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Chapter 1

Introduction

When the mathematician would solve a difficult problem, he first frees the

equation of all incumbrances, and reduces it to its simplest terms. So

simplify the problem of life, distinguish the necessary and the real. Probe

the earth to see where your main roots run.

Henry David Thoreau, Letter to H.G.O. Blake, 27 March 1848

Dissection, in the medical context and throughout the ages, has served to

illustrate the internal structure, while highlighting the function and relation-

ship of each component to the whole. Not only is knowledge gained from the

end-product of the dissection, but also from the process of dissection itself

(Mutyala and Cahill, 1996). In this manner, an understanding of anatomy

is acquired alongside skills that can be applied outside the dissection labora-

tory. Just as a medical student might keep a diary of their dissections — the

anatomy and the lessons learned — this thesis serves the same purpose; but

the cadaver in this case is a problem originating in the drayage industry at

the Port of Rotterdam, the Netherlands.

1
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1.1 Drayage Operations

The term dray dates back to the 14th century when it was used commonly to

describe a type of very sturdy sideless cart1. In the 1700s the word drayage

came into use meaning “to transport by a sideless cart”. Today, drayage

commonly refers to the transport of containerized cargo, within a limited

geographic range, to and from port or rail terminals and inland locations.

With the phenomenal growth of containerized freight, since the container’s

introduction in 1956, the drayage industry has also experienced significant

growth. For example, the world saw total maritime container traffic grow to

approximately 417 million twenty foot equivalent units (TEUs) in 2006 (BTS,

2007). Large trucks operating in the United States alone carried empty freight

containers over a total of 1 billion miles in 2002 (USDOC, 2004).

Unfortunately, the drayage portion of a door-to-door container move tends

to be the most costly part of the move. Morlok and Spasovic (1994) indicate

that up to 40% of the cost for a 900 mile container move can be attributed to

the 50 mile drayage portion of the move. There are a variety of reasons for this

disproportionate assignment of costs, including a great deal of uncertainty at

the interface of modes. For example, trucks moving containers to and from a

port terminal are often uncertain as to how long it will take them to pick up

a designated container coming from a ship, from the terminal stack, or from

customs. This uncertainty leads to inefficiency in planning a profitable route

for multiple containers in one day. As a result, planning processes must be

designed and adopted that can rapidly exploit the underlying structure of this

routing environment while incorporating real-time information. This thesis

examines three properties found in drayage operations — structure, advanced

information, and level of control — with this goal in mind.

Through cooperation with a Dutch logistics service provider (LSP), we re-

ceived the inspiration for this research, as well as the data required to test our

ideas. The LSP, participating in this study, dedicates a portion of its business

to draying refrigerated (“reefer”) containers from/to the Port of Rotterdam

1Etymology taken from http://www.merriam-webster.com/
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to/from various customer locations in the Netherlands. Approximately 40

trucks transport an average of 65 containers per day in this operation. In

general, the containers arrive on container ships arranged by customers. They

are off-loaded at sea terminals, where trucks must then pick them up. The

containers are then transported to their destination at the customer, where

they are emptied. The empty containers are later returned to a sea termi-

nal. In reality, because reefers are considered high-value equipment, the same

truck waits with the container until it is emptied and then returns it to a sea

terminal. (In the theoretical sections [Chapters 3 and 4] of this dissertation,

we, however, relax this constraint and allow the return portion of the trip to

occur at a later time.) The return terminal may be the same terminal from

which the container originated or it may be a different terminal. For export

containers the sequence is the same, the only difference is that the contain-

ers are not emptied, but loaded at the customer’s location. At each location

there are time windows within which trucks can make their visits. At sea

terminals the time windows correspond to the opening hours of the terminal.

At customer sites, the time windows are defined by the customers. Each day

the LSP must plan a set of routes capturing as much business as possible at

minimum cost.

1.2 Dissecting Drayage

The drayage operations, outlined in the previous section, are not unique to

the LSP examined in this research. Indeed, while the data provided by the

Dutch LSP gives this research a touch of realism, it is the ubiquity of the

drayage problem that renders this work interesting to a broader audience.

For example, Caris and Janssens (2009); Cheung et al. (2008); Ileri et al.

(2006); Namboothiri (2006); Smilowitz (2006); and Neuman and Smilowitz

(2002) all describe similar operations. The differentiating factor amongst

these studies is the method by which the authors choose to mathematically

model the drayage operations they describe.

Mathematical modeling, the conversion of a problem from words to equa-
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tions for the generation of a solution or solutions, is often more art than

science (Hillier and Lieberman, 2001). There are usually multiple facets that

can be emphasized or de-emphasized depending on the needs of the problem

owner and the constraints of the modeler.

In its most general form, drayage operations may be modeled as a vehicle

routing problem (VRP). VRPs are broadly defined as problems requiring the

design of an optimal set of routes, serving a given set of customers with a

given number of vehicles. The VRP was first introduced as the truck dis-

patching problem by Dantzig and Ramser (1959). Since the introduction of

the VRP multiple variations have been examined including variations in ve-

hicle capacity, fleet heterogeneity, time windows, pick-up and drop off in the

same tour, multi-depot, split deliveries, and so on. Golden and Assad (1988),

Ball et al. (1995), Toth and Vigo (2001), and Golden et al. (2008) provide

reviews of these extensions. (The simplest form of routing problem is what is

known as the transportation problem. In the transportation problem, a set of

goods must flow from a given number of supply locations to a given number

of demand locations, at least cost [Hillier and Lieberman, 2001].)

Given all of the VRP variants, the one most often applied to drayage op-

erations, in the literature, is the full truckload Pick-up and Delivery Problem

with Time Windows (PDPTW) (Caris and Janssens, 2009; Cheung et al.,

2008; Ileri et al., 2006; Namboothiri, 2006; Neuman and Smilowitz, 2002). In

the truckload PDPTW, a fleet of vehicles, capable of carrying only one job at

a time, must pick up a job from one location and drop it off at another loca-

tion, while arriving to each location within a specified time window. Finding

the assignment of jobs to trucks that minimizes costs (in the form of total

distance, empty distance, or operating costs) is the solution goal.

Defining drayage operations as a PDPTW serves to demarcate three lines

along which the problem can be dissected and examined — namely, the num-

ber of vehicles, spatial characteristics of pick-up and drop-off locations, and

temporal characteristics pertaining to the time windows and the revelation

of job information. For example, by limiting the fleet of vehicles to a sin-

gle vehicle and removing the temporal aspects of the problem, we can focus
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in more detail on the role that the distances between pick-up and drop-off

locations play in solvability. Alternatively, by maintaining the temporal char-

acteristics of the problem, while simplifying the spatial characteristics, we can

focus on the role that advanced job information plays in routing vehicles in

real-time. Finally, by considering a fleet with multiple vehicles in addition to

both temporal and spatial characteristics, we can address the role that cen-

tralized versus decentralized planning has on drayage operations. The first

two subproblems delineated within drayage operations serve as the basis for

the theoretical portions of this theses (Chapters 3 and 4). The final delin-

eation most closely resembles the practical problem of drayage and is the

basis of the last chapter, Chapter 5. The placement of these subproblems as

they relate to different problem types within the field of VRPs, along with

the chapters in which they are addressed, may be seen in Figure 1.1. The

following subsections provide more detail on these subproblems.

Figure 1.1: Overview of subproblems addressed in this thesis and their rela-
tionship to the PDPTW.
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1.2.1 Geometric Structure

In order to isolate the effect that the geometric structure has on solvability, we

alter two complicating features of the PDPTW. Specifically, we first assume

that there is only one vehicle as opposed to a full fleet of vehicles. Second, we

abandon the constraints imposed by the time windows. The resulting problem

is known in the literature as the Stacker Crane Problem (SCP) (Frederickson

et al., 1978). In the SCP, a single crane (or truck in the drayage context) must

move a number of full vehicle loads (or containers in the drayage context)

from specified pick-up locations to specified drop-off locations in a way that

minimizes the total tour length (or equivalently, minimizes the empty distance

traveled between each required move).

When considering the SCP definition in the context of drayage operations,

we see that the physical location of pick-up and drop-off points yields an

interesting geometric structure. Specifically, nearly all jobs originate from

or are destined to one of only a few fixed freight terminals. Throughout the

remainder of this thesis, we formalize this concept by designating the subclass

of SCPs that have more than one coincidental pick-up and drop-off point, as

Drayage Problems. Figure 1.2 shows, on the left, an example of a route for

an arbitrary instance of the general SCP and, on the right, an example of a

route for an arbitrary instance of the drayage problem. Notice in the example

drayage problem, four jobs share the same pick-up and drop-off point. (In

practice, these shared nodes are terminals.)

In order to appreciate this abstract representation of the drayage problem

in terms of realistic drayage operations, Figure 1.3 depicts the pick-up/drop-

off location structure for the Dutch LSP. In this map, the geometric structure

is apparent as the vehicles must always begin at the home location, specified

by the white marker, and serve jobs originating from one of the grey markers

(primarily clustered near the Port of Rotterdam) destined to one of the black

markers (spread throughout the Netherlands) or vice versa. In this way, jobs

can often be sequenced such that the destination of one job is the origin of

the next.

A review of SCP literature and related terminology is the topic of Chapter
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Figure 1.2: Example of a route in a SCP instance (left) and a route in a
drayage problem instance (right).

2. This review, in turn, leads us to the understanding that the SCP, and more

specifically drayage problems, exhibits structural features which make them

easier to solve than other single-vehicle routing problems. This premise is

empirically tested in Chapter 3.

1.2.2 Advanced Information

While the geometric structure of the drayage problem, as defined in the pre-

vious subsection, lends itself to quickly finding an optimal solution, the tem-

poral dimension imposed by reality complicates modeling drayage operations

significantly. In reality, we do not generally know all of the jobs that will

comprise a drayage problem instance in advance. Furthermore, some jobs

may be known, but only available for service after a specific time. In order
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Figure 1.3: One day of jobs in the Netherlands for the Dutch LSP. Black
markers indicate customer locations; grey markers indicate terminal locations;
and the white marker indicates the home terminal of the LSP.

to examine the implication of these temporal characteristics on routing, we

consider the on-line arrival of jobs with release dates, but simplify the ge-
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ometric structure of the PDPTW by specifying only one location for jobs.

Specifically, each job is defined solely by a single point as opposed to both

a pick-up and drop-off location. The resulting problem is termed the on-line

Traveling Salesman Problem with two disclosure dates.

Intensely, widely, and well-studied — not to mention important — are

all adjectives used to describe the well-known Traveling Salesman Problem

(TSP). In short the TSP addresses the problem of finding the shortest tour

through a set of jobs or cities (beginning and ending at a depot or origin city)

in a given metric space. If the salesman is traveling at constant speed, finding

the shortest path is equivalent to minimizing the time the salesman returns to

the depot. The literature on this problem begins with the seminal papers by

Dantzig et al. (1954) and Flood (1956), includes at least four books (Lawler

et al., 1985; Reinelt, 1994; Gutin and Punnen, 2002; Applegate et al., 2007),

multiple survey papers (Bellmore and Nemhauser, 1968; Burkard et al., 1995;

Jünger et al., 1995, 1997), and a myriad of articles.

Amongst the many TSP articles are a variety of extensions to the basic

problem formulation. The extension we are interested in is known as the

“TSP with release dates”. In this variation, the salesman may visit each job

only on or after a specified release date. If all of the job locations and their

release dates are known in advance, the problem is termed static and may be

solved via an offline optimization approach. As noted above, however, this

is not particularly realistic. In the majority of real-world applications, jobs

(or cities) and their release times are revealed over time — often after the

salesman has already left the city of origin (or depot). Solution approaches

designed to handle on-line problems, that is problems in which new informa-

tion arrives during execution, are termed on-line algorithms.

We may add a further level of realism by assuming that the exact location

of each job is also revealed over time. Specifically, the location of each job may

be revealed in advance of information on the release date, which is revealed

in advance of the actual release date. For example, consider a dray company,

such as the one documented here and in Máhr et al. (2010), that must pick

up containers from several port terminals. In the morning, the dray provider
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learns the location of the terminals that will release containers for transport.

Later in the day, the company learns the exact time at which those containers

will be released from customs for pick-up; for some terminals this information

may come early, for others this information may arrive much later in the

day. While the dray company could wait until all information is known, the

containers will certainly be served sooner if the company can cleverly exploit

each piece of information when it arrives. For this the dray provider needs an

algorithm tailored to an on-line environment.

It is this problem of finding the best ordering of the jobs for a single truck

that forms a problem we term the online TSP with two disclosure dates. For

the ease of analysis we restrict the metric space to the non-negative real num-

ber line with the depot located at the origin, R+
0 . A graphical representation

of this problem may be seen in Figure 1.4, where the y-axis represents time

and the x-axis represents distance. Note, as we assume that the salesman

travels at unit-speed, the salesman’s trajectory in Figure 1.4 is depicted as a

45-degree line. We are thus able to indicate the value of each piece of informa-

tion via a ratio of the online algorithm cost to the offline optimal algorithm

cost. In the literature, this ratio is referred to as both the competitive ratio

and the worst-case ratio; we will use the term worst-case ratio. The deriva-

tion of worst-case ratios for the on-line TSP with two disclosure dates is the

focus of Chapter4.

1.2.3 Level of Control

A key to exploiting advanced information and reacting to change prudently is

the presence of an agile control structure. For example, most dray companies

operate by using a central dispatcher to plan the routes of all the trucks.

However, once in the field, the truck drivers may exhibit a large degree of

autonomy. In this setting, a more agile control structure is one that relies on

the truck drivers and customers to negotiate a solution. But will the drivers,

operating without central knowledge, find the most cost effective route?

This question is at the heart of the debate between traditional (cen-

tralized) optimization techniques and (decentralized) Agent Based Modeling
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Figure 1.4: Example of the offline optimal and an online solution to the TSP
on R

+
0 with two disclosure dates.

(ABM) (also referred to as multi-agent systems [MAS]) (Wooldridge and Jen-

nings, 1995). ABM, with its roots in the fields of artificial intelligence, social

network theory, cognitive science, has been lurking on the fringes of the opera-

tions research field for some time now (Samuelson, 2005). In the August 2006

issue of OR/MS Today, for example, Samuelson and Charles (2006) present

agents as a serious and useful simulation technique. In general, however, the

literature lacks quantitative comparisons of the strengths and weaknesses of

traditional optimization to agent based techniques. To that end, we apply

two structurally distinct solution approaches — a centralized solution and a

decentralized solution — to the drayage problem of the Dutch LSP.

Specifically, in Chapter 5, we empirically compare a solution approach for

the on-line PDPTW that focuses on a single objective and uses full system

information to a solution approach based on agents that optimize their own

unique objectives given the information they perceive and maintain locally

(in both space and time).
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1.3 Contributions

Table 1.1 describes the exact problem examined in each chapter while high-

lighting the primary contributions of those chapters.

Chapter 2 is a literature review. As such its contribution is limited to ex-

posing clues buried in the existing body of knowledge; clues fueling a strong

suspicion that SCPs, and more specifically drayage problems, are compara-

tively easy to solve. In turn, Chapter 3 is remarkable for both the method and

outcome of investigating this suspicion. We use techniques borrowed from the

field of statistics to examine the significance of 22 distance matrix metrics in

indicating solvability for over 500 instances of the TSP. This method results

in strong empirical evidence that drayage problems are, in general, easier than

other related TSPs.

Encouraged by the “easy” distance matrix structure of drayage problems,

we turn from the spatial to the temporal dimensions in Chapter 4. This chap-

ter quantifies — via competitive analysis — the value of advanced information

in a one-dimensional version of the on-line TSP with release dates. Chapter

4, demonstrates that revealing the location information alone can yield all the

benefit (or all the detriment) to the cost of an on-line algorithm. The content

of Chapter 4 is based on the following article:

Srour, F. Jordan and Rob A. Zuidwijk, (2008). How Much is Lo-

cation Information Worth? A Competitive Analysis of the On-

line Traveling Salesman Problem with Two Disclosure Dates.

ERIM Report Series, Reference No. ERS-2008-075-LIS. Avail-

able at SSRN: http://ssrn.com/abstract=1314164.

Finally, in a bid to marry space and time, we devote Chapter 5 to a

comparative study of centralized and decentralized control structures. Using

a method dependent on MAS technology, we not only answer questions re-

garding the value of centralization versus decentralization, but also make a

significant contribution to the agent literature by providing the first quantita-

tive comparison of MAS to traditional operations research techniques in the

field of freight transport. Chapter 5 is based on the following article:
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Máhr, Tamás, F. Jordan Srour, Mathijs M. de Weerdt, and Rob

Zuidwijk, (2010). Can agents measure up? A comparative

study of an agent-based and on-line optimization approach for

a drayage problem with uncertainty. Transportation Research,

Part C: Emerging Technologies. Volume 18, Issue 1, pp. 99-

119.

The opening example of Chapter 5 is taken from:

Ketter, Wolfgang and F. Jordan Srour, (June 2009). Optimal or

Agile? Tradeoffs between optimization and agent-based meth-

ods. OR/MS Today. Available at: http://www.lionhrtpub.

com/orms/orms-6-09/froptimalagile.html.
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Chapter 2

The Stacker Crane Problem:

A Literature Review

If you want to understand today, you have to search yesterday.

Pearl S. Buck. American author, 1938 Nobel Prize for Literature

Intermodal freight containers do not move themselves. An increasing num-

ber of containers move through increasingly complex supply chains, yet every

move a container makes must be accompanied by another piece of equipment.

This equipment can be a large ship or train, specialized yard equipment, or

a standard truck and chassis (Muller, 1999; Stahlbock and Voß, 2008b,a).

Whatever the conveyance may be, each move of a container represents a pick-

up and delivery problem.

In its simplest form this problem may be described as follows. A vehicle

(or other means of conveyance) must start from an initial location, perform

a specified set of moves, and return to the initial location. These moves

are defined as trips from a specified pick-up point to a delivery point. The

objective is to serve all required moves with the shortest empty distance. In

the context of drayage transport (the transport of containers a short distance

from a port terminal by a single truck and chassis), all of the moves are

considered full truckloads. We therefore focus on the single vehicle, unit-

15
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load capacity pick-up and delivery problems. This problem is also the focus

of Chapter 3. (In Chapter 4 this basic problem will be simplified further

by removing pick-up and deliveries, but adding time windows and a time

horizon. In Chapter 5 this basic routing problem will be expanded to include

time windows and a fleet of 40 vehicles working over a time horizon.)

Recently, the literature has seen a burst of survey papers on the topic

of pick-up and delivery problems. These papers collectively detail the basic

problem while classifying the multiple variants (Berbeglia et al., 2007; Par-

ragh et al., 2008a,b; Gribkovskaia and Laporte, 2008; Cordeau et al., 2008).

Specifically, Berbeglia et al. (2007) introduce a classification scheme based on

three categories: [Structure | Visits | Vehicles ].

Structure refers to the possible pairings between pick-up and drop-off lo-

cations. More specificially, this category provides information on the level

of dedication between pick-up and drop-off points. For example, if all goods

may be picked-up from one location (e.g. a warehouse) and delivered to mul-

tiple locations (e.g. customers) then the problem is a one-to-many problem.

The reverse structure is termed many-to-one. Altrematively, if the goods may

be picked up from any number of locations and delivered to any of a set of

drop-off points, then the problem is a many-to-many problem. Finally, if each

item must be picked-up from only one specific location for delivery to only

one specific drop-off location, then the problem is termed one-to-one (1-1, for

short). visits refers to the activities that must (or can) be undertaken at each

location (i.e. pick-up only, delivery only, or both [P-D, for short]). Finally,

vehicles refers to the number and capacity of the vehicles. Thus, the routing

problem at the heart of this and the next chapter may, in the terminology

of Berbeglia et al. (2007), be described as a one-to-one (1-1), pick-up and

delivery problem (P-D), with a single unit-load vehicle (1): [1-1 | P-D | 1].

One possible feature of pick-up and delivery problems, not encapsulated

by this definition, is that of transhipment. Transhipment (also sometimes

termed pre-emption) refers to the possibility of dropping a container before

its final destination has been reached, in order to serve a more profitable load.

Considering a [1-1 | P-D | 1] problem with the possibility of transshipment,
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we see that three variations are possible — one in which all of the jobs must

be transported directly from pick-up point to drop-off point, one in which

some of the jobs must be transported directly while others may be preempted

or transshipped, and one in which all jobs are available for transhipment.

In order to efficiently distinguish these three cases we introduce some

notation following that of Anily and Hassin (1992). Let S represent the full

set of jobs that requires service. We assume that each job is a unique object

type (i.e. |S| = n, where n is the number of jobs). We then specify two

subsets, Sm and Sd referring to the set of jobs that may not be transshipped

and the set that may be “dropped” along the route, respectively. Given this

notation we can see that the first problem (named the stacker crane problem

(SCP)) is one in which S = Sm and Sd = ∅; the second (named the swapping

problem (SP)) is one in which S = Sm ∪ Sd, neither subset is the empty set;

and the third (named the preemption problem) is one in which S = Sd and

Sm = ∅.

It is important to note, that in the literature review of Hernandez-Perez

and Salazar-Gonzalez (2004), the distinction between the SCP and the SP

falls along two lines — the number of origins/destinations and the permis-

sibility of preemption. As noted above, we, however, consider the SP only

under conditions in which every job is of a different object type. Therefore,

in contrast to Hernandez-Perez and Salazar-Gonzalez (2004), the only dis-

tinction between the SP and the SCP is the permissibility of preemption.

Specifically, preemption is forbidden in the SCP, permitted for some jobs in

the SP, and permitted for all jobs in the preemption problem.

As the transfer of intermodal freight containers between vehicles gener-

ally requires specialized equipment, minimizing the possibility for preemp-

tion in the drayage context, we predominantly focus this literature review

on SCPs. Furthermore, the SCP serves as the most fundamental representa-

tion of drayage operations: a single vehicle that must pick-up and deliver full

loads (e.g. containers) at minimal cost. Despite this preference, we do, how-

ever, pay a brief tribute to swapping and preemption problems in Subsection

2.2.1. In the next section (Section 2.1 we introduce the terminology necessary
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to appreciate the milestones in vehicle routing research, generally, and SCP

research, specifically. In Section 2.2 we present the milestones of SCP theory.

We follow this review with a summary of empirical studies performed on SCP

instances and more generally, asymmetric traveling salesmen problems. The

document concludes with a brief discussion of these results and motivation

for the remainder of this thesis.

2.1 Preliminaries: Traveling Salesmen and Stacker

Cranes

The Stacker Crane Problem is nothing more than a routing problem. At the

heart of every routing problem is a distance matrix. A distance matrix is a

table containing the distances between each and every city or job (also called

node) in a given problem. In fact, depending on the exact nature of the routing

problem, the distance matrix may be the only data underlying the problem.

The famous Traveling Salesman Problem (TSP) is, for example, a problem

that can be entirely described by a distance matrix. (For a comprehensive

collection of results on the TSP, the reader is referred to Gutin and Punnen

(2002).)

The goal of the TSP, most simply stated, is to determine a tour, passing

through all of the cities exactly once, in such a way that the total length

of the tour is minimized. While this problem statement may conjure up

fun childhood memories of connect-the-dot puzzles or specialized maze games

(see e.g. Abbott (1990)), the underlying optimization problem is ’hard’ in a

mathematical sense (Gutin and Punnen, 2002).

To appreciate the mathematical or theoretical meaning of the word “hard”,

we first describe three different versions of the TSP problem1. The first prob-

lem version is termed the optimization problem and reflects the definition

of the TSP given in the previous paragraph. The second problem version,

1Note, while these three problem versions are well defined and commonly recognized, the
reader is referred to (Papadimitriou and Steiglitz, 1982) for more details, as this was the
source used for this exposition.
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termed the evaluation problem, is a relaxation of the optimization version.

For the TSP, the evaluation version is phrased as follows: “Given the number

of cities and the inter-city distances, find the cost of the optimal solution.”

Notice that the evaluation version does not require that we find the optimal

tour, only that we find the cost of the optimal tour. The third problem ver-

sion of the TSP, termed the recognition problem, can be stated as a yes/no

question. For the TSP, this question is: “Given the number of cities along

with all intercity distances and an integer value, L, is there a tour through

all cities whose cost is less than or equal to L?” Notice that the answer to

this question is no harder to give than the solution to the evaluation problem

version of the TSP. That is, once the optimal solution cost is known one must

only check if that value is less than L or not. Thus, these three problem

versions conveniently establish a hierarchy relating the recognition problem

to the evaluation problem and the evaluation problem to the optimization

problem.

We now exploit the recognition version to classify problems into two sets

— recognition problems that can be solved by an algorithm whose running

time is a polynomial function of the problem parameters (P ) and recogni-

tion problems that cannot be solved in polynomial time, but if an instance is

known to have a “yes” answer, that can be verified in polynomial time (NP ).

To explain the NP set further, in the context of the TSP, we see that if given

a tour for a TSP we can readily verify if its cost is less than L, however, gener-

ating a tour with a cost less than L from scratch is far more time consuming.

Noting that any recognition problem which can be solved in polynomial time

can also be verified in polynomial time leads us to conclude that P is a subset

of NP . Whether or not P is a proper subset of NP or alternatively whether

P = NP is a famous outstanding question in mathematics and computer

science2.

We can now also define another subset of NP , termed NP -complete.

Specifically, a given recognition problem is NP -complete if all other problems

2For a formal description of this outstanding problem, the interested reader is referred
to: http://www.claymath.org/millennium/P_vs_NP/
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in NP polynomially transform to the given recognition problem. (Polynomial

transformation means that the parameters of one problem can be transformed

into the parameters of a second problem by making a series of steps, not num-

bering more than a polynomial function of the original problem size.) Thus,

the NP -complete problems are related in such a way that if there exists

an algorithm which runs in time that is a polynomial function of problem

size for one NP -complete problem, then that algorithm would work for the

whole class of NP -complete problems. Now, by recalling that the recognition

problems in the NP -complete class have an affiliated optimization problem

version, we come to our definition of “hard”. More specifically, we use the

term NP -hard. This term describes the class of problems that are not in NP

(usually because they are not recognition problems), but whose recognition

version is in the NP -complete class. Noting that the recognition version of

the TSP is in NP -complete leads us to the conclusion that the optimization

version of the TSP is in NP -hard (Gutin and Punnen, 2002; Papadimitriou

and Steiglitz, 1982). The ramifications of these classifications are significant.

If one can find an algorithm to solve the optimization version of the TSP

problem to optimality running in time that is a polynomial function of prob-

lem size, then all other NP -hard problems could also be solved in polynomial

time.

Why is finding a polynomial time algorithm so important? Well, what’s

the point in trying to solve a problem, if, in the worst-case, all existing com-

puters running the best-possible algorithms, would only be able to find a

provably optimal solution well after you (and your children, your grandchil-

dren, and so on) are dead?

Let’s clarify these statements with an example. The best known algorithm

for the transportation problem (introduced in Chapter 1) runs in O(n2) time.

The O() expression is borrowed from mathematics and serves to indicate the

limiting behavior of a function when a given input parameter tends towards

infinity. Thus, in the context of algorithm analysis, this notation represents

a worst-case bound on running time given the size of the problem expressed

as a number, n (Aho et al., 1983). In the case of the transportation problem,
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n represents the number of supply and demand points in the problem. Thus,

given a transportation problem with a total of 10 supply/demand points, it

would take a computer running the best known algorithm (performing one

operation per millisecond), 0.1-seconds to find the optimal solution. The best

known algorithm for the traveling salesman problem, on the other hand, has

a worst-case runtime bound of O(n22n) (Applegate et al., 2007). This means

that, in the worst-case, a traveling salesman problem with only 10 nodes might

require a computer, performing one operation per millisecond, 102.4-seconds

to find the optimal solution. Maybe that doesn’t sound so bad, but suppose

you would like a route visiting each of the 50 States in the United States of

America — using that same computer and the best known algorithm, you

might, in the worst-case, have to wait over 891,959 centuries for a provably

optimal route.

Despite this seemingly desperate news, there is hope. This hope comes in

two forms. First, not every instance of a problem belonging to the NP -hard

class will require the worst-case running time before a provably optimal solu-

tion is obtained. This concept will play a significant role in Chapter 3. Second,

there exists a robust field of study focused on approximation algorithms. As

stated by Hochbaum (1996), “trading-off optimality in favor of tractability is

the paradigm of approximation algorithms”. Unlike heuristics, which focus

on finding a feasible solution fast, without any guarantee of solution quality,

approximation algorithms are designed to run in polynomial time yielding a

solution guaranteed to be less than either a fixed percentage or a functional

distance away from the optimal value. If a fixed constant, relative error, c,

exists between the optimal value and the approximation algorithm’s solution

value, the algorithm is termed a c-approximation algorithm and the prob-

lem belongs to a class of problems termed APX (Papadimitriou and Steiglitz,

1982). This concept will play a significant role in Chapter 4.

To put this good news in context, we highlight two well-known heuristics

and the best known c-approximation algorithm for the TSP. The first heuristic

of note is a very simple constructive heuristic called Nearest-Neighbor (NN).

This heuristic, introduced in the seminal TSP paper by Flood in 1956, works
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by starting at one city repeatedly moving to the nearest city until all cities

are visited at which point the tour is closed by returning to the starting

city. The appeal of this heuristic is the speed with which it can be executed.

Unfortunately, this speed comes with no guarantee of solution quality and in

some very specific instances this approach can give the singular worst possible

tour (Gutin et al., 2002).

To mitigate the poor (possibly abysmal) performance of NN, Lin and

Kernighan introduced a tour improvement heuristic, the Lin-Kernighan (L-

K) heuristic, that works by taking a given tour and swapping pairs of tour

edges in such a way that the overall tour cost is reduced. This heuristic is

largely based on the well-known 2-opt and 3-opt heuristics in which pairs

or triplets, respectively, of edges are exchanged in a cost reducing manner.

Although the L-K heuristic goes further by establishing at each iteration an

appropriate number, k, for performing a k-opt exchange. The k-opt heuristics

will be described in greater detail in Chapter 5 as they figure prominently in

that chapter.

Finally, the best known c-approximation algorithm for the TSP is the

Christofides algorithm (Christofides, 1976). This algorithm works by finding a

least cost set of edges in the original problem such that every city is connected

to every other city by exactly one path. The subset of cities which serve as

the end point for an odd number of edges are then matched at least cost. This

process yields a set of edges that permits the salesman to pass over each edge

exactly once as part of a tour that begins and ends at a given city. The final

step of the algorithm is to rationalize this tour by “shortcutting” edges that

pass through cities which were visited more than once; recall the ultimate

goal of the TSP is to visit every city exactly once. Thus, the Christofides

algorithm solves the TSP, giving a solution that is within 3/2 of the optimal

cost. Note, the Christofides algorithm serves as the basis for a subroutine in

the SCP approximation algorithm highlighted in Section 2.2.

Regardless of the solution tactic taken for these “hard” problems, all TSPs

and TSP solution techniques — successful and otherwise — are tied to the

contents and structure of the underlying distance matrix. The best docu-
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mented and influential feature of a distance matrix is symmetry (Gutin and

Punnen, 2002). In words, symmetry refers to a square matrix in which the

entries in the upper right are identical to those in the lower left when re-

flected across the diagonal. Mathematically speaking, a symmetric matrix is

an n× n matrix in which each entry in the ith row and jth column (e.g. dij ,

the distance from i to j) equals the entry in the jth row and ith column (e.g.

dij = dji). When we consider this matrix feature in the context of the TSP,

we can describe symmetry as the condition in which traveling from city i to

city j requires the same travel time as traveling from city j to city i. If this

condition holds for all cities, then the TSP actually belongs to the sub-class

of Symmetric Traveling Salesman Problems (STSPs).

Alternatively, if the distance matrix is asymmetric, then traveling from

city i to city j may take longer or shorter than traveling from city j to city

i. (Mathematically, the n × n distance matrix is such that dij 6= dji, for

at least one pair of i and j with j 6= i). In this case, the TSP belongs to

the sub-class of Asymmetric Traveling Salesman Problems (ATSPs). While

the idea, that traveling from one location to another would vary in time or

distance depending on the direction of travel, may at first seem strange, there

are in fact many realistic examples. The most obvious example arises in any

urban environment with an over-abundance of one-way streets. In such a

network, traveling from one intersection to the next may require traveling

only one block or taking a trip around the block, depending on your desired

direction of travel. Other examples occur when the problem in question is an

Arc Routing Problem (ARP) as opposed to a node routing problem (Eiselt

et al., 1995b,a).

It is convenient, both visually and theoretically, to describe the ARP using

terminology from graph theory3. In this regard, the ARP is a routing problem

on a graph (G) with some arcs (A) that must be traversed and other edges

(E) that may be traversed, but are not required. All arcs and edges meet at

vertices (V ) which are also called nodes. (Throughout this thesis we use the

3For more details on graph theory the reader is directed to Trudeau (1993) and Chartrand
(1977).
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terms vertex and node interchangeably.) Arcs and edges, on the other hand,

have a distinct meaning. In ARPs the server is required to traverse all of the

arcs in a given graph at least once, at minimum cost. Edges, in ARPs, on

the other hand, may be traversed as many or as few times as necessary, and

thus, have the primary influence on cost. Note, if the arc is not directed, then

the server must traverse that arc at least once, in any direction. If the arc is

directed, then it must be traversed at least once in the given direction (e.g.

left to right).

The number of arcs incident on a vertex is termed the degree of the ver-

tex; if the arcs have a direction the term degree may be made more specific

to include in-degree (arc entering the vertex or node) and out-degree (arcs

leaving the vertex or node). We do not consider edges when counting degree

in an ARP graph. This is because we consider edges to be optional links,

while arcs are fundamental structural components in the ARP graph. Note

that an arc routing problem with directed arcs can be transformed into a

node routing problem (i.e. a traveling salesman problem) by exchanging each

arc for a node and adding two directional edges between each node with costs

equivalent to the distance from the end of one arc (in the original ARP) to

the start of another.

This transformation and the accompanying distance matrix is depicted

for a small problem in Figure 2.1. In the ARP of Figure 2.1 two jobs require

transport from v2, one to v3 and one to v4, one job requires transport from

v1 to v4, and one job requires transport from v3 to v2. Notice that in the new

node routing problem, the distance matrix is asymmetric as the distance from

node i (in the transformed graph) to node j (in the transformed graph) is the

distance from the end of arc i (in the original graph) to the beginning of arc j

(in the original graph), while the distance from node j to node i is the distance

from the end of arc j to the beginning of arc i. Thus, the transformation from

an ARP to a node routing problem yields an ATSP. Furthermore, the optimal

solution to the new ATSP will also be the optimal solution for the original

ARP, and vice-versa.

The transformation from an ARP to an ATSP formulation is well docu-
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Figure 2.1: Example of the transformation from an ARP to a node routing
problem.
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mented as a viable and fruitful approach to solving ARPs. Specifically, La-

porte (1997) demonstrated that the Chinese Postman Problem (CPP)4 and

its variants (including the Rural Postman Problem [RPP]) can be readily

transformed into ATSPs and then solved using TSP techniques. Among the

CPP variants, studied by Laporte (1997), was the Stacker Crane Problem

(SCP). Using the ARP terminology, the SCP is a problem in which a tour

traversing some required directed arcs out of a set of edges in a given graph

must be made at minimum cost. This representation highlights the member-

ship of the SCP in the class of NP -hard problems. Specifically, shrinking the

distance between the pick-up and delivery points renders the SCP into the

well-known, NP -hard, Traveling Salesman Problem (TSP).

2.2 Solving The Stacker Crane Problem

The first formal study of the SCP entered the literature in 1978 when Freder-

ickson et al. described a c-approximation algorithm for the SCP as part of an

exposition of algorithms for “some routing problems”. Specifically, Frederick-

son et al. (1978) propose an approximation algorithm guaranteeing a solution

that is, in the worst-case, 9
5 times the optimal solution. The proposed approx-

imation algorithm runs in O(n3) time, where n is the number of jobs (or arcs

if we consider the graph formulation). Interestingly, Frederickson et al. (1978)

note that they did not succeed in finding an SCP instance which approaches

the 9
5 worst-case bound, yet, to date, no better approximation algorithm has

ever been proposed.

The SCP approximation algorithm of Frederickson et al. (1978) is com-

prised of two subroutines, designed to proffer a solution tailored to two pos-

sible structures of the underlying arc routing problem. The first subroutine

called LARGEARC addresses settings in which the arcs (required) are longer

than the edges (optional) in the underlying graph. The primary steps of

LARGEARC include solving an assignment problem (i.e. a least cost match-

4a problem in which every arc in a given connected graph must be traversed at least
once before returning to the vertex from which the tour started, see e.g. Minieka (1979)
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ing between the heads and tails of all arcs) and then solving a minimum cost

spanning tree5 problem (i.e. the least cost set of edges that forms a connected

graph with m − 1 edges, when there are m vertices) in order to join any

disjoint cycles. The second subroutine called LARGEEDGE addresses set-

tings in which the edges (optional) are much longer than the arcs (required).

LARGEEDGE begins by transforming the SCP into an ATSP and then ap-

plying the Christofides algorithm (Christofides, 1976).

Making a small sidestep to consider this algorithm in the context

of drayage operations, we can conjecture that the solutions proffered by

LARGEARC will predominate among the solutions selected in the postprocess

step of the algorithm. This is because of the unique structure that drayage

problems tend to exhibit. That is, most arcs (or jobs) originate from or are

destined to a small number of terminals or customer locations. As such the

edge lengths (or inter-arc distances) are generally much smaller (often zero)

than the arc lengths.

Recognizing the influence that geometric structure, and distances, can

have on algorithm design, we note that if the SCP is restricted to a line

the problem becomes a Gilmore-Gomory TSP and is polynomially solvable

(Kabadi, 2002). In 1964, Gilmore and Gomory examined the problem of

heating and cooling a furnace to accommodate the annealing requirements of

a set of jobs. While this problem has its origins in job scheduling, we can easily

view it as a routing problem by considering the starting temperature of each

job as its pick-up location and the ending temperature as its drop-off location,

both along the real number line. The solution method proposed by Gilmore

and Gomory (1964) is an O(n log n) algorithm that first solves a least cost

matching between drop-off locations and pick-up locations and then patches

any sub-cycles together into a single cycle via a series of edge interchanges.

More recently, Vairaktarakis (2003) revisited the original Gilmore-Gomory

problem and presents a simpler algorithm (one without the edge interchange

process) that also runs in O(n log n) time.

While the underlying bipartite graph structure meticulously described and

5A tree, in this context, is a connected graph in which every node has degree one or two.
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exploited by both Gilmore and Gomory (1964) and Vairaktarakis (2003) leads

to a polynomial time formulation, it overlooks a feature of the job structure

commonly found in real-world pick-up and delivery problems — especially

drayage problems. That feature is the frequent coincidence of pick-up and

drop-off locations. For example, as noted above, it is quite common that sev-

eral jobs will originate from a specific terminal (or station) just as several jobs

will be destined to the same drop-off location — the jobs originating at v2 or

those destined for v4 in Figure 2.1, as an example. Recognizing this feature of

the SCP in a real-world setting, Atallah and Kosaraju (1988) obtain an opti-

mal solution to the SCP on a line with a O(n+k log β(k, q)) time algorithm6.

In this case, k stands for the number of vertices (e.g. terminals, stations, or

customer locations) in the problem; n is (as before) the number of jobs; q

is the number of strongly connected components in the graph that emerges

from a least cost matching step (similar to the first step of LARGEARC or

Gilmore and Gomory (1964)); and β(k, q) = min{i | logi q ≤ k
q
}. Admittedly,

without introducing a significant amount of terminology related to data struc-

tures, there is no intuitive definition of β(k, q). However, it is worth stating

that β(k, q) ≤ k which implies that k log β(k, q) ≤ k log k ≤ k2. Thus, the

complexity of this algorithm is less than the complexity of the general SCP

approximation algorithm of Frederickson et al. (1978). Also of note is the

fact that the number of strongly connected components that can emerge from

a least cost matching is less than or equal to the minimum of the number

of jobs or the number of stations (i.e. q ≤ min{n, k}). Frederickson (1993)

extends the work of Atallah and Kosaraju (1988) by showing that the result

for a linear track also holds for a circular track.

Interestingly, the move from a linear or circular track to a tree renders

the problem NP -hard. As such, Frederickson and Guan (1993) develop two

fast approximation algorithms. One provides a 3
2 -approximation and the

other a 4
3 -approximation in O(n + k) and O(n + k log β(k, q)) time, respec-

6Note, in the preparation of this review, a small error was discovered in Frederickson
and Guan (1993); in their paper it was specified that β(k, q) = min{i | logi k ≤ k

q
} when in

actuality this expression should be as it appears here, as derived from the fastest minimum
spanning tree algorithm available at that time (Gabow et al., 1986).
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tively. Frederickson and Guan (1993) further show that a combination of the

two algorithms produces a solution with cost 5
4 times the minimum cost in

O(n + k log β(k, q)) time. Examining the 4
3 -approximation algorithm using

asymptotic analysis, A.Coja-Oghlan et al. (2006) demonstrate that on almost

all inputs this algorithm obtains the optimal. This result is extremely promis-

ing and serves to provide some indication as to why SCPs encountered in the

“real-world” tend to be solvable to optimality (or near optimality) using these

approximation algorithms.

Indeed, the real-world is more forgiving than the theoretical world, in

that many applications of the SCP appearing in warehousing, manufacturing,

and container yards are solvable in polynomial time. In their 1999 work on

automated storage/retrieval systems (AS/RS) with dedicated storage, Van

den Berg and Gademann demonstrate that a special case of the stacker crane

problem with only two terminals is equivalent to the Transportation Problem.

In their formulation, all storage jobs must be serviced from one terminal and

all retrieval jobs are destined for a second terminal. While this case is not nec-

essarily very realistic, it does render the problem polynomially solvable(Van

den Berg and Gademann, 1999).

Interestingly other versions of the SCP, with more than one source and

sink node, are also polynomially solvable under certain conditions. For ex-

ample, Ball and Magazine (1988) examine a manufacturing problem arising

for the insertion of chips on printed circuit boards. The problem is to find

the least cost (in this case least distance) sequence of insertion operations

when each chip must be taken from a specific feeder and placed in a specific

location on the circuit board. Ball and Magazine (1988) reveal that when

the travel metric used is the Manhattan metric (or another additive metric)

the problem becomes polynomially solvable. In effect, this transformation

reduces the problem to a Gilmore-Gomory TSP (Kabadi, 2002). In R
2, with

an Euclidian travel metric, however, this manufacturing problem reduces to

the rural postman problem and is therefore NP -hard.

The reduction of SCPs to the rural postman problem (RPP) is not un-

usual. Theoretically, the Gilmore-Gomory TSP can be generalized into a
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Minimum Cost Steiner directed pseudograph Problem with Node-Deficiency

Requirements (MCNDP) (Kabadi, 2002). In turn, the RPP is a special case

of the MCNDP. Vis and Roodbergen (2008) exploit this relationship between

the MCNDP and RPP in studying the scheduling of container storage and

retrieval at a port terminal. Specifically, they examine the scheduling of

a straddle carrier as it moves containers from/to seaside to/from the stack

and from/to landside to/from the stack. Given the layout of the stack and

the constraints associated with straddle carrier motion, Vis and Roodbergen

(2008) are able to reformulate this problem as a rural postman problem which

they subsequently reformulate as an asymmetric Steiner Traveling Salesman

Problem — solvable to optimality in polynomial time.

We now pause to reflect on two interesting features of the SCP algorithms

cited here — the time complexity of these algorithms and the ideology be-

hind the algorithms. All of the algorithms presented in this section, whether

approximate or exact, are dominated by the time required for the minimum

spanning tree (MST) algorithm. At the time that Atallah and Kosaraju

(1988) and Frederickson and Guan (1993) were studying the SCP this was

O(k log β(k, q)) as provided by Gabow et al. (1986). Since that time, Chazelle

(2000) has put forth a faster MST algorithm that runs in O(kα(k, q)) where

α(k, q) is an inverse Ackermann function (Ackermann, 1928). By design the

Ackermann function grows extremely fast, as such the inverse Ackermann

function grows extremely slowly — rendering the time complexity of the MST

algorithm nearly linear.

The fact that all of the SCP algorithms, both exact and approximate,

exhibit a time complexity dependent on the MST algorithm is due to the

ideology underlying these algorithms. These algorithms may be broadly de-

scribed in two steps: 1) balance the network (i.e. create a network in which

every node has equal in- and out- degree) and 2) connect any emerging com-

ponents into a proper tour.

The first step serves to create a set of tours that include all of the jobs.

These tours may be disjoint, leading to a set of strongly connected components

or disjoint cycles; or if only one component emerges from this step, then
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the optimal solution has been obtained at this stage. Different algorithms

perform this first step in different ways, some judiciously add “augmenting”

edges to create a balanced network while others solve an assignment problem

version of the original SCP (or the version as transformed into the ATSP).

The assignment problem version of the SCP represents a relaxation in which

all jobs must precede or follow another (not necessarily distinct) job in such

a way that the total inter-job costs are minimized. For example, given three

jobs, the assignment problem relaxation may yield a solution such that job 1

precedes and follows job 2 just as job 2 precedes and follows job 1; meanwhile

job 3 precedes and follows job 3. The assignment problem therefore yielded

two disjoint cycles — one with two jobs and one with one job. This is in

contrast to the SCP (or ATSP) that requires all jobs to be ordered within

a single tour. Regardless of which edge augmenting or AP-based approach

is used, the result is the same — a tour comprised of one or more strongly

connected components.

The second step in this broad description of SCP algorithms is to connect

the components in a manner that incurs the least additional cost. It is in

this step that the MST algorithms are invoked on a graph whose nodes are

the strongly connected components of the balanced network and whose edges

are the least cost edges connecting the components. Once the MST has been

identified the method of exploiting it to create a full tour including all jobs

varies across the algorithms. Some algorithms use the edges of the MST to

make a single tour through all components while others use the MST results

to perform an intricate series of edge exchanges. Nevertheless, the outcome

is a single tour including all jobs.

The SCP is a very specific case of a traveling salesman problem with

pick-up and deliveries that fits into the broader range of problems known as

traveling salesman problems with precedence constraints (TSPPC) (Ascheuer

et al., 2000). In the TSPPC, the pick-up location must be visited before the

delivery location. If no intermediate points can be visited between each pick-

up and delivery, then the problem is a SCP. If, however, it is possible for the

salesman to visit intermediate pick-up and delivery points for some jobs then
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the problem becomes a swapping problem. The next subsection presents a

brief review of the relevant literature on both the Swapping Problem and the

Preemption Problem.

2.2.1 Variations: Swapping and Preemption Problems

The primary purpose of this review is to provide a fundamental examination

of routing problems that arise in container transport. Due to the specialized

equipment required to load and unload containers, preemption is not allowed

in many real-world drayage problems. There are, however, some cases where

a container may be dropped at an intermediate terminal for the addition or

removal of cargo before continuing to its destination. Within a container

terminal, containers may also be diverted to intermediate locations for cus-

toms inspections or load consolidation activities. We, therefore, make a small

side-step to examine the literature on single vehicle, unit load, pick-up and

delivery problems with preemption.

If only a subset of the jobs in any given problem instance are allowed to

be preempted, then the problem is known as the Swapping Problem. The

Swapping Problem was originally studied by Anily and Hassin (1992). They

examine the problem on a general graph, demonstrate that it is NP -hard,

and then propose a polynomial time 5
2 -approximation algorithm based on

the patching algorithm of Gilmore and Gomory. Chalasani and Motwani

(1999) subsequently exploited a matroid intersection technique to obtain a

2-approximation algorithm for this problem. To date, this stands as the best

polynomial approximation algorithm for the swapping problem on general

graphs.

Given the relationship between this problem and the Gilmore-Gomory

TSP, it is not surprising that when the underlying graph is a line, then the

problem may be solved to optimality in polynomial time. Anily et al. (2000)

demonstrate this result by presenting an O(n2) algorithm to compute the

optimal solution for the swapping problem on a line. If this problem, on a

line, is relaxed further to permit preemption for all jobs, then Atallah and

Kosaraju (1988) show that there exists an O(n+k) polynomial time algorithm
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to compute the optimal solution, where n and k are as before the number of

jobs and the number of terminals, respectively. This extreme case of the

Swapping Problem is what we term the Preemption Problem.

Frederickson and Guan (1992) study the preemption problem in the case

that the underlying graph is a tree, demonstrating that in this case the pre-

emption problem is also polynomially solvable. They show this by presenting

two algorithms, one that solves the problem in O(n+ kq) time and one that

solves it in O(n + k log k) time, where n, k, and q are as before the num-

ber of jobs, the number of terminals, and the number of strongly connected

components. If, however, job preemption is only permitted for a subset of

jobs and the number of times each “preemptable” job may be preempted is

restricted, then the problem is again NP -hard. This very specific case of

the swapping problem was studied by Krumke et al. (2008). They present a

(43 + ǫ)-approximation algorithm when the underlying graph is a tree. (Notice

that this result is in keeping with the 4
3 -approximation algorithm of Frederick-

son and Guan (1993) for the stacker crane problem on trees.) It was shown by

Coja-Oghlan et al. (2006), via probabilistic analysis, that when the underly-

ing SCP graph is a tree, the 4
3 -approximation algorithm (originally proposed

by Frederickson and Guan (1993)) yields a minimum cost tour with a certifi-

cate of optimality for almost all SCP inputs. The question then arises: how

do these worst case results for the stacker crane, swapping, and preemption

problems stand up in the average case? in cases from the “real-world”?

2.3 Empirical Studies

The literature highlighted in this review, thus far, has been theoretical in

nature. The documents described have provided only worst case bounds on

the polynomial time algorithms presented. We now turn our attention to a

review of a few empirical studies performed on stacker crane problem datasets.

Johnson et al. (2002) provide a comprehensive summary of experimental

results for twelve heuristics on twelve classes of problems. Eleven of these

twelve classes are based on randomly generated instances designed to reflect
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theoretically interesting problems as well as real applications while the twelfth

class is comprised of data originating from problems in the real-world. One

of the eleven randomly generated classes portrays the stacker crane problem.

The random SCP instances used in Johnson et al. (2002) have their origin

in the work of Cirasella et al. (2001). Cirasella et al. (2001) develop ten

instances with 100 jobs, ten with 316 jobs, three with 1,000 jobs, and one

with 3,162 jobs. These instances were created by randomly selecting a pick-

up location for each job out of a square that is 106 × 106 units large; the

delivery location for each job is then selected based on a random pick of two

integers from an interval of size [−106

u
, 10

6

u
], where u is an integer ranging

from 10 to 56 depending on the number of jobs in the instances. These

two randomly selected integers, serving as x and y coordinates, are then

added to the pick-up coordinates to obtain the delivery location. In the

class of problems originating from the real-world there are four SCP instances

containing 323, 358, 403, and 443 storage and retrieval jobs derived from

operations in a Siemens factory in Augsburg (Carpaneto et al., 1995).

Using these datasets, Johnson et al. (2002) report the results of twelve

different heuristics. The solution quality of these heuristics is reported in

terms of the percentage offset from both the assignment problem relaxation

(that is, the value of the least cost solution allowing subtours) and the Held-

Karp (H-K) lower bound (a lower bound derived from a linear relaxation of

the problem). Note, while the assignment problem is a relaxation on the tour

structure (as explained in Section 2.2), the H-K bound is based on a relaxation

of the constraint that every job must be preceded/followed by exactly one job.

In the H-K formulation, each job may be preceded or followed by a number

of “fractional” jobs so long as the sum of all fractional jobs totals one. The

results on the random instances reveal that no heuristic (even those following

the two broad steps outlined in Section 2.2) provided a solution better than

1.21% from the H-K bound. While these solutions may actually be the optimal

solution there is no way of deducing this from the results presented in Johnson

et al. (2002). The results from the real-world instances are strikingly different

— all instances were solved to optimality by at least three of the heuristics.
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Of note is that these three heuristics all follow the general structure as that

laid out in Section 2.2.

This difference between random and real-world SCP instances is not nec-

essarily surprising, but it does beg the question: why? We first note that the

random instances were constructed such that there is roughly a constant num-

ber of other pick-up points closer to a given pick-up point than its associated

delivery point. This yields some clustering, but not to the extent normally

seen in real-world SCPs — and particularly, real-world drayage problems.

For example, in the warehousing problem described by Van den Berg and

Gademann (1999) all jobs have either a pick-up or delivery point at one of

two locations; the problem studied by Ball and Magazine (1988) had pick-up

points at a fixed number of locations along a line; and in the marine terminal

problem of Vis and Roodbergen (2008), the pick-up and delivery points were

restricted to the rows of a container stack. As another example, an average

day of data for the drayage problem in this thesis has only six terminals and

19 customer locations as the end points for 65 jobs.

A second reason for the discrepancy in results may come from the metric

employed to describe the distance between two jobs. In the random instances

this distance was straight line distance whereas in the real-world storage and

retrieval instances, travel between jobs is restricted to a manhattan like grid

of racks and shelves. As Ball and Magazine (1988) showed, the travel metric

can have a significant impact on a problem’s solvability.

We are not the first to wonder what separates the theoretical world from

the real-world, or generally unsolvable from generally solvable problems, in

the realm of asymmetric traveling salesman problems. Miller and Pekny first

raised the question in their 1991 Science article when they stated: “The re-

sults show that the algorithm performs remarkably well for some classes of

problems, determining an optimal solution even for problems with large num-

bers of cities, yet for other classes, even small problems thwart determination

of a provably optimal solution.”

Frieze et al. (1995) began to answer this question by raising another ques-

tion — “When is the assignment bound tight for the asymmetric traveling-
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salesman problem?” They proceed to answer this question by showing that if

the expected number of zeros in a row of the distance matrix tends to infinity,

as the number of jobs in the problem tends to infinity, then the probability

that the assignment problem solution is the ATSP solution tends toward one.

This result is similar to an observation made by the pioneering graph theorist

Frank Harary when he noted “it is not so much a matter of how many zeros

a matrix has but rather their strategic location”(Harary, 1962b).

Considering realistic distributions in the distance matrix, they conjecture

that if the distribution is uniform over the integers in the interval from zero to

some constant times the number of jobs in the problem, then the probability

that the solution to the assignment problem is the solution to the ATSP is

some value less than one, but dependent on the constant. This result is sim-

ilar to a result obtained by Zhang and Korf (1996). They determined that if

the distances between jobs in the asymmetric TSP are drawn uniformly from

the set of integers ranging from zero to r, where r is an arbitrary positive

constant, then a branch and bound solution algorithm experiences an easy

to hard complexity transition as r increases. Complexity transitions, similar

to phase transitions in chemistry (e.g. the transition from ice to water as the

temperature rises), indicate that the time required for an algorithm to run

will steeply increase given a change in a specific instance parameter. Usually

such transitions are found empirically, for specific algorithms, by varying one

parameter across a wide range of input problem instances. In this way, by

varying r, Zhang and Korf (1996) conclude that the number of distinct inter-

city (or interjob) distances in an asymmetric traveling salesman problem is

the control parameter with the most influence on problem complexity. While

the evidence supporting this conclusion is particularly compelling another in-

terpretation is possible. That is, as r increases, not only will the number of

unique distances increase, but so will the average distance. Thus, it seems that

Zhang and Korf (1996) could also have concluded that the average intercity

distance is the control parameter with the most influence. While this con-

clusion is less compelling, as any instance can be appropriately scaled before

solving, it does warrant consideration in the context of container transport
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within a terminal (shorter distances) versus container transport outside of a

terminal (longer distances). Both the number of unique distances and the

average distance in a given ATSP instance will be studied further in Chapter

3.

In a similar vein, others have examined the correlation between asymmet-

ric traveling salesman problem parameters and the solvability of the problem.

One popular parameter is symmetry or the related, asymmetry . Cirasella

et al. (2001) define symmetry as the ratio of the standard deviation of in-

tercity distances in a “symmetrized” version of the problem to the standard

deviation of intercity distances in the original problem; a value of one implies

that the original problem was symmetric. By this measure, the 1,000 job

instance of the randomly generated stacker crane problem has a symmetry

of .9998 (Cirasella et al., 2001). Johnson et al. (2002) define asymmetry as

the ratio of the average value of |dij − dji|, where dij represents the distance

from city (or job) i to city j, to the average value of |dij + dij |. By this met-

ric, the randomly generated 1,000-job instances, of the SCP, have an average

asymmetry of .020; the real-world problems with 443, 403, 358, and 323 jobs

have an asymmetry of .229, .231, .226, and .206, respectively (Johnson et al.,

2002). In a study of the online ATSP, Ausiello et al. (2008) also found it

helpful to introduce a measure named maximum asymmetry. This measure

is defined as the supremum over all jobs of the ratio of the distance between

the jobs in one direction to the distance in the other direction (i.e. supi,j
dij
dji

).

The studies reviewed in this section are encouraging as they provide clues

to features that may indicate whether an existing algorithm will yield (in

reasonable time) an optimal solution to a given instance of the ATSP. While

the ATSP is known to be NP -hard this alone does not speak to the solvability

of any one instance of this problem — the instance’s parameters may serve

as the telling feature. Thus, as we continue to work with drayage problems

arising in the real-world, a careful examination of characteristic features is

required. Namely the distance matrix should be studied for the prevalence of

zeros, the presence of an underlying distribution of distances, the number of

distinct distances, and measures of symmetry or asymmetry.
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2.4 Implications

This review serves to highlight three interesting features of the Stacker Crane

Problem — 1) the best approximation algorithm for a general SCP holds at
9
5 , 2) the real-world includes a myriad of SCPs that are consistently solvable

to optimality in reasonable time, and 3) the difference between readily-solved

and slow-solving problem instances appears to lay in discernible structures

within the underlying distance matrix. These last two observations yield

insights for the real-world of drayage.

Specifically, drayage providers may be working in environments that force

a beneficial distance matrix structure. For example, dray providers operating

in a port environment may only serve terminals that are aligned along the

shoreline — thus, their problem would be analogous to one on a line, solvable

in polynomial time. Alternatively, some dray providers serve only a limited

number of customer or terminal locations, resulting in a distance matrix with

a significant number of zeros coupled with a small number of unique distances.

Furthermore, container operations in a limited geographic area (e.g. within

a single terminal) will on average have shorter inter-job distances with only

a limited number of unique distances. These distance matrix features may

yield benefits to the routing algorithm.

In order to fully investigate these suspicions, a proper analysis of drayage

problem metrics should be undertaken. More specifically, the distance matrix

structure of a variety of ATSPs should be examined and if possible, correlated

to the ease with which an optimal solution can be found. From this approach,

we may be able to identify SCPs and more specifically drayage problems as

special “easy” instances of the ATSP. Alternatively, we may be able to identify

a probabilistic distribution, centered on SCP or drayage instance features

relative to general ATSP features, correlating to algorithmic performance.

This is the pursuit of the next chapter.



Chapter 3

Are SCPs Easy?

An Empirical Exploration

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T. S. Eliot,

No. 4 of Four Quartets, Little Gidding.

Is searching for a needle in a haystack hard? Yes and no. Yes, because

the process can be frustrating, tedious, and time consuming. No, because the

process itself is not so difficult: pick up something from the haystack, examine

it, if it is a needle, stop, if not, continue.

Notice, however, that the success of this process, or algorithm, is vitally

dependent on two assumptions. First, that there is at least one needle in the

haystack. Second, that the haystack-searcher knows a needle when s/he sees

one. If these two assumptions are fulfilled, then the time required in searching

for the needle is dependent on two (possibly related) considerations. One,

how big the haystack is — a big haystack will likely take longer than a small

haystack. Two, where in the haystack the needle is hiding — if it is near the

39
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top (or visible on an edge of the stack), the haystack-searcher will most likely

find the needle faster than if it is at the bottom of the stack.

If we can infer that the size or structure of a haystack has an influence on

the probable location of the needle in the haystack, then perhaps we can design

a better search algorithm. For example, if we know that in large haystacks

the needle is more likely to be on the bottom, then the haystack searcher can

expedite their search by starting at the bottom of the stack. Unfortunately,

haystack research is not so advanced at this stage, and the haystack searcher

must toil with the most rudimentary of algorithms: one straw at a time. . .

Leaving our haystack-searcher to his/her sisyphean task, we turn our at-

tention to another character (previously-introduced in Chapter 2) with a sim-

ilarly “hard” problem, the Stacker Crane. In the SCP, we are faced with the

task of finding the least cost way to move a given number of containers, from

various pick-up locations to various drop-off locations, from among a (possi-

bly large) set of feasible ways to move the same containers. Thus, like our

haystack-searcher, the SCP-solver has a task that is not necessarily difficult,

but is excessively time consuming.

In fact, the SCP has an underlying graph structure that places it alongside

the TSP in the class of problems termed NP -Hard (as defined in Chapter 2).

A name which tends to influence one’s perception of the problem’s difficulty.

Therefore, when we ask, “are SCPs easy?”, we are not asking about the proven

worst-case performance of existing algorithms, but rather the likelihood that

any one instance (or type) of SCP can be solved quickly by existing algorithms

(i.e. in much less time than the forecasted worst-case time of the existing

algorithms).

Indeed, as foreshadowed in the previous chapter, the literature contains

several references to the SCP as an “easy” problem amidst the arc rout-

ing problems and/or the ATSPs. For example, Miller and Pekny (1991);

Carpaneto et al. (1995); Frieze et al. (1995); Zhang and Korf (1996); Laporte

(1997) have all noted that while ATSPs are NP -hard, some instances are

readily solved to optimality in only a short amount of time. Laporte (1997)

even goes so far as to state specifically that when an SCP is transformed to
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an ATSP, it becomes easy to solve to optimality using existing TSP solution

techniques. Admittedly the only proof Laporte offers up on this matter is the

statement: “We have solved without difficulty instances of the directed RPP

and of the SCP involving up to 220 vertices and 660 arcs by a direct appli-

cation of the Carpaneto and Toth algorithm.”(Laporte, 1997). The reader is

left to wonder, from where does the relative ease of solving an SCP stem? Is

this due to some feature of the original arc routing graph? And does that

feature manifest itself in the distance matrix?

This chapter focuses on answering these questions via an empirical analy-

sis of SCP and ATSP distance matrices. Figure 3.1 depicts how this empirical

analysis was conducted and how the sections of this chapter align with that

analysis. Specifically, this approach is dependent on three tools — a set of dis-

tance matrices for a variety of ATSPs including SCPs (Section 3.1), a method

by which to declare an instance “solvable”(Section 3.2), and a set of appropri-

ate distance matrix metrics that can serve to distinguish problems in terms of

solvability (Section 3.3). Following these three sections on methodology the

resulting models are revealed (Section 3.4) and verified (Section 3.5).

3.1 ATSP Instances

The dataset used in this study contains 379 ATSP distance matrices. Those

matrices came from four different sources. First, the TSPLIB instances

(27 instances), as posted at http://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/atsp/. Second, the problem instances with

fewer than 1000 jobs from sources other than the TSPLIB, as described in

Johnson et al. (2002) and Cirasella et al. (2001) and specified as “Benchmark

Instances” at http://www.research.att.com/~dsj/chtsp/atsp.html (19

instances). Third, we included a set of instances that were derived from a

drayage problem at the Port of Rotterdam (66 instances). Fourth, we used

the twelve random instance generators described in Johnson et al. (2002) and

Cirasella et al. (2001) and posted at http://www.research.att.com/~dsj/

chtsp/atsp.html. With these generators we constructed all of the instances
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Figure 3.1: Depiction of data analysis approach along with the structure of
Chapter 3.

with 100 and 316 jobs as described in Cirasella et al. (2001) (240 instances).

We also used nine of generators (amat, coin, crane, disk, rect, rtilt, shop, su-

per, tmat) to create three 66-job instances each (27 instances). We therefore

had a data set including 379 distance matrices.

These 379 instances represent roughly 18 different problem types ranging

in size from 16 to 932 jobs or nodes. The problem types, number of instances

of that type, along with their sources are listed in Table 3.1. These instances
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are all well documented in the references cited in the table. The drayage

problems included as part of the real-world SCPs, stem from the Dutch LSP

introduced in Chapter 1.

Specifically, the Dutch LSP provided us with a set of operational data

tables. In all, these tables spanned operations from January 2002 to Oc-

tober 2005 as well as from January 2006 through March 2006. The tables

represented jobs that were planned to be served on a given day. After a

preliminary review of the data, we concluded that on average 65 jobs were

served per day, at customer and terminal locations associated with less than

25 distinct zipcodes. Using these parameters, we extracted a random sample

of appropriately defined jobs from the original data-set in order to generate

a set of 33 days with 65 jobs per day. Recall, from Chapter 1, that each job

our LSP served might actually be considered a combination of two jobs —

the trip from/to a terminal to/from a customer location and the trip from/to

a customer location to/from a terminal. Using this observation, we created a

second set of 33 days with 130 jobs. In each set, we added one job with both

the pick-up location and drop-off location at the home terminal (i.e. this job

had a loaded distance of zero). The optimal route was then parsed such that

this job represents the first (and last) job on the route. In this way we could

ensure that we obtain a tour beginning and ending at the home terminal of

the LSP. Finally, in order to match the formatting of the TSPLIB instances,

we rounded all distances to the nearest integer. Hence, we added a total of 66

drayage instances, 33 with 66 jobs and 33 with 131 jobs, to our set of ATSP

instances. (Note, more detail on the data from the Dutch LSP may be seen

in Chapter 5, Section 5.2.2.)

3.2 Hard or Easy? Measuring Solvability

The trick to answering the question at the center of this research — from

where does the relative ease of solving an SCP stem? — rests on having a

good definition for “ease of solving”. Common sense dictates that a problem

is easy to solve if it can be solved to optimality quickly. This definition,
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Table 3.1: Summary of instances in primary dataset.
Problem Abbrv. # Jobs Source Reference

Real-world SCP

PK66* 33 66 Port of
Rotterdam

This Dissertation
PK131* 33 66

rbg* 4
323, 358, 403,
443

TSPLIB
(Carpaneto
et al., 1995),
(Ascheuer, 1995)

Generated SCP

crane66* 3 66
Cirasella
generators

(Cirasella et al.,
2001)crane100* 10 100

crane316* 10 316

Real-world Scheduling
Problems

ft* 2 53, 70
TSPLIB

(Fischetti and
Toth, 1992)p43 1 43

td 2 100, 316
Cirasella et al.
(2001)

(Cirasella et al.,
2001)

Generated Scheduling
Problems

shop66* 3 66
Cirasella
generators

(Cirasella et al.,
2001)shop100* 10 100

shop316* 10 316

Real-world Routing
Problems

ftv* 17

33, 35, 38,
44, 47, 55,
64, 70, 90,
100, 110, 120,
130, 140, 150,
160, 170

TSPLIB;
Cirasella et al.
(2001)

(Fischetti et al.,
1994); (Cirasella
et al., 2001)

big702 1 702

Generated Routing
Problems

coin66* 3 66

Cirasella
generators

(Cirasella et al.,
2001)

coin100* 10 100

coin316* 10 316

disk66* 3 66

disk100* 10 100

disk316* 10 316

Real-world Robotic Motion
Problems

atex* 5
16, 32, 48,
72, 600

Cirasella et al.
(2001)

(Cirasella et al.,
2001)

Generated Robotic Motion
Problems

rtilt66* 3 66

Cirasella
generators

(Cirasella et al.,
2001)

rtilt100* 10 100

rtilt316* 10 316

stilt100* 10 100

stilt316* 10 316

Real-world Data Compression
Problems

dc* 9
112, 126, 134,
176, 188, 563,
849, 895, 932

Cirasella et al.
(2001)

(Cirasella et al.,
2001)

Real-world Code Optimization
Problems

code* 2 198, 253
Cirasella et al.
(2001)

(Young et al.,
1997)

Generated Approximate
Shortest Common
Superstring Problems

super66* 3 66
Cirasella
generators

(Cirasella et al.,
2001)super100* 10 100

super316* 10 316

Randomly generated
asymmetric matrices
obeying the triangle
inequality

tmat66* 3 66
Cirasella
generators

(Cirasella et al.,
2001)tmat100* 10 100

tmat316* 10 316

Randomly generated
symmetric matrices

smat100* 10 100 Cirasella
generators

(Cirasella et al.,
2001)smat316* 10 316

Randomly generated
symmetric matrices obeying
the triangle inequality

tsmat100* 10 100 Cirasella
generators

(Cirasella et al.,
2001)tsmat316* 10 316

Randomly generated
symmetric matrices using
rectilinear distances

rect66* 3 66
Cirasella
generators

(Cirasella et al.,
2001)rect100* 10 100

rect316* 10 316

Symmetric matrices
perturbed to be asymmetric

ry48p 1 48
TSPLIB

(Fischetti and
Toth, 1992)kro124p 1 100

Unknown Origin br17 1 17
Cirasella gen-
erators

(Cirasella et al.,
2001)
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while a good start, does raise a further question: by what means should we

solve the problem? To answer this question, the following two subsections

describe two exact solution algorithms employed to measure solvability; the

final subsection describes how the results from applying the two algorithms

were used to describe instances as solvable.

3.2.1 Concorde

The first method used to determine ease of solvability is that encoded in

the concorde solver1. Nearly all the details of the algorithms employed in

the concorde code are beautifully documented in the book, The Traveling

Salesman Problem: A Computational Study by Applegate et al. (2007). We

therefore limit ourselves to simply stating that concorde uses a branch-and-

cut approach (that is a cutting plane method embedded within a branch-and-

bound search) to find the optimal solution of symmetric TSPs. Thus, in order

to use concorde on our ATSPs we had to transform them from ATSPs into

STSPs.

For this we employed the 2-node transformation of Jonker and Volgenant

(1983). This transformation works by adding a copy of each node in the

original problem. The new inter-node costs, cij , are then set based on the

original set of inter job distances, dij , as follows: zero for the cost between a

node and the copy of that node; dij+M for the cost between the copy of node

i and the original node j; dji + M for the cost between the original node i

and the copy of node j; and +∞ for all remaining edges. In order to manage

the memory consumption of these instances, we tried to make a conservative

selection for M , setting it to two times the maximum distance in the problem

instance. This was done for all instances except stilt316*, rtilt316*, disk66*,

disk100*, disk316*, and code* for which M was set to 1, 000, 000. Similarly,

we used 99, 999, 999 as a proxy for +∞. Figure 3.2 depicts this transformation

on a small example with 4 nodes.

After “symmetrizing” all 379 instances, concorde was used with 123 spec-

ified as the random seed and 16 as the chunk size parameter (in conjunction

1available at http://www.tsp.gatech.edu/concorde/
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Figure 3.2: Depiction of transformation from ATSP (with 4 nodes) to STSP
(with 8 nodes); INF stands for +∞; M = 4.

with the qsopt LP package2) to solve these instances with a 10,000-second

limit on running time. Note, these specifications, both the 2-node transfor-

mation and the 10,000-second runtime, follow those found in Fischetti et al.

(2002). In addition to being consistent with the literature, the selection of a

10,000-second runtime has little impact on the results. In general, if a problem

is not solved in 5,000-seconds, then it will also not be solved in 10,000-seconds.

From the results, we recorded, for each instance, the running time in seconds

(10,000 if the time limit was reached) along with the number of branch-and-

bound nodes required by the algorithm. Branch-and-bound nodes serve as a

measure of the number of subproblem sets examined as part of the solution

algorithm. As such the number of branch-and-bound nodes also serves as a

good indicator regarding the ease of solvability.

2available at http://www2.isye.gatech.edu/~wcook/qsopt/
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3.2.2 Tsp solve version 1.3.6

The second method used to determine ease of solvability is that encoded in

tsp solve v. 1.3.6. Tsp solve v. 1.3.6, primarily coded by Chad Hurwitz, rep-

resents a package3 of both STSP and ATSP solution algorithms and heuristics

(both tour finding and tour improving). For our study, we used only one exact

solution algorithm, from the suite, for the ATSP — that designated in the

software as “assign”. Assign is an implementation of the branch-and-bound

algorithm originally proposed by Carpeneto and Toth (1980) in which a modi-

fied assignment problem is the means by which the branching is conducted. A

modified assignment problem is an assignment problem with additional con-

straints describing arcs that must be included and arcs that must be excluded

in the solution.

Just as with the concorde solver, we set a 10,000-second time limit on

the running time of tsp solve for any one instance. As tsp solve was really

designed for problems with fewer than 175 nodes, there were many instances

that were either not attempted by tsp solve or that reached the time limit

without finding the optimal solution. For these instances, the running time

was recorded as 10,000-seconds.

3.2.3 Solvability

Given the results of both concorde and tsp solve’s assign algorithm, we created

two measures of solvability — one continuous and one a classification. The

first measure is simply the sum of the two solvers’ runtimes. The second is

a classification of the instances into easy, medium, and hard categories based

on the summed runtimes and the branch-and-bound nodes in concorde. The

first measure is straight forward and requires no additional explanation. The

second measure was derived using hierarchical clustering.

Hierarchical clustering initially places each instance in its own cluster then

iteratively combines clusters based on the Euclidean distances (standardized

to range from zero to one) between the instances, with regards to the specified

3freely available at http://www.cs.sunysb.edu/~algorith/implement/tsp/implement.
shtml
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solvability metrics. In this case the metrics used were the summed runtimes

and the number of branch-and-bound nodes needed in the concorde solver.

Note, if concorde could not solve the problem in 10,000-seconds, the runtime

was specified as 10,000-seconds and the number of branch-and-bound nodes

was specified as 1,000.

The success of the hierarchical clustering approach depends on a dataset

without obvious outliers. To mitigate this problem, we ran the hierarchical

clustering procedure, in SPSS, on the z-scores of the two measures. That is

we subtracted from each runtime value the mean of all the runtimes (7976.26-

seconds) and then divided by the standard deviation of runtimes (5577.01-

seconds). Similarly, the z-scores were calculated for the branch-and-bound

node metric, which had a mean of 87.26 and a standard deviation of 244.89.

From this procedure we obtained five clusters; we then manually combined

the three “hardest” groups into one cluster for a total of three clusters.

These three clusters largely correspond to three groups observable in the

runtime data. Given the cutoff time of 10,000-seconds, the runtime data

reveals three distinct categories with distinct means and standard deviations.

First, there were 108 problem instances that could be solved by both solvers

within the time limit — with a mean of 35.86-seconds and a standard deviation

of 166.35-seconds. Second, there were 248 instances that could only be solved

on concorde within the time limit — these instances had a mean of 10,319.08-

seconds and a standard deviation of 1022.53-seconds. Finally, there were 23

instances that neither solver could crack — these (clearly) had a mean of

20,000-seconds with no deviation.

Returning to the clusters derived via hierarchical analysis, Table 3.2 sum-

marizes the solvability metrics across the three hierarchical clusters corre-

sponding to easy, medium, and hard instances. Figure 3.3 shows, by means

of a scatterplot, how the three solvability clusters fall with regards to branch-

and-bound nodes on the x-axis and total solver running time on the y-axis.
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Table 3.2: Summary of solvability statistics by cluster.

Sum of runtimes Branch-and-bound nodes
(Concorde and tsp solve) (Concorde)

Cluster N Mean Std. dev. Mean Std. dev.

Easy 108 35.86 166.35 5.07 7.09

Medium 235 10122.12 345.56 19.10 34.26

Hard 36 17789.83 3240.49 778.75 309.59

Total 379 7976.27 5577.01 87.26 244.89

Figure 3.3: Depiction of instances with regards to solvability metrics.
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3.3 Distance Matrix Metrics

Predicting solvability requires a method by which to describe each instance

in quantifiable terms. With nothing other than a distance matrix to describe

each instance, we rely on the fields of both linear algebra and graph theory

to determine meaningful metrics for the matrices. In particular, the graph

and matrix work of Frank Harary was quite inspirational in developing these

metrics (see e.g. Harary (1959a,b,c, 1962a)). Note, we used the asymmetric

matrices to derive these metrics; as opposed to the symmetrized problem

version described in Section 3.2.

The most basic of the metrics studied is the number of jobs in the problem

instance. This metric is abbreviated as numJobs. The remaining metrics

fall into five primary categories: distance related (Subsection 3.3.1), asymme-

try related (Subsection 3.3.2), graph structure related (Subsection 3.3.3), arc

routing problem related (Subsection 3.3.4), and assignment problem related

(Subsection 3.3.5).

3.3.1 Distance Related

This set of distance matrix metrics describes the range and grouping of indi-

vidual values appearing in the distance matrix. These metrics are primarily of

a descriptive nature doing little to interpret any underlying structural prop-

erties in the matrix or graph. Admittedly, these metrics represent only a

fraction of the full number of distance related metrics possible. These partic-

ular metrics were selected based on motivation found in the literature. This

subsection describes these references along with introducing each distance

related metric.

zeroDist This is a count of the number of times that zero appears in the dis-

tance matrix. This metric may be normalized by taking the ratio of the

number of times zero appears in the distance matrix to the total number

of matrix entries (excluding the diagonal entries), i.e.
|{dij |dij=0}|

n(n−1) , i 6= j.

This metric is of interest due to the observations of Frieze et al. (1995)

regarding the role of zeros in a distance matrix. Specifically, they note,
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if the expected number of zeros in a row of a given distance matrix tends

toward infinity, as the given number of jobs tends toward infinity, then

the probability that the solution to the problem is the solution to the

related assignment problem tends toward one.

uniqueDistCount This is a count of the number of unique distances in the

distance matrix. This metric can be normalized by dividing the number

of unique distances by the total number of matrix entries, i.e. given

a sorted list of all the dij , relabeled as dk, k = 1, . . . , n(n − 1), this

is
|{dk|dk 6=dk+1}|

n(n−1) . This feature (the number of unique distances in the

distance matrix) is at the heart of a conjecture put forth by Zhang and

Korf (1996). They hypothesize that the number of distinct intercity

(or interjob) distances in an asymmetric traveling salesman problem is

the control parameter with the most influence on problem complexity.

Zhang and Korf (1996) test this hypothesis by demonstrating that a

branch and bound algorithm experiences an “easy-to-hard” transition

as the interval from which distances can be randomly drawn increases.

minDist As the name indicates this measure reflects the minimum value

present in the distance matrix. Note, if zeroDist is greater than zero,

then this measure is zero. This measure is also related to the work of

Zhang and Korf (1996) in that it represents the lower bound on the

interval from which distances can be drawn.

avgDist/maxDist This measure is the ratio of the average of all distances

in the distance matrix (excluding the diagonal entries) to the maximum

distance in the distance matrix. Again, this metric is related to the hy-

pothesis of Zhang and Korf (1996) as it captures the spread of distances

in the interval from which distances can be drawn.

minDist/maxDist This measure is the minimum distance in the distance

matrix divided by the maximum distance (excluding diagonal entries).

Note, if zeroDist is greater than zero, then this measure is zero.

maxBinSize This measure captures the size of the largest set of entries with
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the same distance value. This measure can be normalized by the total

number of entries (excluding the diagonal entries) in the distance ma-

trix. Note that if uniqueDistCount is one, then the normalized version

of this metric assumes a value of one; alternatively, if uniqueDistCount

is n(n − 1) then the normalized version of this metric assumes a value

of zero.

The mean and standard deviation values of these metrics across the three

groups of solvability are presented in Table 3.3.

Table 3.3: Summary of distance related distance matrix metrics by cluster;
each cell contains the mean and standard deviation (in parentheses).

Cluster
Metric Easy Medium Hard Total

N 108 235 36 379
numJobs 79.34

(21.33)
197.84
(119.14)

357.94
(154.89)

179.28
(131.32)

zeroDist 509.71
(773.98)

808.62
(3284.09)

4.00
(24.00)

647.02
(2628.16)

zeroDist norm .12 (.18) .027 (.08) .00 (.00) .05 (.12)
uniqueDistCount 3209.19

(3989.51)
21090.20
(31516.20)

49504.70
(41137.7)

18693.80
(30636.10)

uniqueDistCount norm .39 (.43) .45 (.38) .52 (.41) .44 (.40)
minDist 92.91

(283.22)
1459.97
(3279.91)

1,738.17
(2010.26)

1096.84
(2732.33)

avgDist/maxDist .42 (.14) .36 (.12) .32 (.07) .37 (13)
minDist/maxDist .02 (.05) .01 (.02) .00 (.01) .01 (.03)

maxBinSize 741.34
(859.95)

2962.27
(16672.10)

14067.20
(63827.20)

3384.22
(23716.40)

maxBinSize norm .15 (.17) .04 (.09) .02 (.08) .07 (.13)

3.3.2 Asymmetry Related

As noted in Chapter 2, symmetry is one of the most studied features of a

distance matrix (Gutin and Punnen, 2002). Symmetry in this context refers to

the difference between an entry and its diagonally symmetric counterpart (i.e.
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dij and dji). Interestingly, while the property of asymmetry is well defined,

a measure of asymmetry for asymmetric matrices is not well defined in the

literature. Ausiello et al. (2008) consider a measure of asymmetry termed

maximum asymmetry. Maximum Asymmetry is defined as the supremum over

all city pairs, i and j, of the ratio dij to dji. This measure, while capturing

the maximum differential in distances, does not however capture the extent

of asymmetry expressed in the matrix as a whole. For example, it may be the

case that there is only one pair of cities for which dij 6= dji, yet the maximum

asymmetry may appear quite extreme. Meanwhile, another distance matrix

may have many entries for which dij 6= dji, but the discrepancy between

these distances may only be small, thus maximum asymmetry in this case

would appear smaller than in the first case. Furthermore, this metric has a

significant downside as it is undefined in grossly asymmetric matrices — that

is in matrices where dij > 0 and dji = 0, for all i and j; as such we examine

five alternate measures of symmetry, or asymmetry, as the case may be.

asymmetry A possibly more encompassing measure of asymmetry is that

used by Johnson et al. (2002). Their measure of asymmetry is the ratio

of |dij − dji|, averaged over all i and j, i 6= j, to dij + dji, averaged

over all i and j, i 6= j. This measure encapsulates both the amount

and extent by which dij may differ from dji in a given distance matrix.

Note, that if dij = dji, for all i and j, the ratio will be zero; if dji = 0,

for all i > j, the ratio will be one. Mathematically speaking this metric

is defined as:
|dij−dji|

dij+dji
, where |dij − dji| =

1
n(n−1)

∑

i,i 6=j

∑

j |dij − dji|

and dij + dji =
1

n(n−1)

∑

i,i 6=j

∑

j dij + dji .

maxAsym A variation of Johnson et al.’s measure of asymmetry, inspired

by the maximal nature of Ausiello et al.’s maximum asymmetry, is the

ratio of the maximum over all i and j of |dij−dji| to the maximum over

all i and j of dij + dji. Mathematically speaking this is
maxi,j{|dij−dji|}
maxi,j{dij+dji}

.

oneRatioCount Another way to measure asymmetry is to examine the

number of times that dij > 0 while dji = 0. This measure may also
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be normalized when taken as a fraction of the total number of non-

diagonal distance matrix entries. In a sense this hints at Ausiello et al.’s

maximum asymmetry, but contextualizes it in terms of the number of

occurrences, rather than the scope of occurrences, within the distance

matrix. Note, this normalized distance matrix metric will equal one if

the matrix is an upper (or lower) triangular matrix in which all entries

above (or below) the main diagonal are greater than zero; a matrix

with few zeros will yield a normalized metric closer to zero. In this

regard, the larger this metric, then the more “asymmetric” the matrix.

Mathematically speaking, the normalized version of this metric may be

written as:
|{dij |dij>0, dji=0}|

n(n−1)

zeroRatioCount It may, however, be the case that the most useful measure

of asymmetry is simply the number of times dij = dji occurs. A normal-

ized version of this metric is the ratio of the number of times dij = dji to

the total number of non-diagonal distance matrix entries. Mathemat-

ically, the normalized version of this metric is:
|{dij |dij=dji}|

n(n−1) . Note, if

the distance matrix is symmetric the normalized version of this measure

will equal one; if the matrix is fully asymmetric, then the normalized

version of this measure will be zero.

maxRatio Finally, we turn our attention to another variation of Johnson

et al.’s measure of asymmetry by considering the maximum over all i

and j of the fraction,
|dij−dji|
dij+dji

. This fraction will vary between zero and

one; assuming a value of one if there are any entries in the matrix such

that dij > 0 while dji = 0.

The mean and standard deviation values of these asymmetry related met-

rics across the three groups of solvability are presented in Table 3.4.

3.3.3 Graph Structure Related

The distance matrix for an asymmetric traveling salesman problem does, af-

ter all, describe the length of directional edges connecting nodes in a graph.
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Table 3.4: Summary of asymmetry related distance matrix metrics by cluster;
each cell contains the mean and standard deviation (in parentheses).

Cluster
Metric Easy Medium Hard Total

N 108 235 36 379
asymmetry .27 (.14) .15 (.19) .14 (.17) .18 (.19)
maxAsym .48 (.22) .24 (.27) .21 (.24) .30 (.27)

oneRatioCount 407.39
(627.26)

753.12
(3510.931)

.00 (.00) 583.07
(2793.085)

oneRatioCount norm .09 (.15) .02 (.05) .00 (.00) .04 (.09)
zeroRatioCount 578.20

(671.425)
16283.27
(34536.01)

52052.22
(135381.49)

15205.53
(51251.29)

zeroRatioCount norm .12 (.14) .33 (.42) .21 (.27) .26 (.36)
maxRatio .93 (.15) .65 (.43) .66 (.30) .73 (.38)

We therefore turn our attention to metrics that relate to the number and

placement of zero-length directional edges described by a given distance ma-

trix. In its simplest form, this measure can be expressed as the previously

introduced, zeroDist. We may, however, wish to study the location of these

zeros as a means to infer the underlying graph structure. For example, if the

distance between a node is zero in both directions then the jobs that these

nodes represent are actually co-located.

Recalling that underlying any node routing problem there may be an arc

routing problem4, we may state that two jobs (in the related ARP) are co-

located if the origin of one job is the destination of the second, while the

destination of the first is also the origin of the second (i.e. jobs three and four

in Figure 2.1). Notice that if two jobs are co-located, the distance between the

jobs, in both directions, will be zero. Jobs may also be partially co-located if

the origin of one is the destination of the second, but the destination of the

first is not the origin of the second (i.e. jobs two and three in Figure 2.1). If

jobs are partially co-located, then one zero will appear in the distance matrix.

4The transformation between an arc routing and node routing problem was shown in
Figure 2.1 of Chapter 2. As a side note, considering Figure 2.1 in the context of drayage
problems, one could envision nodes v1 and v2 as terminals and v3 and v4 as customers.
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Note, that if the SCP in Figure 2.1 had more than four arcs spanning just

these four nodes, then proportionally more zeros would appear in the distance

matrix. This may indicate why Laporte (1997) found that his SCPs, with 660

arcs on only 220 nodes, were so easily solved using TSP algorithms. These

observations may also be behind Frieze et al.’s conjecture regarding the role

of zeros in a distance matrix as related to the likelihood that the solution

corresponds to the solution of the related assignment problem.

Thus, this set of graph structure related metrics measure the placement

of zeros in the distance matrix in the context of co-location. The simplest

way to measure these connections is by constructing an adjacency matrix.

An adjacency matrix is similar to a distance matrix, with the exception that

all non-zero distances are replaced by the number one. Figure 3.4 shows the

adjacency matrix derived from the four node distance matrix presented in

Figure 3.2 and associated with the graph in Figure 2.1. Using the adjacency

matrix, we develop three graph related metrics.

Figure 3.4: Example of an adjacency matrix as derived from the distance
matrix in Figure 2.1 and the graph in Figure 2.1.

noCol This metric indicates the number of times that two nodes are con-

nected in both directions. It is derived by calculating the number of

times that aij + aji = 2 for all entries such that i < j; this value can be

normalized based on half the total number of entries (for which i 6= j)

in the matrix (i.e. n(n−1)
2 ).
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partCol This metric indicates the number of times that two nodes are con-

nected in only one direction. It is derived by calculating the number of

times that aij + aji = 1 for all entries such that i < j; this value can be

normalized based on half the total number of entries (for which i 6= j)

in the matrix (i.e. n(n−1)
2 ). Notice that this metric is equal to half of

oneRatioCount ; and oneRatioCount norm = partCol norm.

fullCol This metric indicates the number of times that two nodes are not

directly connected at all. It is derived by calculating the number of

times that aij + aji = 0 for all entries such that i < j; this value can be

normalized based on half the total number of entries (for which i 6= j)

in the matrix (i.e. n(n−1)
2 ).

Notice that the sum of these three metrics, when normalized, will equal

one. The mean and standard deviation values of these graph structure related

metrics across the three groups of solvability are presented in Table 3.5.

Table 3.5: Summary of graph structure related distance matrix metrics by
cluster; each cell contains the mean and standard deviation (in parentheses).

Cluster
Metric Easy Medium Hard Total

N 108 235 36 379
noCol 2976.56

(1907.46)
25946.21
(34187.96)

75543.39
(88952.15)

24111.85
(42881.99)

noCol norm .83 (.25) .96 (.10) 1.00 (.00) .93 (.17)
partCol 203.69

(313.63)
376.56
(1755.465)

.00 (.00) 291.53
(1396.54)

partCol norm .09 (.15) .02 (.05) .00 (.00) .04 (.09)
fullCol 153.01

(236.47)
216.03
(1035.40)

2.00 (12.00) 177.74
(826.76)

fullCol norm .07 (.11) .02 (.06) .00 (.00) .03 (.08)
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3.3.4 Arc Routing Problem Related

Continuing with the observations made in the previous subsection, we now

specify a set of metrics based on the premise that in some instances the un-

derlying graph structure can be transformed from a node routing problem

into an arc routing problem (ARP). Using the following method for recon-

structing the ARP graph from the structures found in the distance matrix,

we can specify a set of distance matrix metrics that are based on the ARP

graph.

The transformation from a distance matrix into an ARP graph description

is made by first listing, in pairs, all of the jobs that are fully, partially, and

not co-located (see subsection 3.3.3). We then construct a list of origin sets

and destination sets. Origin sets are sets containing all of the jobs originating

from the same ARP graph node; destination sets are sets containing all of the

jobs destined to the same ARP graph node. Each origin set is determined

by counting the number of columns with fully equal entries (save for the

diagonal entries). Each destination set, on the other hand, is determined by

counting the number of rows in distance matrix that contain all of the same

entries (with the exception of the diagonal entries). More specifically, when

comparing two rows i and k, all entries should be equal with the exception of

dii and dki along with dkk and dik.

Using the co-location pairs and the lists of origin and destination sets, we

can now reconstruct any underlying ARP graph as follows:

1. Begin with the fully co-located pairs. Note that for these pairs the

origin of one job is the destination of the other and vice versa. Thus,

we specify one node in the ARP graph such that all of the jobs in the

origin set containing the first job and all of the jobs in the destination

set containing the second job originate from or are destined to that one

node. We then specify a second node in the ARP graph such that all of

the jobs in the destination set containing the first job and all of the jobs

in the origin set containing the second job are destined to or originate

from this second node. This process continues until all fully located job
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pairs are associated with nodes in the ARP graph.

2. Next, continue with the partially co-located job pairs. Note, for these

pairs the origin of one job is the destination of the other, but not the

reverse. Thus, we specify only one node in the ARP graph such that

all of the jobs in the origin set containing the first job and all of the

jobs in the destination set containing the second job originate from or

are destined to that one node. We then check if the destination of the

one job and origin of the other job have already been associated with a

node; if so, we continue; if not, we associate the destination set of the

one job with one node and the origin set of the other job with a second

node. Note, in many cases the partial co-locations have already been

associated with ARP graph nodes as a result of processing the fully

co-located pairs.

3. Finally, iterating over the remaining not co-located jobs we check if each

job has already been associated with an ARP graph node. If so, then

we continue checking the list; if not, we specify two nodes, one origin

node and one destination node for each job.

For example, based on the distance matrix of Figure 2.1, we can list the

co-location pairs as follows:

Fully co-located: {3, 4}; note, in the associated adjacency matrix (Figure

3.4), a43 + a34 = 0

Partially co-located: {2, 3}; note, in the associated adjacency matrix (Fig-

ure 3.4), a23 + a32 = 1

Not co-located: {1, 2}, {1, 3}, {1, 4}, {2, 4}; note, in the associated adjacency

matrix (Figure 3.4), aij + aji = 2 for all the not co-located pairs.

We can now specify the origin and destination sets as follows:

Origin Set 1: {1}; note, no other distance matrix column is equivalent to

column 1.
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Origin Set 2: {2, 4}; note, distance matrix columns 2 and 4 are equivalent.

Origin Set 3: {3}; note, no other distance matrix column is equivalent to

column 3.

Destination Set 1: {1, 2}; note, distance matrix rows 1 and 2 are equiva-

lent.

Destination Set 2: {3}; note, no other distance matrix row is equivalent to

row 3.

Destination Set 3: {4}; note, no other distance matrix row is equivalent to

row 4.

Recognizing that the origin and destination of a fully co-located job pair

will be at the same node, we specify nodes one and two of the ARP graph,

using the origin and destination sets, as follows:

ARP Node 1: [Origin Set containing job 3, Destination set containing job

4] = [{3},{4}]

ARP Node 2: [Origin Set containing job 4, Destination set containing job

3] = [{2, 4}, {3}]

Now, considering the partially co-located pair, {2, 3}, we note that a node

with the pre-requisite structure, [Origin Set containing job 2, Destination set

containing job 3] = [{2,4},{3}], was already placed as ARP Node 2. We thus,

continue with the not co-located pairs. This leads to the following additional

nodes:

ARP Node 3: [Origin Set containing job 1, No Destination Set] = [{1},{-}]

ARP Node 4: [No Origin Set, Destination set containing job 2] = [{-},

{1,2}]

Note, the destination sets for jobs 2, 3, and 4, were already placed. Thus,

the process of associating jobs with nodes in the underlying ARP graph is

complete. The resulting ARP graph has four nodes: one with out-degree one
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(i.e. the origin of job one), one with out-degree two and in-degree one (i.e. the

origin of jobs two and four and the destination of job three), one with out-

degree one and in-degree one (i.e. the origin of job three and the destination

of job four), and one with in-degree two (i.e. the destination of jobs one and

two).

We must pause now to highlight one caveat of this transformation process.

This process will only work well if there actually is an ARP graph underlying

the distance matrix. If there is an underlying ARP graph, the following rela-

tionship should hold: if one node is partially co-located with a set of nodes,

that set of nodes should appear in the same destination set. If there is no

underlying ARP graph, then there is no guarantee that this structural rela-

tionship will be obeyed. In fact, within the set of 379 ATSP instances, 10

had no discernible ARP graph structure due to a violation of the structural

relationship noted above. These violations were counted and are termed de-

generacies. Nevertheless, we were able to define the following ARP graph

related metrics.

originalNodes This metric captures the number of nodes in the underlying

ARP. At a maximum this number will be twice the number of nodes

in the original node routing formulation — that is one node serving as

an origin and one as a destination. As such, this metric may be nor-

malized by dividing by 2n. As an example, in Figure 2.1 this metric is

four; and in normalized format, .5. In general, we have the following

expression for this metric: originalNodes = 1
2 ∗ (numDests + numOri-

gins + source + sink - degeneracies), where degeneracies refers to the

number of times that a structural relationship is violated (as described

in the preceding paragraph; on average over the 379 instances this value

is 1.44). numDests, numOrigins, source, and sink are defined below.

numDests The number of nodes in the underlying ARP that serve as desti-

nations for the jobs; as measured by counting the number of rows with

fully equal entries. This measure can be normalized by the total number

of nodes in the ARP (i.e. originalNodes. In Figure 2.1 this metric is 3;
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and in normalized format, .75.

numOrigins The number of nodes in the underlying ARP that serve as

origins for the jobs; as measured by counting the number of columns

with fully equal entries. This measure can be normalized by the total

number of nodes in the ARP (i.e. originalNodes. In Figure 2.1 this

metric is 3; and in normalized format, .75.

maxOrig The maximum number of jobs originating from any one origin

node in the ARP. This measure can be normalized by the total number

of jobs in the ATSP (i.e. numJobs). In Figure 2.1 this metric is 2; and

in normalized format, .5.

maxDest The maximum number of jobs destined to any one destination

node in the ARP. This measure can be normalized by the total number

of jobs in the ATSP. In Figure 2.1 this metric is 2; and in normalized

format, .5.

source The number of origin nodes that have only jobs originating from them

(i.e. no jobs simultaneously destined for those nodes). This measure may

be normalized by the total number of origin nodes (i.e. numOrigins).

In Figure 2.1 this metric is 1; and in normalized format, .33. Note that

if there are no co-locations in the underlying ARP the normalized value

will be 1.

sink The number of destination nodes that have only jobs destined to them

(i.e. no jobs simultaneously originating from those nodes). This mea-

sure may be normalized by the total number of destination nodes (i.e.

numDests). In Figure 2.1 this metric is 1; and in normalized format,

.33. Note that if there are no co-locations in the underlying ARP the

normalized value will be 1.

The mean and standard deviation values of these ARP related metrics

across the three groups of solvability are presented in Table 3.6.
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Table 3.6: Summary of ARP related distance matrix metrics by cluster; each
cell contains the mean and standard deviation (in parentheses).

Cluster
Metric Easy Medium Hard Total

N 108 235 36 379
originalNodes 120.41

(84.94)
344.10
(258.46)

641.61
(115.41)

308.62
(257.08)

originalNodes norm .70 (.44) .84 (.33) .95 (.15) .81 (.36)
numDests 60.85

(41.65)
174.81
(127.89)

321.83
(60.99)

156.30
(128.01)

numDests norm .58 (.14) .53 (.08) .50 (.01) .54 (.10)
numOrigins 60.82

(41.68)
175.04
(128.41)

321.78
(60.96)

156.43
(128.35)

numOrigins norm .58 (.13) .53 (.07) .50 (.01) .54 (.09)
maxOrig 11.76

(16.33)
10.23
(24.90)

31.64
(115.27)

12.70
(41.57)

maxOrig norm .18 (.25) .06 (.12) .04 (.13) .09 (.18)
maxDest 10.50

(14.40)
8.80
(19.96)

31.64
(115.27)

11.45
(39.74)

maxDest norm .16 (.22) .06 (.11) .04 (.13) .08 (.16)
source 59.57

(43.32)
170.48
(131.38)

319.78
(54.88)

153.06
(129.72)

source norm .79 (.32) .90 (.23) 1.00 (.23) .88 (.25)
sink 59.58

(43.26)
170.18
(130.62)

319.83
(54.91)

152.88
(129.23)

sink norm .79 (.32) .90 (.22) 1.00 (.02) .88 (.25)

3.3.5 Assignment Problem Related

This class of distance matrix metrics contains only one metric and in some

ways is not purely derived from the distance matrix. To obtain this metric,

we must first solve an assignment problem version of each instance. As noted

in Chapter 2, Section 2.2, the assignment problem version of the ATSP repre-

sents a relaxation in which all jobs must precede or follow another (not neces-

sarily distinct) job in such a way that the total inter-job costs are minimized.

This is not difficult as the Hungarian or Kuhn-Munkres Algorithm provides a

polynomial solution approach. The solution to the assignment problem then
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serves as a lowest bound solution cost for the ATSP problem. In turn this

solution value can be compared to an estimate of the actual solution value

(the number of jobs times the average distance) in order to ascertain a (very)

rough estimate of an initial gap. If this metric is a small value (e.g. < .25)

then we can speculate that the gap between the assignment problem and the

optimal solution is large. If this is the case, then it is reasonable to assume

that a solution algorithm will need multiple iterations to patch the subtours

and close the gap; thereby taking longer to find the optimal solution.

AP Soln/(numJobs*avgDist) The value of the assignment problem solu-

tion divided by the number of jobs times the value of average distance

for the entire distance matrix.

The mean and standard deviation values of these AP related metrics across

the three groups of solvability are presented in Table 3.7.

Table 3.7: Summary of AP related distance matrix metrics by cluster; each
cell contains the mean and standard deviation (in parentheses).

Cluster
Metric Easy Medium Hard Total

N 108 235 36 379
AP Soln/(numJobs*avgDist) .30 (.19) .17 (.17) .13 (.20) .20 (.20)

3.3.6 Relationships Between Metrics

In this subsection, we do not introduce any new metrics, but rather devote

some space to describing the known direct relationships between the metrics.

We undertake this discussion as many of the statistical techniques we will

introduce in the following section are dependent on using data that does not

have any linear relationships. Thus, knowing which relationships exist in our

data allows us to appropriately select the metrics for inclusion in the statistical

analysis.
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We begin by noting that there is a strong relationship between the met-

rics measuring the presence, number, and placement of zeros in the distance

matrix. Specifically, we can identify the following five relationships:

1. If zeroDist ≥ 1 then minDist = 0.

2. If zeroDist ≥ 1 then minDist/maxDist = 0.

3. zeroDist = 2fullCol + partCol.

4. oneRatioCount = 2partCol.

5. If oneRatioCount ≥ 1 then maxRatio = 1.

6. noCol + partCol + fullCol = n(n−1)
2 .

Turning our attention to those metrics that measure the presence of equal

distances in symmetric locations within the distance matrix, we see the fol-

lowing relationship:

zeroRatioCount = 2fullCol +2noCol −| {dij | dij 6= dji ∧ dij , dji > 0, ∀i, j} |.

Finally, we can find the following relationships between the presence and

placement of zeros in the distance matrix and the ARP related metrics:

1. If numOrigins = source and numDests = sink then noCol= n(n−1)
2 ,

zeroDist = 0, and 2partCol = 2fullCol = oneRatioCount = 0.

2. originalNodes = 1
2 ∗ (numDests + numOrigins + source + sink − de-

generacies), where degeneracies refers to the number of times that a

structural relationship is violated (as described in the definition of orig-

inalNodes).

Thus, when performing statistical tests that are dependent on variables

without linear relationships, we must be careful not to include all of the

graph related metrics together, nor should we include all of the ARP related

metrics together, and we should be careful when selecting the asymmetry

related metrics in conjunction with the zeroDist metric.
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3.4 Statistical Analysis

We are fortunate to have two good measures of solvability — one that is con-

tinuous (sum of exact algorithm runtimes) and one that is discrete (solvability

groups). This allows us to use three different statistical modeling techniques

to explore the relationship between distance matrix metrics and solvability.

The benefit of using three, as opposed to one, modeling techniques stems

from the fact that each of the three methods works in a very different way. In

this regard we can corroborate the results to strengthen our understanding of

which metrics play a significant role in determining solvability. These three

methods, linear regression, discriminant analysis, and multinomial logistic

regression, are the topic of the following three subsections.

3.4.1 Linear Regression

A linear equation, as derived in linear regression, is one in which the value of

the left-hand-side term (i.e. the dependent variable) is dependent on a linear

combination of parameters on the right-hand-side. Parameters are constant

terms modifying a set of independent variables. For example, in our study we

designate the sum of exact algorithm running times as the dependent variable,

a set of distance matrix metrics as the dependent variables, and then derive

via regression the set of parameters whose linear combination best predicts the

running time. Such a model looks something like: sum of exact running times

= β0+β1∗(DistanceMatrixMetric1)+β2∗(DistanceMatrixMetric2)+. . .+

βn ∗ (DistanceMatrixMetricn) + ε, where the β terms are the parameters

and ε represents an error term.

The oldest and most common method of linear regression is the method

of ordinary least squares (OLS) as pioneered by Legendre and Gauss5. This

method is, in effect, premised on an optimization problem. In two dimensions

this problem is stated as follows, given a set of points in the plane, find the

equation of a line such that the Euclidean distance from each given point to

5Detailed descriptions of linear regression and OLS can be found in nearly any intro-
ductory statistics book, see e.g. (StatSoft Inc., 2007); we present here only the briefest of
overviews for the convenience of the reader
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the line is minimized. Several tests exist for describing how well the emergent

equation fits the data. One of the most popular is a goodness-of-fit test as

captured by a variable called R-squared (R2) and the related adjusted R-

squared (R̄2). Briefly, R2 indicates the proportion of the sample variation in

the dependent variable that is explained by the model; R̄2 is a version of R2

adjusted to account for the number of regressors included in the model.

In order to ascribe a meaningful interpretation to the linear expression,

emerging as a solution to this problem, several assumptions must be met.

These assumptions, commonly known as the Gauss-Markov assumptions, fo-

cus on the error terms embedded in the regression equation. Error terms

are those terms that capture the difference between a given observation and

the (unobservable) mean of the population from which that observation was

drawn. The Gauss-Markov assumptions state that for OLS to provide the

best linear unbiased estimator of the linear parameters, the error terms must

be uncorrelated drawings (assumption one) from a distribution with mean

zero (assumption two) and constant variance (assumption three). Further-

more, the independent variables and the error terms must be independent

(assumption four).

While we cannot be fully certain that these assumptions are fulfilled before

hand, it is possible to measure the likelihood that these were met once the

model has been estimated. This is done by performing a series of tests on the

residuals. Residuals capture the difference between an observation and the

(observable) mean of the sample to which that observation belongs. As we

shall see, these assumptions do not necessarily describe our data.

Despite the obvious breaks in our data (i.e. between those problems solv-

able with both algorithms within 10,000-seconds, those problems solvable with

only concorde within 10,000-seconds, and those solvable by neither algorithm

within the timelimit), we begin our exploration of the full data set via a gen-

eral to specific approach to linear regression. Specifically, using the backward

stepwise entry process for regressors, as included in SPSS6, we began with

6SPSS is a commercially available statistics package, specifically we used SPSS for Win-
dows, Rel. 17.0.0. 2008 as provided by SPSS Inc.
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a model including 18 distance matrix metrics (non-normalized form). The

metrics excluded are those with linear relations (see Subsection 3.3.6) to the

metrics included in the model. Specifically, we did not include: zeroDist,

minDist/maxDist, maxRatio, partCol and originalNodes. This model, with

18 metrics, was then whittled away until only the most significant regressors

were left. This refined model, with an R̄2 of .702, contained (in addition

to a constant term) parameters for: numJobs, uniqueDistCount, minDist,

avgDist/maxDist, maxBinSize, zeroRatioCount, oneRatioCount, asymmetry,

maxAsym, noCol, fullCol, source, sink, and AP Soln/(numJobs*avgDist) —

all significant at < .05.

While this model might appear to be a good fit for our data, we must be

sure that the Gauss-Markov assumptions are met in order to make a meaning-

ful interpretation of the equation. We do this by first examining assumption

three — constant variance of error terms. One common test of this assump-

tion is the Breusch-Pagan test of heteroskedasticity. This test is based on the

R2 of an auxiliary model in which the squared residual terms of the primary

model are the dependent variables, while the regressors stay the same. The

resulting test statistic is then N ∗R2, which follows a Chi-squared distribution

with degrees of freedom equal to the number of regressors (Verbeek, 2004).

In our case the test statistic equals 49.65, which is highly significant for a

Chi-squared variable with 14 degrees of freedom. We therefore conclude that

we do not meet the Gauss-Markov assumption of constant variance in the

error terms.

This result is not so surprising given the vastly different scale of instances

included in the sample. For example, there are instances with 17 nodes and

instances with 932 nodes. It is not unreasonable to expect that the vari-

ables (including error terms) of the large instances will, in general, have

larger absolute values. To mitigate this problem we again used the backward

stepwise entry process to derive a second linear regression model including

only normalized metrics and metrics scaled to take values in the range [0,

1]. As such, our new model, with an R̄2 of .442, contained (in addition to

a constant term) parameters for: uniqueDistCount norm, minDist/maxDist,
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avgDist/maxDist, maxBinSize norm, oneRatioCount norm, asymmetry, max-

Asym, fullCol norm, originalNodes norm and AP Soln/(numJobs*avgDist)

— all significant at < .05. Again using the Breusch-Pagan test of het-

eroskedasticity, we obtain a test statistic of 31.84, which is significant for

a Chi-squared variable with 9 degrees of freedom. We therefore conclude that

we do not meet the Gauss-Markov assumption of constant variance in the

error terms, even for this normalized version of the model.

In one last attempt to salvage linear regression as a means

of analysis, we study instead the log value of all terms (both

dependent and independent) in the first model — with the ex-

ception of minDist/maxDist, avgDist/maxDist, zeroRatioCount, oneR-

atioCount, asymmetry, maxAsym, fullCol, source, sink, and AP

Soln/(numJobs*avgDist), as these variables do not always take non-zero pos-

itive values. The revised model, with Log(numJobs), Log(uniqueDistCount),

minDist/maxDist, avgDist/maxDist, Log(maxBinSize), oneRatioCount norm,

zeroRatioCount norm, asymmetry, maxAsym, fullCol norm, source norm,

sink norm and AP Soln/(numJobs*avgDist) as regressors, has an R̄2 of .696,

but a Breusch-Pagan statistic that is even higher than before: 73.147. As

such, we must carefully reconsider first, the way in which we are trying to

model our dataset and second, the way we can interpret these results despite

the failure to meet the Gauss-Markov assumptions.

First, we test the functional form of our model. Specifically, it may be

the case that our metrics predict the dependent variable better when in a

non-linear relationship. That is, we may do better by estimating a model

such as:

sum of exact running times

= β0 + β1 ∗ (Metric1) + β2 ∗ (Metric1)
2

+β3 ∗ (Metric2) + β4 ∗ (Metric2)
2

+ . . .+ β2n−1 ∗ (Metricn) + β2n ∗ (Metricn)
2 + ε.

One way to verify this proposed model form is to estimate an auxiliary
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model in which the dependent variable is the same, but the regressors are

the predicted value of the primary linear model along with powers of the

predicted value of the primary linear model. If the coefficients of the powers

of the predicted value are non-zero, then there is cause to suspect the need

to include the squared (or cubed, etc) term in the original model (see, e.g.

Verbeek (2004)).

We performed this test on a model with the following regressors:

Log(numJobs), Log(uniqueDistCount), minDist/maxDist, avgDist/maxDist,

Log(maxBinSize), maxRatio, oneRatioCount, zeroRatioCountt, asymmetry,

maxAsym, fullCol, source, sink and AP Soln/(numJobs*avgDist). The out-

come of the test indicated that the squared terms did have a nonzero impact on

estimating the sum of exact running times. Thus, using the backwards step-

wise entry process on all the terms and their squares, we found that a model

including Log(numJobs), Log(uniqueDistCount), Log2(uniqueDistCount),

avgDist/maxDist, maxRatio, maxRatio2, zeroRatioCount norm, asymmetry,

maxAsym, fullCol, and AP Soln/(numJobs*avgDist) has an R̄2 of .786. Un-

fortunately, this model also has a significant Breusch-Pagan statistic of 31.078.

We, therefore, turn our attention to the second point of consideration

regarding linear regression — the way we can interpret these results despite

the failure to meet the Gauss-Markov assumptions. Basically, because we

do not meet the Gauss-Markov assumptions, we cannot be certain that the

coefficients of the regressors are statistically significant. While this result

appears detrimental at first, we can argue that the rejection of assumption

three is most likely due to the breaks in our data. Specifically, our data is

really comprised of three distinct subgroups delineated by which algorithms

can solve each instance within the time-limit. For example, the group of 23

instances that could not be solved by either algorithm represents a distinct

subgroup — a subgroup with a mean running time value of 20,000 (and a

standard deviation of zero). Given this observation coupled with the work of

Hellevik (2009) (which states that using linear regression on a set of data with

clear sub-groups and violations of the Gauss-Markov assumption three may

not be completely inappropriate), we can conclude that while the uncertainty
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estimate associated with a coefficient may not be accurate, the coefficient

itself has been correctly calculated. Thus, studying the the coefficients on a

given set of regressors is still instructive. Table 3.8 presents the results of the

last model, for the purpose of identifying trends between the metrics and the

dependent variable, sum of exact solver times.

Table 3.8: OLS Results for Model of Sum of Exact Runtimes. R̄2 = .786.
Metric Coefficient Std. Er-

ror
t Sig.

(Constant) -28415.006 4038.435 -7.036 .000

Log(numJobs) 6465.252 274.768 23.530 .000

Log(uniqueDistCount) 2505.391 435.029 5.759 .000

Log2(uniqueDistCount) -192.545 28.472 -6.763 .000

avgDist/maxDist -11262.681 1576.894 -7.142 .000

asymmetry 11711.343 2193.653 5.339 .000

maxAsym -10298.508 1557.951 -6.610 .000

zeroRatioCount norm 4827.603 1848.069 2.612 .009

maxRatio 29043.296 4427.984 6.559 .000

maxRatio2 -26260.226 2721.507 -9.649 .000

fullCol -.785 .210 -3.743 .000

AP Soln/(numJobs*avgDist) -6880.639 1155.260 -5.956 .000

From Table 3.8 we can conclude that the more jobs in an ATSP instance,

then the longer the exact solvers will take to run; this relationship is however a

log relationship. Thus, the effect of adding another job to an instance becomes

less the larger the instance already is. The number of unique distances in

a matrix has a similar effect — the more unique distances there are, the

higher the predicted runtime, but the less each additional unique distance

contributes. This result is consistent with the findings of Zhang and Korf

(1996). The closer the average distance is to the maximum distance, then

the more the summed runtime decreases. Examining the asymmetry related

metrics as a group, we can see that for symmetric matrices, ceteris paribus,

the summed runtime will increase by 4827.6 seconds. A fully asymmetric

matrix (i.e. an upper or lower triangular matrix) will, on the other hand,

have a runtime that is, ceteris paribus, 4195.91 seconds longer. Finally, the
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more zeros that appear in the matrix in symmetric locations and the closer

the AP solution is to the average distance times the number of jobs, the less

the summed runtime will be, ceteris paribus.

Given the violations of the Gauss-Markov assumptions, the real value of

this analysis does not necessarily lay in the exact value of the coefficients,

but rather the direction, magnitude, and functional form of the relationship

between the regressors and the dependent variable. To examine these features

deeper, we examine alternate approaches to modeling our data. Recall, our

goal, after all, is to have a method by which we can predict if an instance of

the ATSP is hard or easy; predicting the exact runtime on a specific set of

algorithms is much less important. For this reason, we turn to an examination

of categorical models.

3.4.2 Discriminant Analysis

Discriminant analysis is a technique used to classify observations in a dataset

into distinct populations given a set of characteristics (Morrison, 1990). This

technique works by using a set of data for which the appropriate popula-

tion classifications are known. With this information and the “fingerprint”

of known characteristics, linear functions are derived to distinguish the pop-

ulations. For example, if there are three populations of interest, then one

discriminant function serves to discriminate between populations 1 and 2 com-

bined with 3; a second discriminant function, in turn, discriminates between

populations 2 and 3. In our case the populations of interest are ATSPs that

are hard, medium, or easy to solve. For this we use the groupings constructed

via hierarchical clustering in Section 3.2.

The statistical mechanism underlying discriminant analysis is an inverse

of the multivariate analysis of variance (MANOVA). As such, all of the sta-

tistical assumptions required for the success of a MANOVA are also required

in discriminant analysis. Chief among these assumptions is that the popula-

tion variances and covariances for all independent variables are equal across

the dependent variable groups. Despite the general importance of this as-

sumption, it has been noted by several statisticians (e.g. Morrison (1990),
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Spicer (2004)) that this requirement may be relaxed when all sample size

requirements are met. Specifically, the samples within each category should

be reasonably large and equal across categories. According to Spicer (2004),

reasonably large means more than 20 instances for each independent variable

included in the analysis; and no dependent grouping should have fewer than

20 instances. Therefore, in our case, to ensure that the requirements of dis-

criminant analysis are met (or are at least, not fatal), we should not really

include more than 15 independent variables, in our analysis.

Given these restrictions along with the observations made regarding in-

fluential regressors while building the linear regression, we entered all of the

metrics of the last linear regression plus Log(noCol), Log(originalNodes), and

source+sink into the stepwise Discriminant Analysis model building function

in SPSS. This process yielded Log(uniqueDistCount), Log2(uniqueDistCount),

avgDist/maxDist, asymmetry, maxAsym, maxRatio, maxRatio2, Log(noCol),

Log(originalNodes), source+sink, and AP Soln/(numJobs*avgDist) as the

most influential independent variables for distinguishing among the easy,

medium, and hard solvability groups. Table 3.9 presents the results of the

univariate ANOVAs carried out for each independent variable. These results

indicate that the means differ significantly for all variables in the test.

Table 3.9: Tests of equality of group means.
Variable Wilks’ Lambda F Sig.

Log(uniqueDistCount) .556 150.223 .000

Log2(uniqueDistCount) .793 49.097 .000
avgDist/maxDist .938 12.324 .000
asymmetry .915 17.426 .000
maxAsym .837 36.732 .000
maxRatio .891 23.057 .000

maxRatio2 .888 23.682 .000
Log(noCol) .556 150.223 .000
Log(originalNodes) .719 73.569 .000
source + sink .682 87.687 .000
AP Soln/(numJobs*avgDist) .884 24.587 .000

Running the discriminant analysis with the three ease-of-solvability groups
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and the eleven specified variables, we obtain two discriminant functions. The

standardized coefficients for these functions are listed in Table 3.10. Inter-

preting these coefficients is not quite as easy as interpreting the coefficients

in a linear regression. In general, we can say that the larger the coefficient,

the greater the contribution of the respective variable is to differentiating be-

tween groups. Aside from this simple interpretation these coefficients do not

tell us the significance of the functions. For this we look at their associated

Eigenvalues and Wilks’ Lambda significance, which can be viewed in Table

3.11.

The results in Table 3.11 indicate that both of these functions are sig-

nificant. Furthermore, the first function explains 94.2% of the variance and

function two explains over 5%. Unfortunately these results do not tell us

which groups the two functions are differentiating between, nor do the results

in Tables 3.10 and 3.11 indicate exactly which variables are more strongly

correlated with which function. For this we examine a structure matrix of

the correlations between the variables and each function. This matrix can be

seen in Table 3.12.

From Table 3.12 we can describe the discriminating functions in terms of

their most significant variables. Specifically, function one is most strongly cor-

related to the distance, graph, ARP related, and AP metrics, while function

two is most strongly correlated with the asymmetry metrics.

Figure 3.5 is a scatterplot with each instance plotted according to the

discriminant scores of each function. The centroids for each group of the

ease of solvability classifications are also depicted. From this figure it appears

that function one is discriminating the easy group from the hard and medium

groups combined. This is apparent from the way that the hard and medium

groups appear to be closer together while the easy group is separated farther

along the x-axis. Function two on the other hand seems to be separating

the hard group from the medium group; apparent from the relative distance

between the hard and medium centroids along the y-axis.

While deriving the statistical significance and relative importance of each

function is interesting, the predictive capability of the two functions working
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Table 3.10: Unstandardized coefficients of the two discriminant functions for
the ease of solvability bins.

Function

Variable 1 2

Log(uniqueDistCount) -.603 -.019

Log2(uniqueDistCount) .046 .018

avgDist/maxDist 4.244 -.667

asymmetry -4.336 -1.809

maxAsym 3.819 1.076

maxRatio -7.502 11.105

maxRatio2 8.375 -10.010

Log(noCol) -1.426 -.409

Log(originalNodes) .349 -.973

source + sink .001 .006

AP Soln/(numJobs*avgDist) 2.771 1.655

Constant 9.909 4.416

Table 3.11: Significance of discriminant functions.
Eigenvalues Wilks’ Lambda

Function Eigenvalue % of
Variance

Canonical
Correla-
tion

Wilks’
Lambda

Chi-
Square

df Sig.

1 3.058 93.0 .868 .200 596.324 22 .000
2 .230 7.0 .432 .813 76.664 10 .000

together is the primary reason for undertaking discriminant analysis. For this,

discriminant analysis yields a set of classification functions for each category:

easy, medium, and hard. The functions, viewable in Table 3.13, serve to pre-

dict category membership based on which of the three functions returns the

highest value for each instance. Using these functions, Table 3.14 shows the

number of instances correctly classified based on the discriminant functions.

These results indicate that the discriminant functions correctly classify 92.9%

of the cases. Looking more closely at the classification results, however, re-

veals that in the hard bin only 61% of the instances were classified correctly

using the discriminant functions. Recalling that the hard bin was actually
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Table 3.12: Pooled within-groups correlations between discriminating vari-
ables and standardized canonical discriminant functions.

Function

Variable 1 2

Log(uniqueDistCount) -.300* -.076

Log2(uniqueDistCount) -.292* -.001

avgDist/maxDist .146* -.002

asymmetry .162 .292*

maxAsym .237 .323*

maxRatio .180 .317*

maxRatio2 .197* .181

Log(noCol) -.511* .040

Log(originalNodes) -.358* -.001

source + sink -.382* .290

AP Soln/(numJobs*avgDist) .201* .174

a combination of 23 truly hard instances (i.e. no algorithm could succeed)

and 13 extremely difficult medium instances (i.e. only concorde succeeded,

but only after a significant amount of time), this result is in a sense more

encouraging than detrimental. Furthermore, if we consider the success rate

obtained by simply predicting all instances as medium (62%) versus the suc-

cess rate obtained by using the discriminant functions (92.9%), then these

functions perform quite well. Nevertheless, it is worthwhile to examine other

classification models to gain further insight into the most influential distance

matrix metrics.

3.4.3 Multinomial Logistic Regression

Multinomial logistic regression is similar to discriminant analysis in that it

yields a model of group membership based on a set of independent vari-

ables. The method logistic regression employs is, however, very different

from that of discriminant analysis or OLS. For a more detailed presenta-

tion of logistic regression, the reader is referred to Pampel (2000) or Spicer
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Figure 3.5: Scatterplot of discriminant function values for each instance.

(2004). Specifically, multinomial logistic regression yields a linear function,

for each categorical group relative to a reference category. This linear function

relies on a set of independent variables and their associated parameters (iter-

atively) derived (based on the maximum likelihood criterion) to produce the

log odds leading to the minimum difference between the predicted probability

of group membership and actual (observed) group membership. In our case,

the model for the easy solvability group, relative to the medium solvability

group, can be mathematically summarized as: predicted log odds of “easy”

group membership = β0 + log(β1) ∗ (DistanceMatrixMetric1) + log(β2) ∗

(DistanceMatrixMetric2)+. . .+log(βn)∗(DistanceMatrixMetricn), where

β0 represents a constant term. A similar model will be derived for the hard
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Table 3.13: Classification functions for the groups easy, medium, and hard.
Function

Variable Easy Medium Hard

Log(uniqueDistCount) 51.36 53.392 54.868

Log2(uniqueDistCount) -3.107 -3.264 -3.35

avgDist/maxDist 163.588 150.495 138.888

asymmetry 145.631 160.593 168.677

maxAsym -64.057 -76.908 -84.814

maxRatio 120.728 137.560 173.121

maxRatio2 -120.929 -141.236 -177.317

Log(noCol) 33.179 37.982 40.923

Log(originalNodes) -20.926 -21.418 -23.763

source + sink -0.060 -0.066 -0.058

AP Soln/(numJobs*avgDist) 24.506 14.627 10.218

Constant -213.857 -244.521 -269.893

Table 3.14: Classification of instances using classification functions.
Predicted Group Membership

Ease of Solvability bins easy medium hard Total

easy 100 8 0 108
Count medium 3 230 2 235

hard 0 14 22 36

easy 92.6 7.4 0.0 100.0
% medium 1.3 97.9 0.8 100.0

hard 0.0 38.9 61.1 100.0

solvability group, with the medium solvability group serving as the reference

group.

Fortunately, the dataset assumptions required for the OLS procedure are

not as necessary for multinomial logistic regression (Spicer, 2004). On the

other hand, multinomial logistic regression does require a larger dataset than

OLS — requiring well over 100 cases total with 50 cases for each indepen-

dent variable to yield trustworthy results (Spicer, 2004). Additionally, multi-

collinearity (or the lack of independence between independent variables) can
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cause more problems in logistic regression than in OLS regression. In our anal-

ysis, this restriction has significant implications as ultimately all independent

variables are tied to the distance matrix and hence tend to exhibit significant

correlations. To mitigate this problem and alleviate potential problems with

dataset size, we include in our analysis far fewer metrics than were included

in the discriminant analysis. We also take care to avoid including all of the

metrics related by any one of the relationships identified in Subsection 3.3.6.

Nevertheless, we ensure that each of the five categories of metrics have at

least one representative.

Given these considerations, the metrics selected include minDist/maxDist,

avgDist/maxDist, maxRatio, maxRatio2, maxAsym, noCol, sink/numDest,

and AP Soln/(numJobs*avgDist). While there is no universally accepted

goodness-of-fit criterion, SPSS does provide three pseudo R2 measures. For

this model, SPSS reports that the Cox and Snell measure is .747, the Nagelk-

erke measure is .904, and the McFadden measure is .784. We can roughly

interpret these values to indicate that this model is explaining somewhere

between 75% and 90% of the variance in our dataset. These measures are

extremely high, but can be corroborated by examining a cross-classification

table of actual and predicted categories. Table 3.15 shows that the model

derived via multinomial regression has nearly the same predictive capability

as the model derived via discriminant analysis. Specifically, 91.7% of the easy

instances, 94.9% of the medium instances, and 75% of the hard instances were

correctly predicted. This gives an overall success rate of 92.1%.

In addition to the success of this model in predicting solvability group, it

is interesting to examine which variables are most influential in differentiating

easy from medium instances and hard from medium instances. For this we

study the significance of the coefficients as measured by the Wald statistic.

Table 3.16, presents the coefficients and affiliated statistics for each estimated

model — 1) easy relative to medium and 2) hard relative to medium. Perhaps

more instructive than the coefficients in this table, are the odds. In the easy

to medium model, if the odds are greater than one, then the probability that

the easy group will be selected over the medium group is greater given an
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Table 3.15: Cross-classification of instances using multinomial logistic regres-
sion.

Predicted Group Membership

Ease of Solvability bins easy medium hard Total

easy 99 9 0 108
Count medium 9 223 3 235

hard 0 9 27 36

easy 91.7 8.3 0.0 100.0
% medium 3.8 94.9 1.3 100.0

hard 0.0 25.0 75.0 100.0

increase in that variable. Alternatively, if the odds are less than one then the

probability that the easy group will be selected over the medium group is less

given an increase in that variable.

Thus, from Table 3.16 we can conclude that, ceteris paribus, an increase

in minDist/maxDist, noCol, or sink/numDest will reduce the likelihood that

an instance is easy as opposed to medium. An increase in avgDist/maxDist,

maxAsym, or AP Soln/(numJobs*avgDist) will, on the other hand, increase

the likelihood that an instance is easy as opposed to medium. Similarly,

ceteris paribus, an increase in avgDist/maxDist, minDist/maxDist, or AP

Soln/(numJobs*avgDist) will reduce the likelihood that an instance is hard as

opposed to medium. Meanwhile, ceteris paribus, an increase in sink/numDest

will yield a large increase in the likelihood that an instance is hard as opposed

to medium. The impact ofmaxRatio in this model is a bit more intricate given

the presence of maxRatio and maxRatio2. If this metric, ceteris paribus, in-

creases beyond .9 then there is a decrease in the likelihood that an instance

is hard as opposed to medium; meanwhile for values of maxRatio between .7

and 1, the likelihood that an instance is easy as opposed to medium increases.

On the other hand, if the metric decreases from .6 downward then the likeli-

hood that an instance is easy as opposed to medium also decreases while the

likelihood that an instance is hard as opposed to medium increases.
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Table 3.16: Multinomial logistic regression statistics for solvability groups
based on seven distance matrix metrics. The medium group is the reference
group.

Variable Coeff. Wald Sig. odds

Easy relative to Medium

intercept -10.55 16.76 .000 —

minDist/maxDist -3.53 .038 .845 .029

avgDist/maxDist 29.78 19.42 .000 8.54E12

maxRatio -15.72 4.62 .032 1.48E-7

maxRatio2 21.52 8.56 .003 2.21E9

maxAsym 4.26 6.82 .009 71.021

noCol -.001 20.90 .000 .99

sink/numDest -3.27 3.09 .079 .038

AP Soln/(numJobs*avgDist) 7.41 10.54 .001 1656.52

Hard relative to Medium

intercept -411.74 8.38 .004 —

minDist/maxDist -604.77 8.69 .003 2.25E-263

avgDist/maxDist -15.33 4.26 .039 2.21E-7

maxRatio 70.23 10.95 .001 3.17E30

maxRatio2 -70.87 10.32 .001 1.67E-31

maxAsym -2.92 1.46 .227 .054

noCol .0003 9.378 .002 1.00

sink/numDest 399.11 8.354 .004 2.15E173

AP Soln/(numJobs*avgDist) -8.20 1.84 .175 .0003

3.5 Verification

The results of this statistical analysis are exciting for the promise they hold

in permitting one to determine, a priori, if an ATSP will be easy, medium, or

hard to solve. We must, however, exercise extreme caution in presenting these

results as such given that they were calibrated on a single, specific sample of

379 instances. It may be the case that these models do a good job of capturing

noise in this specific sample, without really exposing any significant trends in

the larger population. In order, to verify the predictive capabilities of these
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models it is prudent to test their behavior on a second sample.

Unfortunately, the number of ATSP instances available for research is

severely lacking (Gutin and Punnen, 2002). We therefore rely on the random

instance generators of Cirasella et al. (2001) plus one random instance gen-

erator of our own to test our models. We must be careful when using these

generators to ensure that we do not generate instances that are too similar

to the original dataset. Our goal, after all, is to test the robustness of the

categorical models. As such we have setup a careful regimen of 172 instances

as documented in Appendix A.

As noted previously, the instance generators of Cirasella et al. (2001)

and Johnson et al. (2002) are well documented. We therefore refrain from

providing further detail here. New to the battery of generators, however, is

one we created, termed “crane2”. This generator, using the random number

generator/random location generator used in the crane generator of Cirasella

et al. (2001) and Johnson et al. (2002), selects a set of n points from an

x × x square. These points then serve as the origins and destinations of n

jobs. Specifically, the generator selects the first k points as origins, where

k is specified by the user, and the last (moving from the back) m points as

destinations, where m is specified by the user. The generator then matches

origins to destinations in a round-robin fashion until all n jobs have been

designated. The distance between jobs, dij is then calculated as the distance

from the destination of job i to the origin of job j. In this way the generated

instances should look similar to drayage problems in which the jobs originate

from and are destined to a limited set of terminals or customer locations. The

complete code for this generator is in Appendix B.

After generating this second sample of ATSPs, we derived the full set of

distance matrix metrics for each instance. Based on these metrics we then

used the linear regression model to predict the summed exact solver run-

time and both the discriminant analysis model and the multinomial logistic

regression model to predict the solvability group. The linear regression pre-

dicted that the 172 instances would require a mean of 10248.67 seconds with

a standard deviation of 4850.14. The discriminant analysis derived classi-
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fication functions predicted that 20 instances were easy, 141 instances were

medium, and 11 instances were hard. The multinomial logistic regression

model predicted that 34 instances were easy, 127 instances were medium, and

11 instances were hard. So, how accurate were these predictions?

After running the 172 ATSPs through both concorde and tsp solve v.

1.3.6, the mean summed exact solver runtime was 9107.73 seconds with a

standard deviation of 5468.10. Using a paired, two-tailed, t-test to compare

the predicted runtimes to the actual runtimes of the 172 instances, we obtain

a mean difference of -1140.94 seconds with a standard deviation of 3132.15,

giving us a t-statistic of -4.78, with a significance of .000. We therefore reject

the hypothesis that the predicted summed runtimes and the actual summed

runtimes are equal. In fact, we can see that our linear regression consis-

tently over-estimates the runtime. This is most likely due to the inclusion of

regressors that are not actually significant; as discussed in Subsection 3.4.1.

Using the summed runtimes and the branch-and-bound nodes from con-

corde we also classified the 172 verification instances into solvability groups

using the same hierarchical clustering procedure recorded in Section 3.2. This

yielded 36 easy, 119 medium, and 17 hard instances. Thus, in comparison,

as noted in tables 3.17 and 3.18, the discriminant analysis model predicted

solvability with an 88.9% success rate and the multinomial logistic regression

model with an 93.6% success rate. The results of the multinomial logistic

regression are phenomenal given that the model predicted the verification set

with higher success than the training data. Furthermore, given that a myopic

predictive model which places all instances in the medium bin would yield a

success rate of 69%, we can conclude that both models improve our predic-

tive capabilities by over 20%. This improvement is large enough to allow us

to conclude that the distance matrix metrics we selected do hold significant

predictive capabilities.



84 Chapter 3. Are SCPs Easy? An Empirical Exploration

Table 3.17: Cross-classification of verification instances using discriminant
classification functions.

Predicted Group Membership

Ease of Solvability bins easy medium hard Total

easy 22 14 0 36
Count medium 0 119 0 119

hard 0 5 12 17

easy 61.1 38.9 0.0 100.0
% medium 0.0 100.0 0.0 100.0

hard 0.0 29.4 70.6 100.0

Table 3.18: Cross-classification of verification instances using multinomial
logistic regression functions.

Predicted Group Membership

Ease of Solvability bins easy medium hard Total

easy 30 6 0 36
Count medium 0 119 0 119

hard 0 6 5 12

easy 83.3 16.7 0.0 100.0
% medium 0.0 100.0 0.0 100.0

hard 0.0 29.4 70.6 100.0

3.6 Discussion

We close this chapter by opening the discussion with an answer to the question

asked in the title — are SCPs easy?

Table 3.19 presents the hierarchical analysis derived group memberships

(as first introduced in Section 3.2) for each problem type across both the

primary and verification datasets. This table shows that SCPs are not par-

ticularly easier (or harder) than other types of ATSPs. In fact, as one might

expect, SCPs are comparable to the generated and real-world routing problem

types in terms of solvability. This, however, is not the end of the story.
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Table 3.19: Count of instances in each group based on problem type.
Problem Easy Medium Hard Total

Real-world SCP 33 37 0 70

Generated SCP 7 37 7 51
Real-world Scheduling Problems 2 3 0 5
Generated Scheduling Problems 20 17 0 37

Real-world Routing Problems 11 7 0 18
Generated Routing Problems 13 44 17 74
Real-world Robotic Motion Problems 2 2 1 5

Generated Robotic Motion Problems 0 50 21 71
Real-world Data Compression Prob-
lems

0 6 3 9

Real-world Code Optimization Prob-
lems

0 2 0 2

Generated Approximate Shortest
Common Superstring Problems

15 12 0 27

Randomly generated asymmetric ma-
trices

20 17 0 37

Randomly generated asymmetric ma-
trices obeying the triangle inequality

20 17 0 37

Randomly generated symmetric ma-
trices

0 34 0 34

Randomly generated symmetric ma-
trices obeying the triangle inequality

0 33 1 34

Randomly generated symmetric ma-
trices using rectilinear distances

0 34 3 37

Symmetric matrices perturbed to be
asymmetric

0 2 0 2

Unknown Origin 1 0 0 1

Total 144 354 53 551
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Table 3.20: Mean and (std. deviation) of the sum of exact algorithm runtimes
for instances based on problem type.

Problem Type Easy Medium Hard Total

Real-world SCP 1.63 (1.6) 10017.17
(41.05)

— 5295.55
(5035.77)

Generated SCP 55.44
(76.23)

10230.85
(366.04)

13146.47
(1564.56)

9234.41
(3881.2)

Real-world Scheduling Problems 9.03 (4.28) 10073.45
(118.46)

— 6047.68
(5513.15)

Generated Scheduling Problems 20.59
(23.54)

10069.89
(63.12)

— 4637.84
(5077.39)

Real-world Routing Problems 218.07
(487.56)

10070.53
(164.92)

— 4049.58
(4957.4)

Generated Routing Problems 99.88
(86.27)

10053.71
(85.62)

20000 (0) 10590.02
(6355.81)

Real-world Robotic Motion Problems 2.91 (1.47) 10195.24
(119.8)

20000 (0) 8079.26
(8389.4)

Generated Robotic Motion Problems — 10542.8
(1005.93)

19250.49
(2086.14)

13118.31
(4239.21)

Real-world Data Compression Problems — 10189.79
(262.62)

18238.9
(3050.32)

12872.82
(4308.86)

Real-world Code Optimization Problems — 10038.64
(48.42)

— 10038.64
(48.42)

Generated Approximate Shortest Common Super-
string Problems

2.58 (1.99) 10032.94
(67.91)

— 4460.52
(5079.26)

Randomly generated asymmetric matrices 5.79 (4.11) 10031.46
(49.93)

— 4612.18
(5065.36)

Randomly generated asymmetric matrices obeying
the triangle inequality

2.94 (4.34) 10011.41
(16.4)

— 4601.43
(5056.57)

Randomly generated symmetric matrices — 10040.86
(72.28)

— 10040.86
(72.28)

Randomly generated symmetric matrices obeying
the triangle inequality

— 10340.08
(706.88)

19204.13
(0)

10600.79
(1671.96)

Randomly generated symmetric matrices using rec-
tilinear distances

— 10471.99
(864.36)

14165.66
(602.93)

10771.48
(1322.8)

Symmetric matrices perturbed to be asymmetric — 10003.93
(3.55)

— 10003.93
(3.55)

Unknown Origin 63.85 (0) — — 63.85 (0)

Total 33.69
(145.74)

10203.33
(559.3)

18352.89
(2875.38)

8329.46
(5563.08)

The counts in Table 3.19 belie a range of exact algorithm runtimes. A

closer inspection of mean runtimes per each group and problem type, shown

in Table 3.20, reveals more. Specifically, we see that the 33 “easy” real-world

SCP instances were solved in an average of 1.63-seconds. This is nearly half

the time of the next most “easily” solve set of problems (generated approxi-

mate shortest common superstring problems). Furthermore, the 37 “medium”

instances were solved in an average of 10,017.17-seconds, which is larger than

only two other problem types (symmetric matrices perturbed to be asym-

metric and randomly generated asymmetric matrices obeying the triangle

inequality).



3.6. Discussion 87

Table 3.21: Count of instances in each group based on problem type.
Problem Easy Medium Hard Total

ATSP 104 280 46 430
SCP 0 34 7 41
Drayage Problem 40 40 0 80
Total 144 354 53 551

Digging even deeper into these results, we find that all 33 “easy” real-world

SCPs had under 100 jobs, while the 37 “medium” instances all had more than

131 jobs. As tsp solve is designed to abort when a large problem is entered, it

is not surprising that this trend would appear in the data. What is, however,

surprising is the fact that this trend is not consistent across all problem types

— including the generated SCPs. For example, the seven generated SCPs

classified as “easy” all had 100 jobs, while three of the instances classified as

“medium” had only 66 jobs. Why is this? What is different about these three

instances? The answer it seems can be found by refining our SCP problem

type partitioning.

We proceed by grouping all of the real-world and generated ATSPs to-

gether while simultaneously partitioning the SCP problem types into SCPs

(encompassing the crane* and rbg* instances) and Drayage Problems (en-

compassing the PK* and crane2* instances). Table 3.21 shows the count of

instances falling into each solvability group across these three new problem

type partitions; Table 3.22 shows the mean and (standard deviation) of the

sum of exact algorithm runtimes across the solvability groups by problem type

partition. From these two tables we can see that the drayage problems are

consistently “easy” or “medium” while the SCPs are consistently “medium”

or “hard”. Furthermore, the mean algorithm running times of the drayage

problems are much lower than those of either the SCPs or ATSPs. Looking

behind these data we find that the 40 dray problems designated as “easy”

had 66 to 100 jobs; alternately, the 20 SCP instances with 66 to 100 jobs were

classified as “medium”.

These results are stunning for they show that among ATSPs, drayage
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Table 3.22: Mean and standard deviation of exact algorithm runtimes based
on problem type partitions.

Problem Easy Medium Hard Total

ATSP 42.40
(169.44)

10224.29
(610.86)

19145.17
(2090.27)

8716.03
(5665.10)

SCP — 10208.18
(354.71)

13146.48
(1564.56)

10709.84
(1312.97)

Drayage
Problem

11.04 (36.40) 10052.46
(170.31)

— 5031.75
(5053.87)

Total 33.69
(145.74)

10203.33
(559.30)

18352.89
(2875.38)

8329.46
(5563.08)

problems (of the type studied in this thesis) form a subset of easily solved

problem instances. We now exploit the discriminant analysis and multinomial

logistic regression models of Section 3.4 to examine the reasons behind this

result. Table 3.23 presents the means and standard deviations for the distance

matrix metrics of interest as per the predictive models.

The most striking feature of this table is how the drayage problems have

a profile of metrics that is truly distinct from the other SCPs. Most notably,

the drayage problems have a mean minDist/maxDist of zero with a standard

deviation of zero. This implies (and confirms) that all drayage problems con-

tain at least one zero element; that is, at least one partially co-located pick-up

and drop-off point. Furthermore, the drayage problems have a maxRatio of

one with a standard deviation of zero. This implies that in all drayage prob-

lems there is at least one pair of entries, such that dij > 0 while dji = 0. The

drayage problems also have significantly fewer jobs that are not co-located as

measured by noCol and Log(noCol). This implies that these drayage prob-

lems contain multiple distance matrix entries such that dij > 0 while dji = 0

or dij = dji = 0. Such a matrix structure would imply a high level of asym-

metry, which is indeed verified in the asymmetry measure that is, on average,

higher for drayage problems than other SCPs. These metric trends also seem,

as per the multinomial logistic regression model, to indicate an increase in the

likelihood that an instance is easy as opposed to medium. Furthermore, these
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Table 3.23: Mean and standard deviation of distance matrix metrics by prob-
lem type.

Metric ATSP SCP Dray Total

N 430 41 80 551
minDist/maxDist 0.01 (.03) .003 (.003) 0 (0) .009 (.003)
avgDist/maxDist 0.37 (0.12) 0.41 (0.06) 0.35 (0.11) 0.37 (0.12)
Log(uniqueDistCount) 7.79 (2.55) 8.36 (2.73) 5.06 (1.70) 7.44 (2.64)

Log2(uniqueDistCount) 67.19
(36.98)

77.23
(42.75)

28.47
(19.75)

62.31
(38.18)

asymmetry 0.19 (0.2) 0.06 (0.06) 0.21 (0.12) 0.18 (0.19)
maxAsym 0.31 (0.3) 0.1 (0.14) 0.36 (0.2) 0.3 (0.28)
maxRatio 0.65 (0.42) 0.69 (0.4) 1 (0) 0.7 (0.4)

maxRatio2 0.59 (0.43) 0.63 (0.38) 1 (0) 0.65 (0.42)
noCol 27069.34

(40461.77)
28283.49
(24408.1)

7613.91
(11884.57)

24334.94
(37259.53)

Log(noCol) 9.43 (1.34) 9.63 (1.26) 8.17 (1.21) 9.26 (1.39)
Log(originalNodes) 5.67 (0.73) 5.71 (0.62) 3.19 (1.14) 5.31 (1.18)
source + sink 322.16

(252.55)
354.88
(228.34)

34.03 (60) 282.76
(254.28)

sink/numDest .85 (.34) .92 (.23) .43 (.19) .80 (.35)
AP/(numjob*avgdist) 0.2 (0.2) 0.12 (0.06) 0.2 (0.1) 0.19 (0.18)
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trends, harken back to the observations of Frieze et al. (1995) and Harary

(1962b) who note that the number and placement of zeros in a distance ma-

trix appear to be critical indicators of solvability. We also note that the

drayage problems, on average, have fewer unique distances in their distance

matrices as compared to the other SCPs. This is another feature previously

expressed by Zhang and Korf (1996) as having implications for solvability.

In addition to those metrics previously noted in the literature, we identify

two metrics that appear to hold implications for solvability — the number

of nodes in any underlying ARP (originalNodes) and the number of source

only and sink only nodes in that same underlying ARP (source + sink). On

average, the drayage problems have lower values for the Log(originalNodes)

and source + sink metrics than other SCPs (or even other ATSPs). This indi-

cates that the ARPs underlying drayage problems tend to have comparatively

more vertices that serve as hubs; that is vertices that serve as an origin and

destination for multiple jobs. The reason these features influence solvability

may stem from the two SCP structures originally noted by Frederickson et al.

(1978) which led to the development of the subroutines LARGEARC and

LARGEEDGE in the 9
5 -approximation algorithm for the SCP.

Our method of exploration, the use of statistical analysis to identify key

ATSP instance features and relate them to solvability, highlights the impor-

tance of using statistics as a tool in operations research. While others (e.g.

Zhang and Korf (1996)) have examined complexity transitions focused on al-

tering one variable, we have studied a large set of instances that vary across

multiple variables. Nevertheless, we were able to discern metrics that can

significantly predict whether an instance will take a long time to solve or

whether it will take a shorter time to solve. Thus, the power of this type of

analysis in studying algorithms should not be overlooked. Furthermore, the

set of instances we used relate to a variety of problem types that occur in

the real-world. As such, we have also been able to name a subclass of “easy”

problems — drayage problems.



Chapter 4

The Value of Advanced

Location Information

Time, time, time, see what’s become of me, while I look around for my

possibilities.

Simon & Garfunkel, A Hazy Shade of Winter

We cannot know the future. This is a fact and frustration of life in this

reality. Despite this disability, we do possess a robust skill set in planning

for and adjusting to the ever unfolding by-and-by. This chapter, formalizes,

and in a sense quantifies, our planning and adjusting skills in the context of

a routing problem with release dates. Given that the ability to reason about

the future and make adaptable plans is a distinctly human capability, it is

only appropriate that this chapter, amongst all the other chapters, relies most

heavily on a second distinctly human capability — mathematical thinking.

In this chapter1 we derive the worst-case ratio of an algorithm for the

online Traveling Salesman Problem (TSP) with two disclosure dates. This

problem, a variant of the online TSP with release dates, is characterized by

the disclosure of a job’s location at one point in time followed by the disclosure

of that job’s release date at a later point in time. We present an algorithm

1This chapter is based on Srour and Zuidwijk (2008).
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for this online problem restricted to the positive real number line. We then

derive the worst-case ratio of our algorithm and show that it is best-possible in

two contexts — the first, in which the amount of time between the disclosure

events and release time are fixed and equal for all jobs; and a second in which

the time between disclosure events varies for each job. We conclude that the

value of advanced information can be attributed to the location information

alone — yielding an optimal solution in favorable instances.

4.1 Literature Review

The offline TSP with release dates on R
+
0 is not new. Psaraftis et al. (1990)

introduced this problem as one of routing and scheduling along a shoreline.

They examine both path and tour versions of the problem and demonstrate

that in the tour version on such a restricted metric space these problems are

trivially solved in polynomial time.

Blom et al. (2001) provide an algorithm with a worst-case ratio of 3
2 for

the online variant of this problem; they term this version of the problem

the online TSP (OLTSP). They prove that their algorithm, Move-Right-If-

Necessary (MRIN), is best-possible for the OLTSP with release dates. MRIN

is a zealous algorithm that sends the salesman immediately to any job on the

right and back to the origin (left) if there are no other jobs to the right. Jaillet

and Wagner (2006) and Wagner (2006), however, note that the result of Blom

et al. (2001) is dependent on the assumption that the disclosure time of a job’s

location and release time occurs at the moment of release. In this way, Jaillet

and Wagner (2006) formulate a TSP scenario with advanced information and

demonstrate the benefit of that advanced information.

Specifically, Jaillet and Wagner (2006) introduce a disclosure time, at

which both the location and the release time are announced. If this disclosure

time is equal to the release time then we are in the case where MRIN yields

a solution with worst-case ratio of 3
2 . If, however, the disclosure time occurs

a fixed amount of time in advance of the release date then the worst-case

ratio for an arbitrary homing (or tour) online algorithm improves to at least
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Table 4.1: Overview of work to date and our contribution.
Problem Depiction of Info. Arrival (Time) Main Result on R

+

0
Reference

Offline TSP with
Release Dates

Optimal algorithm in O(n)
time.

(Psaraftis
et al., 1990)

Online TSP with
Release Dates

Best-possible algorithm
with worst-case ratio of 3

2
.

(Blom et al.,
2001)

Online TSP with
Disclosure Dates

Disclosure dates give ad-
vantage over release dates;
worst-case ratio for both
fixed and variable ad-
vanced notice is dependent
on time between disclosure
and release, but bounded
by 3

2
.

(Jaillet and
Wagner, 2006)

Online TSP with
Two Disclosure
Dates

Advanced location infor-
mation gives an advantage
over simultaneous disclo-
sure dates; worst-case ratio
for both fixed and variable
advanced notice is depen-
dent on time between both
disclosure dates and the re-
lease time, but bounded by
3
2
.

This chapter

(32 − a
2lmax

) ∈ [1, 32 ] where a is the fixed amount of advanced notice time and

lmax is the location of the job farthest from the origin on R
+
0 . Note, we use

the expression homing in a manner similar to Ausiello et al. (2001) in order

to indicate that the algorithm must return to the depot or origin at the point

in time when all known jobs have been served.

4.1.1 Our Contribution

We position our work as depicted in Table 4.1. In this table the name of the

problem examined appears in the far left column. The second column provides

a graphical depiction of information arrival over time that characterizes the

associated problem; note, qli represents the time the location of a job i ∈

N = {1, . . . n} is disclosed, qri represents the time the release time of job i is

disclosed, and ri represents the release time of the job. The third and fourth

columns indicate the main result and reference for the associated problem,

respectively. This table emphasizes the focus of our work on the impact of

early location disclosure in the context of the TSP on R
+
0 .

In our case, we have two disclosure dates — the disclosure of the job
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location and the disclosure of the release time. This split information arrival

serves to give our online algorithm a greater advantage over other online

algorithms in comparison to the optimal offline strategy. This case is also

more realistic as there are many real-world instances in which the job locations

are known early in execution, but the release times come later. We begin by

introducing an online algorithm for R
+
0 designed to exploit both pieces of

information as they are made available. Our online algorithm is a homing

algorithm as the salesman must return to the origin following the completion

of all known jobs.

We prove that our online algorithm is best-possible with a worst-case ratio

of max
{

1, 32 − (a+b)
2lmax

}

, where a and b represent fixed amounts of time between

the disclosure events and release of the job.

We also address the case of variable amounts of advanced notice (i.e. the

case where a and b vary by job taking any positive real value). In this case

we obtain a ratio of

1 ≤ 1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

≤
3

2

We show that this ratio is the best possible in this setting.

The remainder of this chapter is organized as follows: in Section 4.2 we

state the problem of interest in mathematical terms and define the necessary

notation; we also present in greater detail the optimal offline algorithm and

online algorithms for the TSP with release dates and TSP with disclosure

dates. In Section 4.3 we present our algorithm, Move-Right-Early-Left-Late

(MRELL), for the OLTSP on R
+
0 with two disclosure dates. In Section 4.4 we

derive the worst-case ratio for the case in which the amount of time between

disclosure events is fixed; we also demonstrate that MRELL is best possible

in this case. In Section 4.5 we study the case in which the amount of time

between disclosure events varies across jobs; we demonstrate that MRELL is

best possible for that case as well. Finally, we conclude with a discussion of



4.2. Assumptions, Notation, and Preliminaries 95

these results and statement of future research in Section 4.6.

4.2 Assumptions, Notation, and Preliminaries

To facilitate an understanding of the exact nature of the problem under con-

sideration, we begin by stating some assumptions and describing the notation

we will use throughout this chapter.

1. All job locations are along the positive real number line, R+.

2. The origin is at the point, 0, on R
+ which is where the salesman begins

at the start of each problem at time 0 and must return to after visiting

all jobs.

3. The location of a job, i, is only revealed to the salesman at a time in

advance of its release time (and the disclosure of that time); this location

disclosure time is denoted qli.

4. A job’s release time is only revealed to the salesman at a time after

the disclosure of its location, but before the time of release; this release

disclosure time is denoted qri .

5. The salesman always travels at unit speed along R
+; otherwise he is

idle.

6. The objective of this online TSP is to minimize the time required to

serve all jobs and return to the origin.

7. In the online problem, the salesman does not know in advance how many

jobs are in a single problem instance. In the offline problem, all jobs

and their release times are known a priori.

8. A problem instance, N , is a collection of n jobs, numbered 1, . . . , n.

Note, we can completely describe a job i ∈ N by the following vector:

(qli, q
r
i , ri, li) where li represents the location of job i on R

+
0 ; q

l
i is the point

in time at which li is revealed; and qri is the point in time at which ri is
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revealed, where ri represents the release time of job i. In our variation of

the online TSP, the information arrives such that 0 ≤ qli ≤ qri ≤ ri. We

further specify lmax to represent the job that is farthest from the origin; that

is, lmax = maxi∈N {li}. Similarly, rmax = maxi∈N {ri} represents the job that

is released the latest. The job at lmax is not necessarily the same job with

release time rmax. The notation (x)+ is used as a short hand for max {x, 0}.

As the remainder of this document focuses on competitive analysis, we use

the notation CA(N) to represent the cost of an algorithm, A, on an instance,

N , of n jobs. Furthermore, we define the performance ratio of an algorithm

A on an instance N as CA(N)
COPT (N) . The value ρA, the worst-case ratio (as

introduced in Chapter 1), is thus defined as the infimum over all performance

ratios, which implies that CA(N) ≤ ρACOPT (N) for any instance N . A best

possible algorithm is thus defined as an algorithm guaranteed to achieve a

performance ratio less than or equal to the infimum over all algorithms of ρA.

Finally, throughout this chapter we use the language of Jaillet and Wagner

(2006) when writing out the relevant algorithms and affiliated costs.

The remainder of this section is divided into two subsections — the first in

which we describe the optimal offline algorithm of Psaraftis et al. (1990) and

the second in which we describe the online algorithms of Blom et al. (2001)

and Jaillet and Wagner (2006).

4.2.1 Optimal Offline Algorithm for the TSP on R
+ with Re-

lease Dates

The offline version of the TSP with release dates on R
+
0 was first introduced

in the context of routing and scheduling on a shoreline by Psaraftis et al.

(1990). They propose an optimal offline algorithm entitled TRAVERSE and

prove that it solves the problem exactly in O(n) time. The formal steps of the

algorithm are repeated here, for convenience. TRAVERSE works by going to

the farthest job from the origin, waiting at that job until the point in time

where a smooth (i.e. no waiting) return to the origin can be made.

It is clear that the cost of this algorithm (that is the earliest point in

time the salesman will return to the origin) is the time required to travel to
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Algorithm 1 TRAVERSE or OPT

1. Go directly to job lmax.

2. Wait at lmax for maxi∈N {max {0, ri − (2lmax − li)}} units of time.

3. Proceed directly back to the origin.

the farthest location and back to the origin plus any waiting time incurred

at that farthest location. Thus, the following is a closed form expression for

CTRAV ERSE(N) (termed COPT (N) for future reference):

COPT (N) = max
i∈N

{max {2li, ri + li}} (4.1)

4.2.2 Online TSP Algorithms

In this subsection, we review two different cases of advanced information

arrival; for each we present the best-possible online algorithms. The first case

is one in which a job’s location and release time are disclosed at the moment of

release, that is qli = qri = ri. This first case is identical to that of the “OLTSP

with release dates” originally proposed and studied by Blom et al. (2001).

The second case is one in which the location and release time are disclosed

simultaneously at a time in advance of the release time, that is qli = qri < ri.

This second case is identical to the “OLTSP with disclosure dates” originally

proposed by Jaillet and Wagner (2006).

OLTSP with Release Dates

In their study of zealous algorithms and fair adversaries for the OLTSP with

release dates, Blom et al. (2001) specify the Move-Right-if-Necessary (MRIN)

algorithm as a strategy in the R+
0 metric space. MRIN is a zealous algorithm

in which the salesman moves to jobs on his right as soon as they are released

and returns to the origin if there are no more jobs on the right.

Blom et al. (2001) show that MRIN is a best-possible online algorithm for

the OLTSP with release dates on R
+
0 with a worst-case ratio of 3

2 . Therefore,

in the case where qli = qri = ri, MRIN is the best possible strategy.
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Algorithm 2 MRIN

1. If there is an unserved job to the right of the salesman, he moves toward
it at unit speed.

2. If there are no unserved jobs to the right of the salesman, he moves back
toward the origin at unit speed.

3. Upon reaching the origin, the salesman becomes idle.

OLTSP with Disclosure Dates

In their study of online routing problems, Jaillet and Wagner (2006) intro-

duce the OLTSP with disclosure dates and specify the Move-Left-If-Beneficial

(MLIB) algorithm as a strategy in the R+
0 metric space. MLIB is based on the

idea that with prior knowledge of jobs to the left of the salesman it is better

to wait as far right for as long as possible. In this way, MLIB represents a

compromise strategy between the optimal offline, TRAVERSE algorithm and

the online MRIN strategy.

Algorithm 3 MLIB

1. If there is an unserved job to the right of the salesman, he moves toward
it at unit speed.

2. If there are no unserved jobs to the right of the salesman, he moves back
toward the origin if and only if the return trajectory reaches all unserved
jobs on or after their release date; otherwise the salesman remains idle
at his current location.

3. Upon reaching the origin, the salesman becomes idle.

Jaillet and Wagner (2006) show that MLIB is a best-possible online al-

gorithm for the OLTSP with disclosure dates on R
+
0 when the amount of

advanced notice (i.e. the time between disclosure and release) is fixed. We

extend their results slightly to show that MLIB is also best-possible when the

amount of advanced notice is variable (see Section 4.5). In both settings (fixed

and variable advanced notice) the worst-case ratio of MLIB is not constant
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and instead varies based on the amount of advanced notice; nevertheless the

worst-case ratio never exceeds 3
2 . Therefore, in the case where qli = qri ≤ ri,

MLIB is the best possible strategy.

4.3 OLTSP with Two Disclosure Dates

The primary focus of this chapter is one in which the location is disclosed

earlier than the release time which is disclosed earlier than the release itself,

that is qli ≤ qri ≤ ri. In this instance, we can construct an algorithm that not

only exploits the advanced release information but also the earlier disclosed

location information. The Move-Right-Early-Left-Late (MRELL) algorithm

is based on the idea that it is better to wait as far in the field as long as

possible than hastily return to the origin.

Algorithm 4 MRELL

1. If there is a job for which the location has been revealed to the right of
the salesman he moves towards it at unit speed.

2. If there are no jobs to the right of the salesman, he moves back to the
origin according to the following rules:

(a) If the salesman knows the release time of all the jobs to his left,
whose locations have been disclosed, then the salesman returns to
the origin at the point in time that allows him to pass all jobs on
or after their release time.

(b) If the salesman knows the release time of only some of all jobs to
his left, whose locations have been disclosed, then the salesman
remains idle until the time that allows him to pass all release time
disclosed jobs on or after their release time, but the salesman must
stop along this trajectory and wait at any job for which only the
location is known.

(c) If the salesman knows none of the release times for all the location-
disclosed jobs to his left, then he moves toward the nearest job
waiting there until its release.

3. Upon reaching the origin, the salesman remains idle.
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Note that if this algorithm is applied to a case where qli = qri = ri then

MRELL is equivalent to MRIN (Blom et al., 2001). Furthermore, if this

algorithm is applied to a case where qli = qri < ri then MRELL is equivalent

to MLIB (Jaillet and Wagner, 2006). Additionally, note that if 0 = qli = qri <

ri, ∀i ∈ N then this algorithm is indistinguishable from the optimal offline

algorithm (see Psaraftis et al., 1990).

Lemma 1. The cost of MRELL is bounded as follows:

CMRELL(N) ≤ max
i∈N

{

max
{

qli + 2li, ri + li

}}

(4.2)

Proof Using logic similar to Jaillet and Wagner (2006), we derive the cost

of MRELL by analyzing the final segment of the salesman’s journey. That

is, the segment of the salesman’s journey in which he leaves a job to return

directly to the origin without stopping to wait at any other job along the

way. We say that this final segment will begin at a time, t0 with the salesman

arriving at the origin at time z = CMRELL(N). According to the algorithm,

MRELL, the salesman may begin his final segment to the origin from any job

(a job we will term the final departure job) to the right of the origin, on the

condition that all jobs in between the final departure job and the origin will

be passed on or after their release time. We proceed by analyzing two cases.

1. Salesman leaves final departure job as soon as he arrives.

• This represents the case where the salesman arrives to the final

departure job after the release time of that job and at a point in

time at which all jobs between that final departure job and the

origin can be passed on or after their release times. Note that

in this case, the salesman was traveling away from the origin just

before turning back for the final segment at the final departure

job. Thus, the salesman begins his return segment immediately

after arriving to the final departure job, k. This gives us that t0 =

arrival to k ≤ qlk + lk. Note that qlk + lk represents departure from

the origin and hence the worst case. Thus, z ≤ qlk+lk+lk = qlk+2lk.
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2. Salesman leaves final departure job after waiting.

• This case represents a situation where the salesman must wait for

the release of some job between the final departure job and the ori-

gin (possibly the final departure job itself). In this second case the

salesman will already have spent some time at the final departure

job before returning to the origin - thus he may have come to that

final departure job from either the left or the right. In this case

the final segment is timed to pass through some job, m, at a time

t > t0 such that t = rm and rm is the latest release time remaining.

Thus, the salesman will finish the final segment at z = rm + lm.

Because the last segment of the salesman’s trajectory can only be of one

case type, we may say that z ≤ max
{

qlk + 2lk, rm + lm
}

. Furthermore, be-

cause these cases represent the latest event in the trajectory of the salesman

we can write, CMRELL(N) = z ≤ maxi∈N
{

max
{

qli + 2li, ri + li
}}

.

The following corollary further illustrates the relationship between

CMRELL(N) and COPT (N). Corollary 1 will also be used in proving The-

orem 2.

Corollary 1. If qli = 0 and qri ≤ ri, ∀i ∈ N , then CMRELL(N) = COPT (N).

Related to Corollary 1 we have Lemma 2 that will be used in the proof of

both Theorem 2 and Theorem 4.

Lemma 2. For any instance, N , of the online TSP with release dates on

R
+, we can construct a related instance, Ñ , in which all jobs in the set Q =
{

i ∈ N | qli = 0
}

are excluded. The performance ratio for instance Ñ will not

be less than the performance ratio for instance N .

Proof Let CMRELL(Ñ) be the cost of MRELL on the instance Ñ = N \Q;

similarly let COPT (Ñ) be the cost of OPT on the instance Ñ = N \Q.

If maxi∈Q {ri + li, 2li} ≥ CMRELL(Ñ), then CMRELL(N)

= maxi∈Q {ri + li, 2li} = COPT (N); which gives us a performance ratio of 1.

As the performance ratio for instance Ñ must be greater than or equal to 1



102 Chapter 4. The Value of Advanced Location Information

we have that the performance ratio for instance Ñ will not be less than the

performance ratio for instance N .

If instead, maxi∈Q {ri + li, 2li} < CMRELL(Ñ) then CMRELL(Ñ)

= CMRELL(N). Since, COPT (Ñ) ≤ COPT (N), the performance ratio for

instance N is less than or equal to the performance ratio of Ñ .

4.4 Fixed Amounts of Advanced Notice

In this case, we imagine that the salesman is told the location of each job at

a point in time (a + b) units of time before the release of the job. Similarly,

the release time of each job is announced a units of time before the release

of the job. We may also write this as follows. For each job in a problem

instance, there exist constants a and b such that (a + b) ∈ [0, rmax], yielding

qri = (ri − a)+, ∀i ∈ N and qli = (ri − a − b)+, ∀i ∈ N . Given this notation

and noting that 2lmax is a lower bound on the length of the optimal TSP tour

through all jobs, we have the following theorem.

Theorem 1. Let A be an arbitrary homing online algorithm with cost CA(N)

on an instance of n jobs. Then for all n ≥ 2 there exists an instance N , of

size n, where the performance ratio is at least
[

3
2 − ( a+b

2lmax
)
]

∈ [1, 32 ].

Proof Using logic similar to Jaillet and Wagner (2006), we begin by es-

tablishing an arbitrary instance N ′ of n − 1 jobs. Given this instance, the

time at which the salesman finishes serving all n− 1 jobs and returns to the

origin is given by our arbitrary algorithm, A, as CA(N
′). We now desig-

nate an nth job which is further out on R
+ than any of the previous n − 1

jobs. Thus, ln = lmax. To specify the exact location of lmax, we note that

CA(N
′) ≥ COPT (N

′) ≥ 2li, ∀i ∈ N ′. Thus, by setting ln equal to CA(N
′)

plus some constant term, we are assured that ln is lmax for this instance of n

jobs. We therefore select ln = (a + b) + CA(N
′). Note, if (a + b) = 0 then

qln = rn and the analysis of Blom et al. (2001) applies thus completing our
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proof. However, if (a+ b) > 0, we obtain the following description of job n:

(qln, q
r
n, rn, ln) = (CA(N

′), a+ CA(N
′), (a+ b) + CA(N

′), (a+ b) + CA(N
′)).

Given this job and the knowledge that the salesman is at the origin at

qln = CA(N
′), we obtain the following: CA(N) ≥ qln+2ln = 3CA(N

′)+2(a+b).

Turning our attention to the optimal offline algorithm, we have:

COPT (N) = max{max{2li, ri + li}} = 2CA(N
′) + 2(a+ b)

As (a+ b) > 0 then COPT (N) > 0. We now obtain the desired result:

CA(N)

COPT (N)
≥

3CA(N
′) + 2(a+ b)

2CA(N ′) + 2(a+ b)

= 1 +
CA(N

′)

2lmax

= 1 +
lmax − (a+ b)

2lmax

=
3

2
− (

a+ b

2lmax
)

Given that (a+ b) ≤ lmax, we conclude that 3
2 − ( a+b

2lmax
) ∈ [1, 32 ].

Theorem 2. When the amount of advanced notice is fixed such that, qri =

(ri − a)+ and qli = (ri − a − b)+, ∀i ∈ N , then MRELL is a best-possible

algorithm.

Proof Define L =
{

i ∈ N |qli > 0
}

. Note that if L = ∅ then the location

of all jobs are known at the start of the day. Thus, by Lemma 2, we ob-

tain CMRELL(N) = COPT (N). However, if L is not empty, then we rewrite

inequality 4.2 as:

CMRELL(N) ≤

max

{

max
i∈L

{

max
{

qli + 2li, ri + li

}}

, max
i∈N\L

{max {2li, ri + li}}

}

Now, by Lemma 2 we can ignore all the jobs not in L without risk of
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reducing the competitive ratio. Thus we obtain:

CMRELL(N) ≤ max
i∈L

{

max
{

qli + 2li, ri + li

}}

Using the definition of qli we do the following algebra:

CMRELL(N) ≤ max
i∈L

{

max
{

qli + 2li, ri + li

}}

= max
i∈L

{max {ri − a− b+ 2li, ri + li}}

= max
i∈L

{ri + li +max {li − a− b, 0}}

≤ max
i∈L

{ri + li +max {lmax − a− b, 0}} (4.3)

We now analyze two cases:

Case 1: lmax−a−b < 0 ⇔ lmax < a+b. This case implies that CMRELL(N) ≤

maxi∈L {ri + li} ≤ COPT (N) which implies that

CMRELL(N) = COPT (N).

Case 2: lmax − a − b ≥ 0 ⇔ lmax ≥ a + b. In this case we may rewrite

inequality 4.3 in the following way.

CMRELL(N) ≤ max
i∈L

{ri + li + lmax − a− b}

= max
i∈L

{ri + li}+ lmax − a− b

≤ COPT (N) + lmax − a− b

Rewriting lmax − a− b as lmax−a−b
lmax

lmax, we obtain the desired result.

CMRELL(N) ≤ COPT (N) +
lmax − a− b

2lmax
2lmax

≤ COPT (N) +
lmax − a− b

2lmax
COPT (N)

=

[

3

2
−

(a+ b)

2lmax

]

COPT (N)
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Recognizing that these cases are disjoint, we state,

CMRELL(N) ≤ max

{

1,
3

2
− (

a+ b

2lmax
)

}

COPT (N).

As Theorem 1 gives us that max
{

1, 32 − ( a+b
2lmax

)
}

is the lowest possible perfor-

mance ratio for any algorithm we may conclude that MRELL is a best-possible

algorithm.

4.5 Variable Amounts of Advanced Notice

In this subsection, we explore the worst-case ratio of MRELL in the context

of variable amounts of advanced notice time for both the location and release

time disclosures. In examining Lemma, 1 we note that the job driving the

cost of MRELL (we will call this job d) can be one of two types: (1) the job

may be such such that maxi∈N
{

max
{

qli + 2li, ri + li
}}

= rd + ld or (2) the

job may be such that maxi∈N
{

max
{

qli + 2li, ri + li
}}

= qld + 2ld. If job d is

of type one, then the cost of MRELL will be equal to the cost of the optimal

offline algorithm. Given this phenomenon, the worst-case ratio is primarily

determined by the value of maxi∈N
{

qli + 2li
}

.

Theorem 3. Let A be an arbitrary homing online algorithm with cost CA(N)

on an instance, N , of n jobs. Then for all n ≥ 2 there exists an instance of

size n where the performance ratio is at least

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

∈

[

1,
3

2

]

.

Proof Applying the same logic as in Theorem 1, we specify an arbitrary

instance N ′ of n − 1 jobs that the salesman serves and then returns to the

origin. Thus, the salesman is at the origin at time CA(N
′). We now specify

the nth job at a location on R
+ that is further from the origin than any other

of the n− 1 jobs with a release time later than all others. We may therefore
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describe the nth job fully as follows.

(

qln, q
r
n, rn, ln

)

=
(

qlmax, q
r
max, rmax, lmax

)

=

(

CA(N
′), CA(N

′) + max
i∈N\n

{ri − qri } , CA(N
′) + δ, CA(N

′) + δ

)

Note that δ = maxi∈N\n

{

ri − qli
}

.

This plus the knowledge that the salesman is at the origin at time CA(N
′)

yields:

CA(N) ≥ qln + 2ln = 3CA(N
′) + 2δ

Turning our attention to the cost of the optimal offline algorithm we have:

COPT (N) = max
i∈N

{max {2li, ri + li}} = 2CA(N
′) + 2δ

This gives us the following:

CA(N)

COPT (N)

≥
3CA(N

′) + 2δ

2CA(N ′) + 2δ
(4.4)

= 1 +
CA(N

′)

2CA(N ′) + 2δ

= 1 +
CA(N

′) + 2 (CA(N
′) + δ)− 2 (CA(N

′) + δ)

2 (CA(N ′) + δ)

≥ 1 + min

{

qln + 2ln − (rn + ln)

rn + ln
,
qln + 2ln − 2ln

2ln

}

= 1 +min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

We now note that if we let δ decrease to 0 in equation (4.4), then this

fraction increases to 3
2 ; alternately if we take the limit of δ approaching ∞,



4.5. Variable Amounts of Advanced Notice 107

then this fraction decreases to 1. Therefore,

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

∈

[

1,
3

2

]

.

The following theorem establishes that MRELL is also a best-possible

algorithm in the context of variable notice.

Theorem 4. When the amount of advanced notice varies for each job, i ∈ N ,

then ρMRELL ≤ 1 +min

{

(

maxi∈N{qli+2li}
maxi∈N{ri+li}

− 1

)+

,

(

maxi∈N{qli+2li}
maxi∈N{2li}

− 1

)

}

≤

3
2 and MRELL is a best-possible algorithm.

Proof Let qlm + 2lm = maxi∈N
{

qli + 2li
}

, rp + lp = maxi∈N {ri + li}, and

2lmax = maxi∈N {2li}. Note that jobs m, p, and max in the case of lmax may

actually represent the same job depending on the instance. We further define

two sets:

L(N) =

{

j ∈ N | qlj + 2lj = max

{

max
i∈N

{

qli + 2li, ri + li

}

}}

R(N) =

{

k ∈ N | rk + lk = max

{

max
i∈N

{

qli + 2li, ri + li

}

}}

Given these two sets we proceed with the proof by examining three cases: (1)

L(N) = ∅,R(N) 6= ∅, (2) L(N) 6= ∅,R(N) 6= ∅, and (3) L(N) 6= ∅,R(N) = ∅.

Note if L(N) = R(N) = ∅ then there are no jobs in the problem instance.

Case 1: L(N) = ∅,R(N) 6= ∅ In this case p ∈ R(N). Thus,

rp + lp = max

{

max
i∈N

{

qli + 2li, ri + li

}

}

≥ 2lmax

which implies that CMRELL(N) ≤ rp+lp ≤ COPT (N). Thus, CMRELL(N)
COPT (N)

≤ 1 ≤ 3
2 . We further note, that in this case rp + lp > qlm + 2lm. Hence
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qlm+2lm
rp+lp

< 1 which yields

(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

= 0.

Therefore, in this case,

min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

= 0.

As a result we can conclude that in this case,

CMRELL(N)

COPT (N)

≤ 1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

≤
3

2
.

Case 2: L(N) 6= ∅,R(N) 6= ∅ In this case m ∈ L(N) and p ∈ R(N) which

gives us that qlm + 2lm = qlj + 2lj = max
{

maxi∈N
{

qli + 2li, ri + li
}}

=

rk + lk = rp + lp. Thus, CMRELL(N) ≤ rp + lp ≤ COPT (N) yielding
CMRELL(N)
COPT (N) ≤ 1 ≤ 3

2 . In this case we also note that rp + lp = qlm + 2lm

which gives that

(

maxi∈N{qli+2li}
maxi∈N{ri+li}

− 1

)+

= 0. Therefore,

min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

= 0.
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As a result we conclude that in this case,

CMRELL(N)

COPT (N)
≤

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

≤
3

2
.

Case 3: L(N) 6= ∅,R(N) = ∅ In this case, m ∈ L(N). Thus,

qlm + 2lm

= max

{

max
i∈N

{

qli + 2li, ri + li

}

}

.

So we may conclude that qlm + 2lm > rp + lp. We may also conclude

that qlm+2lm > 2lmax, because Lemma 2 allows us to ignore all jobs for

which qli = 0. We thus examine two cases, (1) qlm+2lm > rp+lp > 2lmax

and (2) qlm + 2lm > 2lmax > rp + lp.

Case 3.1: qlm + 2lm > rp + lp > 2lmax

CMRELL(N) ≤ qlm + 2lm

=
qlm + 2lm
rp + lp

(rp + lp)

≤

[(

qlm + 2lm
2lmax

− 1

)

+ 1

]

COPT (N)

Thus, CMRELL(N)
COPT (N) ≤ 1 +

(

qlm+2lm
rp+lp

− 1
)+

≤ 1 +
(

qlm+2lm
2lmax

− 1
)

.
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Which gives us the result that

CMRELL(N)

COPT (N)
≤

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

Case 3.2: qlm + 2lm > 2lmax > rp + lp

CMRELL(N) ≤ qlm + 2lm

=
qlm + 2lm
2lmax

(2lmax)

≤

[(

qlm + 2lm
rp + lp

− 1

)

+ 1

]

COPT (N)

Thus, CMRELL(N)
COPT (N) ≤ 1+

(

qlm+2lm
2lmax

− 1
)

≤ 1+
(

qlm+2lm
rp+lp

− 1
)+

, which

gives us the result that

CMRELL(N)

COPT (N)
≤

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

We conclude Case 3 by proving that

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

≤
3

2
.



4.5. Variable Amounts of Advanced Notice 111

Proving this statement is done via contradiction. Assume that

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

>
3

2
.

This implies:

(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

>
1

2

∧

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)

>
1

2

⇒
maxi∈N

{

qli + 2li
}

maxi∈N {ri + li}
>

3

2

⇒ 2
(

qlm + 2lm

)

> 3 (rp + lp) > 3 (rm + lm) > 3
(

qlm + lm

)

⇒ lm > qlm

⇒ 2 (3lm) > 2
(

qlm + 2lm

)

> 3(2lmax)

⇒ 2lm > 2lmax = max
i∈N

{2li}

Which is a contradiction. Thus,

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

≤
3

2
.
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As these three cases cover all possible situations, we obtain the desired result:

CMRELL(N)

COPT (N)
≤

1 + min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

≤
3

2

This analysis also serves to further the results of Jaillet andWagner (2006).

In their paper, Jaillet and Wagner (2006) give a rather complex worst-case

ratio of MLIB under conditions of variable advanced notice. However, by not-

ing that when qli = qri the two algorithms, MRELL and MLIB, are equivalent,

we may give the following expression as the competitive ratio of MLIB under

conditions of variable advanced notice.

CMLIB(N)

COPT (N)
≤

1 + min

{

(

maxi∈N {qri + 2li}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N {qri + 2li}

maxi∈N {2li}
− 1

)

}

≤
3

2
.

Furthermore, by following a similar set of arguments as outlined in The-

orems 3 and 4, it is possible to prove that MLIB is a best-possible algorithm

when qli = qri ∀i ∈ N and conditions of variable amounts of advanced notice

prevail.

4.6 Discussion

Given these elaborate worst-case ratios for MRELL under conditions of fixed

and variable advanced notice, what can be said about the value of location

information? We begin by noting that MRIN is an algorithm that uses no
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advanced information; all actions are take at ri. MRELL on the other hand

uses advanced location and release time information; actions are taken at

both qli and qri . Therefore by comparing these two extreme algorithms we

may specify a value for the advanced location information.

In previous papers (see e.g. Jaillet and Wagner (2006)) the comparison

between different algorithms was undertaken by subtracting the worst-case

ratios of the two algorithms. We too will begin our comparison between

MRIN and MRELL using this methodology. We then show that this method

may yield a deceptive value for the location information. As a final result we

specify a realistic range of values and describe policies that give MRELL a

consistent improvement over MRIN.

We begin our comparison by studying the difference ρMRIN −ρMRELL. If

we calculate this value directly we obtain:

ρMRIN − ρMRELL =

1

2
−min

{(

maxi∈N
{

qli + 2li
}

maxi∈N {ri + li}
− 1

)+

,

(

maxi∈N
{

qli + 2li
}

maxi∈N {2li}
− 1

)}

As this expression is strictly positive, we may be inclined to conclude that

advanced location information is similarly strictly beneficial. However, if we

recall that 1 ≤ CMRIN (N)
COPT (N) ≤ ρMRIN ≤ 3

2 and 1 ≤ CMRELL(N)
COPT (N) ≤ ρMRELL ≤ 3

2 .

Then, we may say:

−
1

2
≤ 1− ρMRELL ≤

CMRIN (N)− CMRELL(N)

COPT (N)
≤ ρMRIN − 1 ≤

1

2
(4.5)

Equation (4.5) implies that in some instances advanced location informa-

tion can be detrimental. Given these conflicting observations, stemming from

the broad range in which CMRIN (N)−CMRELL(N)
COPT (N) can fall, we cannot immedi-

ately specify a value for advanced location information. We therefore explore
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the full implications of this range in more detail.

We begin our more complete comparison of MRIN and MRELL by exam-

ining the extreme left of the range. It appears from the analysis in equation

(4.5) that
CMRIN (N)− CMRELL(N)

COPT (N)

can be as low as −1
2 . This is, however, not true as there are no instances such

that
CMRIN (N)

COPT (N)
= 1

at the same time that
CMRELL(N)

COPT (N)
=

3

2
.

Instead, we put forth the following conjecture.

Conjecture 1. CMRIN (N)−CMRELL(N)
COPT (N) ≥ −1

3 for all instances N .

An example of one such instance that drives the difference in the algo-

rithms’ costs to its lowest value of −1
3 is: l1 = l2 = 2, r1 = 2, ql1 = 0, qr1 = 1,

r2 = ql2 = qr2 = 4.

We now explore the extreme positive end of the range for the difference in

CMRIN (N) and CMREL(N) as compared to COPT (N). We can immediately

see that there exist instances such that CMRIN (N)−CMRELL(N)
COPT (N) = 1

2 . Take for

example the instance where ql1 = 0 and qr1 = r1 = 1. We, therefore, conclude

that:

−
1

3
≤

CMRIN (N)− CMRELL(N)

COPT (N)
≤

1

2
. (4.6)

If we assume a uniform distribution of instances across this range then

we can say that on average using MRELL to exploit advanced location infor-

mation will yield a cost improvement of 1
12 . Of course, if the instances are

distributed differently the benefit of advanced location information may be

drastically reduced. We therefore turn our attention toward policies that can

improve the value of advanced location information.

We first note that the instances rendering advanced location information

detrimental are those for which an earlier job drives the cost of MRIN while
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a later job with no advanced notice drives the cost of MRELL. Thus, the

best policy strategy is one that requires all job locations to be announced

at some point in advance of their release date. In fact this is the reasoning

behind the analysis of fixed information in Section 4.4. It is important to

note that in instances of fixed advanced notice, where a > 0 and b > 0,

CMRIN (N) ≥ CMRELL(N). This is because given the point in time that the

location is revealed, the release time can be computed. As both a and b are

positive this information can be computed in advance of the actual release

time thereby avoiding the types of detrimental instances examined above.

A second strategy is to introduce a job pricing scheme that charges a

premium for those jobs not willing or able to announce the location until a

time close to the job’s release date. This premium can be set dynamically

to cover any costs originating from acting too soon for a previous job. For

example, by specifying a price per job equal to the time the location is revealed

plus the round trip distance of the job (i.e. qli +2li), then customers will have

an incentive to provide the job location information early. If a job location

is revealed late then such a fee would cover the cost of service regardless of

the situation created by a previous job. Admittedly, while this scheme is

theoretically sufficient to cover the cost of jobs revealed too late it may be

confusing to customers who are likely to prefer fixed rates based solely on

distance. Nevertheless this still provides some benefit to the customer as they

do not need to reveal the release time any earlier — only the location of the

job.

This observation yields the following question, does providing information

on the release time early yield any benefit? We answer this question by

noting that the earliest that the release time may be disclosed is qri = qli.

If this is done for all jobs i ∈ I, then CMLIB(N) = CMRELL(N); thus,
CMLIB(N)−CMRELL(N)

COPT (N) = 0. From this analysis, we may conclude that the value

of location information is immense. The revelation of location information

alone brings all the benefit or detriment. This value ranges, dependent on the

problem instance, from −1
3 to 1

2 in terms of the difference in the cost of these

algorithms as compared to the optimal solution.



116 Chapter 4. The Value of Advanced Location Information

These results represent only a first step towards a meaningful analysis of

the drayage problem at the center of this thesis. A clear first extension to this

work is an analysis of the same problem in more realistic metric spaces, such

as a general metric space or R2. A second extension of interest is the design

of an online job selection algorithm. For example, by rejecting jobs based

on a comparison of their disclosed locations to already accepted job locations

might yield significant performance gains. Finally, we recommend studying

other versions of the TSP — such as the TSP with pick-up and delivery or the

ATSP. As a side note, to date and to the best of our knowledge, only one paper

attacks an online analysis of an ATSP. Ausiello et al. (2008) study the online

asymmetric traveling salesman problem demonstrating that the competitive

ratio for any online asymmetric TSP, that must return to a specified location,

is at least one plus the golden ratio.

Finally, we note that, in the simplified context of the TSP there is but one

server — the salesman, alone. This obfuscates the need for a higher level of

control. In reality, however, many drayage companies operate more than one

vehicle. Therefore, the key to exploiting advanced information rests largely

on the agility of the control mechanism. That is, the mechanism by which

jobs are assigned to individual vehicles. The quantifiable merits of centralized

versus decentralized control, in realistic drayage problems, is the topic of the

next chapter.



Chapter 5

Centralized versus

Decentralized Control in

Drayage

Only the governed exist to govern themselves.

Kahlil Gibran, The Wanderer: His Parables and Sayings

Imagine working as a dispatcher for a medium sized freight logistics com-

pany. Your day begins by matching a set of orders to a group of drivers.

Maybe a computer helps you in this task, but ultimately the outcome is the

same - a schedule for the day. This schedule has been carefully constructed to

serve all orders at least cost while taking a variety of constraints (e.g. equip-

ment type, time windows, hours of service regulations, etc) into account.

Immediately after enacting this plan, changes occur. A truck breaks down, a

customer cancels, a load is bigger than expected. The phone starts ringing,

and your growing headache reminds you that you should ask your boss for a

raise.

The next day you try an experiment. After giving all your drivers cell

phones, PDAs, and GPS navigation systems, you tell them to communicate

117
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with each other and the customers to create their own schedule. You also

make the drivers responsible for negotiating solutions to any troubles encoun-

tered en route. In effect, you have rendered your job as a central dispatcher

obsolete, leaving more time for other office management tasks. But will the

drivers, operating without central knowledge, find the most cost effective

route? Which solution will fulfill (or exceed) company goals and objectives?

Experiments studying the behavior of agent based methods in comparison

to traditional optimization methods are generally absent from the literature.

Independent of comparative benchmarks, the literature holds several claims

that agent-based solutions perform well in uncertain domains (Fischer et al.,

1995), that is, in domains where the problem (and its associated solution

space) is continually evolving. The key objective of this chapter is to test these

claims by studying the performance of an agent-based solution and an on-line

optimization approach with respect to handling uncertainty in the context

of the previously introduced drayage company at the Port of Rotterdam,

the Netherlands. Recall, in our case, a container transport company with

a fleet of 40 vehicles must pick up containers from terminals at the Port of

Rotterdam, transport the containers to a customer location in the hinterland

arriving within a given time window, wait with the container until it is loaded

or unloaded, and then return the full or empty container to another port

terminal.

Given this method of operations, the problem may be described, in a static

manner, as a pick-up and delivery problem with time windows (PDPTW). Re-

ality, however, reminds us that this problem is anything but static and as such

we study this problem in an on-line context taking into account two types of

uncertainty — service time uncertainty and job arrival uncertainty. Job ar-

rival uncertainty is the most basic type of uncertainty, as a job cannot be

planned for or served until it is made known to the planning system. Fur-

thermore, while the presence of a job may be known in advance, the amount

of time required to pick it up from the terminal, service it at the customer

location, and process it at the return terminal can be highly variable.
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The remainder of this chapter1 describes the foundational literature on

the PDPTW under conditions of uncertainty as solved by both optimization-

based and agent-based solution approaches (Section 5.1). In Section 5.2, we

provide a detailed description of our experimental design including a descrip-

tion of the solution approaches, the data used, and the two types of uncer-

tainty examined. Results, on the performance of both systems across several

scenarios of varying service time and job arrival uncertainty, appear in Section

5.3. A discussion of these results and suggestions for future research conclude

this chapter.

5.1 Related Work

As noted in the introduction, at the heart of this research is a case study

in drayage. This case can be described in operations research terms as a

truckload pick-up and delivery problem with time-windows (PDPTW). In

the PDPTW, a fleet of vehicles, capable of carrying only one job at a time,

must pick up a job from one location and drop it off at another location

within a specified time period. Finding the assignment of jobs to trucks that

minimizes costs (in the form of total distance, empty distance, or operating

costs) is the solution goal.

While it is easiest to describe and classify these problems in a static man-

ner, these problems may in reality be studied from either a static or dynamic

perspective (Ghiani et al., 2003). Static vehicle routing problems (VRPs) as-

sume that all relevant problem instance information or input data is known

ahead of time and may be exploited in the solution process. On the other

hand, the input data for dynamic (also known as on-line (Jaillet and Wagner,

2006) or real-time (Yang et al., 1999)) VRPs is revealed over time. In re-

sponse, solution mechanisms are designed to give an answer on what decision

to make, based on available information, in the face of an uncertain future.

When the time between the problem-changing events is short, there may not

be a lot of time to plan for or optimize decisions — there may only be time

1This chapter is based on Máhr et al. (2008, 2010).
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to obtain a good feasible solution. Given the possibly sub-optimal nature

of on-line solution mechanisms, one could argue that all on-line algorithms

are in effect heuristics. As defined in Chapter 2, Section 2.1, heuristics are

solution mechanisms designed to yield a feasible solution rapidly, without any

guarantee on quality.

Dynamism, also referred to as uncertainty, can have different sources. The

type of uncertainty classically studied in vehicle routing is new job arrival.

Other types of uncertainty, often studied in the related field of scheduling,

include variable activity durations or variable resource failures. Reviews of

dynamism in the field of scheduling include Herroelen and Leus (2005) and

Sgall (1998). For our study, we focus on two types of uncertainty - variable

service times (similar to variable activity durations) and job arrivals revealed

over time.

To summarize the position of our work in the literature, we examine two

structurally distinct solution approaches — an optimization-based solution

approach and an agent-based solution approach — for the dynamic truckload

pick-up and delivery problem with time windows under two types of uncer-

tainty. The structurally differentiating feature of the two solution approaches

is the level of control — centralized versus decentralized. Specifically, an

optimization-based solution approach, focusing on a single objective and us-

ing full system information, exemplifies centralized control. In comparison,

agents, optimizing their own unique objectives using information they per-

ceive and maintain locally, exemplify decentralized control. The following

two subsections describe in greater detail both optimization-based and agent-

based approaches to the Dynamic Vehicle Routing Problem (DVRP).

5.1.1 Optimization-based Approaches for Vehicle Routing

When studying centrally controlled optimization-based approaches for vehicle

routing, the role of a dispatcher serves as a natural metaphor. A dispatcher is

responsible for using all known information (such as job pick-up and drop-off

locations, job size, job time windows, fleet size, vehicle capacity, and vehicle

locations, etc.) to develop, what they perceive to be, a very good (possibly



5.1. Related Work 121

optimal) feasible routing of vehicles to service all jobs at the least cost. In

practice, the one characteristic the dispatcher does not posses is clairvoyance.

The dispatcher is unaware of most future demands or service times until they

occur. Thus, previously optimized plans must be updated to accommodate

new demands as they arrive to the system or longer/shorter service times

as they are realized; possibly moving the previous plan to a point far from

optimal.

Solving dynamic vehicle routing problems from a centralized perspective

has been an active area in the literature for over 20 years. Psaraftis’ 1988

survey of results in this problem domain is valuable as it clearly lists the

primary differences between the static and dynamic versions of the VRP.

Chief among these differences is the essential nature of time coupled with

the need for information update mechanisms and fast computation times for

solutions.

In general, solution approaches to the dynamic vehicle routing problem

tend to be premised on innovative manipulations of the static version of the

vehicle routing problem. These problems may depend on either stochastic

or deterministic input data (Powell et al., 1995). Stochastic approaches are

designed to exploit statistical information gleaned from data on past problem

instances. Alternately, deterministic approaches use only known information

to solve the routing problem at specific decision instances. In this study,

neither the agent-based, nor the optimization-based approach has access to

stochastic or forecasted data. This design decision was largely driven by

the lack of data commonly found at drayage providers; without proper data,

these drayage companies have little capability to appropriately calibrate a

stochastic model. We therefore focus our literature review on deterministic

approaches.

The decision instances used in deterministic approaches may be designated

as the moment of a single job arrival or when a pre-set number of jobs arrive or

a specified amount of time has passed. In this way no unknown information

is assumed at each decision epoch. The method by which the problem is

solved at each decision epoch is the main differentiator between the methods
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described in the past ten years.

Regan et al. (1995, 1996), for example, propose a set of rule-based heuris-

tics for load acceptance and assignment decisions. These heuristics are some-

times termed incremental approaches as they incrementally change the prob-

lem at each decision instance without fully re-solving the problem. The use of

routing heuristics in an on-line setting stems from their history and success in

an offline context. Both Cordeau et al. (2002) and Laporte et al. (2000) pro-

vide comprehensive surveys on routing heuristics. Two primary branches of

classical heuristic approaches, as previously introduced in Chapter 2, Section

2.1, are the constructive methods and the improvement methods. From the

first group, a classical example is the insertion heuristic, a polynomial-time

heuristic without performance guarantees (Solomon, 1987). This algorithm is

widely used to create an initial solution that is further optimized by improve-

ment methods.

In the realm of improvement methods, Thompson and Psaraftis (1993)

introduce cyclic transfers of jobs among vehicles as one way to improve an

initial solution. In their method, a b-cyclic k-transfer shifts k jobs from each

vehicle to the next one in a circular permutation of b vehicles. This is a very

general framework that can express many different and complicated exchanges

of jobs between vehicles. As a result, the space of cyclic transfers is too big

to consider a full search. Subsequently, Breedam (1994) and Kindervater

and Savelsbergh (1997) introduce simpler moves such as: load reallocation

(moving loads from one vehicle to another), load exchange (exchanging loads

between vehicles), and crossover (mixing the routes of two vehicles).

In contrast to these heuristic approaches, Yang et al. (2004) demonstrate

the superiority of an exact mixed integer programming formulation of the

PDPTW, solved in a rolling horizon framework at each decision instance.

They compare their re-optimization approaches to three heuristic approaches

(a simple round robin assignment, an insertion heuristic, and a reordering

approach). This comparison reveals that the re-optimization approaches sys-

tematically outperform the heuristic approaches by about 10%. This superior

re-optimization approach, has its origins in the paper by Yang et al. (1999).
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Mahmassani et al. (2000) further this line of work by examining a hybrid

rule-based heuristic and optimization approach. They find an improvement

in performance occurs for this hybrid approach only when the frequency of

job arrivals is low and the number of trucks is not too large. Most recently,

Chen and Xu (2006) investigate a dynamic column generation technique as a

means to handle a set-partitioning-type formulation at each decision epoch.

They show, similar to Yang et al. (2004), that dynamic column generation on

average outperforms the insertion heuristic by about 10%.

While re-optimization or plan/re-plan approaches are appealing as they

tend to closely mirror manual operations (i.e. the situation where a dispatcher

plans and re-plans routes as new jobs arrive), there are also drawbacks. Powell

et al. (2000) highlight the myopic nature of these approaches. For example,

optimal solutions implemented early in the day may no longer be optimal

in light of additional information that arrives later in the day. Furthermore,

the term “re-optimization” may be misleading as the solution to the exact

mathematical programming formulation may only be feasible (rather than

optimal) at each decision instance. This phenomenon can be exacerbated

when the problem size is large as plan/re-plan approaches tend to suffer from

the burden of rapidly responding to new information, especially in cases where

an optimization-based algorithm is used.

In order to address these issues of large problem size, the idea of breaking

the problem into component parts is appealing. Ghiani et al. (2003) provide

a review of real-time vehicle routing strategies with a particular emphasis on

parallel computing strategies. Their review focuses on different control and

communication structures (e.g. master-slave, etc.) for efficiently searching the

solution space arising from a centralized problem formulation. While they

present a useful method for classifying parallel computing strategies for the

VRP, they overlook computing possibilities that begin with a decentralized

problem formulation. For example, it may be beneficial to reframe the vehicle

routing problem based on roles within the problem, i.e. jobs and vehicles.

Dividing the problem in this manner renders the solution approach into a

decentralized approach. The following section describes decentralized agent
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based approaches in the context of vehicle routing.

5.1.2 Agent-based Approaches for Vehicle Routing

Modeling a vehicle routing problem as a decentralized system is primarily

motivated by the decentralized nature of the environment in which these

problems occur. When a company needs to organize transportation for a set

of jobs, it has to deal with the customers the jobs came from, the drivers who

will execute the actual transportation, the legal and social environment of the

company, and last but not least the company’s need to make a profit. If one

does not want to abstract away from this setting then a decentralized model

considering all the players forms a natural metaphor.

Such a model is provided by multi-agent systems (MAS) (Wooldridge,

2002). Multi-agent systems consist of a group of autonomous decision mak-

ers (artificial agents) that are capable of interacting with each other, while

pursuing a goal. If the agents share a common goal, they can cooperate to

achieve it. When the goals are contradicting, the agents are competitive, they

may hide sensitive information from each other, and try to achieve their goals

individually. Applications of agent systems span from vehicle routing and

logistics in general (Dorer and Calisti, 2005), through business process man-

agement (Hutzschenreuter et al., 2008), procurement and contracting (Jakob

et al., 2008), aerospace applications (Scerri et al., 2008), energy manage-

ment (Das et al., 2008), to security applications (Rehak et al., 2008).

In vehicle routing, a simple agent model may contain job agents and vehi-

cle agents pursuing an assignment by minimizing some given objective. More

complex models may include agents for the company, the planners, or for cus-

tomers having more than one job. Interactions between the agents constitute

a major part of the solution mechanism.

In their frequently cited paper, Fischer et al. (1995) argue that such multi-

agent models fit the transportation domain particularly well. Their main

reasons are (similar to those mentioned above): (i) the domain is inherently

decentralized (trucks, customers, companies etc.); (ii) a decentralized MAS ar-

chitecture can cope with multiple dynamic events; (iii) commercial companies
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may be reluctant to provide proprietary data needed for global optimization

while agents can use local information; and (iv) inter-company cooperation

can be more easily facilitated by agents.

To illustrate their idea, the authors provide a detailed MAS architecture

for transportation problems that evolve over time thereby exhibiting job ar-

rival uncertainty. This architecture makes a distinction between a higher

and a lower architectural level. At the higher level, company agents negoti-

ate transportation requests to eliminate ill-fitting jobs. On the lower level,

truck agents (clustered per company) participate in simulated market places,

where they bid on offered transportation jobs. Truck agents use simple inser-

tion heuristics to calculate their costs and use those costs to bid in auctions.

Although the heuristics used by the truck agents to calculate bids are rather

crude, Fischer et al.’s research (1995) suggest that in dynamic problems (prob-

lems with high uncertainty), such methods survive better than sophisticated

optimization methods.

Their bi-level approach recognizes that one shortcoming of a fully decen-

tralized system is that agents only have access to local information. The

need to find a balance between the omniscience of a centralized model and

the agility of a decentralized model, was similarly recognized by Mes et al.

(2007). They also introduce a higher level of agents, but with a different role

than the high-level agents of Fischer et al. (1995). Mes et al.’s two high-level

agents (the planner and the customer agent) gather information from and

provide information to agents assigned beneath them. The role of the higher

level agents is to centralize information essential for the lower level agents to

make the right decisions.

Some researchers have gone even further in proposing centralization in

agent-based models. These researchers concentrate problem information in

some agents for the purpose of making better decentralized decisions. In one

of the few models that has been applied in a commercial company, Dorer and

Calisti (2005) cluster trucks geographically, using one agent per cluster. This

way, one agent plans for multiple trucks. They use insertion heuristics to

initially assign jobs to trucks, and then use cyclic transfers (Thompson and
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Psaraftis, 1993) to enhance the solution. In a similar but slightly different

approach, Leong and Liu (2006) introduce a planner agent that has com-

plete information about the other agents. In their method, planner agents

coordinate the improvement procedures performed by the job and vehicle

agents considering global objectives, such as the minimization of the number

of vehicles used, and the total traveled distance. The authors analyze the

performance of their model on a selection of Solomon benchmark sets, and

show that it performs competitively on those sets.

As noted previously, however, the move towards centralization can hinder

the ability of the agents to react quickly on local information. Given the un-

certain environment of our problem, we are interested in the competitiveness

of a system with fully decentralized agents. One example of a fully decentral-

ized agent approach in the transportation domain is that of Buerckert et al.

(2000). They propose a more detailed (holonic) agent model. In this model,

they distinguish between truck, driver, chassis, and container agents that have

to form groups (called holons) to serve jobs. Already formed holons use the

same techniques to allocate tasks as Fischer et al., but the higher agent level

is omitted, since they model only a single company case. The main focus of

their research is computer-human cooperative planning, which makes their

contribution interesting in spite of the fact that a thorough comparison of

their approach to other ways of dealing with this problem is missing.

In most of the approaches mentioned above, agents use simple heuristic

techniques to make decisions. In the related domain of production planning,

Persson et al. (2005) embed optimization in the agents to improve local deci-

sions. They show that optimizing agents outperform the heuristic agents, but

they also show that central optimization still outperforms the optimizing, yet

decentralized, agents. A similar result was demonstrated by Davidsson et al.

(2007) on a problem of resource allocation in which decisions about both pro-

duction and how much to send to each customer must be made simultaneously

in the inherently uncertain domain of food production.

While Persson et al. (2005) and Davidsson et al. (2007) concentrated on

making optimal decisions within agents, there is still a need to combine these
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individual solutions in an optimal way. For example, in the transport problem

context, when jobs are assigned to trucks sequentially, at every assignment

the truck with the cheapest insertion gets the job. Later, however, it might

turn out that it would have been cheaper to assign the same job, together with

newly arrived jobs, to another truck. From the truck perspective this means

that trucks that bid early and win assignments might not be able to bid later

on more beneficial (better fitting) jobs. This problem is called the eager bid-

der problem (Schillo et al., 2002) and several researchers propose alternative

techniques to deal with this problem. Kohout and Erol (1999) introduce an

enhancement process between pairs of agents. The process mimics the well-

known ’swapping’ or two-exchange improvement techniques (Cordeau et al.,

2001). Kohout and Erol implement this swapping process in a fully decen-

tralized way, and show that it yields significant improvement.

Perugini et al. (2003) extend Fischer et al.’s contract-net protocol to allow

trucks to place multiple possibly-conflicting bids for partial routes. These bids

are not binding. Trucks are requested to commit to them only when one of

the bids is accepted by a job agent. Since auctions are not necessarily cleared

before other auctions are started, agents have a chance to “change their mind”

if the situation changes. This extension helps to overcome the eager-bidder

problem and thereby produces better results.

Another possible way to tackle the same problem is to use leveled com-

mitment contracts, as introduced by Sandholm and Lesser (2001). Leveled

commitment contracts represent agreements between agents that can be with-

drawn. If a truck agent finds a new job that fits better, it can decommit an

already committed job and take the new one. Hoen and La Poutré (2003)

employ truck agents that bid for new jobs considering decommitting already

assigned ones. Note, while decommitment sounds very negative, it does not

necessarily imply that the job is rejected. In fact, the “decommitted” job may

be able to negotiate an even more profitable contract with another truck.

Thus, Hoen and La Poutré (2003) show that decommitment yields better

plans in a single-company cooperative case.

Returning to Fischer’s reasoning, however, the primary reason for using
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decentralized agent solutions is that they are usually expected to outper-

form central optimization methods in problem instances with high levels of

uncertainty. Researchers seemingly take this for granted and allocate their

research efforts to demonstrating the value of their decentralized algorithm

against other decentralized algorithms. Experiments studying the behavior of

agent based methods over varying levels of uncertainty in comparison to opti-

mization methods are generally absent from the literature. This is especially

true in the logistics and transportation domain where the lack of appropriate

comparisons between agent-based approaches and existing techniques appears

to indicate a belief on the part of agent researchers that agent-based systems

outperform traditional methods (Davidsson et al., 2005).

In this work, we dare to question this underlying assumption professed by

agent enthusiasts. If advanced swapping and decommitment techniques are

used, can fully decentralized agents really perform competitively with (or bet-

ter than) centralized optimization in highly uncertain settings? Can the time

gained in doing local operations compensate for the loss of not considering

crucial global information? In our opinion these questions have not been fully

answered. Our goal is to scrutinize these prevalent assumptions in the agent

literature by studying an agent-based system in comparison to an optimiza-

tion based approach for a real-world dynamic transportation problem. In the

following section we describe our experimental design employed to perform

this comparison.

5.2 Experimental Design

Through cooperation with a Dutch logistics service provider (LSP), we re-

ceived the data required to test our solution approaches. The operations of

the Dutch LSP were introduced in Chapter 1. Briefly, the LSP devotes ap-

proximately 40 trucks to the transport of approximately 65 containers per day

between port terminals and customer locations, in such a way that time win-

dows at both the customer and port terminals are obeyed. Given the number

and geographic range of jobs, each truck can serve approximately two, and
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maximally three, jobs per day. (Note, if the trucks were to serve only one job

per day, then there would be no need for a planning system.)

Our objective is to compare the performance of a traditional optimization

based approach to an agent based approach in determining a feasible set of

routes for one day of execution within this PDPTW. In order to examine the

advantages/disadvantages of these two methodologies, we used data from the

LSP to generate experimental datasets exhibiting two sources of uncertainty

(service time duration uncertainty and job arrival time uncertainty). The

performance of each solution is compared in terms of empty distance traveled,

the lost profit of rejected jobs, and the lateness of the vehicles in reaching

each job pick-up, delivery, and return location. This section describes the

two solution approaches, the datasets, and the sources of uncertainty.

5.2.1 Solution Approaches

The primary objective of the planning methods is to route a uniform fleet of

forty trucks on the Netherlands’ road network at lowest cost without violating

time windows. Costs consist of time traveling empty plus the penalty for

rejected jobs. Jobs may be rejected when they cannot be served within the

time restrictions. The penalty for rejecting a job equals the loaded time of

that job. The loaded time of a job is the time from the start of the pick-up

action to the end of the return action — including all loading, unloading,

and traveling time. This is an appropriate penalty for a rejected job as it

represents the profit lost in not serving the job. Admittedly, rejecting a job

may also yield a loss in customer good will or relations. Given the difficulty

in quantifying this loss, we however choose to use the loaded time as a low

estimate of the cost associated with job rejection. As we simulate only one

planning day, in each instance, rejected jobs are simply rejected, although in

practice they are reconsidered for service the next day. We now describe the

mechanisms by which each solution approach solves this operational problem.
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Agent-based Solution Approach

In building our agent system, our goal was to define a fully decentralized solu-

tion approach, in which no information regarding different agents or different

sub-problems is concentrated at a higher level. Additionally, we wanted to

equip our agents with state-of-the-art mechanisms to successfully solve the

routing problem.

Following the traditions of Fischer et al. (1995), we modeled every truck

as an agent. But, instead of defining company agents on a higher hierarchi-

cal level to sell jobs to truck agents on auctions, we modeled the containers

themselves as agents. Each container agent sells itself on an auction to the

truck agents. Truck agents use an extended insertion heuristic to bid on the

auctions, and a container-exchange heuristic to improve the current solution.

Container agents also actively try to improve the current solution by a re-

allocation heuristic.

Auctioning Containers Container agents organize auctions immediately

after the container is announced to the planning system. If containers are

revealed to the system at well-spaced intervals, then the auctions are fully

sequential. If, however, multiple containers are announced at about the same

time, those auctions are held in parallel. This parallelism is the result of our

decision to model every container as an agent. This way, auctions are held by

separate agents instead of a central company agent. Although this requires

extra coordination to handle parallel auctions, introducing a central entity to

hold sequential auctions would go against our design goal of having a totally

flat MAS architecture.

The container agents collect quotes for transportation via these auctions.

The bids truck agents send for auctions contain the cost they would incur

should they win the auction and transport the container. This includes the

loaded time of the container, plus the extra costs of driving to that container

empty, and driving to the next container also empty. A container agent only

accepts bids that are less than its reservation price. The reservation price is

the sum of the loaded time and the rejection penalty of the container (thus
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twice the loaded time). In this way, containers that have an extra cost, higher

than their rejection penalty, are rejected.

Container agents implement a single-shot second-price closed-bid

(a.k.a. Vickrey) auction. This auction type is popular in the literature be-

cause of its simplicity (Hoen and La Poutré, 2003). Not only is a Vickrey

Auction simple to implement, but it also has a structure in which the optimal

bidding strategy for each bidder is to bid their true value(Vickrey, 1961). We

use this mechanism because, by setting the price to the second-best bid, the

market position of the container is implicitly communicated to the winning

truck. This information is used by truck agents in making decisions, as ex-

plained later. Having the second-best bid as the price also ensures that the

truck agent realizes a profit. If the winner is the only truck agent bidding on

the auction, or the second-best bid is higher than the reservation price, the

container agent sets the price of the contract to the reservation price.

The winning truck agent can accept the contract only if its plan is un-

changed since the time of the bidding. If the plan has changed in the in-

terim, due to winning another container, for example, the truck agent must

re-calculate the transportation costs for this container considering the new

plan. If the new costs are less than or equal to the price in the contract, the

truck agent accepts the second container. Otherwise it has to reject it, since

transporting the container in this new situation costs more than the price it

would receive for the job. If the winner rejects the container, the container

agent will try to close a deal with the second, the third, etc. truck agents in

a similar manner.

When a container agent succeeds in making a contract with a truck agent,

it sends a message to the other containers to notify them about the changed

state of the contracted truck agent. This information is crucial for rejected

containers that can try to re-auction themselves in the hope that they will have

some options now that the situation has changed. Every container agent has

a latest possible auctioning time. After that time it is not possible to pick-up

and transport the container within the given time windows. Container agents

try to re-auction themselves only if this latest possible auction time has not
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yet passed. To avoid an avalanche of auctions from rejected container agents

every time a contract has been made, re-auctions take place at randomly

chosen intervals with an exponential distribution and a mean value of one-

tenth of the time remaining for the container to be successfully scheduled.

Insertion with Substitution When a truck agent bids on a container, its

bid includes the additional cost it would incur should it win the auction and

transport the container. To calculate this additional cost, a truck agent has

to compute the difference between the cost of executing its plan with the new

container included and excluded. In general, a truck agent needs to solve a

TSP-like problem in order to find the optimal order of the containers in its

plan. Similar to other agent based methods, our agent system uses a fast

heuristic, rather than a full optimization scheme. The fast heuristic our truck

agents employ has appeared in previous work (Máhr et al., 2008). For the

convenience of the reader, we describe our insertion and substitution heuristic

again here. Algorithm 5 summarizes the extended insertion algorithm.

In step i of our insertion and substitution heuristic, a truck agent computes

the cost of inserting container k before container i and the cost of substituting

container i by container k. The cost of inserting container k between container

i and j is calculated as the difference of the empty-travel times with and

without container k: inskij = dik + dkj − dij , where dxy is the time the truck

travels empty from the drop off location of container x to the pick-up location

of container y. Note, dxx represents the loaded distance of container x; that

is, the distance from the pick-up location x to the drop-off location of x.

The cost of substituting container i, which is between container h and j in

the plan, with container k is defined as: subski = inskhj + profitihj . The first

term, inserting container k between h and j is as defined above. The lost

profit of container i, profitihj , is computed as the price offered for container i

minus the loaded time and the insertion cost of container i. Thus, profitihj =

pricei − dii − insihj . The loaded time, dii, is subtracted because it is also

part of the bids trucks submit. The insertion cost element of the lost profit

is recalculated for every substitution decision, because the preceding or the
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subsequent container of i may have changed since it was included in the plan.

This algorithm is linear (considering the insertion of one new container into

the plan of a single truck), but the solution found can be arbitrarily far from

the optimal, which might only be found by fully reordering all containers.

In addition to calculating costs, our trucks also check time-window con-

straints, and do not accept any solution that violates time windows. The

bid that is finally submitted to the container agent is the sum of the lowest

insertion or substitution cost and the loaded time of the container.

The advantage of computing both insertion and substitution costs stems

from the fact that insertion alone is very sensitive to the order of job arrivals.

By allowing trucks to substitute earlier-committed containers, we reduce this

ordering-sensitivity problem. Furthermore, the substitution cost expression

we use supports the replacement of containers that had many similar com-

peting bids. The price of such a container, computed from the second-best

bid, is only a little bit higher than the associated costs. This means that the

profit is low, therefore it becomes a good candidate for replacement. At the

same time such a container can easily find another truck for a similar price,

since there was at least one truck that bid very close to the winner. Along the

same lines, the proposed calculation prevents the substitution of containers

that could have difficulties in finding another truck for a similar price.

If a truck wins an auction where its bid corresponds to an insertion posi-

tion, then it simply inserts the new container to the specified position. If the

bid corresponds to a substitution position, then the truck first releases the

container in that position and then inserts the new container to its place.

The released container starts a new auction just as it did following its

arrival time. This new auction may, of course, result in another substitution,

which invokes a new auction, and so on. The seemingly endless chain of

substitutions is limited by the rule that truck agents accept containers for

substitution only if they fit better (by at least ǫ) in their plan than the one

that is to be replaced. This ǫ can be chosen in such a way as to guarantee

a bound on the length of substitution chains. For example, if ǫ is chosen as

a fraction of the maximum possible improvement, the length of the resulting
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Algorithm 5 Insertion and substitution of jobs

1. Iterate over the plan and collect the insertion and substitution costs
corresponding to positions in the plan.

2. Sort the merged list of insertion and substitution costs and positions by
increasing order of costs.

3. Iterate over the list of costs and positions, and

(a) if the position indicates a substitution and the insertion cost of the
new container is not less than ǫ less than the insertion cost of the
container currently in the problem, then drop this alternative,

(b) if it is not possible to insert or substitute the new container at the
given position without violating its time windows, then drop this
alternative,

(c) if the time windows of the subsequent containers are violated by
the insertion or substitution of the new container, then drop this
alternative, or

(d) else return the position and the cost as the cheapest feasible inser-
tion or substitution position.
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substitution chain is bounded by a constant. With any choice of ǫ, the end

of a substitution chain is either an insertion, or rejection, which occurs if

all truck agents reject the container agent in the auction due to time-window

infeasibility, or if all bids are higher than the reservation price of the container.

In addition to the basic task of bid calculation, both the container and

truck agents are endowed with additional techniques to improve the initial

solution.

Random Reallocation Whenever the plan of a truck agent changes, in

principle any container agent has a chance that the truck agent with the new

plan can now transport it at a lower cost than their current truck agent.

Rejected container agents receive notification about such events. Therefore

they can try to close a deal with the truck agent with the changed state.

Since it is also useful for container agents that already are in possession of

a contract to try to find better options, they use a randomized algorithm to

search for those options.

Every container agent has a timer that fires in exponentially distributed

random intervals with a mean value of µr. Whenever the timer goes off and

the container agent has a contract, it tries to reallocate itself. Reallocations

are randomized this way to minimize the chance of two re-auctions happening

at the same time. In our simulations, with 65 container agents per day, we

selected µr to be one hour. This yields approximately one reallocation per

minute. To commence reallocations, the container agent, whose timer has

fired, sends a message to the truck agent, with which it has a contract, in

order to prevent the truck from transporting it. The truck agent puts the

container on hold, and reports the current insertion cost of the container to

the container agent. Then the container agent re-auctions itself among the

other truck agents to see if any of them offers a better price than its current

insertion cost. The container agent only accepts new offers that are better

than this limit. If the container agent finds a cheaper option, it breaks its

current contract and makes a new one with the new winning truck agent.

If not, it sends a message to the current contracted truck agent in order to
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remove the hold, allowing the truck to transport it. The steps of this algorithm

are summarized in Algorithm 6.

Algorithm 6 Reallocation

1. The container agent sends a message to its contracted truck agent to
prevent the truck to transport it.

2. If the transportation of the container has not started yet, the truck
agent puts the container on hold, and sends back its current insertion
cost.

3. The container agent re-auctions itself among the other truck agents and
collects offers that are better than its current insertion cost.

4. The container agent sorts the list of collected offers from best to worse,
and iterates through the list.

(a) Notify the truck agent that it won the auction.

(b) If the truck agent accepts the new contract, the container agent
notifies the previous truck agent that it leaves. The previous truck
agent removes the container from its plan, and the algorithm stops.

5. If there are no offers left (or the list was empty because no new offer
was better the current one) the container agent sends a message to the
currently contracted truck to remove the on-hold status.

By periodically attempting a reallocation, container agents check new pos-

sibilities that arose from changes in the plans of trucks since the last auction.

In our agent system, truck agents also actively try to improve the solution.

The next section discusses a decentralized algorithm that exchanges contain-

ers between pairs of trucks.

Exchange of Containers An efficient way to improve solution quality in

vehicle routing problems is to try to exchange jobs between trucks as noted

in Section 5.1. Our decentralized algorithm of container exchanges searches a

neighborhood of 2-cyclic k-exchanges in a randomized fashion. Like container

agents, truck agents also have a timer set to fire at exponentially random
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intervals with a mean value of µe. For similar reasons explained at the real-

location algorithm, µe is chosen to be one hour in our experiments. When a

truck agent’s timer goes off, it initiates a container-exchange procedure. It

first checks if there are any containers in its plan that are not executed yet.

These containers are available for exchange with another truck. The truck

agent puts the first exchangeable container on hold, to prevent it from being

executed. Then it copies the relevant part of the plan and sends it to another

truck. In principle, truck agents can apply sophisticated heuristics to choose

a partner truck. Geographical coordinates, personal preferences of trucks, or

business considerations of the company can be taken into account. However,

these heuristics rely on the availability of appropriate information regarding

all (or a subset of the) trucks. Maintaining such information implies the ag-

gregation or centralization of data. As one of our goals was to design and test

an agent system in which no information is concentrated, our truck agents do

not discriminate in choosing a partner truck; selection of a partner truck is

made randomly.

The truck that receives the “not-yet-executed” chunk of plan, produces

a similar sub-plan from its own plan. It also puts the first exchangeable

container on hold, and then performs a full search on the k-exchange neigh-

borhood of the two plan segments. First it tries to exchange single containers,

then chains of two, three, etc. containers in any combination. In the case of

our test instances, the plan segments are never longer than three containers.

This search returns the exchange combination of containers that yields the

highest saving for the combination of these two trucks. If a solution is found,

it is reported back to the initiator truck.

If the initiator receives a certain container-exchange combination from the

responder truck, it implements the exchange in its plan, and sends new con-

tracts to newly assigned container agents. The last step of the initiator is to

send the expired contracts of the exchanged containers to the responder truck.

To conclude the procedure, the responder also implements the container ex-

changes in its plan, and sends new contracts to the newly received container

agents. The container-exchange algorithm can thus be explained as a four-
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step negotiation between the initiator and the responder trucks. Algorithm 7

summarizes all the steps.

Algorithm 7 Container Exchange

The Initiator truck

1. puts the first exchangeable container on hold,

2. copies the segment of its plan that contains only exchangeable con-
tainers, and

3. sends this segment to a randomly chosen other truck.

The Responder truck

1. also puts its first exchangeable container on hold,

2. makes a copy of the exchangeable part of its plan,

3. performs a full search on the k-exchange neighborhood of the two
plan segments, and

4. sends back the best exchange combination to the initiator, if one
is found that leads to better plans.

The Initiator truck

1. implements the proposed exchange,

2. sends new contracts to the newly acquired container agents, and

3. sends back the expired contracts of the exchanged container agents
to the responder.

The Responder truck

1. implements the proposed exchanges in its plan, and

2. sends new contracts to the newly acquired container agents.

The above described container-exchange algorithm implements a random-

ized search on the 2-cyclic k-exchange neighborhood of the container trans-

portation problem. The search is performed in a decentralized fashion, and it

requires cooperative truck agents. Truck agents are required to reveal parts

of their plan to other truck agents. The responder agent searches for an ex-
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change that maximally decreases the costs of the two truck agents together.

Such considerations prohibit the direct application of this algorithm in a com-

petitive agent system.

We now consider an instance with N jobs and K trucks in order to an-

alyze the worst-case runtime performance of the agent-based heuristic. In

the insertion and substitution algorithms, computing the insertion and sub-

stitution costs is linear in the number of containers (N), ordering the costs

is O(N logN), and checking the time constraints is O(N2). The container

exchange algorithm consists of a full search of the exponential k-exchange

neighborhood, but we limit the size of the neighborhood by three (in our

experiments because this is the maximum number of containers a truck can

transport per day). Limiting the size of the neighborhood also limits the

runtime, thus the algorithm runs in quasi-linear time.

During the auctions, all K trucks submit a bid, the bids are computed in

O(N2) time, and clearing an auction is polynomial in the number of trucks

(O(K logK)). The run-time of this approach thus mainly depends on the

number of auctions. Auctions are held for three different reasons.

First, there are auctions that container agents organize when they arrive.

In the worst case, should they all have their first auction at the same time,

only K contracts can be made. Then, if the second round of N −K auctions

is synchronised again, it yields only K contracts as well. The sum of all such

auctions is N + (N − K) + (N − 2K) + . . . . The number of extra rounds

needed after the first one is m = ⌊N
K
⌋. The total sum is (m+1)N− m(m+1)

2 K,

which is in the order of (O(N
2

K
)).

Second, there are auctions caused by substitutions. The bound on the

length of substitution chains depends on the ǫ parameter of Algorithm 5. In

our experiments, we chose ǫ to be small enough to allow any substitution that

strictly improves the solution, but dependent on the maximum possible cost

of a container. Consequently, the number of auctions in a substitution chain

is limited by a constant C. The number of substitution chains is at most the

number of successful initial auctions, thus in the worst case there are CN

auctions caused by substitutions.
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Finally, auctions may be held during a reallocation attempt. These hap-

pen a constant number of times because such attempts are made periodically

regardless of the number of containers. The worst case is that each of these

auctions start a substitution chain, which generates auctions in the order of

O(N). To summarize, the number of auctions is polynomial (O(N
2

K
)) in the

number of containers. Considering the complexity of the truck bidding algo-

rithms and the number of auctions, we can conclude that the agent solution

runs in polynomial time on the order of (O(N
4

K
+N2 logK)). While this run-

time might look particularly bad for a heuristic, it should be noted that this

worst-case is highly dependent on the timing of the auctions. Thus, in general

instances, where the auctions are far more asynchronous, the agent runtime

is actually quite reasonable.

The insertion, substitution, random reallocation, and the exchange of con-

tainers all contribute to the quality of the routes produced for each truck. In

particular, these methods only change the plan if doing so leads to a strict

decrease of the costs. Each of these algorithms has been used previously in

multi-agent transportation planning systems, but to the best of our knowl-

edge, their combination is unique. From this we conclude that the approach

presented here is a very good representative of agent methods, and as such is a

good candidate for comparison to a centralized optimization-based approach.

Optimization-based Solution Approach

Our objective in selecting a comparative approach, to the decentralized agent

based approach, was to choose a proven approach that depends on the central-

ization of full system information. Furthermore, we wanted this centralized

approach to be recognized as state-of-the-art and perform better than other

centralized approaches. As such, we selected a solution approach based on a

mixed integer program (MIP) for a truck-load pick-up and delivery problem

with time windows originally put forth by Yang et al. 1999. Specifically, as

noted in Section 5.1, this model provides competitive results in comparison

to fast running heuristics (Yang et al., 2004).

The on-line optimization approach used in our experiments works by solv-
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ing the MIP, with CPLEX2, at 30-second intervals. We selected 30-second

intervals for two reasons. First, this interval provides a good tradeoff between

problem size and solver runtime. For example, if the interval is lengthened

then CPLEX gains more time to run, but simultaneously the problem size

increases as more jobs will arrive in the intervening time. Thus, 30-seconds

tends to ensure that only one or two jobs have arrived since the last feasible

solution was implemented. Our second reason for selecting 30-seconds is to

remain competitive with the event driven agent-based solution approach. As

the on-line optimization approach may only find a feasible (not necessarily

optimal) solution in each 30-second interval, this approach acts more like a

heuristic in the on-line context. We therefore believe that the centralized

on-line optimization approach makes a good comparison to the decentralized

agent approach. The complete description of our modifications to and use

of Yang et al.’s MIP in our on-line optimization scheme is the focus of this

section.

The Mixed Integer Program Before introducing the notation and math-

ematical formulation for this problem, we begin with a small example to il-

lustrate exactly how Yang et al.’s MIP works to exploit the structure of this

truckload pick-up and delivery problem with time windows. Imagine a sce-

nario with three trucks and four jobs. The model of Yang et al. is constructed

such that it will find a set of least cost cycles describing the order in which

each truck should serve the jobs. For example, as depicted in Figure 5.1, the

outcome may be a tour from truck 1 to job 1, then job 2, then truck 2, then

job 3, then back to truck 1. This would indicate that truck 1 serves job 1 and

2, while truck 2 serves job 3. The cycle including only truck 3 indicates that

truck 3 remains idle. Similarly, the cycle including only job 4 indicates that

job 4 is rejected.

Given this problem description, we designate the following notation for

the given information.

2CPLEX is a commercially available solver package, specifically we used ILOG CPLEX
11.0 as provided by ILOG Inc.(ILOG, Inc., 1992)
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Figure 5.1: Cycles in the MIP solution structure.

K the total number of vehicles available in the fleet.

N the total number of known demands.

dij as introduced in 5.2.1, the travel time required to go from demand

i’s return terminal to the pick-up terminal of demand j. Note, if

i = j then the travel time dii represents the loaded distance of job

i; this distance includes the time from pick-up at the originating

terminal to completion of service at the return terminal.

dk0i the travel time required to move from the location where truck k

started to the pick-up terminal of demand i.

dkiH the travel time from the return terminal of demand i to the home

terminal of vehicle k.

vk the time vehicle k becomes available.

τ−i earliest possible arrival at demand i’s pick-up terminal.

τ+i latest possible arrival at demand i’s pick-up terminal.

M a large number set to be 2 ·maxi,j{dij}.

Note that τ−i and τ+i are calculated to ensure that all subsequent time

windows (at the customer location and return terminal) are respected.

Given the problem of interest, we specify the following two variables.

xuv a binary variable indicating whether arc (u, v) is used in the final

routing; u, v = 1, . . . ,K +N .

δi a continuous variable designating the time of arrival at the pick-up

terminal of demand i.
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Using the notation described above, we formulate a MIP that explicitly

permits job rejections, based on the loaded distance of a job.

min
∑K

k=1

∑N
i=1 d

k
0ixk,K+i +

∑N
i=1

∑N
j=1 dijxK+i,K+j

+
∑N

i=1

∑K
k=1 d

k
iHxK+i,k

such that

K+N
∑

v=1

xuv = 1 ∀u = 1, . . . ,K +N (5.1)

K+N
∑

v=1

xvu = 1 ∀u = 1, . . . ,K +N (5.2)

δi −
K
∑

k=1

(dk0i + vk)xk,K+i ≥ 0 ∀i = 1, . . . , N (5.3)

δj − δi −MxK+i,K+j+

(dii + dij)xK+i,K+i

≥ dii + dij −M

∀i, j = 1, . . . , N (5.4)

τ−i ≤ δi ≤ τ+i ∀i = 1, . . . , N (5.5)

δi ∈ R
+ ∀i = 1, . . . , N (5.6)

xuv ∈ {0, 1} ∀u, v = 1, . . . ,K +N (5.7)

In words, the objective of this model is to minimize the total amount of

time spent traveling without a profit generating load. Specifically, we wish to

minimize the penalty incurred from rejecting jobs, time spent traveling empty

to pick up a container, between containers and when returning to the home

depot. This objective is subject to the following seven constraints:

(5.1) Each demand and vehicle node must have one and only one arc entering.

(5.2) Each demand and vehicle node must have one and only one arc leaving.

(5.3) If demand i is the first demand assigned to vehicle k, then the start

time of demand i (δi) must be later than the available time of vehicle k
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plus the time required to travel from the available location of vehicle k

to the pick up location of demand i.

(5.4) If demand i follows demand j then the start time of demand j must

be later than the start time of demand i plus the time required to serve

demand i plus the time required to travel between demand i and demand

j; if however, demand i is rejected, then the pick up time for job i is

unconstrained.

(5.5) The arrival time at the pick up terminal of demand i must be within

the specified time windows. (Note, this constraint prevents a truck from

arriving early or arriving late to a demand i.)

(5.6) δi is a positive real number.

(5.7) xuv is binary.

Mathematically this model specification serves to find the least-cost (in

terms of time) set of cycles that includes all nodes given in the set {1, . . . ,K,K+

1, . . . ,K +N}. We define xuv, (u, v = 1, . . . ,K +N) to indicate whether arc

(u, v) is selected in one of the cycles. These tours require interpretation in

terms of vehicle routing. This is done by noting that node k, (1 ≤ k ≤ K)

represents the vehicle k and node K + i, (1 ≤ i ≤ N) corresponds to demand

i. Thus, each tour that is formed may be seen as a sequential assignment of

demands to vehicles respecting time window constraints.

The model described above is used to provide the optimal (yet realistically

unattainable) lower bound for each day of data in the experiments concerning

job arrival uncertainty. We denote this approach as the static a priori case.

In this case, we obtain the route and schedule as if all the jobs are known and

we have hours to find the optimal solution. Thus, not only is this lower bound

realistically unattainable due to a relaxation on the amount of information

available, but also due to a relaxation on the amount of time available for

CPLEX to obtain the optimal solution.
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Optimization in an On-line Context In order to provide a fair com-

parison with the agent-based approach, the MIP is manipulated for use in

on-line operations. In our on-line approach, this MIP is invoked at 30 second

intervals. At each interval, the full and current state of the world is captured,

and then encoded in the MIP. This “snapshot” of the world includes infor-

mation on all jobs that are available and in need of scheduling, as well as the

calculated next available location and time of all trucks. The MIP is then

solved via a call to CPLEX, which is initialized with the previous feasible

solution. In this way, if nothing has changed since the last decision point, the

optimization can continue and the solution can improve.

The decision to use 30 second intervals was driven by the desire to be

comparable to the agent-based approach while still providing CPLEX enough

time to find a feasible solution for each snapshot problem. While this interval

may seem extremely short for finding a feasible solution, it is not as damaging

as one might think. First, in the baseline dataset, we see that even with all of

the jobs arriving in one clump at the start of the day, the on-line optimization

rejects no jobs. Second, in most datasets, the snapshot problem being solved

at each decision instance is significantly smaller than the full problem size.

The solution given by CPLEX, at the end of the 30-second interval, is

parsed and any jobs that are within two intervals (i.e. 60 seconds) of being

late (i.e. missing the time specified by δi in the latest plan), if travel is not

commenced in the next interval, are permanently assigned. Any jobs that

were designated for rejection in the solution are permanently rejected only if

they are within two intervals of violating a time window; otherwise they are

considered available for scheduling in a subsequent interval.

If CPLEX cannot find an initial feasible solution in any one interval then

the plan from the last feasible interval is invoked and parsed to fix assign-

ments and rejections as described. If CPLEX cannot find an initial feasible

solution for three consecutive intervals (90 seconds) then one job is selected

for rejection based on the following hierarchy:

1. a job that arrived since the last feasible plan was made.
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2. a job with a loaded distance less than or equal to 13,000-seconds. (Note,

13,000-seconds represents a job with a limited amount of loaded distance

in the context of our data.)

3. a job that is 30 minutes away from the end of its time window.

4. a random job.

The procedure continues solving problem instances and parsing solutions in

this fashion until the end of the working day at which point all jobs have been

served or rejected.

5.2.2 The Data

In this subsection, we describe how our data was inspired and fed by the op-

erations of the Dutch LSP. Recall that the LSP is transporting comparatively

high-value reefer containers. As such, the trucks always wait at customer sites

for the containers to be (un)loaded, and they never exchange containers. We

therefore handle each pick-up, delivery, and return sequence as one job. Note,

more than one job starts and ends at the same terminal locations. (Recall

the drayage structure described and analyzed in Chapter 3.) Moreover, some

customers have more than one job serviced in a day. Nevertheless, we handle

each job separately, as if they all belonged to different customers. Each job

is specified by two data vectors — one spatial and one temporal.

The spatial vector contains the location of the pick-up terminal, the cus-

tomer site, and the return terminal. This data was derived from a set of

operational data tables provided by the LSP. In all, we were given data from

January 2002 to October 2005 as well as from January 2006 through March

2006. The tables represented jobs that were planned to be served on a given

day. Unfortunately, the exact timing of the jobs each day was nearly absent

from the data. Further problems were presented by some of the addresses that

referred to postal boxes instead of real customer or terminal locations; there-

fore these had to be pruned from the data. Nevertheless, after a preliminary

review of the data, we could conclude that on average 65 jobs were served
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in a day, at customer and terminal locations associated with less than 25

distinct zipcodes. The rare timing information suggested that the jobs were

served uniformly throughout the day. Using these parameters, we extracted

a random sample of appropriately defined jobs from the original data-set in

order to generate a set of 33 days with 65 jobs per day using the locations in

the sample. Note, we consider each day as a single instance. Thus, there are

no jobs that persist in the planning system from on day (or instance) to the

next. Figure 5.2 depicts the geography of the Netherlands and the full set of

locations represented in our data.

The temporal vector is comparatively more complex — containing three

data types: data on time windows, data on service times, and data on job

arrival. The data on time windows includes the terminal operating time

windows and the customer time window. The data on service times includes

the service time required at the three job locations. Finally, the data on job

arrival includes one element — the time the job is announced in the planning

system. As mentioned earlier, such timing information was sparsely recorded

in the data tables. Therefore this part of the job descriptions was entirely

generated based on the experiences of the human planners.

To standardize the data for our experimental purposes, we specified time

windows at all locations as follows: terminals are open for pick up between

6am and 6pm, and for return between 6am to 5:59am on the next day. The

wide return time windows reflect the practice that trucks can bring containers

to the terminals on the following day, if they were too late on the same day.

These time windows are the same for all jobs. Delivery time windows are

set to two hour intervals, and their start times are distributed uniformly over

the working day between 8am and 5pm. Figure 5.3 displays the number of

open time windows for all jobs at any time point of the working day. Since

time windows open regularly and stay open for two hours, the number of

open time windows gradually builds up and reaches the top between 12am

and 2pm. After that, the number of open time windows, and therefore the

number of jobs requiring service before the end of the day decreases.

The service time data type refers to the time trucks need to complete
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Figure 5.2: All locations in the Netherlands. Black markers indicate customer
locations; grey markers indicate terminal locations; and the white marker
indicates the home terminal of the LSP
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Figure 5.3: Number of open time windows for all jobs throughout the working
day.

service at the different locations. When a truck arrives at a sea terminal or a

customer, it spends some time to pick up, to deliver, or to return a container.

The length of this time depends on various factors. Picking up a container for

example, can be delayed by customs clearing, paperwork, or problems with

putting the container on the truck. Emptying a container at the customer can

be quick if the customer is ready to unload the goods, but it can be delayed

if a warehouse is very busy. Similarly, when a container is returned, technical

issues may delay the trucks. In discussions with the LSP, it seems that the

human planners, by experience, allocate one hour for picking up, one hour for

delivering, and half an hour for returning a container. As such, the baseline

dataset (referred to as R0) sets all service time values to these times for all

jobs.

The job arrival data type refers to the time a container is made known

to the planning system. Before this time, the planning methods do not know

about the job, after this time, the locations and the time windows are revealed.

In the baseline dataset all job arrivals occur at the start of the day, 6am.

In all instances that we generated, we added a homogeneous fleet of 40

trucks starting at a base location close to Rotterdam. Although the number

of trucks used by human planners varies each day, we chose to use 40 trucks,

because this proved to be enough to solve each problem a priori, in the baseline

dataset. Using more trucks would not yield different results. Using fewer

trucks would yield a higher rejection rate, with possible differences in the

kind of jobs rejected by the two methods.
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Within the baseline dataset, each job requires, on average, approximately

4.2 hours of loaded distance. When the routing is optimal (in the a priori

baseline case in which all jobs are known at the start of the day and all

service times equal their expected values) the average empty time per job is

approximately 25 minutes (or 27 hours total per day).

5.2.3 Uncertainty Scenarios

The objective of this work is to determine how the two solution approaches

perform on the given pick-up and delivery problem with time windows under

different types of uncertainty. The three main sources of uncertainty encoun-

tered by the drayage company are: service time uncertainty, travel time un-

certainty, and job-arrival time uncertainty. The complexity of pursuing travel

time uncertainty in a correct way, made us decide to use a deterministic esti-

mate of the travel time, and focus only on uncertainty regarding service-time

and job arrivals. Note, however, that when periodic changes in the travel time

are included in the simulations and taken into account by both approaches, it

should not influence the results. The main difficulty in simulating with uncer-

tain travel times is the problem of identifying which trucks, traveling which

routes, are subject to the variation. Nevertheless, up to a certain extent, such

travel-time uncertainty is not that different from our model of service-time

uncertainty in the case where service times are dependent upon each other.

Scenarios with Service-Time Uncertainty

In reality service times vary, forcing plans to be updated in real-time (or more

generally, after every pick up, delivery, or return action). To simulate this

source of uncertainty, we define different service times for every pick-up, de-

livery, or return action drawn from a uniform random distribution. This exact

information is, however, hidden from the planning methods, which consider

the mean service times as derived from human experience, and encounter the

variable service times only during execution. Service time uncertainty may be

viewed from two perspectives. The first perspective is that incidents affecting
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Table 5.1: Summary of variation and corresponding bounds on service times
for service time uncertainty scenarios.

Experiment Bound on Pick-up
and Delivery Ser-
vice Times

Bound on Return
Service Times

10 minutes [50min, 70min] [20min, 40min]

20 minutes [40min, 80min] [15min, 50min]

30 minutes [30min, 90min] [15min, 60min]

4 hours [30min, 5hours] [15min, 4.5hours]

service times are random and occur in a uniformly distributed way across the

day and across terminal and customer locations (independent). The second

perspective comes from recognizing that service time disruption events are

most likely clustered in both time and location (dependent).

In scenarios with independent service times, we generated durations for

all actions as random variables drawn independently from a uniform distri-

bution. The boundaries of the uniform distributions for each scenario were

defined with the intention to generate four different scenarios with service-

time variations of 10, 20, 30 minutes, and 4 hours. The 10, 20, and 30 minutes

are common delays according to the LSP; 4 hours is included to view any ef-

fect in exaggeration. Table 5.1 summarizes the bounds on the service times

for each service action type as well as the nominal values used to denote the

scenarios. Note that the lower bound of the return actions was not allowed

to fall below 15 minutes. This was based on the assumption that returning

a container can never be quicker than 15 minutes. Similarly, in the most ex-

treme case, the lower bounds on pick up and delivery actions were minimized

at 30 minutes. Furthermore, it is important to note that regardless of the

bounds, the planning systems always planned using the mean values derived

from the experience of the human planners at the LSP (i.e. one hour for pick

up, one hour for delivery, and a half hour for return).

In addition to generating service times for all actions independently, we

also considered scenarios where service times at the same locations are always

the same. To achieve this, we generated service times for every location in an
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instance independently according to a uniform distribution. Then, we always

assigned the same service times to actions happening at the same locations.

The scenarios were generated according to the same variations as in the in-

dependent case (summarized in Table 5.1). This resulted in four dependent

service-time variations scenarios: Sd600, Sd1200, Sd1800, and Sd14400.

The motivation for the scenarios with dependent service times stems from

practice. For example, if the cause of a delay at a sea terminal is a faulty crane

then it will influence all trucks visiting that terminal. Note, such dependent

delays have an effect similar to traffic jams, where trucks traveling toward

the same location (and using the same roads) suffer from the same traffic

conditions.

Considering this type of uncertainty in the context of the solution ap-

proaches, we note that when a truck agent experiences a change in its plan

due to the actual service times, it tries to adjust the plan to the new situation.

If simply shifting the remaining containers in time solves the problem, then

that is done. If any subsequent containers become infeasible due to time-

window violations, the truck agent removes the infeasible containers from its

plan. The removed containers experience a removal similar to a substitution,

and they start new auctions to find another truck agent. In this way, service-

time variation is handled and the agents continue their improvement efforts

as before.

As a comparison, the on-line approach has a more basic way of handling

service-time variation. Whenever an actual service time is revealed, the plan-

ner adjusts the timings in the plan of the truck in question. Jobs that are

already permanently assigned in a plan are not put back into the pool of

unplanned jobs — even if they will now be late. In this way job rejections

are minimized at the expense of being late. This is distinctly different than

the a priori optimal which, with access to the service time data and in ac-

cordance with the constraints, will instead reject the jobs that will be late.

As a result, a comparison of the on-line and a priori optimal solutions, in

the case of service time uncertainty, would be inappropriate or unfair. Given

these differences we only compare the agent-based and on-line optimization
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solution approaches for the service time uncertainty experiments ignoring the

a priori lower bound.

Considering, the meaning of these two methods of handling service time

uncertainty in the real-world, we are immediately confronted with policies

regarding hours-of-service. Hours-of-service laws specify the number of con-

secutive hours that any one truck driver can work. Regarding such policies,

the agents behave in a way that would avoid violating these laws. However,

after a point (i.e. in the most uncertain case, 4hours) each truck will serve

only one job per day. This, in turn, renders the need for planning obsolete.

The on-line optimization, on the other hand, supports the need for planning,

but in the extremes cases will lead to a violation of hours-of-service. Admit-

tedly, we can counter this violation by noting that it is the truck and not

necessarily the driver that is in service.

Scenarios with Arrival-Time Uncertainty

In addition to service time uncertainty, human dispatchers are often faced with

a great deal of uncertainty regarding the time when a container may enter

the planning system. Although the load may be known to the transportation

company beforehand (e.g. from ship arrival data), the exact moment that the

container will actually be offloaded is often unknown. Some containers are

handled on a previous day, or during the night, while others may become

available only in the afternoon.

In every problem instance, we defined a job-arrival time for each container.

The earliest job arrival was at 6am; containers with such an arrival time we

call static jobs. We call them static because they are actually known to

the planning systems when planning starts for the day. Containers with an

arrival time later than 6am we call dynamic jobs, referring to the fact that the

planning systems need to incorporate them into the plans during execution.

When a container is randomly selected to be dynamic in a certain problem

instance, we set its arrival time to exactly two hours before the start of its

customer time window (i.e. four hours before the end of the customer location

time window, leaving slightly less than two hours on average before the latest
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departure time from the pick-up location). This choice was made to ensure

that the planning methods were confronted with time pressure. On average,

the distance to the time window cannot be shorter than two hours, because

it would render the instances infeasible. It could be longer, but then the

resulting instances would be easier to solve, since there would be ample time

for planning.

We generated five different scenarios with varying levels of job-arrival un-

certainty. The varying levels of uncertainty were expressed in the percentage

of dynamic jobs present in the instances. The baseline dataset represents the

zero percent scenario (R0), where all jobs are known at the start of the work-

ing day, 6am. In the 25% scenario (R25), one quarter of the jobs (selected

randomly from the 65 containers) arrive two hours before their customer time

window, and the rest are static. In the 50% scenario (R50) half of the jobs are

static and half of them are dynamic. In the 75% scenario (R75), one quarter

of the jobs are static. Finally, in the 100% cases (R100) all containers arrive

in a dynamic fashion.

The agents implicitly handle job-arrival uncertainty; they do not start

their first auction before a job’s designated arrival time. In the on-line opti-

mization approach new arrivals are taken into account in the next epoch. For

the job arrival uncertainty scenarios, we compare all three solution approaches

(a priori optimal, on-line optimization, and agent-based).

Scenarios with Arrival-Time and Service-Time Uncertainty

Having new jobs arriving during the day, and experiencing variations in service

times are both quite common in practice. In instances with service-time

uncertainty (denoted S∗ and Sd∗), all containers are static (they all arrive at

the beginning of the day). In those instances the only source of uncertainty

is service-time variations. Similarly, in instances with dynamic job arrivals

(in R∗ instances), all service times experienced during execution correspond

to the average service times. To study the combined effect of both sources

of uncertainty, we defined scenarios where dynamic job arrivals and variable

service times are both present.
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Table 5.2: Scenarios with different sources of uncertainty
Scenario Title Scenario Description

S600, S1200, S1800, S14400 Scenarios with 10, 20, 30 minutes,
and 4 hours independent service
time variations.

Sd600, Sd1200, Sd1800, Sd14400 Scenarios with 10, 20, 30 minutes,
and 4 hours dependent service time
variations.

R0, R25, R50, R75, R100 Scenarios with zero, 25%, 50%, 75%,
and 100% dynamic jobs.

R50S600, R50S1200, R50S1800,
R50S14400

Scenarios with 50% dynamic jobs,
and 10, 20, 30 minutes, and 4 hours
independent service time variations.

In conversations with the planners at the LSP, it was revealed that typ-

ically 50% of the containers served in one day are dynamic. Therefore, we

based our combined scenarios on the R50 instances in which 50% of the con-

tainers are dynamic.

We generated four variations of the R50 instances with 10, 20, 30 min-

utes and 4 hour service time variations. The resulting scenarios are denoted

as R50S600, R50S1200, R50S1800, and R50S14400 respectively. Consequently in

these scenarios, in addition to 50% of the containers being dynamic, durations

of all service actions are varied independently according to the same uniform

distributions as the independent service-time variation case explained in Sec-

tion 5.2.3. Table 5.2 summarizes all the scenarios and notation as used in this

chapter.

5.3 Results

The basis on which both methods are compared across all datasets is total

routing cost. Specifically, total routing cost, as defined here, is the sum of the

amount of time spent traveling empty, the penalty affiliated with rejecting

loads, and the amount of time incurred from delivering jobs outside their

appointed time windows. Note, in the design of both systems only time spent
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traveling empty and job rejection penalties are considered explicitly. Late

penalties are a by-product of service time variability in an on-line setting. To

demonstrate the effect of this design consideration, the results are presented

in two formats. The tables presented in the following subsections include the

mean and standard errors of the total routing costs, while the graphs illustrate

the split of these mean total costs across their three component costs.

5.3.1 Service Time Uncertainty Results

The results highlighted here illustrate the capabilities of each system–agents

and on-line optimization - to handle independent and dependent service time

disruptions. Recall, we do not include the a priori optimal solution in this

set of results as it would be unfair to compare a system that can never yield

a solution permitting time window violations with solutions that allow such

violations.

Figure 5.4 shows, by means of a bar chart, the mean routing costs of the

agent and on-line optimization solution approaches for the case of independent

service time variability. Of particular interest is the fact that the empty time

(hours) attributable to both systems does not vary significantly across the five

scenarios; for the on-line optimization the empty time remains consistently

at 27.9 hours whereas for the agents it ranges slightly from 32 to 36 hours.

The primary difference, both across scenarios and between systems, can be

seen in terms of the mean over the total amount of time late for the jobs’

time windows. For the on-line optimization approach, the amount of lateness

increases sharply across the five scenarios — starting at zero ranging through

3.5, 8.25, 11.7 and ending at 203.79 hours. The agents, however, have a

comparatively small amount of lateness across the five scenarios — starting

at zero ranging through .02, .05, .14, and ending at 47.75 hours in the most

extreme scenario. The penalty affiliated with job rejection is, on the other

hand, relatively small for both systems, until the most extreme case at which

point the job rejection penalty of the agents (126.02 hrs) far exceeds that

of the on-line optimization (1.62 hrs). We should note here that all of the

jobs rejected (27 in total) in the on-line optimization were rejected due to the
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inability of the system to find a feasible solution within 90 seconds. While

this might appear to be a major shortcoming of the on-line optimization, this

represents only .0025% of all jobs examined across all S∗ instances.

Figure 5.5 shows the mean routing costs of the agent and on-line optimiza-

tion solution approaches for the case of dependent service time variability.

Similar to the independent service time scenarios, the empty time (hours) at-

tributable to both systems does not vary significantly across the five scenarios.

In fact the values for both solution approaches in the dependent scenarios are

also nearly identical to those obtained in the independent scenarios; for the

on-line optimization the empty time remains consistently at 28 hours whereas

for the agents it ranges slightly from 32 to 36 hours. Again, the primary dif-

ference, both across scenarios and between systems, can be seen in terms of

the mean over the total amount of time late for the jobs’ time windows. For

the on-line optimization approach the amount of lateness increases sharply

across the five scenarios — starting at zero ranging through 8.72, 15.25, 27.02

and ending at 203.53 hours. The agents, however, have a comparatively small

amount of lateness across the five scenarios — starting at zero ranging through

.08, .32, .79, and ending at 49.05 in the most extreme scenario. The penalty

affiliated with job rejection is, on the other hand, relatively small for both

systems until the most extreme case at which point the job rejection penalty

of the agents (129.52 hrs) far exceeds that of the on-line optimization (1.36

hrs). Again, we note that all of the jobs rejected (24 in total) in the on-line

optimization were rejected due to the inability of the system to find a feasible

solution within 90seconds; this represents only .0022% of all jobs examined

across all Sd∗ instances.

Table 5.3 summarizes the mean plus/minus the standard error for the total

routing costs averaged over the 33 days of data for both the independent and

dependent service time uncertainty cases. Also displayed in the table are

the results of a paired t-test comparing the mean total cost of the on-line

optimization and the agent-based method for each dataset.

These results indicate that the agent approach can deal slightly better

with uncertainty regarding the service times than the on-line optimization



5.3. Results 159

0
.0

0

5
0

.0
0

1
0

0
.0

0

1
5

0
.0

0

2
0

0
.0

0

2
5

0
.0

0

Online Opt

Agents

Online Opt

Agents

Online Opt

Agents

Online Opt

Agents

Online Opt

Agents

R
0

S
d

6
0

0
S

d
1

2
0

0
S

d
1

8
0

0
S

d
1

4
4

0
0

Time (hours)

E
m

p
ty

R
e

je
c

t
L

a
te

F
ig
u
re

5.
5:

M
ea
n
ov
er

3
3
d
ay
s
of

th
e
ro
u
ti
n
g
co
st

co
m
p
on

en
ts

(e
m
p
ty

ti
m
e,

re
je
ct
io
n
p
en
al
ty
,
la
te

ti
m
e)

fo
r
th
e

ag
en
t
an

d
on

-l
in
e
op

ti
m
iz
at
io
n
so
lu
ti
on

a
p
p
ro
ac
h
es

ac
ro
ss

fi
v
e
d
ep

en
d
en
t
se
rv
ic
e
ti
m
e
u
n
ce
rt
ai
n
ty

sc
en
a
ri
o
s.



160 Chapter 5. Centralized versus Decentralized Control in Drayage

Table 5.3: mean ± std. error of total routing costs (lateness plus rejected
penalties plus time spent empty) in hours for all service time uncertainty
experiments; n = 33.

Dataset
On-line Opti-
mization

Agents Paired t-test: Difference in
means equal to 0?

S600 31.95 ± .68 31.62 ± .33 Fail to Reject, p = .60

S1200 37.05 ± .86 32.44 ± .29 Reject, p < .0001

S1800 40.17 ± 1.00 32.09 ± .36 Reject, p < .0001

S14400 233.36 ± 3.19 202.51 ± 5.17 Reject, p < .0001

Sd600 37.33 ± .94 32.33 ± .38 Reject, p < .0001

Sd1200 44.06 ± 1.81 32.79 ± .39 Reject, p < .0001

Sd1800 55.43 ± 2.65 33.77 ± .39 Reject, p < .0001

Sd14400 232.89 ± 4.08 217.20 ± 9.56 Fail to Reject, p = .05

approach. (This is, of course, at the expense of significant job rejection.) This

result is completely caused by the many late jobs in the on-line optimization

approach. The tardiness manifested in the on-line optimization results comes

from the assignment process of the approach when used in a rolling-horizon

framework. The MIP is calibrated to specify an arrival time at each job in

each snapshot problem. If a truck is close to violating the time specified in

the previous solution, then the job is permanently fixed and the truck begins

execution. In this way many jobs are assigned that later encounter delay

during execution as a result of the variable service times. This also explains

the many late jobs in the extreme case of 4 hours, where the agent approach

incurs a high penalty for rejection, because the agent approach can find no

way to squeeze that many jobs into an already delayed schedule.

Furthermore, it is clear that the amount of late time incurred by the on-

line optimization solution in the dependent case is higher than that in the

independent case. The difference in costs for the agents is however not so

different between the independent and dependent service time uncertainty

scenarios. In fact, a paired t-test indicates that in all, but the S14400 and

Sd14400 scenarios, there is a statistically significant difference (p < .0001) in

the means of the independent and dependent service time scenarios for the
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on-line optimization approach. On the other hand, the agents do not exhibit

a statistically significant difference in means (at p > .01) for all but the S1800

and Sd1800 cases.

These results indicate that the on-line optimization tends to suffer in terms

of late time when the service time uncertainty has underlying dependencies.

This is most likely because jobs that are close together location-wise often

end up in the same route. When jobs are on the same route, if one job

demonstrates delay in execution, subsequent jobs are immediately assigned

as they appear more urgent in the system. From this initial solution many

job assignments are then fixed and service is undertaken; only to suffer from

even more lateness occurring in execution. From this argumentation, we may

expect better performance of the on-line optimization when service times are

static. We now turn our attention to the results of the job arrival uncertainty

experiments to see whether we can support this experimentally.

5.3.2 Job Arrival Uncertainty Results

Job arrival uncertainty is the most common type of uncertainty classically

studied in the dynamic vehicle routing literature. As the instances used to

test job arrival uncertainty do not contain jobs that would cause lateness,

regardless of their arrival time, it is valid in these instances to compare all

three routing systems–the a priori optimal (a realistically unattainable lower

bound), the on-line optimization approach, and the agent approach.

Figure 5.6 shows the mean routing costs of the a priori optimal, on-

line optimization, and agent solution approaches for the case of job arrival

uncertainty. Of note is the fact that the empty time (hours) attributable

to each system does not vary significantly across the five scenarios, but does

show a marked difference when studied between systems. The a priori optimal

remains the lowest for all three systems with a value between 27 and 28 hours

for all scenarios. The slight increase is due to the tightening of the time

constraints stemming from the later availability of some jobs. It should also

be noted that in scenarios R0, R25, R50, and R75, CPLEX was unable to find

a confirmed optimal solution to the a priori problem in three instances before
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running out of memory. In scenario R100 there were four instances for which

the optimal could not be found. In these cases the relaxed lower bound was

taken as the objective value. On average, the lowest bound was 1.05% from

the best known integer solution at the time the model quit running. Thus,

the data presented here represents a lowest bound on the routing costs.

The on-line optimization, on the other hand, performs consistently in the

range between the a priori optimal and the agent system but does experience

a steady increase across scenarios — ranging from 28.16 hours when all jobs

are known at time zero to 32.88 hours in the case when all jobs are revealed

over time. The agents system consistently yields a higher (and in four cases

the highest) level of empty time across all five scenarios; ranging from 31.28

hours in the case with the least uncertainty to 32.82 in the case with the most

uncertainty. With the exception of the low uncertainty case, both the on-line

optimization and the agent system incur a penalty for rejecting jobs. The

rejection penalty grows at an increasing rate for the agent system (ranging

from 0.13 to 2.25) while it appears to fluctuate in a smaller range for the

on-line optimization approach (ranging from 1.05 to 1.94). Interestingly, in

the on-line optimization only one job was rejected due to the inability of the

system to find a feasible solution within 90seconds.

Overall we can say that the on-line optimization approach consistently

outperforms the agent approach. However, the more jobs are uncertain, the

smaller the difference becomes — to the point that both systems can be

considered competitive. This is supported statistically, with a paired t-test

indicating that the difference in the means is not significant in the R100 case

at p = .61. A summary of the means plus/minus standard errors, along with

the results of the paired t-tests, can be seen in Table 5.4.

Now that we have examined both service time and job arrival uncertainty

in isolation, we turn our attention to the scenarios that combine both types

of uncertainty.
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Table 5.4: mean ± std. error of total routing costs (lateness plus rejected
penalties plus time spent empty) in hours for all job arrival uncertainty ex-
periments; n = 33.
Dataset A Priori

Optimal
On-line
Optimiza-
tion

Agents Paired t-test: Dif-
ference in on-line
opt and agent means
equal to 0?

R0 27.32 ± .35 28.16 ± .34 31.41 ± .38 Reject, p < .0001

R25 27.41 ± .36 31.96 ± .46 32.72 ± .37 Fail to Reject, p = .08

R50 27.53 ± .36 33.64 ± .62 34.58 ± .47 Fail to Reject, p = .13

R75 27.66 ± .37 34.07 ± .71 35.64 ± .69 Reject, p = .01

R100 27.78 ± .37 34.82 ± .73 35.07 ± .71 Fail to Reject, p = .61

5.3.3 Job and Service Time Uncertainty Results

This final set of experiments focuses on the effect of combining job arrival

uncertainty at the 50% level with independently distributed service time un-

certainty. For this scenario, we are again forced to leave out the results for

the a priori optimal, because only the on-line optimization and the agents

can incur lateness.

Figure 5.7 shows the mean routing costs of the agent and on-line optimiza-

tion solution approaches for the case of independent service time variability

combined with a 50% job arrival uncertainty level. As in the service time un-

certainty cases, the empty time remains relatively constant across all cases for

both solution approaches. Again, as in the service time uncertainty scenarios,

the primary difference, both across scenarios and between systems, can be

seen in terms of the mean over the total amount of time late for the jobs’

time windows. For the on-line optimization approach the amount of lateness

increases sharply across the five scenarios–starting at 0 ranging through 4.39,

9.07, 13.72 and ending at 144.98 hours. The agents, however, have a compar-

atively small amount of lateness across the five scenarios–starting at 0 ranging

through .12, .42, 1.07, and ending at 57.51 in the most extreme scenario. The

penalty affiliated with job rejection is, on the other hand, relatively small for

both systems until the most extreme case at which point the job rejection
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Table 5.5: mean ± std. error of total routing costs (lateness plus rejected
penalties plus time spent empty) in hours for all service time combined with
job arrival uncertainty experiments; n = 33.
Dataset On-line Optimiza-

tion
Agents Paired t-test: Dif-

ference in means
equal to 0?

R50S600 37.71 ± .75 34.36 ± .44 Reject, p < .0001

R50S1200 42.79 ± 1.01 35.06 ± .44 Reject, p < .0001

R50S1800 47.71 ± 1.21 36.04 ± .47 Reject, p < .0001

R50S14400 186.17 ± 2.94 222.25 ± 4.41 Reject, p < .0001

penalty of the agents (132.64 hrs) far exceeds that of the on-line optimization

(5.94 hrs). We should note here that only nine of the jobs rejected, in all

R50S∗ instances of the on-line optimization, were rejected due to the inability

of the system to find a feasible solution within 90 seconds.

Overall we can see that agents do better here, and perform similarly to

the setting without job arrival uncertainty. However, for the extreme case of

a four hour service time uncertainty, the on-line optimization approach has

much lower costs. This difference between the agents and on-line optimization

is not, however, statistically significant (most likely due to the difference in

variance exhibited by both datasets). The means plus/minus standard error

as well as the paired t-test results can be seen in Table 5.5.

What is interesting, however, is that the difference in means between the

on-line optimization S14400 and R50S14400 instances is statistically significant

(p < 0.001). The moderating effect that job arrival uncertainty seems to

have on service time uncertainty is most likely due to the fact that when jobs

arrive over time, each problem instance is smaller and can therefore solve

to optimality within the 30 second horizon allotted to it. Furthermore, the

on-line optimization is less likely to fix long routes early as in the case with

only service time uncertainty, since it does not have access to information

regarding co-located jobs. Thus, each truck may only be assigned one (or

even zero) jobs in the early iterations of the optimization, this helps to keep

the trucks from permanently being assigned longer routes of co-located jobs.
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5.4 Discussion

We now return to the fundamental question in this research — can agents

perform as well as on-line optimization? From the results presented here,

we are safe to say: yes, but that is not the end of the story. Not only do

the agents perform competitively in comparison to the on-line optimization

approach on the spatially realistic drayage case, but they also demonstrate a

certain number of strengths in handling uncertainty.

These strengths are most obvious in the experiments focused on service

time uncertainty. In both independent (S∗) and dependent (Sd∗) cases the

agents consistently yield lower routing costs when the variation in service

times is greater than 10 minutes. We attribute this advantage to the limi-

tations of the heuristics agents use to compute a solution. These heuristics

provide sub-optimal results when faced with a static problem. In a series

of problems however, being suboptimal in the beginning means having more

trucks on the move, yielding more options to accommodate changes.

There are, on the other hand, settings in which the on-line optimization

approach gives significantly better results. In particular, in settings where job

arrival uncertainty is a dominant feature. Admittedly, this is not surprising,

as job arrival uncertainty is the type of uncertainty most commonly studied in

the literature and the type of uncertainty the on-line optimization approach

was truly calibrated for.

Given these findings, one might ask the question: “how much are these

differences attributable to the centralized versus decentralized nature of the

systems as opposed to the optimization versus heuristic characteristics of the

approaches?” We begin to answer this question by noting that the compar-

ison between the two approaches is a comparison of heuristics. While the

on-line optimization has the opportunity to find an optimal solution, it more

often finds only a good feasible solution within each 30-second interval. As

such, neither system can claim to produce an optimal solution. Neverthe-

less, we cannot, so easily, disentangle the centralization/decentralization and

heuristic/optimization facets of each approach. The near optimal solutions
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put forth by the on-line optimization are highly dependent on the centraliza-

tion of all problem data; the agility exhibited by the decentralized agents is

dependent on fast running heuristics.

As the on-line optimization operates by batching all system information

at 30-second intervals, it is also forced to batch routing decisions in the same

intervals. This process of centralizing information, and using all this informa-

tion in making job assignment as well as rejection decisions yields assignments

that may later turn out to be late, because service times may vary. On the

other hand, when service times are static, this approach yields assignments

that very effectively balance empty distance against job rejection.

In contrast, the agents, simulated in an individualized manner, are not

dependent on batched decisions made every 30-seconds. They can react at

any time, but they have a limited view. The individualized outlook implies

that the truck agents do not recognize the cost of a rejected container. The

container agents, in turn, are the victims of the trucks’ inefficiency (or service

time variability). This yields a high level of rejected jobs, but a minimal level

of lateness when service time uncertainty is high. However, when job arrival

uncertainty is the only source of uncertainty, the agents lack the ability to

globally weigh routing costs against rejection penalties.

The advantage of a global perspective, regarding the ability to balance

empty distance against rejection costs, is supported by our results. Paired

t-tests, comparing only the combined costs of empty distance and rejection

penalties (leaving out lateness), reveal a significant difference in these mean

costs for all service time uncertainty scenarios; and for all, but the R100,

job arrival uncertainty scenarios. Alternatively, the combined service time

and job arrival uncertainty scenarios show a significant difference only in

the most uncertain case (R50S14400). These results lead us to the following

conclusion, when the on-line optimization approach performed better, it was

by capitalizing on the optimal (or near optimal) balance between routing and

rejection costs. In the cases where the agents performed better, their flexibility

provided by their distributed nature was the competitive advantage.

Aside from the observable and quantifiable results presented in this com-
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parative study, we would be remiss if we did not highlight a few qualitative

differences between agent-based and on-line optimization approaches for vehi-

cle routing. Agents permit modeling a complex system with a high likelihood

of achieving cognitive fit (Krauth, 2008). Cognitive fit refers to how closely the

theoretical representation of the problem being solved is correlated with the

actual problem being solved. This feature of agent-based systems can make

them especially appealing to the lay-person. Thus, when we consider the real-

world environment of a drayage company, it is easy to imagine a dispatcher

embracing a solution approach that directly maps onto their existing opera-

tions. Additionally, in settings where more than one company (or business

unit within a single company) must compete for limited resources or when

the direct sharing of sensitive information is an issue, then the distributed

agent model may be advantageous. Alternatively, agents may provide a good

solution method in environments where there is no central authority, such as

the routing of automated guided vehicles.

On the other hand, agent technology is new. New technology often rep-

resents a risky choice. In contrast, many existing decision support systems

depend on optimization techniques. Furthermore, there is a perception that

optimization and operations research represents a technique with years of

scientific research underpinning it. Additionally, the management level of

logistics companies often prefers to specify their goals for the company as

encapsulated in an objective function. The notion of emergent behavior or

autonomous fulfillment of local goals may appear threatening to those that

must select and invest in a new decision support system.

Given both the quantitative and qualitative advantages and disadvantages

of both approaches, the future of this research lays in the investigation of how

ideas from an agent-based approach can be used in an on-line approach, and

vice versa. At the most basic level, the results from this agent-based study

can be used to calibrate the trade-off between rejection and lateness in the

objective function of the MIP. At a deeper level, a hybrid approach with

the ability to exhibit the right behavior depending on the current situation

may ultimately be the best way of dealing with uncertainty. Furthermore,
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the agent-based approach can itself be augmented to include learning. In

this chapter we describe agents that do not make any effort to adjust their

behavior based on what they have seen before. One may conjecture that

some of the global state could be inferred from past experiences, and that

agents with limited information could benefit from learning. An interesting

challenge, for future research, would be to find the conditions in which agents

can learn and adapt to uncertainties in comparison to a centralized system

based on stochastic programming.

In order to find the exact conditions under which one approach outper-

forms the other, and to understand the fundamental reasons for that behavior,

further experiments are required. Not only should we study more general vehi-

cle routing problems (using standard datasets such as the Solomon benchmark

sets (Solomon, 1987)), we should also study other sources of uncertainty, such

as travel time uncertainty (to see if this indeed shows similar behavior to the

dependent service times considered in this chapter) and truck break downs.

Furthermore, as instances grow larger, the effect of limited time and/or mem-

ory may influence performance drastically, and should thus be carefully taken

into consideration. Finally, we would like to see a similar study focused on a

comparison of agents with stochastic approaches.



Chapter 6

Conclusion

...to the traveler, a mountain outline varies with every step, and it has an

infinite number of profiles, though absolutely but one form. Even when

cleft or bored through it is not comprehended in its entireness.

Henry David Thoreau, Walden, 1854

There is but one problem at the heart of this thesis. I have cleaved it, bored

through it, and examined its many profiles, yet it remains largely enigmatic.

Why is this so? While the answer to this question may elude us yet, we

attempt closure by summarizing the route this thesis traveled and speculating

what further exploration could reveal.

6.1 The Past

In Chapter 2, we found clues in the literature indicating that the pick-up and

delivery structure of drayage problems may make them easier than general

ATSPs. This hypothesis was empirically tested in Chapter 3. The result of

this testing was the identification of a set of distance matrix metrics with a

significant influence on the ease of solvability for ATSPs. These metrics, in

turn, imply that drayage problems — a special type of ATSP — are gen-

erally easier to solve. In particular we reveal that drayage problems, with

171
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a limited number of terminals and customer locations, tend to have a large

number of well-placed zeros in their distance matrices. Specifically, the place-

ment of zeros is such that drayage problem distance matrices have more zeros

in symmetric locations indicating the presence of only a few vertices in an

underlying ARP; as compared to their general ATSP counterparts. These

properties seem to make the problem easier.

Abandoning the spatial dimension for the temporal, in Chapter 4, we

learned that advanced job information can be beneficial to the cost of an on-

line algorithm — bringing it closer to optimal. The real contribution of this

realization, however, is that the advanced information can be as minimal as

revealing the location of the job, with no revelation of the job’s release time.

This is an important finding as drayage operations are such that job locations

are generally static while job release times are not always revealed in a timely

manner.

While these findings alone gave us hope, the movement away from a

single-vehicle setting to full fleet operations, in Chapter 5, raised and par-

tially answered questions regarding control. Specifically, we asked what the

quantifiable benefits of using a centralized control structure over a decen-

tralized control structure might be. The answer indicated a dependence on

uncertainty. The more uncertainty, in terms of job arrival and service time

duration, the better the agents performed. This result has significant impli-

cations for the drayage industry as most (possibly all) drayage firms follow a

traditional control structure dependent on a central dispatcher. These results

indicate that driver empowerment may yield higher profits — or, at least, less

costs.

6.2 The Future

We describe our vision for the future by first looking back to the opening

lines of this book. This book documents the dissection of a large problem into

smaller, more easily examined, parts. In some cases, the tool of dissection,

has isolated structures to a point where the function and relationship to the
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whole is barely discernible. This may frustrate some nevertheless the isolated

parts have themselves yielded fascinating questions — inspiration for future

work. While many of these questions were raised at the end of their respective

chapters we present some additional considerations here.

When considering the results of Chapter 2 and Chapter 3, the questions

begging for answers are: how can we exploit the models predicting solvabil-

ity? Can we use them to design a method by which a “hard” ATSP can be

transformed into an “easy” ATSP? Given the clues in the data of Chapter

3, can we prove that drayage problems are, like Gilmore-Gomory TSPs, a

sub-class of ATSPs that are polynomially solvable?

Turning to Chapter 4, we begin with the question: What happens when we

extend our simple TSP on R
+ to include pick-up and delivery? at first blush,

we can answer that pick-up and delivery on R
+ represents a Gilmore-Gomory

TSP. As such, this problem is solvable in polynomial time. Recognizing this

fact we can ask a myriad of questions revolving around the worst-case ratios

for on-line Gilmore-Gomory TSPs and the advantage of advanced information

in this context. Furthermore, the vector of advanced information in pick-up

and delivery problems is more complex — e.g. both the pick-up (location

and time) and the drop-off (location and time) can be revealed at different

disclosure dates. Additionally, we can ask the question: what other fields

can benefit from these results? While a line (R+) does not seem the most

likely space for real-world applications, these models do find a place in the

scheduling of elevators or the movement of robots in manufacturing. Thus,

we wish to know how must these TSP related results be modified to become

useful to a broader audience?

Finally, Chapter 5 raises questions at the boundary of (at least) three

fields — operations research, computer science, and artificial intelligence. If

anything, Chapter 5 highlights the need for a more natural and smoother

integration of both agent based and optimization based approaches. How can

the handoff from an optimal solution to the MAS implementation be orches-

trated? How will the MAS execution affect the optimality of the optimization

based solution? How can the emergent behavior of the MAS be monitored
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and fed back into the optimization? How can the emergent behavior of the

MAS be monitored and controlled to trust their use in uncontrolled environ-

ments such as elevator scheduling? These are the questions that await a new

generation of interdisciplinary researchers.

Ultimately, while the process of dissection may force an examination of

isolated parts, the results of each isolated examination indicate a common

vision for the future. The first three content chapters indicate that benefits are

to be gained when the drayage problem is pared down to a single vehicle case.

Similarly, the result of the last chapter highlights that cleaving the problem

along the lines of its vehicular parts generates benefits in highly dynamic

settings. Thus, our entreaty for future work is a proposal for an agent system

in which the agents exploit the results and algorithms of Chapters 3 and 4.

As this work moves into the future, we bring one last thought to bear,

a thought that has been almost entirely absent from this thesis: any and all

new drayage planning software must consider the human dimension. The fact

that, in the end, all of the routes are made or at least executed by human

beings means that new planning systems must include humans as part of the

decision process. As remarked in Chapter 4 the ability to plan and adjust

is singularly human. Therefore a system that can incorporate hints from the

user will ultimately find more favor amongst dispatchers — dispatchers that

are known for remarking: “you can plan all you want, but in a few seconds

that plan is shot all to pieces.”
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Table A.1: Description of instances generated for verification of models.
Generator No. Instances Parameters

smat 5 n = 300, dij ∈ [0, 500], seed numbers 0 to 4

smat 2 n = 300, dij ∈

[

0, 106
]

, seed numbers 5 and 6

smat 2 n = 100, dij ∈

[

0, 106
]

, seed numbers 7 and 8

smat 5 n = 100, dij ∈ [0, 100], seed numbers 9 and 13

tsmat 5 n = 300, dij ∈ [0, 500], seed numbers 0 to 4

tsmat 2 n = 300, dij ∈

[

0, 106
]

, seed numbers 5 and 6

tsmat 2 n = 100, dij ∈

[

0, 106
]

, seed numbers 7 and 8

tsmat 5 n = 100, dij ∈ [0, 100], seed numbers 9 and 13

rect 5 n = 300, square 500 by 500, seed numbers 0 to 4

rect 2 n = 300, square 106 by 106, seed numbers 5 and 6

rect 2 n = 100, square 106 by 106, seed numbers 7 and 8
rect 5 n = 100, square 100 by 100, seed numbers 9 and 13

amat 5 n = 300, dij ∈ [0, 500], seed numbers 0 to 4

amat 2 n = 300, dij ∈

[

0, 106
]

, seed numbers 5 and 6

amat 2 n = 100, dij ∈

[

0, 106
]

, seed numbers 7 and 8

amat 5 n = 100, dij ∈ [0, 100], seed numbers 9 and 13

tmat 5 n = 300, dij ∈ [0, 500], seed numbers 0 to 4

tmat 2 n = 300, dij ∈

[

0, 106
]

, seed numbers 5 and 6

tmat 2 n = 100, dij ∈

[

0, 106
]

, seed numbers 7 and 8

tmat 5 n = 100, dij ∈ [0, 100], seed numbers 9 and 13

rtilt 5 n = 300, square 500 by 500, ux = 1, u+
y = 2, u−

y = 0, seed numbers 0 to 4

rtilt 2 n = 300, square 106 by 106, ux = 1, u+
y = 2, u−

y = 0, seed numbers 5 and
6

rtilt 2 n = 100, square 106 by 106, ux = 1, u+
y = 2, u−

y = 0, seed numbers 7 and
8

rtilt 5 n = 100, square 100 by 100, ux = 1, u+
y = 2, u−

y = 0, seed numbers 9 and
13

stilt 5 n = 300, square 500 by 500, ux = 2, u+
y = 4, u−

y = 1, seed numbers 0 to 4

stilt 2 n = 300, square 106 by 106, ux = 2, u+
y = 4, u−

y = 1, seed numbers 5 and
6

stilt 2 n = 100, square 106 by 106, ux = 2, u+
y = 4, u−

y = 1, seed numbers 7 and
8

stilt 5 n = 100, square 100 by 100, ux = 2, u+
y = 4, u−

y = 1, seed numbers 9 and
13

crane 5 n = 300, square 500 by 500, u = 4, 000, seed numbers 0 to 4

crane 2 n = 300, square 106 by 106, u = 10, seed numbers 5 and 6

crane 2 n = 100, square 106 by 106, u = 10, seed numbers 7 and 8
crane 5 n = 100, square 100 by 100, u = 20, 000, seed numbers 9 and 13

disk 5 n = 300, x ∈ [0, 500], u = 2, 000, speed = 10.0, seed numbers 0 to 4

disk 2 n = 300, x ∈

[

0, 106
]

, u = 10, speed = 10.0, seed numbers 5 and 6

disk 2 n = 100, x ∈

[

0, 106
]

, u = 10, speed = 10.0, seed numbers 7 and 8

disk 5 n = 100, x ∈ [0, 100], u = 10, 000, speed = 10.0, seed numbers 9 and 13

coin 5 n = 300, 100 blocks, maxcoord = 10, seed numbers 0 to 4
coin 2 n = 300, 173 blocks, maxcoord = 10, seed numbers 5 and 6
coin 2 n = 100, 100 blocks, maxcoord = 10, seed numbers 7 and 8
coin 5 n = 100, 25 blocks, maxcoord = 10, seed numbers 9 and 13

shop 5 n = 300, k = 20, task length ∈ [0, 250], seed numbers 0 to 4
shop 2 n = 300, k = 50, task length ∈ [0, 1000], seed numbers 5 and 6
shop 2 n = 100, k = 50, task length ∈ [0, 1000], seed numbers 7 and 8
shop 5 n = 100, k = 10, task length ∈ [0, 100], seed numbers 9 and 13

super 2 n = 300, k = 2, string length = 20, seed numbers 5 and 6
super 2 n = 100, k = 2, string length = 20, seed numbers 7 and 8

crane2 5 n = 300, square 500 by 500, origins = 150, destinations = 200, seed
numbers 0 to 4

crane2 2 n = 300, square 106 by 106, origins = 300, destinations = 200, seed
numbers 5 and 6

crane2 2 n = 100, square 106 by 106, origins = 100, destinations = 65, seed num-
bers 7 and 8

crane2 5 n = 100, square 100 by 100, origins = 50, destinations = 75, seed numbers
9 and 13



Appendix B

Crane2 Random Instance

Generator

/* Crane2 random instance generator, designed by F. Jordan Srour,

is intended to mimic drayge problems; it is based on the

random instance generators of Cirasella et al, 2001

and Johnson et al, 2002 - available at:

http://www.research.att.com/~dsj/chtsp/atsp.html*/

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "genrand.h" //available at http://www.research.att.com/~dsj/chtsp/atsp.html

#define MAXN 3200

#define MAXCOORD 1000000

#define BINSIZE (1 << 30)

#define FACTOR 1

int x[MAXN],y[MAXN],z[MAXN],w[MAXN];

int dist(int a, int b);

main(argc,argv)

int argc;

char *argv[];

{

int maxcoord = MAXCOORD;

int N;

int i,j, node1, node2;

int z1, w1;

int seed;

int origins;

int destinations;

int arg = 1;

int tsplib = 0;

if (argc < 4) {
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printf("Usage: cranegen2 [-tsplib] N seed origins destinations [maxcoord] > filename\n");

exit(1);

}

if (strcmp(argv[arg], "-tsplib") == 0) {

tsplib = 1;

++arg;

}

N = atoi(argv[arg++]);

seed = atoi(argv[arg++]);

origins = atoi(argv[arg++]);

destinations = atoi(argv[arg++]);

if (argc > arg) maxcoord = atoi(argv[arg++]);

if (origins > N) origins = N;

if (destinations < (N - origins)) destinations = N - origins + 1;

/* initialize random number generator */

sprand(seed);

for (i=1;i<=N;i++) {

x[i] = rangerand(maxcoord);

y[i] = rangerand(maxcoord);

}

if (tsplib) {

printf("NAME: cranegen_%d_%d_%d_%d_%d\n", N, seed, origins, destinations, maxcoord);

printf("TYPE: ATSP\n");

printf("COMMENT: Asymmetric TSP (generated with ’cranegen2 %d %d %d %d %d’)\n",N, seed, origins, destinations, maxcoord);

printf("DIMENSION: %d\n", N);

printf("EDGE_WEIGHT_TYPE: EXPLICIT\n");

printf("EDGE_WEIGHT_FORMAT: FULL_MATRIX\n");

printf("EDGE_WEIGHT_SECTION\n");

}

else {

printf("%d A\n",N);

}

for (i=1;i<=N;i++)

{

for (j=1;j<=N;j++)

{

if ((i != j) && (i <= destinations) && (j <= origins)){node1 = N+1 - i; node2 = j;}

if ((i != j) && (i <= destinations) && (j > origins)) {node1 = N+1 - i; node2 = j - origins;}

if ((i != j) && (i > destinations) && (j <= origins)) {node1 = N+1 - (i-destinations); node2 = j;}

if ((i != j) && (i > destinations) && (j > origins)) {node1 = N+1 - (i-destinations); node2 = j-origins;}

if (i == j) {node1 = 0; node2 = 0;}

printf("%d\n",dist(node1,node2));

}

}

if (tsplib) {

printf("EOF\n");

}

else {

printf("cranegen2 %d %d %d %d %d\n",N,seed, origins, destinations,maxcoord);

};

}

dist (a,b)

int a,b;
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{

double max, sum, t;

int rd;

if (a == 0 && b == 0) return (1<<29);

t = (double) (x[a]-x[b]);

if (t < 0.0) t = -t;

max = t; sum = t*t;

t = (double) (y[a]-y[b]);

if (t < 0.0) t = -t;

if (t > max) max = t;

sum += t*t;

if (sum == 0.0) return 0;

max *= 2.0;

max = 0.5 * (max + sum/max);

max = 0.5 * (max + sum/max);

max = 0.5 * (max + sum/max);

max = 0.5 * (max + sum/max);

max = 0.5 * (max + sum/max);

rd = (int) max;

#ifdef ROUNDUP

if (max-rd > .00000001) rd++;

#else

if (max-rd > .5) rd++;

#endif

return(rd);

}
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Summary

The term dray dates back to the 14th century when it was used commonly to

describe a type of very sturdy sideless cart1. In the 1700s the word drayage

came into use meaning “to transport by a sideless cart”. Today, drayage

commonly refers to the transport of containerized cargo to and from port

or rail terminals and inland locations. With the phenomenal growth of con-

tainerized freight since the container’s introduction in 1956, the drayage in-

dustry has also experienced significant growth. For example, the world saw

total maritime container traffic grow to approximately 417 million twenty foot

equivalent units (TEUs) in 20062.

Unfortunately, the drayage portion of a door-to-door container move tends

to be the most costly part of the move. Morlok and Spasovic3 indicate that

up to 40% of the cost for a 900 mile container move can be attributed to the

50 mile drayage portion of the move. There are a variety of reasons for this

disproportionate assignment of costs, including a great deal of uncertainty at

the interface of modes. For example, trucks moving containers to and from

a port terminal are often uncertain as to how long it will take them to pick

up a designated container coming from a ship, from the terminal stack, or

from customs. Whatever the reason, the effect is the same – without the

ability to plan and use transportation capacity intelligently and efficiently a

1Etymology taken from http://www.merriam-webster.com/
2The United States Dept. of Transportation, Bureau of Transportation Statistics,

http://www.transtats.bts.gov.
3Morlok, E. and Spasovic, L. (1994). Redesigning rail-truck intermodal drayage op-

erations for enhanced service and cost performance. Journal of Transportation Research
Forum, 34(1):16-31.
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supply chain is only a handful of loose links. We study mechanisms to improve

capacity utilization in drayage operations from three perspectives using both

empirical and theoretical techniques.

In chapters 2 and 3, we study the first tactic employed in conquering the

drayage problem— an empirical analysis of the problem’s geometric structure.

Specifically, in the drayage problem considered here, all jobs originate from

or are destined to one, of only a few, fixed freight terminals. In this way, jobs

can often be sequenced such that the destination of one job is the origin of the

next. When considering this structure in the context of single-vehicle routing,

a review of relevant literature (Chapter 2), leads us to the understanding that

indeed these underlying structural features make drayage problems easier to

solve than other single-vehicle routing problems. Using a dataset of over 350

problem instances, we test this hypothesis empirically (Chapter 3).

The second level, and basis for Chapter 4, involves delving deeper into the

heart of the drayage problem. It is there that we realize the key to improving

efficiency may lay in exploiting all of the pieces of job related information

as they arrive. For example, in the case of a dray company at the Port of

Rotterdam, the transport company knows almost 80% of their jobs ahead of

time, but only learns the release time of those jobs in real-time - thus, we ask

the question, what value does advanced location information provide in the

absence of advanced job release time information? To study this question from

a fundamental perspective, we use competitive analysis to examine several on-

line algorithms in the (comparatively) more basic traveling salesman problem

with release dates and split information arrival.

Finally, in Chapter 5, we examine agent-based solutions as an agile mecha-

nism for handling uncertainty in drayage operations. We compare a decentral-

ized (agent-based) solution approach to a centralized (on-line optimization)

approach. We examine the performance of both systems across four scenarios

of job arrival uncertainty and four scenarios of service time duration uncer-

tainty. We conclude that when both job arrival and service times are unknown

at the start of the day then an agent-based approach performs competitively

with, and sometimes better than, an on-line optimization approach.



Samenvatting (Summary in

Dutch)

Het Engelse woord “dray” dateert uit de 14e eeuw, toen het werd gebruikt

om een sterk type open kar4 te beschrijven. Rond 1700 kwam het woord

“drayage” in gebruik voor het vervoer per open kar. Vandaag de dag ver-

wijst “drayage” in het algemeen naar het vervoer van containervracht van

en naar een haven of spoorwegeindpunt. Met de fenomenale groei van con-

tainervrachtvervoer sinds de introductie van de container in 1956 is ook de

drayage-industrie sterk gegroeid. De totale maritieme containervracht is bij-

voorbeeld gegroeid tot ongeveer 417 miljoen twintig voet containers (TEUs)

in 20065.

Jammer genoeg is het drayage gedeelte van “door-to-door” container be-

wegingen vaak het duurste deel van het transport. Morlok en Spasovic6 geven

aan dat tot 40% van de totale kosten van een 900 mijl containerbeweging kan

worden toegeschreven aan het drayage gedeelte van 50 mijl. Een verschei-

denheid aan redenen ligt ten grondslag van dit disproportioneel grote aandeel

in de kosten. Bijvoorbeeld de grote onzekerheid in de interactie tussen de

transportmodaliteiten; voor vrachtwagens die containers van en naar een ha-

ven transporteren is er bijvoorbeeld vaak onzekerheid met betrekking tot de

4Etymologie uit http://www.merriam-webster.com/
5The United States Dept. of Transportation, Bureau of Transportation Statistics,

http://www.transtats.bts.gov.
6Morlok, E. and Spasovic, L. (1994). Redesigning rail-truck intermodal drayage operati-

ons for enhanced service and cost performance. Journal of Transportation Research Forum,
34(1):16-31.
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tijd die nodig is om een bepaalde container op te halen. Deze onzekerheid

leidt tot veel inefficiëntie in het plannen van meerdere containers per dag.

Onafhankelijk van de reden voor de hoge kosten blijft het effect hetzelfde;

zonder de mogelijkheid tot plannen en gebruik van transportcapaciteit op een

intelligente en efficiënte manier is een “supply chain” slechts een handvol losse

”links”. In dit proefschrift bestuderen wij mechanismen om het gebruik van

drayage capaciteit te verbeteren vanuit drie verschillende perspectieven met

zowel empirische als theoretische technieken.

In hoofdstuk 2 and 3 onderzoeken wij de eerste tactiek om het drayage

probleem aan te pakken. Deze tactiek is een empirische analyse van de ge-

ometrische structuur van het probleem. Specifiek voor het hier beschouwde

drayage probleem is dat alle ritten beginnen of eindigen in één van een kleine

verzameling vrachtterminals. Hierdoor kunnen de ritten vaak op een zoda-

nige manier worden gerangschikt dat de bestemming van de ene rit de start

van de volgende is. Wanneer we deze structuur in acht nemen in de context

van routeringsproblemen met één enkel voertuig, leidt een overzicht van rele-

vante literatuur (Hoofdstuk 2) ons tot het begrip dat dit probleem structurele

eigenschappen heeft die het makkelijker oplosbaar maken dan andere route-

ringsproblemen met één enkel voertuig. Gebruikmakend van een dataset van

meer dan 350 van dit type routeringsproblemen testen wij deze hypothese

empirisch (Hoofdstuk 3).

Het tweede perspectief, en de basis voor Hoofdstuk 4, richten we onze

aandacht op de kern van het drayageprobleem. Daar realiseren we ons dat

de sleutel tot het verbeteren van de efficiëntie ligt in het gebruiken van alle

ritinformatie op het moment dat deze beschikbaar wordt. Bijvoorbeeld, een

drayagebedrijf bij de Haven van Rotterdam kent bijna 80% van de vervoers-

bewegingen vantevoren, maar komt de tijden van vrijgave van de orders pas in

“real-time” te weten. We stellen dan ook de vraag welke waarde de beschik-

bare ritinformatie heeft wanneer de tijd waarop de ritten worden vrijgegeven

niet bekend is. Om deze vraag op een fundamentele manier te bestuderen,

analyseren we de waarde van informatie door te kijken naar de prestatie van

verschillende online algoritmes in het relatief eenvoudige onderliggende han-
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delsreizigersprobleem.

Tot slot, in Hoofdstuk 5, onderzoeken wij agent-gebaseerde oplossingen

als flexibele mechanisme om om te gaan met de onzekerheid van de ritaan-

komst in de context van een drayage casus bij de Haven van Rotterdam.

Wij vergelijken een gedecentraliseerde (agent-gebaseerde) oplossingsbenade-

ring met een gecentraliseerde (online optimalisering) benadering. Wij onder-

zoeken de prestaties van beide systemen in vier onzekerheidsscenario’s van

zowel de orderaankomst als de ritduur. Wij concluderen dat wanneer zowel

de ritaankomst als de rittijden aan het begin van de dag onbekend zijn, een

agent-gebaseerde benadering concurrerend is met, en soms beter is dan, een

online optimaliseringsbenadering.
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l)DISSECTING DRAYAGE

AN EXAMINATION OF STRUCTURE, INFORMATION, AND CONTROL IN DRAYAGE

OPERATIONS

The term dray dates back to the 14th century when it was used commonly to describe

a type of very sturdy sideless cart. In the 1700s the word drayage came into use meaning

“to transport by a sideless cart”. Today, drayage commonly refers to the transport of

containerized cargo to and from port or rail terminals and inland locations. With the

phenomenal growth of containerized freight since the container’s introduction in 1956,

the drayage industry has also experienced significant growth. In fact, according to the

Bureau for Transportation Statistics, the world saw total maritime container traffic grow

to approximately 417 million twenty foot equivalent units (TEUs) in 2006. 

Unfortunately, the drayage portion of a door-to-door container move tends to be the

most costly part of the move. There are a variety of reasons for this disproportionate

assignment of costs, including a great deal of uncertainty at the interface of modes. For

example, trucks moving containers to and from a port terminal are often uncertain as to

how long it will take them to pick up a designated container coming from a ship, from the

terminal stack, or from customs. This uncertainty leads to much difficulty and inefficiency

in planning a profitable routing for multiple containers in one day. We study this problem

from three perspectives using both empirical and theoretical techniques.
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