 
this approach requires experimentally perturbed training data, which 
limits its scalability47. More importantly, it remains challenging to inter-
pret the gene program behind the simulated outcome using these 

previous computational perturbation approaches because they rely 
on complex black-box models; thus, the simulations lack any means 
to interpret how gene regulation relates to cellular phenotype. On 
the other hand, previous GRN analyses relied largely on static graph 
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Fig. 5 | Experimental validation of lhx1a as a putative regulator of zebrafish 
axial mesoderm development. a, Top 30 TFs according to predicted KO 
effects. Red and *: previously reported notochord regulators (Supplementary 
Table 2). lhx1a, sebox and irx3a were selected for experimental validation.  
b, lhx1a LOF simulation in the axial mesoderm sub-branch, predicting an 
inhibition of axial mesoderm differentiation from early stages. c, scRNA-seq 
validation of experimental LOF: cell cluster composition of the axial mesoderm 
clusters normalized to the whole cell number in lhx1a and tyr (control) crispant 
samples. Early notochord is significantly expanded (P = 1.34 x 10−35, chi-square 
test) and differentiated axial mesoderm populations are significantly depleted 
(notochord: P = 3.83 x 10−3; prechordal plate: P = 1.28 x 10−7, chi-square test) in 
lhx1a crispants. d, lhx1a and tyr crispant axial mesoderm cells at 10 hpf. Left, cell 
type annotation of lhx1 and tyr crispant cells. Right, lhx1a and control crispant 
data projected onto the WT UMAP. e, Control cell density (left, n = 2,342 cells) 
and lhx1a crispant cell density (right, n = 2,502 cells). f, Rug plot showing the 

difference in averaged NMF module scores between lhx1a and tyr crispants in 
notochord lineage cells. Black, cell-type-specific modules. Light grey, broad 
cluster modules. CM, cephalic mesoderm. g, Violin plot of NMF module score  
in notochord lineage cells (n = 1,918 lhx1a crispant and n = 2,616 tyr crispant 
cells. h, Violin plots of gene expression in the notochord (NC) lineage cells. 
****P < 0.0001, two-tailed Wilcoxon rank-sum test with Bonferroni correction.  
i, Quantification (number of spots in flattened HCR image) normalized to WT. 
Mean ± s.e.m. n = 2 independent biological replicates, 8 embryos per replicate. 
nog1: P = 0.0022 (WT versus lhx1a crispant), P = 0.0052 (tyr versus lhx1a 
crispant); gsc: P = 0.00042 (WT versus lhx1a crispant), P = 0.0018 (tyr versus 
lhx1a crispant); twist2: P = 0.0011 (WT versus lhx1a crispant), P = 0.0012 (tyr 
versus lhx1a crispant); two-sided t-test. j, Representative HCR images for nog1 
expression (yellow) in whole embryos at 10 hpf. k, Representative flattened 
HCR images of 10 hpf embryos stained with probes against gsc (yellow) and 
twist2 (red); nuclei are stained with DAPI (blue). Scale bars, 300 μm.
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theory and could not consider cell identity as a dynamic property. Here 
we present a strategy that overcomes these limitations by integrating 
computational perturbation with GRN modelling. CellOracle uses GRN 
models to yield mechanistic insights into the regulation of cell identity; 
simulation and vector visualization based on the custom network model 
enables the interpretable, scalable and broadly applicable analysis of 
dynamic TF function.

We validated CellOracle using various in vivo differentiation mod-
els, verifying its efficacy and its robustness to complex and noisy 
biological data. CellOracle simulates shifts in cell identity by consid-
ering systematic gene-to-gene relationships for each cell state using 
multimodal data, generating a complex context-dependent vector 
representation that is not possible using differential gene expression 
or chromatin accessibility alone. For example, the role of Gata1 in gran-
ulocyte differentiation would probably not be predicted given its low 
expression in this cell type. However, CellOracle could corroborate this 
relatively mild Gata1 phenotype. Furthermore, CellOracle correctly 
reproduced the reported early-stage-specific cell-fate-regulatory 
role of Tal1 in erythropoiesis, which is impossible to uncover on the 
basis of the constitutive expression of Tal1 throughout all erythroid 
stages. This capacity of CellOracle means that it could identify previ-
ously unreported phenotypes. For example, the LOF simulation of a 
well-characterized regulator of zebrafish axial mesoderm develop-
ment, noto, predicted a previously unreported expansion of the pre-
chordal plate, which we experimentally validated. This case suggests 
that noto has a role in suppressing alternate fates, which could only 
be predicted by the integrative simulation using the GRN and cell 
differentiation trajectory together. Finally, although we focus on TF 
KO and LOF in this study, we have also recently demonstrated that 
CellOracle can be used to simulate TF overexpression48.

We note some limitations of the method. First, CellOracle visualizes 
the simulation vector within the existing trajectory space; thus, cell 
states that do not exist in the input scRNA-seq data cannot be analysed. 
Nevertheless, existing single-cell data collected after severe develop-
mental disruption do not report the emergence of new transcriptional 
states in the context of loss of gene function, which suggests extensive 
canalization even during abnormal development32, supporting the use 
of CellOracle to accurately simulate TF perturbation effects. Second, 
we emphasize that TF simulation is limited by input data availability 
and data quality. For example, a perturbation cannot be simulated if a 
TF-binding motif is unknown or TF expression is too sparse, as we note 
in the case of foxa3 in zebrafish41.

Our application of CellOracle to systematically simulate TF pertur-
bation has revealed regulators of a well-characterized developmental 
paradigm: the formation of axial mesoderm in zebrafish. Although 
zebrafish axial mesoderm has been well-characterized through 
mutagenesis screens, a role for Lhx1a in these developmental stages 
is likely to have gone unreported owing to the absence of gross mor-
phological phenotypical changes at 10 hpf after disruption of lhx1a 
(ref. 49). However, our ability to predict and validate such a phenotype 
showcases the power of single-cell computational and experimental 
approaches, enabling finer-resolution dissection of gene regulation 
even in well-characterized systems. Moreover, CellOracle provides 
information at intermediate steps in a given developmental pathway, 
obviating the need for gross morphological end-points. Indeed, each 
simulation can be thought of as many successive predictions along a 
lineage, although we stress that experimental validation is essential 
to validate CellOracle’s predictions where possible. However, apply-
ing these approaches to emerging systems or where experimental 
intervention is not feasible promises to accelerate our understanding 
of how cell identity is regulated. For example, in the context of human 
development, we have recently applied CellOracle to predict candi-
date regulators of medium spiny neuron maturation in human fetal 
striatum50, demonstrating the power of in silico perturbation where 
experimental approaches cannot be deployed.
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Methods

CellOracle algorithm overview
The CellOracle workflow consists of several steps: (1) base GRN con-
struction using scATAC-seq data or promoter databases; (2) scRNA-seq 
data preprocessing; (3) context-dependent GRN inference using 
scRNA-seq data; (4) network analysis; (5) simulation of cell identity 
following TF perturbation; and (6) calculation of the pseudotime gradi-
ent vector field and the inner-product score to generate perturbation 
scores. We implemented and tested CellOracle in Python (versions 3.6 
and 3.8) and designed it for use in the Jupyter notebook environment. 
CellOracle code is open source and available on GitHub (https://github.
com/morris-lab/CellOracle), along with detailed descriptions of func-
tions and tutorials.

Base GRN construction using scATAC-seq data
In the first step, CellOracle constructs a base GRN that contains 
unweighted, directional edges between a TF and its target gene. 
CellOracle uses the regulatory region’s genomic DNA sequence and 
TF-binding motifs for this task. CellOracle identifies regulatory can-
didate genes by scanning for TF-binding motifs within the regulatory 
DNA sequences (promoter and enhancers) of open chromatin sites. 
This process is beneficial as it narrows the scope of possible regula-
tory candidate genes in advance of model fitting and helps to define 
the directionality of regulatory edges in the GRN. However, the base 
network generated in this step may still contain pseudo- or inactive 
connections; TF regulatory mechanisms are not only determined by 
the accessibility of binding motifs but may also be influenced by many 
context-dependent factors. Thus, scRNA-seq data are used to refine 
this base network during the model fitting process in the next step of 
base GRN assembly.

Base GRN assembly can be divided into two steps: (i) identification of 
promoter and enhancer regions using scATAC-seq data; and (ii) motif 
scanning of promoter and enhancer DNA sequences.

Identification of promoter and enhancer regions using scATAC-seq 
data. CellOracle uses genomic DNA sequence information to define 
candidate regulatory interactions. To achieve this, the genomic regions 
of promoters and enhancers first need to be designated, which we infer 
from ATAC-seq data. We designed CellOracle for use with scATAC-seq 
data to identify accessible promoters and enhancers (Extended Data 
Fig. 1a, left panel). Thus, scATAC-seq data for a specific tissue or cell type 
yield a base GRN representing a sample-specific TF-binding network. 
In the absence of a sample-specific scATAC-seq dataset, we recom-
mend using scATAC-seq data from closely related tissue or cell types 
to support the identification of promoter and enhancer regions. Using 
broader scATAC-seq datasets produces a base GRN corresponding to 
a general TF-binding network rather than a sample-specific base GRN. 
Nevertheless, this base GRN network will still be tailored to a specific 
sample using scRNA-seq data during the model fitting process. The final 
product will consist of context-dependent (cell-type or state-specific) 
GRN configurations.

To identify promoter and enhancer DNA regions within the 
scATAC-seq data, CellOracle first identifies proximal regulatory DNA 
elements by locating TSSs within the accessible ATAC-seq peaks. 
This annotation is performed using HOMER (http://homer.ucsd.
edu/homer/). Next, the distal regulatory DNA elements are obtained 
using Cicero, a computational tool that identifies cis-regulatory 
DNA interactions on the basis of co-accessibility, as derived from 
ATAC-seq peak information12. Using the default parameters of Cicero, 
we identify pairs of peaks within 500 kb of each other and calculate a 
co-accessibility score. Using these scores as input, CellOracle then 
identifies distal cis-regulatory elements defined as pairs of peaks with 
a high co-accessibility score (≥0.8), with the peaks overlapping a TSS. 
The output is a bed file in which all cis-regulatory peaks are paired with 

the target gene name. This bed file is used in the next step. CellOracle 
can also use other input data types to define cis-regulatory elements. 
For example, a database of promoter and enhancer DNA sequences or 
bulk ATAC-seq data can serve as an alternative if available as a .bed file.

For the analysis of mouse haematopoiesis that we present here, we 
assembled the base GRN using a published mouse scATAC-seq atlas con-
sisting of around 100,000 cells across 13 tissues, representing around 
400,000 differentially accessible elements and 85 different chromatin 
patterns13. This base GRN is built into the CellOracle library to support 
GRN inference without sample-specific scATAC-seq datasets. In addi-
tion, we have generated general promoter base GRNs for several key 
organisms commonly used to study development, including 10 species 
and 23 reference genomes (Supplementary Table 1).

Motif scan of promoter and enhancer DNA sequences. This step 
scans the DNA sequences of promoter and enhancer elements to iden-
tify TF-binding motifs. CellOracle internally uses gimmemotifs (https://
gimmemotifs.readthedocs.io/en/master/), a Python package for TF 
motif analysis. For each DNA sequence in the bed file obtained in step 
(i) above, motif scanning is performed to search for TF-binding motifs 
in the input motif database.

For mouse and human data, we use gimmemotifs motif v.5 data. Cel-
lOracle also provides a motif dataset for ten species generated from 
the CisBP v.2 database (http://cisbp.ccbr.utoronto.ca).

CellOracle exports a binary data table representing a potential con-
nection between a TF and its target gene across all TFs and target genes. 
CellOracle also reports the TF-binding DNA region. CellOracle provides 
pre-built base GRNs for ten species (Supplementary Table 1), which can 
be used if scATAC-seq data are unavailable.

scRNA-seq data preprocessing
CellOracle requires standard scRNA-seq preprocessing in advance 
of GRN construction and simulation. The scRNA-seq data need to be 
prepared in the AnnData format (https://anndata.readthedocs.io/en/
latest/). For data preprocessing, we recommend using Scanpy (https://
scanpy.readthedocs.io/en/stable/) or Seurat (https://satijalab.org/
seurat/). Seurat data must be converted into the AnnData format using 
the CellOracle function, seuratToAnndata, preserving its contents. 
In the default CellOracle scRNA-seq preprocessing step, zero-count 
genes are first filtered out by UMI count using scanpy.pp.filter_
genes(min_counts=1). After normalization by total UMI count per cell 
using sc.pp.normalize_per_cell(key_n_counts=‘n_counts_all’), highly 
variable genes are detected by scanpy.pp.filter_genes_dispersion(n_
top_genes=2000~3000). The detected variable gene set is used for 
downstream analysis. Gene expression values are log-transformed, 
scaled and subjected to dimensional reduction and clustering. The 
non-log-transformed gene expression matrix (GEM) is also retained, 
as it is required for downstream GRN calculation and simulation.

Context-dependent GRN inference using scRNA-seq data
In this step of CellOracle GRN inference, a machine-learning model is 
built to predict target gene expression from the expression levels of 
the regulatory genes identified in the previous base GRN refinement 
step. By fitting models to sample gene expression data, CellOracle 
extracts quantitative gene–gene connection information. For signal 
propagation, the CellOracle GRN model must meet two requirements: 
(1) the GRN model needs to represent transcriptional connections as 
a directed network edge; and (2) the GRN edges need to be a linear 
regression model. Because of this second constraint, we cannot use 
pre-existing GRN inference algorithms, such as GENIE3 and GRNboost 
(refs. 7,51). CellOracle leverages genomic sequences and information on 
TF-binding motifs to infer the base GRN structure and directionality, 
and it does not need to infer the causality or directionality of the GRN 
from gene expression data. This allows CellOracle to adopt a relatively 
simple machine-learning model for GRN inference—a regularized linear 

https://github.com/morris-lab/CellOracle
https://github.com/morris-lab/CellOracle
http://homer.ucsd.edu/homer/
http://homer.ucsd.edu/homer/
https://gimmemotifs.readthedocs.io/en/master/
https://gimmemotifs.readthedocs.io/en/master/
http://cisbp.ccbr.utoronto.ca/
https://anndata.readthedocs.io/en/latest/
https://anndata.readthedocs.io/en/latest/
https://scanpy.readthedocs.io/en/stable/
https://scanpy.readthedocs.io/en/stable/
https://satijalab.org/seurat/
https://satijalab.org/seurat/


machine-learning model. CellOracle builds a model that predicts the 
expression of a target gene on the basis of the expression of regulatory 
candidate genes:

∑x b x c= + ,j
i

n

i j i j
=0

,

where xj is single target gene expression and xi is the gene expres-
sion value of the regulatory candidate gene that regulates gene xj. bi,j 
is the coefficient value of the linear model (but bi,j = 0 if i = j), and c  
is the intercept for this model. Here, we use the list of potential regula-
tory genes for each target gene generated in the previous base GRN 
construction step (ii).

x x x x x∈ { , , … } = Regulatory candidate TFs of genei n j0 1

The regression calculation is performed for each cell cluster in par-
allel after the GEM of scRNA-seq data is divided into several clusters. 
The cluster-wise regression model can capture non-linear or mixed 
regulatory relationships. In addition, L2 weight regularization is applied 
by the Ridge model. Regularization not only helps distinguish active 
regulatory connections from random, inactive, or false connections in 
the base GRN but also reduces overfitting in smaller samples.

The Bayesian Ridge or Bagging Ridge model provides the coefficient 
value as a distribution, and we can analyse the reproducibility of the 
inferred gene–gene connection (Extended Data Fig. 1a, right). In both 
models, the output is a posterior distribution of coefficient value b:









∼ ∑x b x c ϵNormal + ,j

i

n

i j i j
=1

,

∼b μ σNormal( , )b b

where μb is the centre of the distribution of b, and σb is the standard 
deviation of b. The user can choose the model method depending on 
the availability of computational resources and the aim of the analysis; 
CellOracle’s Bayesian Ridge requires fewer computational resources, 
whereas the Bagging Ridge tends to produce better inference results 
than Bayesian Ridge. Using the posterior distribution, we can calculate 
P values of coefficient b; one-sample t-tests are applied to b to estimate 
the probability (the centre of b = 0). The P value helps to identify robust 
connections while minimizing connections derived from random noise. 
In addition, we apply regularization to coefficient b for two purposes: 
(i) to prevent coefficient b from becoming extremely large owing to 
overfitting; and (ii) to identify informative variables through regu-
larization. In CellOracle, the Bayesian Ridge model uses regularizing 
prior distribution of b as follows:

b σNormal(0, )b∼

∼σ Gamma (10 , 10 )b
−1 −6 −6

σb is selected to represent non-informative prior distributions. This 
model uses data in the fitting process to estimate the optimal regu-
larization strength. In the Bagging Ridge model, custom regularization 
strength can be manually set.

For the computational implementation of the above machine-learning 
models, we use a Python library, scikit-learn (https://scikit-learn.org/
stable/). For Bagging Ridge regression, we use the Ridge class in the 
sklearn.linear_model and BaggingRegressor in the sklearn.ensemble 
module. The number of iterative calculations in the bagging model can 
be adjusted depending on the computational resources and available 
time. For Bayesian Ridge regression, we use the BayesianRidge class in 
sklearn.linear_module with the default parameters.

Simulation of cell identity following perturbation of regulatory 
genes
The central purpose of CellOracle is to understand how a GRN governs 
cell identity. Toward this goal, we designed CellOracle to make use of 
inferred GRN configurations to simulate how cell identity changes  
following perturbation of regulatory genes. The simulated gene expres-
sion values are converted into 2D vectors representing the direction of 
cell-state transition, adapting the visualization method previously used 
by RNA velocity52. This process consists of four steps: (i) data preprocess-
ing; (ii) signal propagation within the GRN; (iii) estimation of transition 
probabilities; and (iv) analysis of simulated transition in cell identity.
(i)	 Data preprocessing
For simulation of cell identity, we developed our code by modify
ing Velocyto.py, a Python package for RNA-velocity analysis (https:// 
velocyto.org). Consequently, CellOracle preprocesses the scRNA-seq 
data per Velocyto requirements by first filtering the genes and imputing 
dropout. Dropout can affect Velocyto’s transition probability calcula-
tions; thus, k-nearest neighbour (KNN) imputation must be performed 
before the simulation step.
(ii)	 Within-network signal propagation
This step aims to estimate the effect of TF perturbation on cell identity. 
CellOracle simulates how a ‘shift’ in input TF expression leads to a ‘shift’ 
in its target gene expression and uses a partial derivative 

x

x

∂

∂
j

i
. As we use 

a linear model, the derivative 
x

x

∂

∂
j

i
 is a constant value and already cal

culated as bi,j in the previous step if the gene j is directly regulated by 
gene i:
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x
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∂

∂
= .
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And we calculate the shift of target gene xΔ j in response to the shift 
of regulatory gene xΔ i:

x
x

x
x b xΔ =

∂

∂
Δ = Δ .j

j
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i i j i,

As we want to consider the gene-regulatory ‘network’, we also con-
sider indirect connections. The network edge represents a differenti-
able linear function shown above, and the network edge connections 
between indirectly connected nodes is a composite function of the 
linear models, which is differentiable accordingly. Using this feature, 
we can apply the chain rule to calculate the partial derivative of the 
target genes, even between indirectly connected nodes.
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i j

∈ { , , … } = Gene expression of ordered network

nodes on the shortest path from gene to gene .
k n0 1

For example, when we consider the network edge from gene 0 to 1 
to 2, the small shift of gene 2 in response to gene 0 can be calculated 
using the intermediate connection with gene 1 (Supplementary Fig. 1).
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In summary, the small shift of the target gene can be formulated by 
the multiplication of only two components, GRN model coefficient bi,j 
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and input TF shift xΔ i. In this respect, we focus on the gradient of gene 
expression equations rather than the absolute expression values so 
that we do not model the error or the intercept of the model, which 
potentially includes unobservable factors within the scRNA-seq data.

The calculation above is implemented as vector and matrix  
multiplication. First, the linear regression model can be shown as  
follows.

X X B C′ = ⋅ + ,

where the RX ∈ N1×  is a gene expression vector containing N genes, 
C ∈ N1×R  is the intercept vector, B ∈ N N×R  is the network adjacency 
matrix, and each element bi,j is the coefficient value of the linear model 
from regulatory gene i to target gene j.

First, we set the perturbation input vector RXΔ ∈ N
input

1× , a sparse 
vector consisting of zero except for the perturbation target gene i. For 
the TF perturbation target gene, we set the shift of the TF to be simu-
lated. The CellOracle function will produce an error if the user enters 
a gene shift corresponding to an out-of-distribution value.

Next, we calculate the shift of the first target gene:

X X BΔ = Δ ⋅ .nsimulated, =1 input

However, we fix the perturbation target gene i value, and the xΔ i  
retains the same value as the input state. Thus, the following calculation 
will correspond to both the first and the second downstream gene shift 
calculations.

X X BΔ = Δ ⋅ .n nsimulated, =2 simulated, =1

Likewise, the recurrent calculation is performed to propagate the 
shift from gene to gene in the network. Repeating this calculation for 
n iterations, we can estimate the effects on the first to the nth indirect 
target gene (Extended Data Fig. 1b–d):

X X BΔ = Δ ⋅ .n nsimulated, simulated, −1

CellOracle performs three iterative cycles in the default setting, 
sufficient to predict the directionality of changes in cell identity (Sup-
plementary Figs. 4 and 5). We avoid a higher number of iterative calcu-
lations as it might lead to unexpected behaviour. Of note, CellOracle 
performs the calculations cluster-wise after splitting the whole GEM 
into gene expression submatrices on the basis of the assumption that 
each cluster has a unique GRN configuration. Also, gene expression val-
ues are checked between each iterative calculation to confirm whether 
the simulated shift corresponds to a biologically plausible range. If the 
expression value for a gene is negative, this value is adjusted to zero. 
The code in this step is implemented from scratch, specifically for Cel-
lOracle perturbations using NumPy, a python package for numerical 
computing (https://numpy.org).
(iii)	Estimation of transition probabilities
From the previous steps, CellOracle produces a simulated gene expres-
sion shift vector RXΔ ∈ N

simulated
1×  representing the simulated initial 

gene expression shift after TF perturbation. Next, CellOracle aims to 
project the directionality of the future transition in cell identity onto 
the dimensional reduction embedding (Fig. 1a, right and Extended 
Data Fig. 1e). For this task, CellOracle uses a similar approach to Velocyto 
(https://github.com/velocyto-team/velocyto.py). Velocyto visualizes 
future cell identity on the basis of the RNA-splicing information and 
calculated vectors from RNA synthesis and degradation differential 
equations. CellOracle uses the simulated gene expression vector 

XΔ simulated instead of RNA-velocity vectors.
First, CellOracle estimates the cell transition probability matrix 
RP ∈ M M×  (M is number of cells): pi,j, the element in the matrix P, is 

defined as the probability that cell i will adopt a similar cell identity to 

cell j after perturbation. To calculate pi,j, CellOracle calculates the Pear-
son’s correlation coefficient between di and ri,j:

p
corr r d T

corr r d T
=

exp( ( , )/ )

∑ exp( ( , )/ )
,ij

ij i

j G ij i∈

where di is the simulated gene expression shift vector RXΔ ∈ N
simulated

1×  
for cell i, and r ∈ij

N1×R  is a subtraction of the gene expression vector 
RX ∈ N1×  between cell i and cell j in the original GEM. The value is nor-

malized by the Softmax function (default temperature parameter T is 
0.05). The calculation of pi.j uses neighbouring cells of cell i. The KNN 
method selects local neighbours in the dimensional reduction embed-
ding space (k = 200 as default).
(iv)	Calculation of simulated cell-state transition vector
The transition probability matrix P is converted into a transition vector 
V ∈i,simulated

1×2R , representing the relative cell-identity shift of cell i in 
the 2D dimensional reduction space, as follows: CellOracle calculates 
the local weighted average of vector V V∈ ,i j i j,

1×2
,R  denotes the 2D  

vector obtained by subtracting the 2D coordinates in the dimensional 
reduction embedding between cell i and cell j ( j Gcell ∈ ).

∑V p V=i
j G

ij i j,simulated
∈

,

(v)	Calculation of vector field
The single-cell resolution vector Vi,simulated is too fine to interpret the 
results in a large dataset consisting of many cells. We calculate the 
summarized vector field using the same vector averaging strategy as 
Velocyto. The simulated cell-state transition vector for each cell is 
grouped by grid point to get the vector field, RV = L L

vector field
2× × , (L is 

grid number, default L is 40). Rv ∈grid
2, an element in the Vvector field, is 

calculated by the Gaussian kernel smoothing.

∑v K g V V= ( , ) ,i H σ i igrid ∈ ,simulated ,simulated

where the Rg ∈ 2 denotes grid point coordinates, H is the neighbour 
cells of g and Kσ is the Gaussian kernel weight:
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Calculation of pseudotime gradient vector field and inner- 
product score to generate a perturbation score
To aid the interpretation of CellOracle simulation results, we quantify 
the similarity between the differentiation vector fields and KO simula-
tion vector fields by calculating their inner-product value, which we 
term the perturbation score (PS) (Extended Data Fig. 4). Calculation 
of the PS includes the following steps:
(i)		Differentiation pseudotime calculation
Differentiation pseudotime is calculated using DPT, a diffusion-map- 
based pseudotime calculation algorithm, using the scanpy.tl.dpt func-
tion (Extended Data Fig. 4a, left). CellOracle also works with other 
pseudotime data, such as Monocle pseudotime and URD pseudo-
time data. For the Farrell et al.32 zebrafish scRNA-seq data analysis, we 
used pseudotime data calculated by the URD algorithm, as described  
previously32.
(ii)	Differentiation vector calculation based on pseudotime data
The pseudotime data are transferred to the n by n 2D grid points (n = 40 
as default) (Extended Data Fig. 4a, centre). For this calculation, we imple-
mented two functions in CellOracle: KNN regression and polynomial 
regression for the data transfer. We choose polynomial regression when 
the developmental branch is a relatively simple bifurcation, as is the 
case for the Paul et al.16 haematopoiesis data. We used KNN regres-
sion for a more complex branching structure, such as the Farrell et al.32 
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zebrafish development data. Then, CellOracle calculates the gradient 
of pseudotime data on the 2D grid points using the numpy.gradient 
function, producing the 2D vector map representing the direction of 
differentiation (Extended Data Fig. 4a, right).
(iii)	�Inner-product value calculation between differentiation and KO 

simulation vector field
Then, CellOracle calculates the inner-product score (perturbation score 
(PS)) between the pseudotime gradient vector field and the perturba-
tion simulation vector field (Extended Data Fig. 4b). The inner product 
between the two vectors represents their agreement (Extended Data 
Fig. 4c), enabling a quantitative comparison of the directionality of 
the perturbation vector and differentiation vector with this metric.
(iv)	� PS calculation with randomized GRN model to calculate PS cut-off 

value
CellOracle also produces randomized GRN models. The randomized 
GRNs can be used to generate dummy negative control data in Cel-
lOracle simulations. We calculated cut-off values for the negative PS 
analysis in the systematic KO simulation. First, the negative PS is cal-
culated for all TFs using either a normal or a randomized vector. The 
score distribution generated from the randomized vector was used as 
a null distribution. We determined the cut-off value corresponding to a 
false-positive rate of 0.01 by selecting the 99th percentile value of PSs 
generated with randomized results (Extended Data Fig. 3g).

Network analysis
In addition to CellOracle’s unique gene perturbation simulation, Cel-
lOracle’s GRN model can be analysed with general network structure 
analysis methods or graph theory approaches. Before this network 
structure analysis, we filter out weak or insignificant connections. GRN 
edges are initially filtered on the basis of P values and absolute values of 
edge strength. The user can define a custom value for the thresholding 
according to the data type, data quality and aim of the analysis. After 
filtering, CellOracle calculates several network scores: degree central-
ity, betweenness centrality and eigenvector centrality. It also assesses 
network module information and analyses network cartography. For 
these processes, CellOracle uses igraph (https://igraph.org).

Validation and benchmarking of CellOracle GRN inference
To test whether CellOracle can correctly identify cell-type- or 
cell-state-specific GRN configurations, we benchmarked our new 
method against diverse GRN inference algorithms: WGCNA, DCOL, 
GENIE3 and SCENIC. WGCNA is a correlation-based GRN inference algo-
rithm, which is typically used to generate a non-directional network53; 
DCOL is a ranking-based non-linear network modelling method54; and 
GENIE3 uses an ensemble of tree-based regression models, and aims 
to detect directional network edges. GENIE3 emerged as one of the 
best-performing algorithms in a previous benchmarking study55. The 
SCENIC algorithm integrates a tree-based GRN inference algorithm 
with information on TF binding7.

Preparation of input data for GRN inference
We used the Tabula Muris scRNA-seq dataset for GRN construction 
input data56. Cells were subsampled for each tissue on the basis of 
the original tissue-type annotation: spleen, lung, muscle, liver and 
kidney. Data for each tissue were processed using the standard Seurat 
workflow, including data normalization, log transformation, finding 
variable features, scaling, principal component analysis (PCA) and 
Louvain clustering. The data were downsampled to 2,000 cells and 
10,000 genes using highly variable genes detected by the correspond-
ing Seurat function. Cell and gene downsampling were necessary to 
run the GRN inference algorithms within a practical time frame: we 
found that some GRN inference algorithms, especially GENIE3, take a 
long time with a large scRNA-seq dataset, and GENIE3 could not com-
plete the GRN inference calculation even after several days if the whole 
dataset was used.

GRN inference method
After preprocessing, the exact same data were subjected to each GRN 
inference algorithm to compare results fairly. We followed the pack-
age tutorial and used the default hyperparameters unless specified 
otherwise. Details are as follows. WGCNA: we used WGCNA v.1.68 with 
R 3.6.3. WGCNA requires the user to select a ‘power parameter’ for 
GRN construction. We first calculate soft-thresholding power using 
the ‘pickSoftThreshold’ function with networkType=“signed”. Other 
hyperparameters were set to default values. Using the soft-thresholding 
power value, the ‘adjacency’ function was used to calculate the GRN 
adjacency matrix. The adjacency matrix was converted into a linklist 
object by the ‘getLinkLis’ function and used as the inferred value of 
the WGCNA algorithm. DCOL: we used nlnet v.1.4 with R 3.6.3. The 
‘nlnet’ function was used with default parameters to make the DCOL 
network. The edge list was extracted using the ‘as_edgelist’ function. 
DCOL infers an undirected graph without edge weights. We assigned 
the value 1.0 for the inferred network edge and 0.0 for other edges. 
The assigned value was used as the output of the DCOL algorithm. 
GENIE3: we used GENIE3 v.1.8.0 with R 3.6.3. The GRN weight matrix 
was calculated with the processed scRNA-seq data using the ‘GENIE3’ 
function and converted into a GRN edge and weight list by the ‘getLin-
kList’ function. GENIE3 provides a directed network with network 
weight. The weight value was directly used as the inferred value of the 
GENIE3 algorithm. SCENIC: we used SCENIC v.1.2.2 with R 3.6.3. The 
SCENIC GRN calculation involves multiple processes. The calculation 
was performed according to SCENIC’s tutorial (https://rdrr.io/github/
aertslab/SCENIC/f/vignettes/SCENIC_Running.Rmd). First, we created 
the initialize settings configuration object with ‘initializeScenic’. Then 
we calculated the co-expression network using the ‘runGenie3’ func-
tion, following the GRN calculation with several SCENIC functions; 
runSCENIC_1_coexNetwork2modules, runSCENIC_2_createRegulons 
and runSCENIC_2_createRegulons. We used the ‘10kb’ dataset for the 
promoter information range. The calculated GRN information was 
loaded with the ‘loadInt’ function, and the ‘CoexWeight’ value was used 
as the inferred value of the SCENIC algorithm.

Ground-truth data preparation for GRN benchmarking
Cell-type-specific ground-truth GRNs were generated in the same man-
ner as in a previous benchmarking study55. Here, we selected tissues 
commonly available in the Tabula Muris scRNA-seq dataset, mouse 
sci-ATAC-seq atlas data and ground-truth datasets: heart, kidney, liver, 
lung and spleen. The ground-truth data were constructed as follows. (i) 
Download all mouse TF ChIP–seq data as bed files from the ChIP-Atlas 
database (https://chip-atlas.org). (ii) Remove datasets generated under 
non-physiological conditions. For example, we removed ChIP–seq 
data from gene KOs or adeno-associated virus treatment. (iii) Remove 
data that include fewer than 50 peaks. (iv) Select peaks detected in 
multiple studies. (v) Group data by TF and remove TFs if the number 
of detected target genes is less than ten peaks. (vi) Convert data into a 
binary network: each network edge is labelled either 0 or 1, represent-
ing its ChIP–seq binding between genes. These steps yielded tissue- or 
cell-type-specific ground-truth data for 80 TFs, corresponding to 1,298 
experimental datasets.

GRN benchmarking results
GRN inference performance was evaluated by the AUROC and the early 
precision ratio (EPR), following the evaluation method used in a pre-
vious benchmarking study55. CellOracle and SCENIC outperformed 
WGCNA, DCOL and GENIE3 based on AUROC (Extended Data Fig. 2a). 
This is because CellOracle and SCENIC filter out non-transcriptional 
connections (that is, non-TF–target gene connections) and other 
methodologies detect many false-positive edges between non-TFs. 
CellOracle with a scATAC-seq atlas base GRN performed better than 
CellOracle with a promoter base GRN and SCENIC. This difference was 
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mainly derived from sensitivity (or true-positive rate). With scATAC-seq 
data, CellOracle captures a higher number of regulatory candidate 
genes. Considering EPR, representing inference accuracy for top k 
network edges (k = number of network edges with the label ‘1’ in the 
ground-truth data), CellOracle performed well compared to other 
approaches (Extended Data Fig. 2b): GENIE3 and WGCNA assigned a 
high network edge weight to many non-transcriptional connections, 
resulting in many false-positive edges for the highly ranked inferred 
genes.

The CellOracle GRN construction method was analysed further to 
assess the contribution of the base GRN. We performed the same GRN 
benchmarking with a scrambled motif base GRN or no base GRN. For the 
scrambled motif base GRN, we used scrambled TF-binding-motif data 
for the base GRN construction. For the no base GRN analysis, selection 
of regulatory candidate genes was skipped, and all genes were used as 
regulatory candidate genes. As expected, the AUROC scores decreased 
when we used the scrambled motif base GRN (ranked 12/13 in AUROC, 
11/13 in EPR; Extended Data Fig. 2a,b), decreasing even further in the 
no base GRN model (13/13; Extended Data Fig. 2a,b). The scrambled 
motif base GRN did not detect many regulatory candidate TFs, pro-
ducing lower sensitivity. However, the scrambled motif base GRN can 
still work positively by removing connections from non-TF genes to 
TFs, functioning to filter out false-positive edges, and resulting in a 
better score relative to the no base GRN model. In summary, the base 
GRN is primarily important to achieve acceptable specificity, and the 
scATAC-seq base GRN increases sensitivity.

Next, we used CellOracle after downsampling cells to test how cell 
number affects GRN inference results. Cells were downsampled to 
400, 200, 100, 50, 25 and 10 cells and used for GRN analysis with the 
scATAC-seq base GRN. GRNs generated with 400, 200, 100 and 50 cells 
received comparable or slightly reduced AUROC scores. The AUROC 
score decreased drastically for GRNs generated with 25 and 10 cells 
(Extended Data Fig. 2c). EPR was relatively robust even with small cell 
numbers (Extended Data Fig. 2d).

We performed additional benchmarking to investigate data 
compatibility between the base GRN and scRNA-seq data sources. 
A tissue-specific base GRN was generated separately using bulk 
ATAC-seq data57. We focused on the same five tissue types as above. 
Unprocessed bulk ATAC-seq data were downloaded from the NCBI 
database using the SRA tool kit (spleen: SRR8119827; liver: SRR8119839; 
heart: SRR8119835; lung: SRR8119864; and kidney: SRR8119833). After 
FASTQC quality check (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), fastq files were mapped to the mm9 reference 
genome and converted into bam files. Peak calling using HOMER 
was used to generate bed files from the bam files. Peak bed files were 
then annotated with HOMER. Peaks within 10 kb around the TSS were 
used. Peaks were sorted by the ‘findPeaks Score’ generated by the 
HOMER peak-calling step, and we used the top 15,000 peaks for base 
GRN construction. These peaks were scanned with the gimmemotifs 
v.5 vertebrate motif dataset, which is the same motif set we use for 
scATAC-seq base GRN construction.

We compared benchmarking scores between GRN inference results 
generated from different base GRNs. Overall, GRN construction per-
formed best when the same tissue type for ATAC-seq base GRN construc-
tion and scRNA-seq was used (10/13 in AUROC, 11/13 in EPR; Extended 
Data Fig. 2e,f). The score was lower with different tissue types combined 
between the base GRN and scRNA-seq data. In summary, benchmarking 
confirmed that our GRN construction method performs well for the 
task of transcriptional GRN inference.

CellOracle evaluation
Evaluation of simulation value distribution range. We investigated 
a range of simulated values to confirm that the signal propagation 
step does not generate an out-of-distribution prediction. Specifical-
ly, we assessed the distribution of the sum of the simulated shift and 

original gene expression, which correspond to the simulated expression 
level (termed ‘simulation gene expression level’ here for explanatory 
purposes: Xsimulation gene expression level = Xoriginal + ΔXsimulated,). We evaluate all 
genes, comparing the simulation gene expression level with the original 
gene expression distribution. To detect out-of-distribution data, we 
calculated the maximum exceedance percentage, representing the 
percentage difference of the maximum value of the simulated gene 
expression level compared to the maximum value of the wild-type 
gene expression value. The higher maximum exceedance indicates a 
bigger difference between simulated and wild-type values, identifying 
out-of-distribution values. For the Spi1 KO simulation with the Paul 
et al. haematopoiesis dataset16, we present the top four genes showing 
the maximum exceedance values (Supplementary Fig. 2). The simula-
tion expression levels of even these genes appear very similar to the 
original wild-type distributions of gene expression. For example, in 
the Ly86 simulated value distribution, 99.963% of all cells are within 
the wild-type gene expression range. Only 0.037% of cells exhibit a 
Ly86 gene simulation value outside the wild-type distribution, but 
the maximum difference is only 3.2%. We designed CellOracle to simu-
late a minimal relative shift vector rather than an out-of-distribution 
prediction, confirmed by this analysis. The functions we have used 
for these analyses are implemented in CellOracle. Users can check 
simulation value distributions, and CellOracle will produce a warning 
if out-of-distribution simulations occur.

To further explore the minimum number of cells with minor 
out-of-distribution values, we generated a simulation vector in which 
the out-of-distribution values are clipped into the wild-type distribu-
tion range. The simulated cell-identity shift vector of clipped values 
is indistinguishable compared to the original results (Supplementary 
Fig. 2b–e), confirming that the CellOracle simulation is not relying on 
these out-of-distribution values. The out-of-distribution value can be 
clipped if we add ‘clip_delta_X=True’ in the CellOracle signal propaga-
tion function. Thus, users can ensure the simulation is not relying on 
out-of-distribution values.

CellOracle simulation results generated with randomized GRN 
or no signal propagation
We performed KO simulation with randomized GRN models to clarify 
the necessity of the GRN signal propagation simulation. In addition, 
we calculated cell-identity vectors without the signal propagation 
step; the cell-identity shift vector was calculated solely on the basis of 
input TF expression loss, thus representing the information from the 
expression pattern of only a single TF. The vector map in Supplementary 
Fig. 3 shows Gata1 KO simulation results and Spi1 KO simulation results 
with an intact GRN coefficient matrix, randomized GRN matrix or no 
GRN signal propagation. The randomized GRN analysis results and 
no GRN signal propagation results show only slight cell-identity shift 
vectors (Supplementary Fig. 3b,c,e,f). Although very subtle vectors 
can be observed, most expected simulation results are not obtained. 
Thus, we confirmed that the GRN signal propagation strategy has an 
essential role in the CellOracle KO simulation.

Evaluation of signal propagation number
We next tested the number of iterations at the signal propagation step. 
We performed KO simulations using two independent mouse haema-
topoiesis datasets: Paul et al.16 and Dahlin et al.58. For several TFs, we 
tested different numbers of signal propagation rounds in the KO simula-
tions across independent clusters. First, focusing on the Paul dataset, 
simulation vector fields for Spi1 and Gata1, with 0, 1 and 3 rounds of 
signal propagation, were investigated (Supplementary Fig. 4). The 
simulation under hyperparameter n = 0 shows the vector calculated 
without any signal propagation within the GRN; that is, the vector is 
calculated from only the difference of the input TF gene expression 
shift. This n = 0 simulation shows almost no phenotype, showing the 
necessity of the GRN signal propagation process. Next, a comparison 
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of vector fields from n = 1 and n = 3 simulations shows similar results. 
This is not surprising given the following. (1) Most coefficient values in 
the GRN are small, ranging between −1 and 1 (Supplementary Fig. 4d).  
(2) Accordingly, the signal will be attenuated over the propagation pro-
cess in most cases. (3) This also means that the first signal propagation 
step will produce the most significant shifts relative to the later steps. 
However, when scrutinizing the vectors, we observe a more evident shift 
in cell identity around the late GMP cluster and the early granulocytes 
in the n = 3 Gata1 KO vectors compared to n = 1 vectors. The results sug-
gest that the second and third rounds of signal propagation increase 
the sensitivity to detect small shifts by adding the second and third 
rounds of downstream gene effects, respectively.

To quantify these observations and determine whether there is an 
ideal number of signal propagation rounds, we investigated the L1-norm 
of ΔX, representing the sum of the magnitudes of each simulated gene 
expression shift. The L1-norm of ΔX is almost saturated at the n = 3 in 
most cases (Supplementary Fig. 4c). We also performed these analy-
ses with the Dahlin haematopoiesis dataset58 (Supplementary Fig. 5). 
Overall, the results are consistent with our analysis of the Paul data. 
Again, we observe that the L1-norm of ΔX is saturated at relatively small 
n values in most cases. However, Cebpa is an outlier in this analysis, 
in which the delta X length gradually and continuously increases as n 
increases. We next examined the vector field of Cebpa with various n 
(Supplementary Fig. 6). Despite such divergence of the L1-norm of ΔX, 
the vector field of Cebpa showed consistent results, suggesting that 
the calculation strategy for cell-identity shift is robust using the local 
neighbour vectors (Extended Data Fig. 1e).

Altogether, at n = 3, the simulated shift vectors almost converge, 
producing consistent results. In rare cases, the L1-norm of ΔX might 
show divergence with n. However, the n = 3 simulation results are 
consistent with higher n values, which might generate unexpected 
behaviour owing to signal divergence. On the basis of these analyses, 
we recommend that users perform three iterations for the signal propa-
gation step.

Selection of dimensionality reduction method
CellOracle simulation with UMAP and t-SNE using Paul et al. haema-
topoiesis data. We used UMAP and t-distributed stochastic neighbour 
embedding (t-SNE) for the perturbation simulation analysis to show 
how the choice of dimensionality reduction affects CellOracle results. 
We used Scanpy to construct UMAP or t-SNE plots using the Paul et al. 
haematopoiesis dataset16. In the UMAP (Supplementary Fig. 7a), we 
observe a similar trajectory that agrees with the force-directed graph 
(Fig. 1b). However, monocyte and granulocyte branches on the UMAP 
are relatively less resolved. This notwithstanding, the simulation results 
using the UMAP (Supplementary Fig. 8, top) lead to the same conclu-
sion as Fig. 1. For example, in the Gata1 KO simulation, we correctly 
predict inhibited differentiation along the MEP lineage whereas GMP 
differentiation is promoted. Furthermore, we predict inhibited GMP 
to granulocyte differentiation, consistent with our force-atlas-based 
presentation in Fig. 1h. In comparison, the overall structure of the t-SNE 
graph is consistent with the force-directed and UMAP graphs, although 
it lacks resolution (Supplementary Fig. 7b). However, the t-SNE results 
still agree with Fig. 1, just at a lower resolution (Supplementary Fig. 8, 
bottom). In conclusion, we stress that the choice of the dimensional 
reduction algorithm is crucial to sensitively analyse the cell differen-
tiation trajectory.

Guidance for selecting the dimensionality reduction method. For 
the force-directed graph calculation, we recommend using Scanpy’s 
sc.pl.draw_graph function59 or SPRING60. Both internally use force 
atlas 2 (ref. 61). Compared to UMAP, force-directed graphs can capture 
more fine-branching structures but can be unstable if the data have 
many branches that can overlap. To avoid branch overlap, PAGA cell 
trajectory information can be used to initiate the force-directed graph 

calculation: https://scanpy.readthedocs.io/en/stable/tutorials.html# 
https://github.com/theislab/paga.

We recommend using force-directed graphs as a first choice because 
they generally produce a high-resolution lineage structure. However, 
we recommend UMAP as a reliable alternative if overlapping branches 
are observed. In our CellOracle tutorial, we show the detailed guide 
and code for the dimensionality reduction implementation, includ-
ing data preprocessing: https://morris-lab.github.io/CellOracle. 
documentation.

CellOracle KO simulation with unrelated cell-type base GRNs
To assess how base GRN performance relates to scATAC data source, 
we performed TF KO simulations in haematopoiesis using the ‘general’ 
mouse scATAC-seq atlas13 base GRN versus a heart-specific base GRN to 
represent an unrelated cell type (Supplementary Fig. 9). The simulation 
vectors using the mismatched heart base GRN are weaker, although 
still in general agreement. We reason that even if the base GRN retains 
some edges that are not active in the scRNA-seq data, CellOracle can 
still work robustly. However, simulation with the heart base GRN fails 
to detect the early granulocyte phenotype in the Gata1 KO and almost 
all shifts in the Cepba KO, suggesting reduced sensitivity with the mis-
matched base GRN.

We also assess the mean degree centrality (the number of genes to 
which a TF is connected) in the inferred GRNs for each of four TFs (Sup-
plementary Fig. 10). With the inappropriate heart base GRN, CellOracle 
fails to build network edges for some genes, resulting in a low degree 
centrality score and reduced simulation sensitivity. We recommend 
starting CellOracle analysis with the general GRN and comparing its 
performance against tailored base GRNs.

Markov simulation based on CellOracle simulation vector
To estimate cell distribution in response to gene perturbation, we 
need to consider both the differentiation hierarchy and the perturba-
tion vector together. We performed a Markov random walk simula-
tion as described previously52 (https://github.com/velocyto-team/ 
velocyto.py) with some modifications. First, our Markov simulation 
used the CellOracle cell-identity transition vector in addition to the 
differentiation vector; the transition probability matrix for these vec-
tors was applied alternatively to consider both effects. Second, cells in 
early differentiation stages were selected and used for the initial state 
of our Markov simulation, whereas the previous study used the whole 
population as the initial state52. The Markov simulation analysis with 
data from another study59 is shown in Supplementary Fig. 17 to show 
typical simulation results and their interpretation.

CellOracle analysis with previously published scRNA-seq and 
scATAC-seq data
Paul et al. mouse haematopoiesis scRNA-seq data. The GEM was 
downloaded with Scanpy’s data loading function, scanpy.datasets.
paul15(). After removing genes with zero counts, the GEM was nor-
malized by total UMI counts ((scanpy.pp.filter_genes(min_counts=1), 
scanpy.pp.normalize_per_cell(key_n_counts=‘n_counts_all’)). Highly 
variable genes, including 90 TFs, detected by scanpy.pp.filter_genes_
dispersion(flavor=‘cell_ranger’, n_top_genes=2000, log=False), 
were used for the following downstream analysis: the GEM was 
log-transformed, scaled and subjected to PCA (scanpy.pp.log1p(), 
scanpy.pp.scale(), scanpy.tl.pca(svd_solver=‘arpack’)). We calculated 
the force-directed graph dimensional reduction data based on the PAGA 
graph62 for initialization (scanpy.tl.paga(), scanpy.tl.draw_graph(init_
pos=‘paga’)). Cells were clustered using the Louvain clustering method 
(scanpy.tl.louvain (resolution=1.0)). Clusters were annotated manually 
using marker gene expression and the previous annotations from Paul 
et al.16 We removed dendritic cell (DC) and lymphoid cell clusters to 
focus on myeloid cell differentiation. GRN calculation and simulation 
were performed as described above, using the default parameters. 

https://scanpy.readthedocs.io/en/stable/tutorials.html#
https://github.com/theislab/paga
https://morris-lab.github.io/CellOracle.documentation
https://morris-lab.github.io/CellOracle.documentation
https://github.com/velocyto-team/velocyto.py
https://github.com/velocyto-team/velocyto.py


Article
For the base GRN, we used the base GRN generated from the mouse 
sci-ATAC-seq atlas dataset13.

Cell density was visualized using a kernel density estimation (KDE) 
plot. First, we performed random downsampling to 768 cells to adjust 
the cell number between WT and KO samples. KDE was calculated with 
the scipy.stat.gaussian_kde function. The calculated KDE was visual-
ized with the matplotlib.pyplot.contour function. We used the same 
contour threshold levels between all samples.

Although we did not focus on the network structure in the main text, 
we examined CellOracle GRN models using graph theory approaches 
before the simulation analysis. Graph theory analysis revealed that 
these inferred GRN configurations resemble a scale-free network the 
degree distribution of which follows a power law, a characteristic con-
figuration of biological networks63 (Extended Data Fig. 3b). Further, 
we assess GRNs using degree centrality—a basic measure of how many 
genes a TF connects to63. Using the MEP cluster as an example, 27 out 
of 30 genes with a high degree centrality score in the MEP_0 GRN are 
confirmed known regulators of MEP lineage differentiation or stem and 
progenitor cell function (Extended Data Fig. 3c and Supplementary 
Table 2). Analysis of additional clusters yielded similar agreement with 
previous literature, confirming that CellOracle GRN inference captures 
biologically plausible cell-state-specific GRN structures, consistent 
with previous biological knowledge. All network analysis and simula-
tion results can be explored at https://www.celloracle.org.

Pijuan-Sala et al. mouse early gastrulation and organogenesis 
scRNA-seq data. We applied CellOracle to a scRNA-seq atlas of mouse 
gastrulation and organogenesis by Pijuan-Sala et al.30. This single-cell 
profiling of WT cells highlighted a continuous differentiation trajec-
tory across the early development of various cell types (Extended Data 
Fig. 9a). In addition, the developmental effects of Tal1 KO, a TF known 
to regulate early haematoendothelial development64,65, were investi-
gated in this study. We validated the CellOracle simulation using these 
Tal1 KO ground-truth scRNA-seq data. The data were generated from 
seven chimeric E8.5 embryos of WT and Tal1 KO cells (25,307 cells and 
26,311 cells, respectively). We used the R library, MouseGastrulation-
Data (https://github.com/MarioniLab/MouseGastrulationData), to 
download the mouse early gastrulation scRNA-seq dataset. This library 
provides the GEM and metadata. We used the Tal1 chimera GEM and 
cell-type annotation, “cell type.mapped”, provided by this library. Data 
were normalized with SCTransform66. The GEM was converted to the 
AnnData format and processed in the same way as the Paul et al. dataset. 
For the dimensionality reduction, we used UMAP using the PAGA graph 
for the initialization (maxiter=500, min_dist=0.6). We removed the ex-
traembryonic ectoderm (ExE), primordial germ cell (PGC) and stripped 
nuclei clusters which lie outside the main differentiation branch. After 
removing these clusters, we used the WT cell data for the simulations 
(24,964 cells). GRN calculations and simulations were performed as 
described above using the default parameters. We used the base GRN 
generated from the mouse sci-ATAC-seq atlas dataset. We constructed 
cluster-wise GRN models for 25 cell states. Then, we simulated Tal1 KO 
effects using the WT scRNA-seq dataset. For the late-stage-specific 
Tal1 conditional KO simulation, we set Tal1 expression to be zero in the 
blood progenitor and erythroid clusters to analyse the role of Tal1 in 
late erythroid differentiation stages (Extended Data Fig. 9i,j).

Farrell et al. zebrafish early development scRNA-seq data. GEM, 
metadata and URD trajectory data were downloaded from the Broad 
Institute Single Cell Portal (https://tinyurl.com/7dup3b5k). We used 
the cell clustering data and developmental lineage data from Farrell 
et al.32 The GEM was already normalized and log2-transformed, which 
we converted to non-log-transformed data before CellOracle analysis. 
The GEM had human gene symbols, which we converted back to ze-
brafish gene symbols using gene name data in ZFIN (https://zfin.org). 
We used URD dimensional reduction embedding data. To use the URD 

differentiation trajectory in the CellOracle simulations, we ran several 
preprocessing and calculations. We first identified cells with URD co-
ordinate data (n = 26,434 cells). The “EPL/periderm and primordial 
germ cell” cluster, which represents 1.7% of the total population, was 
also excluded from our analysis because it is located outside the main 
differentiation trajectory branch. The whole URD structure (n = 25,711 
cells) was split into four sub-branches to simplify the calculations (Ex-
tended Data Fig. 10b). Then, we converted the original URD coordinates, 
a 3D matrix, into a 2D matrix using PCA (sklearn.decomposition.PCA) 
because CellOracle requires 2D dimensional reduction embedding 
data. The GEM was converted into the AnnData format. At the variable 
gene detection step, we selected the top 3,000 genes. GRN calculation 
and simulations were performed as described above using the default 
parameters. We did not calculate pseudotime because the pseudotime 
data calculated with URD were available. The pre-calculated pseudo-
time data were used to calculate the 2D development vector field. For 
base GRN construction, we used UCSC TSS and promoter data and the 
zebrafish reference genome (https://useast.ensembl.org/Danio_rerio/
Info/Index), danRer11 (the bed file is included in the CellOracle pack-
age). The promoter DNA sequence was scanned with CisBP version2 
motif dataset to generate the base GRN (http://cisbp.ccbr.utoronto.ca).

For screening novel regulators of axial mesoderm cell identity, we 
prioritized candidate genes as follows. First, we performed CellOracle 
KO simulations for 232 active TFs, which had at least one gene edge in 
the constructed GRN model in the axial mesoderm branch (Extended 
Data Fig. 12a, step 1). We focused on the early differentiation stage by 
selecting cells between digitized pseudotime 0 and 3 (Extended Data 
Fig. 12a, step 2). For this analysis, we focused on negative perturbation 
scores to identify candidate TFs. A large negative perturbation score 
indicates a predicted inhibition or block in differentiation following 
TF KO; thus, we reasoned that these TFs might have a positive role in 
differentiation (Extended Data Fig. 12a, step 3). To prioritize TFs accord-
ing to the predicted differentiation inhibition effects, we ranked TFs 
according to the sum of their negative perturbation scores, resulting in 
the 30 genes listed in Fig. 5a. Next, we surveyed the GRN degree central-
ity scores of 30 candidate genes in the notochord cluster GRN because 
we reasoned that those genes with higher GRN degree centrality result 
in a more reliable simulation. Then, we calculated the gene specific-
ity score comparing the axial mesoderm sub-branch and the other 
sub-branches using the Scanpy function, sc.tl.rank_genes_groups(). 
Although gene specificity does not necessarily relate to gene func-
tion, we assumed that specific gene expression would simplify the 
interpretation of experimental results and reduce the likelihood of 
unexpected phenotypes from clusters other than axial mesoderm. 
Finally, we analysed mean expression, assuming perturbation experi-
ments with highly expressed genes would be more robust, especially 
in the CRISPR–Cas9-based F0 embryo analysis. After removing previ-
ously reported genes, we selected candidate genes that exist in the 
50th percentile of these scores (Extended Data Fig. 12b, highlighted in 
a grey rectangle), resulting in lhx1a, sebox, irx3a, creb3l1 and zic2a. We 
finally selected three candidates, lhx1a, sebox and irx3a, and removed 
creb3l1 and zic2a from the first LOF experiment list, according to the 
following rationale: creb3l1 gene sequences are similar to creb3l2; 
thus, it was challenging to design specific sgRNAs to target this gene; 
creb3l2 was previously reported to regulate axial mesoderm develop-
ment. Although zic2a narrowly passed the gene specificity threshold 
described above, we found that zic2a expression was high in the other 
mesendoderm sub-branch and the ectoderm sub-branches; thus, we 
excluded this gene from our downstream analyses.

Dahlin et al. mouse haematopoiesis scRNA-seq data. Mouse hae-
matopoiesis scRNA-seq data from Dahlin et al.58 were downloaded 
from the PAGA GitHub repository (https://github.com/theislab/
paga). The GEM was normalized by total UMI counts after remov-
ing genes with zero counts ((scanpy.pp.filter_genes(min_counts=1), 
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scanpy.pp.normalize_per_cell(key_n_counts=‘n_counts_all’)). Highly 
variable genes were detected and used for the following downstream 
analysis: (scanpy.pp.filter_genes_dispersion(flavor=‘cell_ranger’, n_
top_genes=3000, log=False)). The GEM was log-transformed, scaled 
and subjected to PCA and Louvain clustering (scanpy.pp.log1p(), 
scanpy.pp.scale(), scanpy.tl.pca(svd_solver=‘arpack’), scanpy.
tl.louvain(resolution=1.5)). The original force-directed graph reported 
in Dahlin et al.58 was used for the CellOracle simulation. GRN calculation 
and simulation were performed using the default parameters. For the 
base GRN, we used the mouse sci-ATAC-seq atlas dataset13.

Setty et  al. human haematopoiesis scRNA-seq data. Human  
haematopoiesis scRNA-seq were downloaded from the Human Cell 
Atlas: https://data.humancellatlas.org/explore/projects/091cf39b-
01bc-42e5-9437-f419a66c8a45 (Setty et al.)67. The GEM was normalized 
by total UMI counts after removing genes with zero counts ((scanpy.
pp.filter_genes(min_counts=1), scanpy.pp.normalize_per_cell(key_n_
counts=‘n_counts_all’)). Highly variable genes were detected and 
used for the following downstream analysis: (scanpy.pp.filter_genes_
dispersion(flavor=‘cell_ranger’, n_top_genes=3000, log=False)). The 
GEM was log-transformed, scaled and subjected to PCA and Louvain 
clustering (scanpy.pp.log1p(), scanpy.pp.scale(), scanpy.tl.pca(svd_
solver=‘arpack’), scanpy.tl.louvain(resolution=1.5)). The force-directed 
graph was calculated with SPRING (https://kleintools.hms.harvard.edu/
tools/spring.html). We removed DC and lymphoid cell clusters in line 
with the Paul et al.16 data analysis. GRN calculation and simulation were 
performed using the default parameters. For the base GRN, we used the 
base GRN generated using the Buenrostro et al. human haematopoiesis 
scATAC-seq data described below68.

Buenrostro et al. human haematopoiesis scATAC-seq data. Hu-
man haematopoiesis scATAC-seq data from Buenrostro et al.68 were 
used to construct a human haematopoiesis base GRN. The scATAC-seq 
peak data and count matrix was obtained from the Gene Expression 
Omnibus (GEO), with accession code GSE96769, and processed with 
Cicero (v.1.3.4) to obtain co-accessibility scores as follows: After re-
moving peaks with zero counts, cells were filtered by the peak count 
(min count = 200, max count = 30,000). The data were processed 
using Cicero functions (detect_genes(), estimate_size_factors(), pre-
process_cds(method = "LSI"), reduce_dimension(reduction_method 
= ‘UMAP’, preprocess_method = "LSI")). Then Cicero co-accessibility 
scores were calculated using run_cicero() with human chromosome 
length information imported by data("human.hg19.genome"). Output 
peak and co-accessibility scores were used for CellOracle base GRN 
construction. CellOracle annotated the TSS site in the peaks, and the 
TSS peaks and cis-regulatory peaks with co-accessibility scores ≥ 0.8 
were used for motif scanning. We used the gimmemotifs vertebrate 
v5 motif dataset, which is CellOracle’s default for mouse and human 
motif scanning.

TF motif enrichment analysis was performed using ChromVar68. The 
ChromVar score matrix, which includes 2,034 cells and 1,764 motif 
data, was processed with scanpy to generate a force-directed graph and 
Louvain clustering (scanpy.tl.pca(), scanpy.tl.louvain(resolution=0.5), 
scanpy.tl.draw_graph()). The cluster was annotated using cell source 
FACS gate sample labels. The score fold change was calculated and 
visualized as a volcano plot (Supplementary Fig. 16). The statistical 
test was performed using the two-tailed Wilcoxon rank-sum test with 
Bonferroni correction.

Comparison between CellOracle haematopoiesis KO simulation 
results and previous reports
CellOracle KO simulation results for 12 key TFs that regulate myeloid 
differentiation are shown in Figs. 1 and 2, Extended Data Figs. 5 and 6 
and Supplementary Figs. 13 and 14. The simulation results were com-
pared with previous reports (summarized in Supplementary Table 2). 

In these figures, the summary of the simulation results is shown in the 
right column with the mark (*), which indicates that the simulation 
results agree with the previously reported role or phenotype of the 
TF. We note that the input haematopoiesis data focus on the myeloid 
lineage; thus, the simulation results show relative cell-identity shifts 
within the myeloid lineage only. For example, Spi1 has an important 
role not only in the myeloid lineage but also in other cell types, such as 
HSCs and lymphoid lineages69. However, we cannot simulate the role 
in these cell types if they are not present in the input data.
(1)	 Klf1 (KLF1)

Klf1 promotes differentiation towards the ME lineage, promoting 
erythroid cell differentiation in particular15. CellOracle simulation 
results agree with this role (Extended Data Fig. 5a and Supplementary 
Figs. 13e and 14e).

(2)	 Gata1 (GATA1)
Gata1 promotes ME lineage differentiation and also promotes gran-
ulocyte differentiation15,70. Both the Paul et al.16 and Dahlin et al.58 
data simulation results reproduce these Gata1 roles. (Fig. 1f and 
Supplementary Fig. 13b). In the Setty et al. dataset67, the ME lineage 
phenotype is reproduced, but the granulocyte phenotype is not 
observed (Supplementary Fig. 14b). We speculate that this is because 
the Setty dataset includes few mature granulocytes.

(3)	 Gata2 (GATA2)
Gata2 is a key factor in maintaining stemness in MPPs15. Simulation 
results in all data agree with this role for Gata2 (Extended Data Fig. 6a 
and Supplementary Figs. 13i and 14g).

(4)	 Spi1 (SPI1)
Spi1 promotes GM lineage differentiation. The inhibition of Spi1 shifts 
cell identity from the GM to the ME lineage15,71. Simulation results in 
all datasets agree with this role of Spi1 (Fig. 1e and Supplementary 
Figs. 13a and 14a).

(5)	 Cebpa (CEBPA)
Cebpa promotes GM lineage differentiation while inhibiting ME line-
age differentiation16,72, and promoting granulocyte differentiation in 
particular15. Simulation results using the Paul et al.16 and Dahlin et al.58 
datasets agree with this role for Cebpa (Fig. 2b and Supplementary 
Fig. 13c). Although the ME lineage phenotype is not detected using 
the Setty et al. dataset67, the GM lineage phenotype is successfully 
reproduced (Supplementary Fig. 14c).

(6)	Cebpe (CEBPE)
Cebpe promotes granulocyte lineage differentiation15,16. Simulation 
results in all datasets agree with this role of Cebpe (Fig. 2c and Sup-
plementary Figs. 13d and 14d).

(7)	 Gfi1 (GFI1)
Gfi1 promotes granulocyte lineage differentiation15,72–74. Simulation 
results using the Paul et al.16 and Dahlin et al.58 datasets agree with 
this role of Gfi1 (Extended Data Fig. 5c and Supplementary Fig. 13g).

(8)	Gfi1b (GFI1B)
Gfi1b promotes ME lineage differentiation15. Simulation results 
in all data suggest that Gfi1b promotes erythroid differentiation  
(Extended Data Fig. 5b and Supplementary Fig. 13f). The Mk pheno
type is unclear in the simulation, probably owing to the small  
numbers of Mk cells.

(9)	 Irf8 (IRF8)
Irf8 promotes GM lineage differentiation. In particular, Irf8 promotes 
monocyte differentiation as a lineage switch between monocyte and 
granulocyte bifurcation29. Simulation results in all data agree with 
the role of Irf8 (Extended Data Fig. 5d and Supplementary Figs. 13h 
and 14f).

(10)	 Lmo2 (LMO2)
Lmo2 is a central factor in maintaining stemness in the MPP com-
partment15. Simulation results using the Dahlin et al. data58 agree 
with this role. (Supplementary Fig. 13l). However, simulation results 
using Paul et al. data16 showed a different phenotype in erythrocyte 
cells, suggesting that Lmo2 is also crucial for promoting erythroid 
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differentiation (Extended Data Fig. 6d). A function of Lmo2 in pro-
moting erythroid differentiation was also reported75.

(11)	 Runx1 (RUNX1)
Runx1 is an central factor in maintaining stemness in the MPP com-
partment15 Simulation results in all datasets agree with this role of 
Runx1 (Extended Data Fig. 6b and Supplementary Fig. 13j).

(12)	 Fli1 (FLI1)
Fli1 has context-dependent roles. Fli1 is a key factor for Mk differen-
tiation15, and for maintaining stemness in the stem and progenitor 
comparment76. The simulations consistently reproduce these phe-
notypes (Extended Data Fig. 6c and Supplementary Figs. 13k and 
14h). In addition, a previous study reported that loss of Fli1 causes 
dysregulation in later differentiation stages77, consistent in simula-
tions using the Paul et al. dataset16 (Extended Data Fig. 6c).

Zebrafish lines
The zebrafish experiments were approved by the Institutional Animal 
Care and Use Committees at Washington University in St Louis. All 
animal experiments followed all relevant guidelines and regulation. 
The following zebrafish lines were used in this study: AB* and floating 
headn1/n1 (flh/noto) mutants37. Sample sizes and developmental stages 
are stated below. Randomization was not performed as experimental 
groups were determined by genotype. Blinding was performed for the 
generation and analysis of the single-cell data.

CRISPR–Cas9-based mutagenesis of F0 embryos
To generate somatic gene deletions in early zebrafish embryos, we used 
CRISPR–Cas9 with two or three sgRNAs as described previously78. In 
brief, sgRNAs were designed using CHOPCHOP (http://chopchop.cbu.
uib.no/) to target 5′ exons and the functional domain of each selected 
TF and synthesized (IDT) (Supplementary Fig. 20b). sgRNA sequences 
are listed in Supplementary Table 6. Duplex sgRNA was prepared by 
mixing equimolar amounts of Alt-R crRNA and Alt-tracrRNA (IDT) in 
IDT Duplex Buffer, heating to 95 °C and slowly cooling to room tem-
perature (RT) for 20 min. For the final mix of ribonucleoprotein com-
plex (RNPs), around 4 μM duplex sgRNA was assembled with around 
5 μM CRISPR–Cas nuclease (Alt-R S.p. HiFi Cas9 Nuclease V3) in 3 M KCl 
0.025% and phenol red solution. The activity of HiFi Cas9 and selected 
sgRNAs was confirmed with regular PCR, Sanger sequencing and capil-
lary electrophoresis, as described previously40. In brief, DNA from eight 
embryos for each combination of Cas9 and sgRNAs was extracted at 
10 hpf. PCR amplification was performed with primers complementary 
to sequences 250 bp upstream and downstream of the PAM sequences 
(Supplementary Table 6). In addition, tracking of indels by decompo-
sition (TIDE)79 analysis was used to predict the percentage of indels 
at the target locus (Supplementary Fig. 20c). flhn1/n1 mutant embryos 
were generated by crossing heterozygotes and selecting mutants on 
the basis of their morphology at 10 hpf.

Embryo collection and processing
Zebrafish embryos were produced by natural matings and injected at 
the one-cell stage with around 2–4 nl of RNP solution into the blastodisc. 
Embryos were incubated at 28 °C after removing those damaged during 
the injection process. After 9 hpf, embryos were enzymatically dechori-
onated and deyolked as previously described32. In brief, embryos were 
dechorionated by incubation in 1 mg ml−1 pronase, washed with ‘blue 
water’ and then transferred into plastic Petri dishes coated with 2% 
agarose with methylene blue water. Deyolking was performed manually 
by ‘squeezing’ the yolk out of the blastoderm cap with a closed pair of 
forceps inserted between the embryonic blastoderm and the yolk. The 
layer of cells detached from the yolk was transferred to a 1.5-ml Eppen-
dorf tube with 50 μl of DMEM/F12 medium. For each experiment, 40–50 
individual CRISPR–Cas9-targeted embryos (crispants) were prepared 
for dissociation into single-cell suspensions. Cell dissociation was per-
formed according to the previous report (Farrell et al.)32. DMEM/F12 

medium was added to the Eppendorf tube to bring the total volume to 
200 μl. Cells were mechanically dissociated by flicking the tube 15 times 
and pipetting 3 times. The cell mixture was spun at 300g for 2 min and 
twice washed with PBS + 0.1% BSA. The same procedure was followed 
to collect and dissociate cells from WT and flhn1/n1 mutant embryos.

RNA extraction and qRT-PCR
Total RNA was extracted from approximately 50 embryos for each 
experimental condition, homogenized in Trizol (Life Technologies) 
and further purified following Qiagen RNEasy Mini Kit instructions80. 
One microgram of total RNA was used to synthesize cDNA with the 
iScript kit (BioRad) following the manufacturer’s protocol. SYBR green 
(BioRad) qRT-PCR reactions were run in a CFX Connect Real-Time PCR 
detection system (BioRad) with three technical replicates. The primers 
used are listed in Supplementary Table 6.

Whole-mount in situ hybridization
An antisense RNA probe for nog1 was generated from plasmid pBSKII81, 
previously linearized with Not1, and used as a template for in vitro 
transcription using NEB T7 RNA polymerase and RNTPs labelled with 
digoxygenin (DIG) (Roche). WISH was performed according to a previ-
ous report82. In brief, embryos were fixed overnight in 4% paraformal-
dehyde (PFA) in phosphate-buffered saline (PBS), rinsed in PBS + 0.1% 
Tween 20 (PBT) and dehydrated in methanol. Embryos were then rehy-
drated in PBT and incubated for at least 2 h in hybridization solution 
(HM) with 50% formamide (in 0.75 M sodium chloride, 75 mM sodium 
citrate, 0.1% Tween 20, 50 μg ml−1 heparin (Sigma) and 200 μg ml−1 
tRNA) at 70 °C, then hybridized overnight at 70 °C with antisense probes 
diluted approximately 1 ng μl−1 in hybridization solution. Embryos were 
washed through a series of 10 min, 70 °C washes in HM diluted with 2× 
SSC buffer (0.3 M sodium chloride and 30 mM sodium citrate) once in 
each of the following: 75% HM, 50% HM, 25% HM and 100% 2× SSC. The 
same gradual change from SSC to PBT was performed for the subse-
quent washes. Embryos were blocked at RT for several hours in PBT with 
2% goat serum and 2 mg ml−1 bovine serum albumin (BSA), then incu-
bated overnight at 4 °C with anti-DIG antibody (Roche 11093274910) at 
1:5,000 on a horizontal shaker (40 rpm). Embryos were rinsed six times 
for 15 min per wash in PBT, and then in staining buffer (PBT+100 mM 
Tris pH 9.5, 50 mM MgCl2 and 100 mM NaCl) before staining with BM 
Purple solution (Roche).

HCR
HCR was performed according to the protocols provided by Molecular 
Instruments (https://www.molecularinstruments.com). Embryos were 
fixed at 10 hpf with 4% PFA, dehydrated with methanol and rehydrated 
as described for WISH above. Embryos were pre-hybridized in hybridi-
zation buffer (Molecular Instruments) for 1 h at 37 °C and subsequently 
incubated in 200 μl of hybridization solution containing 1 pg of probes 
overnight at 37 °C. Embryos were then washed four times in wash buffer 
(Molecular Instruments) followed by two washes in 5× SSCT, containing 
5× SSC buffer (Thermo Fisher Scientific) and 0.1% Tween 20 (Sigma). For 
the pre-amplification step, embryos were incubated in amplification 
buffer (Molecular Instruments) for more than 1 h. At the same time, 
hairpin mixtures were prepared by heating 12 pmol of hairpin 1 (H1) 
and 2 (H2) for each sample to 95 °C for 90 s, followed by cooling in the 
dark for 30 min at RT. H1 and H2 were mixed and then added to 200 μl 
amplification buffer. Embryos were incubated in the hairpin mixture 
at RT overnight in the dark. On the third day, embryos were washed 
more than 4 times in 5× SSCT and either stored at 4 °C or mounted for 
microscopy.

Microscopy
Embryos subjected to HCR were mounted in 3% low-melt agarose 
in glass-bottomed 35-mm Petri dishes. Alternatively, embryos were 
manually deyolked and flattened on a glass slide with one to two 
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drops of 3% methylcellulose. Images of the anterior and posterior 
body regions were taken by acquiring around 200-μm z-stacks with 
a 1-μm step, using a 10× objective lens on a modified Olympus IX81 
inverted spinning disc confocal microscope equipped with Voltran and 
Cobolt steady-state lasers and a Hamamatsu ImagEM EM CCD digital  
camera.

Image quantification with IMARIS software
Individual confocal 3D datasets were analysed with IMARIS 9.9 software 
(Bitplane). On the basis of the DAPI signal, radii were determined by 
taking half of the longest diameter of each nucleus, which was meas-
ured as a single spot using the ‘spots’ view in IMARIS. These parameters 
were applied in all images used for quantification. Nuclei positive for 
specific probes within a selected area were identified using the ‘spots’ 
view as spots with a signal in the specific channel that overlapped with 
DAPI spots. Analysis was performed on eight embryos: four anterior 
and four posterior per experimental group.

10X Chromium procedure
For single-cell library preparation on the 10X Genomics platform, we 
used: the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (PN-120237), 
Chromium Single Cell 3′ Chip kit v2 (PN-120236) and Chromium i7 Mul-
tiplex Kit (PN-120262), according to the manufacturer’s instructions in 
the Chromium Single Cell 3′ Reagents Kits V2 User Guide. Before cell 
capture, methanol-fixed cells were placed on ice, then spun at 3,000 
rpm for 5 min at 4 °C, followed by resuspension and rehydration in PBS, 
as described previously83. A total of 17,000 cells were loaded per lane 
of the chip, aiming to capture 10,000 single-cell transcriptomes. The 
resulting cDNA libraries were quantified on an Agilent TapeStation 
and sequenced on an Illumina NextSeq 550.

10X Chromium scRNA-seq data processing
10X alignment and digital GEM generation. The Cell Ranger v5.0.1  
pipeline (https://support.10xgenomics.com/single-cell-gene- 
expression/software/downloads/latest) was used to process data gener-
ated using the 10X Chromium platform. Cell Ranger processes, filters 
and aligns reads generated with the Chromium single-cell RNA sequenc-
ing platform. Following this step, the default Cell Ranger pipeline was 
implemented, and the filtered output data were used for downstream 
analyses.

Zebrafish scRNA-seq data processing
We used the R package Seurat (v.4.0.1) to process scRNA-seq data. Cells 
were filtered by RNA count and percentage of mitochondrial genes 
to remove low-quality cells. Data were normalized using the Seurat 
NormalizeData() function. Variable genes were identified using the 
FindVariableFeatures() function with nfeature = 2,000. Data were 
integrated by applying Seurat functions, SelectIntegrationFeatures(), 
FindIntegrationAnchors() and IntegrateData() using default param-
eters. After data scaling, PCA and clustering were performed. The data 
after cell calling may include cells with very low mRNA counts gener-
ated from non-cell GEMs and ambient RNA. To remove such non-cell 
GEM data, we assessed the RNA count distribution to remove clusters 
with an abnormal RNA count distribution. Scaling, PCA, clustering and 
t-SNE were performed again after removing the cells above. t-SNE was 
calculated using the first 30 principal components. We applied the 
same pipeline to the WT reference, flh mutant and crispant scRNA-seq 
data.

After data integration and standard scRNA-seq preprocessing, the 
whole WT reference scRNA-seq data were annotated as follows. The 
segmentation labels generated in the Farrell et al.32 zebrafish scRNA-seq 
data were transferred to the new scRNA-seq data using the Seurat func-
tion, FindTransferAnchors and TransferData, with default parameters. 
We manually adjusted the cell annotation to account for differences 
in the timing of cell collection. We generated cell-type annotations 

for the clustering data generated in the previous step by referring to 
the Farrell et al. dataset annotation labels. The WT reference cell-type 
annotations were transferred to the other scRNA-seq data using the 
same Seurat label transfer functions.

To compare cell identity on the same 2D embedding space, we used 
UMAP and the UMAP transfer function. We first calculated UMAP 
with axial mesoderm clusters in WT reference datasets. Using this 
pre-trained UMAP model, we projected KO and control axial meso-
derm data onto the same UMAP 2D embedding space constructed 
with WT reference data.

Cell density was visualized using a KDE plot. First, we performed ran-
dom downsampling to adjust the cell number between the LOF control 
samples. (i) Whole-cell populations were randomly subsampled into 
a subset to have an equal cell number to the smaller dataset. (ii) Then, 
axial mesoderm cells were selected and subjected to KDE calculation. 
KDE was calculated with the scipy.stat.gaussian_kde function. The 
calculated KDE was visualized with the matplotlib.pyplot.contour 
function. We used the same contour threshold levels between the LOF 
and control samples.

In addition to the UMAP transfer analysis above, the WT data, lhx1a 
crispant and tyr crispant data were analysed with UMAP without 
data transfer (Supplementary Fig. 21). The 10 hpf axial mesoderm 
cell data were integrated using Seurat functions (SelectIntegration-
Features(), FindIntegrationAnchors(), and IntegrateData() with 
default parameters), and then UMAP graph and Louvain cluster 
were calculated (RunPCA(), FindNeighbors(reduction = "pca", dims 
= 1:30), RunUMAP(reduction = "pca", dims = 1:30, min.dist = 1), 
FindClusters(resolution = 1.5)).

NMF
We performed NMF with our lhx1a crispants scRNA-seq dataset accord-
ing to a previous report32. The normalized UMI counts were standard-
ized, log-transformed and subjected to NMF calculation with sklearn.
decomposition.NMF(n_components=40). Each module was manually 
annotated by its cluster enrichment and gene ontology calculated with 
the top 30 genes with high module weight. Gene annotation, weight and 
ontology are provided in Supplementary Table 3. Gene ontology was 
calculated with the g:Profiler API (https://biit.cs.ut.ee/gprofiler/page/
apis). The background was set to all genes used in the NMF calculation. 
Clusters governed by a single gene were excluded from our analysis.

Statistical testing
Details of all statistical tests performed are provided in Supplementary 
Table 4. Scipy stat module (scipy version 1.7.0) was used for statistical 
analysis. In summary, we selected the statistical method as follows: 
(i) chi-square test was used to analyse the relationships of categorical 
variables; (ii) Wilcoxon rank-sum test (Mann–Whitney U test) was used 
when the data distribution type was not apparent; (iii) in cases in which 
the data distribution followed a Gaussian distribution, a t-test was used. 
Where multiple comparisons were made, the Bonferroni correction 
was applied. An alternative hypothesis (one-tailed or two-tailed) was 
selected depending on the aim of the analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data, including sequencing reads and single-cell expression matri-
ces, are available from the GEO under accession codes GSE72859 (ref. 16),  
GSE112824 (ref. 32) and GSE145298 for the zebrafish profiling from this 
study; and from ArrayExpress under accession codes E-MTAB-7325 
(Tal1−/− chimeras) and E-MTAB-7324 (wild-type chimeras). Simulations 
can be explored at https://celloracle.org.

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://biit.cs.ut.ee/gprofiler/page/apis
https://biit.cs.ut.ee/gprofiler/page/apis
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72859
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112824
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145298
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-MTAB-7325
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-MTAB-7324
https://celloracle.org/
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Code availability
CellOracle code, documentation and tutorials are available at GitHub: 
https://github.com/morris-lab/CellOracle.
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Extended Data Fig. 1 | Overview of the CellOracle workflow. (a) Overview of 
the CellOracle context-dependent GRN model construction method. First, 
genomic DNA sequence and TF-binding-motif information provide all potential 
regulatory links to construct a ‘base GRN.’ CellOracle uses scATAC-seq data to 
identify accessible promoter and enhancer DNA sequences in this step. The 
DNA sequence of these regulatory elements is scanned for TF-binding motifs, 
generating a list of potential regulatory connections between a TF and its 
target genes (left). Next, active connections (described below), dependent on 
cell state or cell type, are identified from all potential connections in the base 
GRN. CellOracle builds machine-learning (ML) models for this step that predict 
the quantitative relationship between the TF and the target gene. The ML 
model fitting results present the certainty of connection as a distribution, 
enabling the identification of GRN configurations by removing inactive 

connections from the base GRN structure. (b—d) Overview of signal propagation 
simulation. CellOracle leverages an inferred GRN model to simulate how target 
gene expression changes in response to the changes in regulatory gene expression. 
(b) The input TF perturbation (shown in yellow) is propagated side-by-side 
within the network model. (c) Input data and GRN coefficient matrix format 
used in the signal propagation calculation. (d) Leveraging the linear predictive 
ML algorithm features, CellOracle uses the GRN model as a function to perform 
the signal propagation calculation. Iterative matrix multiplication steps enable 
the estimation of indirect and global downstream effects resulting from the 
perturbation of a single TF. (e) After signal propagation, the simulated gene 
expression shift vector is converted into a 2D vector and projected onto the low- 
dimensional space. Details are described in the Methods.
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Extended Data Fig. 2 | Benchmarking of inferred GRN configurations.  
(a,b) We benchmarked the CellOracle GRN modelling method against 
pre-existing GRN inference algorithms: WGCNA, DCOL, GENIE3, and SCENIC. 
Details of input data and ground-truth data are described in the Methods. We 
generated a base GRN using the Cusanovich mouse sci-ATAC-seq atlas dataset13 
or UCSC mm9 promoter DNA sequence data. CellOracle scored better than or 
comparable to other algorithms. CellOracle results with a promoter base GRN 
received lower but comparable scores than the scATAC-seq base GRN results.  
In addition, we tested the CellOracle GRN method using two impaired base  
GRN datasets (Scrambled motif base GRN and no base GRN) to investigate how 
the base GRN data contributes to its performance. (a) AUROC (Area Under the 

Receiver Operating Characteristic curve) heat map. The top score in each 
condition is highlighted with a red rectangle. (b) EPR (Early Precision Ratio) heat 
map. EPR represents the EP ratio relative to the random model ER score. An EPR 
of less than 1 indicates that the GRN inference results are no better than random 
prediction. (c,d) The performance of CellOracle was tested after downsampling 
cells. GRN models were made after downsampling to 400, 200, 100, 50, 25, and 
10 cells. We recommend at least 50 cells for GRN inference based on these 
results. CellOracle used the same mouse scATAC-seq base GRN as a and b. The 
Liver_2 sample contains less than 400 cells. (e,f) GRN inference performance 
comparison between different base GRN data generated from various tissue 
types. The top score in each condition is highlighted with a red rectangle.
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Extended Data Fig. 3 | CellOracle analysis of Paul et al. haematopoiesis 
data. (a) Force-directed graph of 2,730 myeloid progenitor cells from Paul 
et al.16 with all clusters labelled. DC = Dendritic Cell; Ery = Erythrocyte;  
GMP = Granulocyte–Monocyte Progenitor; Gran = Granulocyte; Lym = Lymphoid; 
MEP = Megakaryocyte–Erythrocyte Progenitor; Mk = Megakaryocyte;  
Mo = Monocyte. We removed the DC and Lymphoid cell clusters to focus on 
myeloid cell differentiation. (b) Degree distribution of the MEP_0 cluster GRN 
model. After making the GRN model for each cluster, network edges were pruned. 
Then, we counted the network degree (k), representing the number of network 
edges for each gene. P(k) is the frequency of network degree k. The relationship 
between k and P(k) was visualized after log transformation to test whether the 
data follow a power law, in which there is a linear relationship between log(k) 
and log(P(k)). The R-squared value (R2) was calculated to quantify the degree of 

the linear relationship. The same analysis was performed on the randomized 
GRN (lower panel). (c) Top 30 genes ranked by degree centrality in the MEP_0 
cluster GRN. (d) Gata1 gene expression (log-transformed UMI) projected onto 
the force-directed graph (left) and violin plot grouped by cell-type annotation 
(right). (e) Spi1 gene expression (log-transformed UMI) projected onto the 
force-directed graph (left) and violin plot grouped by cell-type annotation 
(right). (f) Systematic KO simulation of TFs in the GM (Granulocyte–Monocyte) 
and ME (Megakaryocyte–Erythrocyte) lineages. The sum of the negative 
perturbation scores is calculated for each TF to quantify the perturbation effect 
along each lineage. (g) Negative PS sum cut-off value calculation. Cut-off values 
were calculated for GM and ME lineage simulations based on the distribution of 
PS sum score calculated from the randomized simulation result (false-positive 
rate (FPR) = 0.01).
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Extended Data Fig. 4 | Perturbation score calculation and interpretation. 
(a—d) Schematic for perturbation score (PS) calculation. CellOracle calculates 
a PS by comparing the direction of the simulated cell state transition with the 
direction of cell differentiation. (a) Schematic for differentiation vector 
calculations. First, the pseudotime data are summarized by grid points. Then, 
CellOracle calculates a 2D gradient vector of the pseudotime data representing 
the directionality of differentiation pseudotime. (b) Calculation of the inner-
product value between the differentiation vector and gene perturbation 
vectors. First, the results of the perturbation simulation are converted into the 

same vector field format as the differentiation vector field, and the inner 
product of these vectors is calculated to produce a PS. (c) A positive PS 
(magenta) suggests the perturbation vector and differentiation vector share  
a similar direction, thus, suggesting the TF perturbation would promote 
differentiation. In contrast, a negative PS (green) represents inhibited 
differentiation. (d) Schematic for perturbation score interpretation. A positive 
perturbation score (green) predicts that the perturbation promotes 
differentiation. A negative perturbation score (purple) represents inhibited 
differentiation.
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Extended Data Fig. 5 | CellOracle TF KO simulation results for Paul et al. 
haematopoiesis data: part 1. a–d, CellOracle KO simulation for four key TF 
regulators of haematopoiesis: Klf1 (a), Gfi1b (b), Gfi1 (c) and Irf8 (d) reported 
in15,29. The simulated cell state transition vector field is visualized with 
perturbation scores (PS; magenta: negative score; green: positive score).  
The right column shows a summary of the TF role based on the CellOracle 

simulation results, cell transition vector, and PS. For example, a positive PS  
in the TF KO simulation (green) implies that the TF has a role in cell state 
maintenance or inhibiting cell differentiation. In contrast, a negative PS in the 
KO simulation (magenta) implies that the TF normally promotes cell 
differentiation.
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Extended Data Fig. 6 | CellOracle TF KO simulation results for Paul et al. 
haematopoiesis data: part 2. a–d, CellOracle KO simulation results for  
Gata2 (a), Runx1 (b), Fli1 (c) and Lmo2 (d). The simulated cell state transition 
vector field is visualized with perturbation scores (PS; magenta: negative 
score; green: positive score). The right column shows a summary of the TF role 

based on the CellOracle simulation results, cell transition vector, and PS.  
For example, a positive PS in the TF KO simulation (green) implies that the TF  
has a role in cell state maintenance or inhibiting cell differentiation. In contrast, 
a negative PS in the KO simulation (magenta) implies that the TF normally 
promotes cell differentiation.
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Extended Data Fig. 7 | Dahlin et al. mouse haematopoiesis scRNA-seq data. 
a, Force-directed graph of 44,082 myeloid progenitor cells from Dahlin et al.58 
with all clusters labelled. MPP = Multipotent Progenitor; GMP = Granulocyte–
Monocyte Progenitor; Gran = Granulocyte; LP = Lymphoid progenitor; MEP = 
Megakaryocyte–Erythrocyte Progenitor; Mk = Megakaryocyte; Mo = Monocyte; 
Baso = Basophil. (b) Marker gene expression (log-transformed UMI) projected 
onto the force-directed graph. Procr = MPP marker; Epor = Erythrocyte marker; 
Itga2b = Mk marker; Flt3 = LP marker; Mpo = Gran/Mo marker; Ms4a2 = Baso 

marker. (c) Pseudotime values projected onto the force-directed graph.  
(d) Differentiation vector calculated from the pseudotime gradient. ME and 
GM lineages are highlighted. (e) Csf1r and Cebpε gene expression projected 
onto the force-directed graph. The right panel is a magnified area of the GM 
lineage. Csf1r is a monocyte marker, and Cebpε is a granulocyte marker. (f) Early 
lineage bifurcation between monocytes and granulocytes is observed on the 
force-directed graph.



Article

Differentiation vectors

a b

c d

Mo

Pseudotime

e

Monocytes

Granulocytes

f

GMP

High

Low

Late

Early

Mo

MK

Erythrocyte

FA1

FA
2

MEP GMP

Late_GMP

Gran

Mono

MPP

Human hematopoiesis scRNA-seq (Setty et al., 2019)

c Pseudotime

Late

Early

Differentiation vectorsd

Erythrocyte

MEP GMP

Gene expression

High

Low

e CEBPε

Extended Data Fig. 8 | Setty et al. human haematopoiesis scRNA-seq data. 
(a) Force-directed graph of 5,610 myeloid progenitor cells from Setty et al.67 
with all clusters labelled. MPP = Multipotent Progenitor; GMP = Granulocyte–
Monocyte Progenitor; Gran = Granulocyte; MEP = Megakaryocyte–Erythrocyte 
Progenitor; Mk = Megakaryocyte. (b) Marker gene expression (log-transformed 
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marker; MS4A2 = Baso marker. (c) Pseudotime values projected onto the 
force-directed graph. (d) Differentiation vector calculated from the 
pseudotime gradient. ME and GM lineages are highlighted. (e) CSF1R and CEBPE 
gene expression projected onto the force-directed graph. The right panel is a 
magnified area of the GM lineage. The CSF1R is a monocyte marker, and CEBPE 
is a granulocyte marker. (f) Early lineage bifurcation between monocytes and 
granulocytes is observed on the force-directed graph.
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Extended Data Fig. 9 | CellOracle validation using experimentally 
measured cell density in Tal1 KO in Pijuan-Sala et al. gastrulation and 
organogenesis scRNA-seq data. (a) UMAP plot of chimeric E8.5 embryos of 
wild-type (WT) and Tal1 KO cells (25,307 cells and 26,311 cells, respectively) 
from a published scRNA-seq atlas of mouse gastrulation and organogenesis30. 
(b) Tal1 gene expression (log-transformed UMI) projected onto the UMAP  
plot. (c) Pseudotime gradient vector field used in the perturbation score (PS) 
calculations. Developmental pseudotime was calculated using the DPT 
method with WT chimera scRNA-seq data and then converted into a 2D 
gradient vector field. (d) PS and cell transition vector field of the Tal1 KO 
simulation. (e) The magnified area of erythrocyte differentiation predicts 
inhibition or arrest of cell differentiation at the haematoendothelial 
progenitor stage. (f) The Markov random walk simulation result predicts high 
cell density in the haematoendothelial progenitor cluster and lower cell 
density at later stages, indicating that Tal1 KO would induce differentiation 

arrest at the haematoendothelial progenitor stage. (g) Experimentally 
measured Tal1 KO data. The kernel cell density of whole chimera (left), WT 
(middle), and Tal1 KO cells (right) were calculated after downsampling each 
condition (25,307 cells) to control for sample size. A scatter plot of whole 
chimera cells is shown as background (light grey) to highlight the overall cell 
trajectory structure. (h) The bar plot shows the cell type composition in each 
sample (right panel). Overall, the experimental result aligns with the simulated 
predictions. The relative fold change between WT and KO samples is also 
shown in Supplementary Table 4. (i) Perturbation score and cell transition 
vector field of the Tal1 conditional KO simulation in the erythroid lineage. Tal1 
expression was set to zero in the Blood progenitor and Erythrocyte clusters; 
CellOracle simulates KO effects in later erythroid differentiation stages.  
( j) The Markov simulation result shows uniform cell density, predicting that 
Tal1 KO would not induce differentiation arrest in a conditional KO targeting 
later stages of erythroid differentiation.
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Extended Data Fig. 10 | CellOracle noto LOF simulation with Farrell et al. 
zebrafish embryogenesis data. (a) 2D force-directed graph of a published 
atlas32 of zebrafish embryogenesis (n = 25,711 cells). (b) Main trajectory 
partitioned into four sub-branches. (c) Bar plots depicting the number of TFs 
after variable gene selection (black), the number of TFs with >1 network edge in 
the inferred GRN model (dark grey), and the number of TFs expressed in >1% of 
cells (light grey). (d) CellOracle noto LOF simulation result (left) and simulation 
results with a randomized GRN model (right) for the notochord lineage. 
Simulated cell state transitions for each cell were converted to a vector field 
and visualized with a scatter plot (shown in grey). (e) Noto LOF simulation for 

the prechordal plate lineage. (f) CellOracle noto LOF simulation vector is shown 
at single-cell resolution. Cells in the Notochord cluster are shown in orange, 
while the Prechordal Plate cells are shown in blue. The right panel is the magnified 
area. (g) Force-directed graph of the Other mesendoderm sub-branch with cell 
cluster annotations from the Farrell et al. study32 (n = 10,265 cells). (h) Pseudotime 
data are projected onto the force-directed graph. (i) The Somite lineage, defined 
in the previous Farrell et al. study32, is in red. ( j) Pseudotime gradient vector 
field calculated for the Somite lineage. (k) Noto LOF simulation vector field in 
the cells of the Somite lineage are shown with perturbation scores.
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Extended Data Fig. 11 | Zebrafish scRNA-seq experiments for noto LOF 
analysis. (a) Schematic illustration of zebrafish scRNA-seq experiments.  
(1) The reference dataset was generated using cells from 6, 8, and 10 hpf wild-
type (WT) embryos. To assess noto LOF, we also assayed (2) flhn1/n1 mutants and 
(3) noto/flh crispants at 10 hpf (~25 embryos per sample; Methods). (b) Cell 
cluster composition comparing tyr crispant (control) with WT cells, showing 
similar cell distributions. After data integration, cell-type labels were transferred 
from the whole WT 6, 8, and 10 hpf reference data (see Methods). (c) Sample 
label projected onto the t-SNE plot. flhn1/n1 mutant and control sample (left, 

n = 57,175 cells, 2 independent biological replicates for each sample), and t-SNE 
plot of noto crispant and tyr crispant samples (right, n = 9,185 cells, 2 biological,  
3 technical replicates for noto crispant; n = 46,440 cells, n = 3 independent 
biological, 5 technical replicates for tyr crispant). (d) Cluster annotation label 
projected onto the t-SNE plot. WT zebrafish cells (left, n = 38,606 cells, two 
technical replicates per stage), flhn1/n1 mutant and control sample (middle),  
noto crispant and tyr crispant samples (right). (e) Cell cluster composition 
comparing LOF samples with the control samples.
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Extended Data Fig. 12 | Zebrafish notochord regulator screening with 
CellOracle and initial experimental validation. (a) Overview of the systematic 
LOF simulation and quantification method. CellOracle LOF simulation was 
performed for 232 TFs in the Notochord lineage to calculate the perturbation 
score (PS). The sum of the negative PS was calculated for each TF in the selected 
area between digitized pseudotime 0 to 3, before lineage specification.  
(b) Degree centrality score in the Notochord cluster GRN (left), gene expression 
specificity score in the Axial mesoderm sub-branch (middle), and mean 
expression value in the Axial mesoderm sub-branch (right) were calculated  
for the top 30 TFs selected in the systematic simulation to further prioritize 
candidate genes for experimental validation. We selected genes in the top  
50% of these scores. Please refer to the Methods for the detailed selection 
procedure. We selected three candidates for experimental validation: lhx1a, 
sebox, and irx3a. (c,e,g) Cell cluster composition in axial mesoderm cells, 
comparing LOF (lhx1a, sebox, and irx3a) samples with control samples. Cell 
cluster composition comparison was performed with a Chi-square test,  
Two-tailed Bonferroni correction. lhx1a experiment: Early axial mesoderm 

p = 0.000229717, Early Notochord p = 1.08×10−21, Notochord p = 4.38×10−6, 
Prechordal Plate p = 1.42×10−10. Sebox experiment: Early axial mesoderm 
p = 3.01×10−6, Early Notochord p = 2.87×10−6, Notochord p = 4.38×10−6, 
Prechordal Plate p = 4.17×10−9. The left panels show cluster composition in the 
merged data, and the right panels show individual scRNA-seq batch. lhx1a LOF 
produced the most significant changes in cell composition. (d,f,h) Comparison 
of notochord marker gene expression between LOF and control samples. 
scRNA-seq gene expression in the Notochord lineage clusters is shown as a 
violin plot. Late-stage notochord markers, twist2 and nog1, or broad/early 
notochord markers, noto and tbxta, are visualized. Statistical tests: Wilcoxon 
rank-sum test, two-tailed with Bonferroni p-value correction. lhx1a 
experiment: twist2 p = 7.118×10−64, nog1 p = 7.757×10−67, noto p = 7.718×10−11. 
sebox experiment: twist2 p = 8.022×10−10, nog1 p = 3.184×10−3, tbxta 
p = 1.551×10−3. irx3a experiment: twist2 p = 0.000012. (c) n = 720 cells and 1,686 
cells for lhx1a crispant and tyr crispant, respectively. (e) n = 1,216 cells and 1,703 
cells for sebox crispant and tyr crispant, respectively. (g) n = 1,176 cells and 1,651 
cells for irx3a crispant and tyr crispant, respectively.
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Extended Data Fig. 13 | Zebrafish scRNA-seq experiments for lhx1a LOF 
analysis. (a,b) t-SNE plot of lhx1a crispant (n = 45,582 cells, 4 biological replicates) 
and tyr control crispant samples (n = 76,163 cells, 5 biological, 7 technical 
replicates). (a) Cluster annotation labels transferred from WT reference data 
projected onto the t-SNE plot. (b) Sample label projected onto the t-SNE plot.  
(c) Cell cluster composition comparing lhx1a crispant and tyr control crispant 
samples as a proportion of cells from the whole embryo. (d) Cell density in the 
axial mesoderm is visualized as a kernel cell density contour plot. The cell number 

is downsampled to match the cell number before kernel cell density calculation 
(n = 260, 290, 336, and 367 for lhx1a crispant 1~4, n = 248, 234, 344, 316, 213, 286, 
and 350 for tyr crispant 1~7). The same contour threshold values are used for  
the visualization. (e) Cell cluster composition in the axial mesoderm clusters 
comparing lhx1a crispant and tyr control crispant samples. The left panels show 
cluster composition in the merged data, while the right panels show the individual 
scRNA-seq batch. (f) The top 30 NMF module weights for the Early notochord 
module (left) and the Late notochord module (right) are shown as a bar plot.
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