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Abstract

We study the influence of subthreshold activity in the estimation of
synaptic conductances. It is known that differences between actual con-
ductances and the estimated ones using linear regression methods can
be huge in spiking regimes, so caution has been taken to remove spiking
activity from experimental data before proceeding to linear estimation.
However, not much attention has been paid to the influence of ionic cur-
rents active in the non-spiking regime where such linear methods are still
profusely used. In this paper, we use conductance-based models to test
this influence using several representative mechanisms to induce ionic sub-
threshold activity. In all the cases, we show that the currents activated
during subthreshold activity can lead to significant errors when estimat-
ing synaptic conductance linearly. Thus, our results add a new warning
message when extracting conductance traces from intracellular record-
ings and the conclusions concerning neuronal activity that can be drawn
from them. Additionally, we present, as a proof of concept, an alterna-
tive method that takes into account the main nonlinear effects of specific
ionic subthreshold currents. This method, based on the quadratization of
the subthreshold dynamics, allows us to reduce the relative errors of the
estimated conductances by more than one order of magnitude. In experi-
mental conditions, under appropriate fitting to canonical models, it could
be useful to obtain better estimations as well even under the presence of
noise.
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1 Introduction

One of the most challenging problems in neuroscience is to unveil brain’s con-
nectivity, which may vary depending on the task being performed. In order
to solve this riddle, to infer this connectivity and to understand the dynam-
ics of information, processing methods are sought both from experimental and
theoretical perspective.

A “local” simplified situation, despite of its global repercussion, is trying to
find out which signal is receiving a single neuron subjected to a bombardment of
synaptic inputs and then discern the temporal contributions of global excitation
from those of global inhibition. This quantitative information is important for
the integrative properties of cortical neurons which are believed to be altered
under high-conductance states, see for instance Destexhe et al (2003). The
relationship between the modulation of excitatory and inhibitory time courses
is also important to get information about the wiring architecture of the cortex
since it may help to distinguish between phase insensitive cortical coupling or
spatial phase selective coupling, see McLaughlin et al (2000). On the other hand,
this joint information is useful to study both the balance and the concurrence of
excitation and inhibition, which are crucial features in many neuronal problems,
see Wehr and Zador (2003) and Lombardi et al (2012) among others. Moreover,
disruption of these features leads to severe disorders, see references in Berg and
Ditlevsen (2013), so it is relevant to obtain precise estimations of the activity
arriving to a specific cell.

Due to the multitude and the variety of synaptic contacts, obtaining direct
measurements of the synaptic currents that the neuron is receiving at each mo-
ment in time is something unreachable. Therefore, inverse methods appear as
an alternative to estimate the input (mainly, the conductances) from experi-
mental measures. Experiments that provide membrane potential time courses
from intracellular recordings of cortical cells are relevant in this regard, and
have been carried out for different cell types in different brain areas, see Hirsch
et al (1998), Anderson et al (2000), Wehr and Zador (2003) and Monier et al
(2008).

Theoretical contributions have been mostly focused on the approach with
Fokker-Planck equations to derive the mean and the variance of the whole tem-
poral course for both the excitatory and the inhibitory inputs, see for instance
Rudolph et al (2004). However, the main shortcoming, both of many exper-
imental papers and the abovementioned theoretical methods, is the need for
recording several membrane potential time courses assuming invariance of the
conductances time courses across them. To overcome such problems, the Fokker-
Planck approach has been refined to avoid double recordings by using maximum
likelihood estimators, see Pospischil et al (2009). Recently, new efforts have been
devoted to obtain direct estimations of the excitatory and inhibitory conduc-
tances: Bédard et al (2011) takes advantage of oversampling the membrane
potential with respect to the conductances time-scale, whereas other authors,
see Kobayashi et al (2011), Paninski et al (2012), Berg and Ditlevsen (2013),
Lankarany et al (2013a), Lankarany et al (2013b) and Closas (2014), take ad-
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vantage statistical inference methods to extract on-line activity.
In this paper, we will be devoted to multi-trial in sillico experiments, but

the main messages can be also exported to on-line strategies since they focus
on the linear versus nonlinear character of the inferring methods. In fact, many
experimental and theoretical methods rely on the fact that the neuron acts
as a linear filter, and caution has to be taken to avoid estimations in spiking
regimes, see Guillamon et al (2006). Some strategies trying to linearise the
Iapp − v relationship, see for instance Anderson et al (2000) and Wehr and
Zador (2003), have proven not to be valid, as pointed out in Guillamon et al
(2006) where computational models were used to show that nonlinear Iapp − v
relationships cannot be eliminated through standard filtering, and thus linear
estimations are not reliable (errors can be of the order of 800%). Unfortunately,
conclusions are still drawn from experimental studies by means of this type of
estimations, see for instance Bennett et al (2013).

However, given that the basic reason for the misestimations is that some
nonlinear terms are active, the problem could be spread also over non-spiking
regimes as well due to the eventual activity of subthreshold ionic channels,
widely described from the eighties after seminal works as Hotson and Prince
(1980). This nonlinear subthreshold activity cannot be discarded even in the
most careful experimental results on conductance estimation obtained up-to-
date, see for instance Figure 6 in Rudolph et al (2004) where this type of
channels is explicitly considered. In that paper, Rudolph et al. already warned
about errors caused in the estimations attributed to the activation of subthresh-
old voltage-dependent membrane conductances but they concluded that these
conductances did not seem to have strong effects on the estimates. Of course,
pharmacological blocks can reduce the activity of some targeted channels, but
still it is actually difficult to completely reduce the neuron’s activity to a pure
passive filter.

In this paper, we aim at showing that misestimations induced by the pres-
ence of subthreshold-activated ionic currents are ubiquitous and independent on
the mechanisms that activate these currents. For this purpose, firstly, we take a
conductance-based computational model of a spiking neuron with two significant
types of subthreshold currents, a calcium-activaded potassium afterhyperpolar-
izing current (AHP) and a low-threshold calcium current (LTS); secondly, to
elude the possible contaminating effects (specially on the AHP currents) of the
spiking activity, we take a conductance-based model of a non-spiking neuron
which currents are a persistent sodium current (NaP) and an h-current. Both
models are fed with realistic excitatory and inhibitory conductance traces ob-
tained from an in sillico (noisy) network of visual cortex (see McLaughlin et al
(2000) and Tao et al (2004)). The resulting voltage traces are then used to
obtain estimated conductance courses by linear estimation methods. Finally,
the input synaptic drive and the estimated conductance courses are compared
in order to quantify and analyse the estimation errors due to the presence of the
above mentioned subthreshold currents. We also study alternative procedures
to estimate the conductances taking into account the nonlinear effects. On one
hand, we explore the role of ionic channels time-scales and, on the other hand,
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we propose a method based on a quadratization of the subthreshold dynam-
ics. In Section 2, we firstly provide the neuron models together with the input
synaptic drive. For the pyramidal cell model, we construct an index to discern
whether each subthreshold current is dominant over all the other ionic currents
whereas, for the stellate cell model, we refer to the quadratization procedure
described in Rotstein (2015) as a simplification of the model. Then, in this
same section, we describe the linear filtering method and we provide two alter-
native methods to estimate conductances in the subthreshold regime. Section
3 is devoted to the results which imply that caution has to be applied also in
subthreshold regimes to ensure the absence of nonlinear behaviours. In partic-
ular, attention must be paid to check that Ca2+-dependent K+ currents and
other ionic currents responsible for subthreshold oscillations are inactive before
proceeding to linearly estimate the synaptic conductances from voltage traces.
We also analyse how the alternative procedures improve the linear regression.

2 Methods

As we have mentioned in Section 1, two different conductance-based models
are considered: a first one where a subthreshold current and a hyperpolarized
current coexist, and a second one with two currents that jointly induce sub-
threshold oscillations. In this section, we present these two models and we also
provide two different approaches to estimate conductances which are going to
be tested in the Section 3.

2.1 Models and data treatment

2.1.1 Pyramidal cell model with an AHP and an LTS currents

The first model we consider in our simulations is a simplification of a model
for a pyramidal neuron given in Wang (1998) adding a low-threshold Ca2+

current ILTS given in Destexhe et al (1993); its main terms are expressed in the
equation:

Cm

dV

dt
= −IL − Iion + Iapp − Isyn, (1)

where Cm is the capacitance, Iion = INa + IK + ICa + IAHP + ILTS the ionic
current, Isyn the synaptic current, Iapp the applied current and IL the leak.
The model is chosen to have the minimal complexity to analyse the problem,
with a spiking mechanism provided by sodium and potassium currents, INa, IK ,
and two different current sources for subthreshold activity: a calcium-activated
afterhyperpolarising potassium current, IAHP , and a low-threshold activating
channel, ILTS . These two currents are chosen to display different ways to induce
ionic activity in subthreshold regimes. On one side, the AHP is generated by
slow currents that turn on right after the spike; on the other hand, low-threshold
currents are usually activated at voltage values above resting potential but not
high enough to evoke spikes.
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The I{Na,K,Ca,AHP,LTS} terms model the respective ionic currents. In par-
ticular, we stress that AHP is a potassium current given by IAHP = gAHP c/(c+
KD) (v−VK), mediated by the concentration of calcium c := [Ca2+], which has
its own dynamics mainly dependent on ICa and a large time constant τCa. On
the other hand, the LTS current is given by ILTS = gLTS m3

LTS,∞ hLTS (v −
VCa). The function hLTS is a sigmoidal function with a low inflection point that
induces the desired low-threshold activation. Details on the rest of equations
and parameter values of the model can be found in Appendix A.

Index of dominance of subthreshold currents. In order to have, for this
first example, a clear description of the time intervals where the currents IAHP

and ILTS prevail over the rest of the currents, we have defined an index χ(t) as

χ(t) =
−IAHP (t)− ILTS(t)

√

Iion(t)2 + (IAHP (t) + ILTS(t))2
, (2)

where Iion(t) = INa(t) + IK(t) + ICa(t).
Note that, because of the respective reversal potentials, when the index χ(t)

is greater than
√
2/2, −ILTS , which is positive, is the dominant current whereas

the index χ(t) being smaller than −
√
2/2 implied that the dominant current is

−IAHP , which is negative. Otherwise, the neuron is spiking and so the other
ionic currents prevail over the sum of ILTS and IAHP . We also point out that
the index is not defined when Iion(t)

2 + (IAHP (t) + ILTS(t))
2 = 0; we have

included a condition in the code so as to maintain the value of χ(t−∆t) when
Iion(t)

2+(IAHP (t)+ ILTS(t))
2 < TOL, with TOL = 10−12. However, this only

occurs transiently and does not affect any result in this paper.

2.1.2 Stellate cell model with NaP- and h- currents

The second model we consider in our simulations is a reduced model for medial
entorhinal cortex stellate cell given in Rotstein et al (2006) that displays sub-
threshold oscillations. The only considered activated currents in the model are
the persistent sodium INaP current and the h-(Ih) current, which are involved
in rhythmic subthreshold oscillations (see Dickson et al (2000), for instance).
The main terms of this model also follow an equation of type (1) but here the
ionic current term is Iion = INaP + Ih. The dynamics of the persistent sodium
current evolves in a fast time scale for what we can suppose that its gating
variable is at the steady-state. Moreover, even though h-currents usually have
two components (the fast and the slow one), in this model we only consider the
fast component. Spiking currents are not taken into account to ensure that only
subthreshold activity exists. Details on the equations and parameters can be
found in Appendix B.

Quadratization. Under the presence of both INaP and Ih currents, since Ih
is a resonant current and INaP an amplifying one, the interaction between them
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often induces nonlinearities of quadratic type in the voltage response (see Rot-
stein (2015)). Since these nonlinear effects cannot be captured by a linearization
of the model, a quadratization has been provided in Rotstein (2015) to capture
the parabolic shape of the voltage nullcline. The general quadratization is given
by

dv

dt
= av2 − w + I(t),

dw

dt
= ε(αv − λ− w),

(3)

where I(t) = Iapp + Isyn(t) and w stands for the set of gating variables. Pa-
rameters a, α, ε and λ are considered as constants defined in terms of the
biophysical parameters of the original model which capture the geometry of the
phase-plane. In this sense, a controls the curvature of the v-nullcline, α controls
the slope of the w-nullcline, ε stands for the time scale separation between v and
w, which tends to be small, and λ controls the relative displacement between
the two nullclines (the v one and the w one).

For the biophysical parameters considered in our model (see Appendix B),
w stands for rf and the constant parameters of the quadratization result to be
a = 0.1, α = 0.4, ε = 0.01 and λ = −0.2.

2.1.3 Synaptic drive

We assume that the target neuron is stimulated both through the synaptic
input Isyn and the applied current Iapp. The synaptic input takes the form
Isyn = gE(v−VE)+ gI(v−VI), where gE = gE(t) and gI = gI(t) are prescribed
synaptic conductances. As test conductance courses, we will use conductance
traces (with a 1 ms resolution) obtained from a computational network that
models layer 4Cα of primary visual cortex, see McLaughlin et al (2000) and
Tao et al (2004). The complete conductance traces fed into the pyramidal cell
model are shown in Supplementary Figure 1. In the stellate cell model, we have
rescaled these data by a factor of 3 in order to adjust to the amplitude of the
input used in Rotstein (2015).

2.1.4 Numerical methods

The systems of differential equations of both models were integrated using the
Runge-Kutta 4-5 method with a fixed time step of 0.05ms. First, we tested
that voltage traces did not change when using lower time steps and higher
order variable step methods, but the fact of needing equispaced values for the
filtering process was a key point for the method’s choice.

Moreover, to solve the integral in Section 3.2.1, we have used the trapezoidal
rule with the same time step than for the integration method, 0.05ms.
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2.2 Estimation procedures

2.2.1 Linear estimation approach

As we mentioned in the Introduction, some experimental studies try to get rid of
spikes and linearise the Iapp−v relationship by filtering the intracellular spiking
voltage. Our aim is to mimic these standard experimental procedures and anal-
yse their pitfalls. Thus, as in Guillamon et al (2006), we smooth the membrane
potential traces v(t) for a fixed Iapp using a median filter and obtaining a new
signal vfilt(t; Iapp). In particular, for each point p := (t, v(t)) of the voltage
trace, we compute the median of the values in window which includes 2N + 1
points and is centered at p:

vfilt(t; Iapp) = medianNj=−N{v(t+ j h)},

where h is the integration step (that is, 1/h is the sampling frequency in KHz).
In our computations, we have taken N = 10. We have also explored the pos-
sibility that a repetitive application of the same filter could lead to a better
smoothing and thus a better approximation using linear methods. However, we
have proved that the median filter with an usual recording step does not im-
prove beyond a second successive filtering. Therefore, after this filtering process
we get vfilt(t; Iapp) for any time value t and any applied current value Iapp.

Then, for each t independently, we estimate the conductances on the basis
of linear regression assuming that the solutions of the neuron model are close
to the steady-state which implies that the activity of the ionic channels is not
significant and, in addition, ˙vfilt ≈ 0. We thus estimate the total synaptic
conductance gsyn(t) and the effective reversal potential Veff (t) through

vfilt(t; Iapp) = Veff (t) +
Iapp

gsyn(t)
, (4)

where gsyn(t) = gE(t)+gI(t)+gL and Veff (t) = (gE(t)VE+gI(t)VI+gLVL)/gsyn(t),
by presenting M different values of Iapp for each time t, where M (≥ 2) is the
number of trials each of them with a different value of Iapp.

Once we have estimated gsyn(t) and Veff (t), using (4), we can estimate gE(t)
and gI(t) assuming that we know the rest of parameters (namely, gL, VL, VE

and VI) by solving, for each value of t, the linear system:

{

gE(t) + gI(t) = gsyn(t)− gL,
gE(t)VE + gI(t)VI = gsyn(t)Veff (t)− gL VL.

(5)

2.2.2 Linearization of the subthreshold ionic currents approach

The linear estimation is based on the fact that the activity of the ionic channels
is not significant, and so the ionic currents are null. However, these currents
are activated on the subthreshold regime independently of the spikes. Its time
scale changes according to the steady state value of the current and so, a better
estimation could be done if we could assume that the ionic channels are in
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the steady state. Therefore, in the phase where the subthreshold currents are
dominating and the spiking currents are negligible, the I− v relationship would
become

v(t; Iapp) = Veff (t)−
I∞(t)

gsyn(t)
+

Iapp
gsyn(t)

, (6)

where I∞(t) := Iion,∞(v(t; Iapp)) and Iion,∞(v) is the sum of the ionic currents
at the steady state. Thus, obtaining a relationship v = v(Iapp;Veff , gsyn) from
the implicit equation v = Veff − I∞(v)/gsyn + Iapp/gsyn, where Veff and gsyn
are thought of as parameters, would allow to have a general formula to estimate
Veff (t) and gsyn(t) for each t. Unfortunately, this is not easy to perform but,
considering the pyramidal cell model described in section 2.1.1, an interesting
observation is that, in the phase where ILTS is dominating (v ∈ [−75,−60]mv
approximately), the function

ILTS,∞(v) := gLTS mLTS,∞(v)3 hLTS,∞(v) (v − VCa)

can be very well fitted by a straight line. In other words, the range of voltage
values where ILTS activates and the other ionic currents are negligible coincides
with a straight ramp of the bell-shaped ILTS,∞ function. This observation
provides a new approach consisting of approximating ILTS(v) ≈ αLTS v+βLTS ,
and then, for each t, applying the following steps:

1. Obtain the slope a and the intercept b from a linear regression of the set
of points {(Iapp,j , v(t; Iapp,j))}Mj=1.

2. Estimate gsyn(t) = 1/a− αLTS and Veff (t) = (b+ a βLTS)/(1− aαLTS).

3. Estimate gE(t) and gI(t) from equation (5).

Observe that taking αLTS = βLTS = 0, we obtain again (4).

2.2.3 Quadratization approach

As we have mentioned in Section 2.1.2, when resonant and amplifying currents
coexist (see Appendix B for the complete model), it has been proved (see Rot-
stein (2015)) that the system presents nonlinearities of quadratic type in the
voltage response. In turn, it is possible to approximate the model by a minimal
model with linear and quadratic terms; this process is also konwn as the quadra-
tization of the original system. More precisely, the quadratization is given by
the differential system (3). We reparameterize the system by the slow time
τ = tε thus obtaining

ε dv
dτ

= av2(τ)− w(τ) + I(τ),
dw
dτ

= (αv(τ)− λ− w(τ)).
(7)

Since the voltage is a fast variable of system (7) and the gating variable w is
slow, the differential system (7) can be considered as a slow-fast system where
the difference on the time scales of both variables is given by the parameter ε.
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When ε tends to zero, the associated system is known as the slow subsystem and
contains the singular dynamics of the system (7). Fenichel’s geometric theory
(see Fenichel (1979)) ensures the persistence of the critical manifold of the slow
subsystem when it is perturbed. Therefore, in order to make an estimation of the
total current, one can assume the limiting case ε = 0 to obtain an approximated
expression of the total current. In this case, the second equation of the system
is a linear non-autonomous ordinary differential equation which can be solved
as

w(τ) = e−τ

(

w(τ0)e
τ0 +

∫ τ

t0

(αv(s)− λ)ds

)

.

Moreover, from the first equation of the slow subsystem and the fact that I(τ) =
Isyn(τ) + Iapp, we can reconstruct the total input current from

Isyn(τ) = −av2(τ)+

e−τ
(

w(τ0)e
τ0 +

∫ τ

t0
(αv(s)− λ)ds

)

− Iapp.
(8)

To extract the excitatory and the inhibitory conductances, we can take, for
instance, two different injected currents, Iapp,j , j = 1, 2, obtain the respective
Isyn,j(t), j = 1, 2, from (8), and finally solve

{

Isyn,1(t) = −gE(t)(v1(t)− VE)− gI(t)(v1(t)− vI),
Isyn,2(t) = −gE(t)(v2(t)− VE)− gI(t)(v2(t)− vI).

(9)

It is worth noting that in order to apply (8) one has to make a guess of
the initial condition w(τ0) which is not observable as it is v(τ0). However, the
method is robust enough to converge with a wide range of initial conditions.

3 Results

The study made in Guillamon et al (2006) showed the goodness of the linear
estimation when the system is only driven by the synaptic activity, a regime
where the equation (4) holds true. However, it was also shown that the estima-
tions fail when the neuron is either spiking or near to spikes in which case the
linear relation between the membrane potential vfilt and the applied current
Iapp is broken. Here, we explore the influence of subthreshold ionic activity in
the estimation of synaptic conductances, a paradigm that was not taken into
account in that previous work.

The way we proceed is, first, consider the pyramidal cell model described in
Section 2.1.1 to study the possible errors caused by an afterhyperpolarization
current, IAHP , and a subthreshold-activated current, ILTS , both together and
separately. For this purpose and also to avoid the influence of the currents
promoting spikes, we have introduced the χ index defined in (2) to discriminate
the time intervals when either IAHP , ILTS or the spiking currents dominate
(see also Figure 1). In the first two regimes we detect important relative errors
in estimating the synaptic conductances. For the ILTS-dominated regime, we
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have come up with an alternative way to improve the linear estimation based
on the method explained in Section 2.2.2. Even though this example already
illustrates the misestimations in subthreshold regimes, it could be argued, in
the case IAHP -dominated regimes, that these misestimations are an artifact of
the misestimations in the spiking regime. To enhance our warning message
on subthreshold misestimations we have also considered a second model with
no spiking mechanisms and two different subthreshold-activated currents, INaP

and Ih, which is described in Section 2.1.2 and Appendix B. Moreover, in this
case we are able to provide an improvement of the linear estimation based on
the quadratization explained in Section 2.2.3. Next, we develop both cases
separately.

3.1 Misestimations in the pyramidal cell model with an

AHP and an LTS currents

Let us consider the model described in Section 2.1.1. For the sake of comparison,
we perform the estimation both under the presence of subthreshold-activated
ionic channels (AHP and LTS) and without it. The case with both AHP and
LTS off (already studied in Guillamon et al (2006)) is included for completeness
and reference, but we are mainly interested in the experiment with either IAHP

or ILTS on.
In Figure 1A, we show the total subthreshold current (IAHP + ILTS) versus

the rest of ionic currents when no applied current was added to the neuron
model, that is Iapp = 0. Note that in the time interval (62, 100)ms the value
of the subthreshold currents dominates. More precisely, in the time interval
(77, 100)ms, the sum of the rest of ionic currents almost vanishes and so the
neuron has only subthreshold activity. These subthreshold-dominant time inter-
vals can be better appreciated in Figure 1B, where the ad hoc index of dominance
χ(t) (see equation (2)) is shown: index values below −

√
2/2 indicate dominance

of AHP currents whereas index values above
√
2/2 indicate dominance of LTS

currents. We recall that, for each time t, this index is a statistical measure
calculated from the currents for all Iapp. In Figure 1C subthreshold-dominant
intervals are shaded over the membrane potential for Iapp = 0.

The representation of index χ in Figure 1B is useful to select different situa-
tions of activation of subthreshold currents, see also Figure 1C. In particular, we
analyse (see Figure 2): a case where the AHP current prevails over the LTS cur-
rent (we choose t = 85ms, see Figure 1B-C), and a case where the dominating
current is LTS (we choose t = 95ms, see Figure 1B-C). Note that in both cases
the traces of the currents lie clearly under the threshold. We have applied the
linear estimation procedure explained in Section 2.2.1 both for IAHP -dominance
(t = 85ms) and ILTS-dominance (t = 95ms).

When both IAHP and ILTS are inactivated, the estimation in the subthresh-
old regime is very accurate, as we predicted. Indeed, in Figure 2A, the actual
and the estimated slopes (corresponding to the estimation of 1/gsyn) and inter-
cepts (corresponding to the estimation of Veff ) show a substantial agreement.
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Figure 1: Representation of the subthreshold-activated ionic currents. In
panel A, we compare the sum of the subthreshold currents, −(IAHP + ILTS) (black
trace), with the sum of all other ionic currents, ICa + INa + IK (gray trace) with
no applied current, that is Iapp = 0. The solid trace represents, in each case, the
absolute value of the sums, whereas the dotted traces represent the actual values. We
have chopped off the graphs for the sake of clarity. Panel B shows the mean (solid
trace, in black) and the minimum and maximum values (solid traces, in gray) of the
index of dominance of subthreshold currents over the different values of Iapp. The
two horizontal dotted lines (in gray) are the limits between the spiking and the non-
spiking regimes and define three zones: a ILTS-dominated non-spiking regime (upper
zone), a spiking regime (middle zone) and an IAHP -dominated non-spiking regime
(lower zone). In panel C, we show the IAHP -dominated (bluish shadowed) and ILTS-
dominated (reddish shadowed) regimes obtained from panel B (mean across all applied
currents) over the voltage course for Iapp = 0.
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The most interesting differences arise when we estimate the conductances
under the presence of either IAHP or ILTS , as shown in Figure 2B-C-D. Whereas
both the slope (1/gsyn) and the intercept (Veff ) are well estimated with this kind
of currents off (Figure 2A), the activation of any of them induces a mismatch
between the theoretical v−Iapp line and the estimated one (see Figure 2B-C-D),
where both the intercept and the slope are altered.

When the IAHP dominates (see Figure 2D), this situation clearly leads to
an overestimation of the total synaptic conductance because the slope (1/gsyn)
is underestimated; the effective reversal potential (Veff ) is also overestimated.
On the other hand, when the dominating current is ILTS (see Figure 2B-C),
the total synaptic conductance is underestimated whereas the effective reversal
potential is overestimated. It is clear, then, that the solutions of the linear
system (5) contain errors both in either Veff and gsyn, thus indicating that
the linear relationship hypothesis between vfilt and Iapp can also be broken
in (apparently) silent regimes. Interestingly, this effect was not detected when
subthreshold currents are not considered (see Guillamon et al (2006)).

Using the estimations obtained from Figure 2 and applying the equations in
(5), we can compute the relative errors in the estimation of synaptic conduc-
tances at critical time instants both when the dominating current is IAHP and
ILTS , see Table 1.

relative error
Veff gsyn gE gI

t = 95ms
LTS

dominates
3.42% −20.76% 6.86% −29.32%

t = 95ms
LTS ON
AHP OFF

6.17% −42.18% −16.59% −57.16%

t = 85ms
AHP

dominates
0.74% 11.85% 44.51% 13.29%

Table 1: Relative errors in the pyramidal cell model. For three dif-
ferent situations, ILTS dominance, IAHP dominance and only ILTS activated,
we compute the relative error of the estimated effective reversal potential and
the conductances with respect to the actual ones, that is 100(xestimated −
xactual)/|xactual|%, where x stands for Veff , gsyn, gE and gI . Rows 1, 2 and
3 correspond, respectively, to panels B, C and D of Figure 2. Moreover, row
1 corresponds to time t = 95ms in the panels of Figure 3 and row 3 to time
t = 85ms.

As explained above, in Figure 2 we have shown, for specific time values,
how the activation of subthreshold ionic currents has an adverse effect on the
estimations of synaptic conductances. However, these values constitute a too
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Figure 2: Comparison of the actual and estimated parameters for the

pyramidal cell model under different dominance regimes. Panel A shows the
estimation for time t = 70ms (silent regime) when both subthreshold currents, IAHP

and ILTS , are inactive. Panels B and D show the estimation for times t = 95ms

(ILTS-dominated non-spiking regime) and t = 85ms (IAHP -dominated non-spiking
regime), respectively, when both IAHP and ILTS are active. Panel C shows a case
where ILTS is activated but not the IAHP . In all panels, the solid trace represents the
theoretical regression line whereas the dotted trace is the straight line estimated from
the data (red dots, which indicate the filtered membrane potential for different values
of the applied current Iapp). The relative errors in estimating gsyn, Veff , gE and gI
in panels B, C and D are quantified in rows 1, 2 and 3 of Table 1, respectively.
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Figure 3: Relative errors in the IAHP -dominated and ILTS-dominated

phases. Panel A shows the relative error of the synaptic conductance (solid
trace) together with the spiking times (dots, in red) for each Iapp value in
{−1,−0.9,−0.8, . . . , 0.8, 0.9, 1} in order to show the influence of spikes in the misesti-
mations. Panels B, C and D show the relative error (dashed red trace), the estimated
value (dotted black trace) and the actual value (solid black trace) of the total, exci-
tatory and inhibitory synaptic conductances, respectively, in the subthreshold regime.
Vertical lines show the border between the IAHP - and ILTS-dominance phases, as in
Figure 1C.

punctual examination of the problem; to show that these misestimations are
maintained along a significative time interval, in Figure 3 we plot the actual
conductances, the estimated ones and the relative errors for t ∈ [77.35, 96.6]ms:
panels A and B refer to gsyn whereas panels C and D refer to gE and gI , respec-
tively. From panels B-C in Figure 1, we can see that this interval contains both
an IAHP -dominated subinterval (below t = 89.65ms) and a ILTS-dominated
subinterval (above t = 89.9ms). We discriminate the analysis according to
these subintervals in order to discern the contamination due to the presence of
the afterhyperpolarizing current from the presence of the low-threshold current.
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MEAN IAHP -dominated ILTS-dominated
gsyn 8.6% −11.23%
gE 27.82% −2.85%
gI 10.12% −13.87%

STD IAHP -dominated ILTS-dominated
gsyn 6.45% 9.69%
gE 35.14% 30.48%
gI 9.07% 16.30%

Table 2: Statistics of average relative errors for the pyramidal cell

model. Statistics of relative errors in the estimation of total, excitatory and
inhibitory synaptic conductances. The rows show the averages along time in-
tervals and are computed 100 (xestimated − xactual)/|xactual|%, where x stands
for gsyn, gE and gI , respectively. Left column: averages over the time interval
[77.35, 89.65]ms, where IAHP dominates; right column: averages over the time
interval [89.65, 96.6]ms, where ILTS dominates, see also Figure 3 for reference.

3.1.1 Estimation errors in the IAHP -dominated time interval

The explanation for the influence of this kind of currents in the estimations can
be found in the time scale of activation, namely the long-time scale of [Ca2+].
It turns out that the IAHP has a strong influence during around 55ms after the
spike (since τCa = 80ms and [Ca2+] has an exponential decay, see equation (13)
in Appendix A). Then, it may happen that, for some Iapp, the IAHP current is
still influencing while for other Iapp, the IAHP is negligible at this moment in
time. This fact leads to a breaking of the linearity of the Iapp−vfilt relationship.
Observe (see Figure 1A) that spiking regimes finish around t = 53ms so that
the IAHP -dominance interval, t ∈ [77.35, 89.65]ms, is coherent with the time
scale of this calcium-induced potassium channel.

For this time interval, we observe (see Table 2) an average error in the total
synaptic conductance around 8.64 ± 6.45%, that is somehow preserved for the
inhibitory conductance (10.12± 9.07%) but a notable increase of the excitatory
conductance error up to 27.82 ± 35.14%. Our results confirm and quantify
the discrepancies between the actual and estimated histograms of gAMPA and
gGABA observed in Figure 6 of Rudolph et al (2004) under the presence of
subthreshold-activated ionic channels. Our quantitative analysis shows that
these errors cannot be disregarded and that they can lead to wrong conclusions
about the reconstruction of gE and gI temporal profiles.

3.1.2 Estimation errors in the ILTS-dominated time interval

The IAHP current needs spiking activity before being activated and it could
be argued that the observed errors are due to this post-influence of the spiking
misestimations rather than the presence of subthreshold ionic channels. To
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Figure 4: Actual versus estimated conductances for the pyramidal cell

model with only ILTS active. Panels A, B and C represent the scatter plot of the
actual versus the estimated total, excitatory and inhibitory synaptic conductances,
respectively, for a time interval where only the ILTS current is active. The identity
line has been added on the scatter plot as a reference to compare how the estimated
conductances agree with the actual ones.

ensure that this is a pure subthreshold effect, we have chosen another type of
subthreshold-activated channel, a low-threshold one which activates in a range
of voltage values still far from the spiking threshold but sufficiently above the
hyperpolarized state.

For this time interval, we observe an average error in the total synaptic
conductance around −11.23 ± 9.69%, that become somehow steady for the in-
hibitory conductance (−13.87±16.30%) and a low mean disperse estimation for
the excitatory conductance (−2.85± 30.48%).

Considering the IAHP current inactive, Figure 4 shows the actual and the es-
timated conductances when only the ILTS current is active, that is t ∈ [70, 100].
In this plot we can appreciate the misestimations of the linear regression even in
the subthreshold regime since, the dots of the scatter plot do not tend to align
along the identity line.

3.1.3 Source of misestimations

We know by previous studies, see Guillamon et al (2006), that the mismatches of
the estimation in the spiking regime come from the wrong assumption that the
different ionic currents vanish. When either AHP or LTS currents are on, the
errors in the estimation spread to the regimes where these currents are active
since we can not suppose that they vanish. Therefore the linear regression (4)
should be corrected as

v(t; Iapp) = Veff (t)−
IAHP (t) + ILTS(t)

gsyn(t)
+

Iapp
gsyn(t)

. (10)

If we examine the effect of the new term IAHP (t) + ILTS(t) in equation
(10) on the solution of the linear regression (5), we obtain that the solution is
modified by adding an extra term depending on the subthreshold currents to
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the gE and gI expressions:

gE =
(gsyn−gL)VI−Veff gsyn+gLVL

VI−VE
− IAHP+ILTS

VI−VE

gI =
−(gsyn−gL)VE+Veff gsyn−gLVL

VI−VE
+ IAHP+ILTS

VI−VE

(11)

The cause of the pitfalls of the estimation are thus due to ignore the IAHP (t)+
ILTS(t) term in the linear estimation procedure. Basically three different situa-
tions may arise: (a) if IAHP + ILTS were constant with respect to Iapp, then we
would obtain a perfect fit and estimation of gsyn, whereas Veff would be mis-
estimated; (b) if IAHP + ILTS were to vary linearly with respect to Iapp, then
the fit would remain perfect, but both gsyn and Veff would be misestimated;
(c) otherwise, neither the fit would be good and the estimations trustable.

In the first two cases ((a) and (b)) one could devise a way to foresee whether
Veff and gsyn are underestimated or overestimated. For instance, in the AHP -
dominated regime, since IAHP + ILTS < 0 (see Figure 1B), the (Iapp, v(t; Iapp))
points obtained from the experiments would be distributed above the line cor-
responding to the ideal situation where no ionic currents are active. For case
(a), this would lead to an overestimation of Veff and, for case (b), to an over-
estimation of Veff and an underestimation (resp., overestimation) of gsyn if the
(IAHP +ILTS) versus Iapp slope is positive (resp., negative). Unfortunately, the
most common case is (c), in which the above predictions can be taken only as an
orientation. Indeed, in Table 1 we can observe, for instance, underestimations
of Veff in the AHP -dominate regime. The same analysis can be applied to the
estimations of gE and gI from gsyn and Veff (see equation (11)), so we cannot
assess a general relationship between AHP or LTS domination and the sign of
the misestimations.

3.1.4 Linearization of the subthreshold ionic currents approach

In the case of LTS, this current is activated on the subthreshold regime inde-
pendently of the spikes. Its characteristic time scale τLTS changes according to
the steady state value of the current which is given by (12) with w = hLTS .

As we have mentioned in Section 2.2.2, during the phase where ILTS is
dominating, the plot of the function

ILTS,∞(v) := gLTS mLTS,∞(v)3 hLTS,∞(v) (v − VCa)

is not far from linear. Then, ILTS,∞(v) can be linearised for v ≈ [−75,−60]mV
and the estimation described in Section 2.2.2 can be done. However, this ap-
proach did not lead to good estimations either, the reason being the slow ap-
proach of the hLTS variable to its steady state hLTS,∞(v) (see Figure 5A).
Anyway, we found interesting to show the slight improvement obtained follow-
ing this approach. Just as a proof of concept, we tried with a 10-times smaller
time constant, namely τLTS = 4.5ms, in which case hLTS catches hLTS,∞(v)
up sufficiently fast to be close enough during the ILTS-dominance phase (see
Figure 5B). Thus we get that hLTS closer to hLTS,∞(v) in the interval in which
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Figure 5: Behaviour of hLTS and hLTS,∞(v) Both panels show the voltage of
the neuron (dotted red trace) and the behaviour of hLTS (solid black trace) and of
hLTS,∞(v) (dashed black trace) over time. In panel A we can see how hLTS and
hLTS,∞(v) do not match when using the characteristic time scale of the system. Oth-
erwise, in panel B, where the parameter τLTS has been fixed to be 4.5, we observe
that hLTS reaches hLTS,∞(v) very quickly.
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ILTS,∞(v) is linear and so ILTS,∞(v) ≈ ILTS(m,h, v). Then, the procedure pro-
posed at the end of Section 2.2.2 can be applied to improve the linear estimation
of the synaptic conductances. Obviously we are certainly loosing biophysical in-
terest since this would be a valid approach only for putative “fast low-threshold”
channels, which are seldomly reported in the literature, see Carbone et al (2006).
In this case, as we can see in Figure 6, the agreement of the estimated data with
the actual data presents an important improvement.

3.2 Misestimations in the stellate cell model with NaP-

and h- currents

In the previous section we have seen how the subthreshold-activated currents
lead the linear estimation to significant errors. Let us now consider the stellate
cell model described in Section 2.1.2 to stress the misestimations of the linear
regression under the presence of currents, which cause oscillatory activity in
the subthreshold regime and nonlinear effects. Finally, we are presenting an
improvement of the linear estimation to take into account this nonlinearities
and the fact that the ionic currents may not reach the steady state, where the
alternative presented in Section 3.1.4 fails.

In contrast to the pyramidal cell model, the model we are currently consid-
ering has no presence of currents that lead the neuron to fire. For this reason,
the goodness of the estimation can not be affected by the presence of spiking
currents, but only for the subthreshold ones. In order to proceed with the lin-
ear estimation, we check that, for values of Iapp ∈ [−4,−3], both subthreshold
currents are active. Their magnitudes oscillate between 1 and 7 µA/cm2 for the
INaP , and with magnitude between 4 and 7 µA/cm2 for the Ih (see Figure 7
for a representation of INaP and Ih when Iapp = −3.5).

Figure 8 shows the results of applying the standard linear estimation pro-
cedure defined by formulas (4) and (5). Upper panels show how the estimated
synaptic conductances (either the total one or both excitatory and inhibitory)
clearly diverge from the actual ones along time. Lower panels of Figure 8 con-
tain the scatter plots of the set of paired points (gactual, gestimated) for the total,
excitatory and inhibitory conductances. The arrangement of the points far from
the identity line gives a clear evidence of the non-validity of the standard linear
estimation procedure.

Finally, in Figure 9, we show the membrane potential computed by using
the actual conductances together with the membrane potential obtained with
the estimated conductances (the reconstructed voltage). Comparing the results
obtained in this figure and the time course of the ionic currents (see Figure 7),
we can see how the reconstructed voltage is worse when subthreshold currents
present higher activity, as it is also noticeable for the synaptic conductances.

Summing up, te results shown for the stellate cell model up to this point,
together with those obtained for the pyramidal cell model with IAHP and ILTS

currents, clearly demonstrate that the standard linear estimation procedure
turns out to be inappropriate as well in subthreshold regimes. For the pyramidal
cell model, we have come up with a modified linear regression which mildly
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Figure 6: Estimation of excitatory and inhibitory conductances using a rec-

tified linear regression. For fast low-threshold dynamics (τLTS = 4.5ms), panels
A and B show the relative errors of gE and gI , respectively, when the standard linear
estimation (using (4) and (5)) has been used (solid trace) and when the estimation
has been modified using the procedure proposed at the end of Section 2.2.2 (dashed
trace).
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Figure 7: Representation of the subthreshold-activated ionic currents in

the stellate cell model. Activity of the two active subthreshold currents in this
model, the persistent sodium current (black trace) and the h-current (gray trace) for a
central value of the set of applied currents used in the estimation, that is, Iapp = −3.5.

improved the estimations. For the stellate cell model, taking advantage of the
minimal model reduction given in Rotstein (2015), we are able to propose a
promising nonlinear estimation procedure, see Section 2.2.3, that improves the
estimations by more than one order of magnitude.

3.2.1 Quadratization alternative

Following the procedure presented in Section 2.2.3, from the total synaptic
current, we can discern between excitatory and inhibitory conductances using
two trials corresponding to different applied currents. In this section we want
to show the goodness of this new approach.

Having two different voltage traces for different applied currents, from equa-
tion (8) one can estimate the total synaptic current for each trial. In Figure
10A, we can appreciate how the estimated synaptic current fits to the actual one
along time. The scatter plot presented in panel B illustrates how the estimated
and the actual values are concentrated in the vicinity of the identity line, which
means a good estimation of the synaptic current.

Using two different applied currents, say Iapp,1 and Iapp,2, and the corre-
sponding voltage traces v1(t) and v2(t), we obtain Isyn,1(t) and Isyn,2(t), re-
spectively, from equation (8), see also Figure 10. Then, using (9), we obtain an
estimation of the time course of the excitatory and the inhibitory conductances
which are shown and compared with the actual ones in Figure 11. In the upper
panels of this figure, one can see how the actual and the estimated traces fit
better than in the linear regression case. Moreover, the estimation is better
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Figure 8: Comparison of the actual and the linearly estimated conduc-

tances for the stellate cell model. Upper panels show the actual time course
(solid black traces) and the estimated time courses (dotted black traces) of the total
(panel A), the excitatory (panel B), and the inhibitory (panel C) synaptic conduc-
tances when the linear estimation has been applied for 21 values of Iapp ∈ [−4,−3],
equispaced. Low panels represent the scatter plot of the actual conductances versus
the estimated. The plotted conductances are the synaptic one, the excitatory one, and
the inhibitory one (from left to right). The identity line has been added on the scatter
plot to compare how the estimated conductances disagree with the actual ones.
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Figure 9: Voltage dynamics generated by both the actual and the linearly

estimated conductances in the stellate cell model. Solid black trace represents
the voltage obtained with the actual conductances while the dotted black trace rep-
resents the reconstructed voltage, obtained by plugging the estimated conductances
into the model. The applied current considered in both cases is Iapp = −3.5.

for the excitatory conductances than for the inhibitory ones, as it can also be
seen in the lower panels, where the scatter plot presents higher concentration on
the vicinity of the identity line for the gE case. In Table 3, we give a complete
quantitative description of the errors of the estimation both for the linearization
and the quadratization procedures.

MEAN Linearization Quadratization
gsyn 61.73% −0.46%
gE 2335.03% −4.92%
gI 155.68% −1.06%

STD Linearization Quadratization
gsyn 69.79% 4.35%
gE 2507.84% 30.84%
gI 287.09% 20.94%

Table 3: Statistics of average relative errors for the stellate cell model.

Statistics of relative errors in the estimation of total, excitatory and inhibitory
synaptic conductances. The rows show the averages along time intervals and
are computed 100 (xestimated − xactual)/|xactual|%, where x stands for gsyn, gE
and gI , respectively. Left column: averages corresponding to the Linearization
procedure; right column: averages corresponding to the Quadratization proce-
dure.
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Figure 10: Actual synaptic currents compared to those estimated through

the quadratizaton procedure. Panel A shows the time course of the actual synaptic
current (solid black traces) and the estimated one (dotted black traces) when the
quadratization approach has been applied for Iapp = −3.5. Panel B represents the
scatter plot of the actual synaptic current versus the estimated. The identity line has
been added on the scatter plot to compare how the estimated values agree with the
actual ones.
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Figure 11: Comparison of the actual and estimated conductances using

the quadratization approach. Upper panels show the actual time course (solid
black traces) and the estimated time courses (dotted black traces) of the total (panel
A), the excitatory (panel B), and the inhibitory (panel C) synaptic conductances
when the quadratization approach is applied for Iapp = −4 and Iapp = −3.5. Low
panels represent the scatter plot of the actual conductances versus the estimated ones,
showing a good agreement.

Finally, to study the effect of the errors done in the estimation, we recon-
struct the voltage traces of the neuronal model using the estimated conduc-
tances. As we can see in Figure 12, both the actual and the reconstructed
voltages do not present big changes, contrary to the case when linear regression
is applied.

These results imply that the quadratization approach is a better alternative
to estimate conductances when nonlinear activity coming from subthreshold-
activated ionic currents is present.

4 Discussion

It is well-known that linear estimations of synaptic conductances are not trustable
when data is extracted intracellularly from spiking activity of neurons, see Guil-
lamon et al (2006). Data from experimental studies in the current literature are
generally treated taking this cautious message into account but the probable
presence of subthreshold-activated currents confounding the impact of presy-
naptic activity is yet generally neglected. Our study entails that estimation
of synaptic conductances in the presence of subthreshold-activated currents,
even obtained from periods of apparently silent activity, may not be accurate.
We have explored this feature using first a computational model with either
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Figure 12: Voltage dynamics generated by both the actual and the quadrat-

ically estimated conductances in the stellate cell model. Solid black trace rep-
resents the voltage obtained with the actual conductances while the dotted black trace
represents the reconstructed voltage, obtained by plugging the estimated conductances
into the model. The applied current considered in both cases is Iapp = −3.5.

afterhyperpolarizing or low-threshold activated currents and both sources of
subthreshold activity lead to similar conclusions. To strengthen the message, a
second model has been taken into account, consisting of two different activated-
subthreshold currents, a resonant one (Ih) and a persistent one (INaP ). In the
first computational model, the pyramidal model described in Section 2.1.1, we
have been able to isolate periods of activity where either AHP or LTS cur-
rents dominate. In the first case, the long-time scale of [Ca2+] provides an
AHP-dominated time window (55ms approximately) after the spiking activity
in which linear estimations of synaptic conductances fail. One might argue that,
since AHP is only present after spiking activity, this failure is a natural exten-
sion of bad estimations in spiking regimes rather than an effect of subthreshold
activity. To rule out this interpretation, we have been considered both exam-
ining the periods where LTS currents dominate, which have no dependence on
previous spiking activity, and the second model, the stellate model described in
Section 2.1.2, with no mechanisms for spiking. In both cases we observed similar
misestimations, being the main explanation is the loss of linearity in the I − V
relationship. Thus, we conclude that it is an ubiquitous feature in subthreshold-
activated currents. Therefore, our findings add a new warning message for the
treatment of data obtained from intracellular recordings and the conclusions
that can be drawn from them, specially those concerning the balance between
excitation and inhibition.

In this paper we have also considered possible improvements to get more
accurate estimations of the synaptic conductances. In particular, we also provide
a strategy based on a quadratization of the neuronal model presented in Rotstein
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(2015). We think that this finding suggests experimental outcomes. Apart from
the obvious alternative of a pharmacological block of all possible subthreshold-
activated channels, which indeed could lead to a too passive integrator, we
propose a fitting of the data to a quadratic model that could account for channels
whose underlying dynamics is similar to that of the stellate cell model presented
in this paper.

This quadratization approach still allows for further improvements that we
plan to tackle. The main point is that the method lowers its performance when
applied to synaptic inputs with faster time-scales. In our examples, we have used
as synaptic drive the input of a realistic network on a single cell, thus including
different synaptic receptors types and so a wide range of synaptic time-scales
(in Figure 11-ABC it can be noticed that the synaptic input contains rapid
fluctuations). Therefore, although the overall estimation is already excellent,
probably due to an important role of slow synaptic components, it would be
possible to improve the estimation of these fast components. We think that a
deeper study using singular perturbation theory would help in getting a more
refined version of the method.

One could also add other misestimation sources, specially those emanated
from the dendro-somatic interaction (see for instance Cox (2004)), but our goal
in this work is to observe the net effect of the presence of subthreshold cur-
rents; accordingly, we have considered single-compartment neuron models, thus
assuming that the voltage does not vary from the dendrite, where the signal is
received by the neuron, to the soma, where we are focusing on.

Unfortunately, the use of linear estimation methods to extract synaptic con-
ductance time courses has been profusely used in experimental studies (for brief
illustrations see Anderson et al (2000), Wehr and Zador (2003) and Bennett et al
(2013)) and important conclusions about brain’s functionality have been drawn
from the excitatory-inhibitory separation of these time courses. Our results im-
ply, at least, that caution has to be applied in trusting this type of results and,
probably, a revision of functionality conclusions obtained from experimental
data should be conducted.

Besides the implications on experimental data treatment, our findings also
bring up new arguments to extend previous theoretical approaches, see for in-
stance Rudolph et al (2004), that rely on the formulation of the dynamics of
the neuron as an integrate & fire model. More specifically, new analytical meth-
ods to obtain Fokker-Planck-like equations for integrate & fire models with
subthreshold-activated currents should be devised. This is a rather challenging
problem both from the point of view of stochastic differential equations and
numerical integration of partial differential equations.

To sum up, we would like to emphasize our message that, in the estimation
of conductance in subthreshold regimes, one should also rule out the presence
of ionic currents before proceeding with linear estimations methods. Otherwise,
as an alternative method to estimate the conductances, the quadratization ap-
proach described in Section 2.2.3 should be used in order to minimize the errors.
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Cox SJ (2004) Estimating the location and time course of synaptic input from
multi-site potential recordings. J of Computational Neuroscience 17:225–243.

Destexhe A, Babloyantz A, Sejnowski T (1993) Ionic mechanisms for intrinsic
slow oscillations in thalamic relay neurons. Biophysical Journal 65:1538–1552.
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Appendix A: Mathematical model of the pirami-

dal cell

The first model we use is the one given in Wang (1998), which describes the
behaviour of a neuron that has two compartments, the dendrite and the soma
plus the axonal initial segment. In our study we only consider the somatic
compartment:

Cm

dV

dt
= −IL − INa − IK − ICa − IAHP + Iapp − Isyn,
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where Cm is the capacitance, Isyn the synaptic current, Iapp the applied current
and IL, Iion the leak and the respective ion currents which are described by
equations

IL = gL(v − VL),
INa = gNam

3
∞(v)h(v − VNa),

IK = gKn4(v − VK),
ICa = gCaml∞(v − VCa),
IAHP = gAHP

c
c+KD

(v − VK),

ILTS = gLTSm
3
LTS,∞hLTS(v − VCa),

where Vion and gion represent the specific ion reversal potentials and maximal
conductances, respectively, c is the intracellular calcium concentration [Ca2+]
and KD represents a growth factor of the IAHP current. The variables h and n
are gating variables governed by first-order kinetics of type

ẇ =
dw

dt
= φ[αw(v)(1− w)− βw(v)w] = φ

w∞(v)− w

τw(v)
(12)

Them-type variables are considered to be at the steady-stateml = ml∞(v),m =
m∞(v). More precisely, the functions describing the gating dynamics are given
by:

w∞(v) = αw(v)/(αw(v) + βw(v)),
τw(v) = 1/(αw(v) + βw(v)),
αh(v) = 0.07 exp(−(v + 50)/10),
βh(v) = 1/(1 + exp(−0.1(v + 20))),
αn(v) = −0.01 (v + 34)/(exp(−0.1(v + 34))− 1),
βn(v) = 0.125 exp(−(v + 44)/25),
αm(v) = −0.1 (v + 33)/(exp(−0.1(v + 33))− 1),
βm(v) = 4 exp(−(v + 58)/12),
ml∞(v) = 1/(1 + exp(−(v + 20)/5))

and, for the LTS current,

mLTS,∞(v) = 1/(1 + exp(−(v + 65)/7.8)),
dhLTS/dt = (φLTS(hLTS,∞(v)− hLTS(v)))/τLTS(v),

where
hLTS,∞(v) = 1/(1 + exp((v + 81)/11)),

τLTS(v) = hLTS,∞(v) exp((v + 162.3)/17.8).

The intracellular calcium concentration c = [Ca2+] is assumed to be gov-
erned by a leaky-integrator

dc/dt = −αICa − c/τCa, (13)

where τCa is the time constant and α is proportional to the membrane area
divided by the volume below the membrane.
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The biophysical parameters are:

Conductances (mS/cm2) : gL = 0.1, gNa = 45,
gK = 18, gCa = 1.0, gAHP = 5.0, gLTS = 0.5;

Reversal potentials (mV ) : VL = −65, VNa = 55,
VK = −80, VCa = 120.0, VE = 0, VI = −80;

Capacitance (µF/cm2) : Cm = 1;
Non− dimensional constants : φ = 4, φLTS = 2;
Other constants : α = 0.002µM(msµA)−1cm2,

τCa = 80ms, KD = 30.0µM.

Finally, we take Iapp ∈ [−1, 1]µA/cm2 (see Appendix B in Guillamon et al
(2006) for a justification of this choice).

Appendix B: Mathematical model of the stellate

cell

The second model we use is the one given in Rotstein et al (2006) by considering
only the persistent sodium current (INaP ) and a fast-component h-current (Ih),
so the spiking currents are supposed inactivated. Except for those ionic cur-
rents, the remainder parameters of the model follow the same equations given
in Appendix A. Then, the ionic currents are described as

INaP = gpp∞(v)(v − VNa)
Ih = ghrf (v)(v − Vh)

where gp and gh are the maximal conductances, VNa and Vh the reversal po-
tentials, and p∞ and rf are the gating variables, all of them for the persistent
sodium current and the h-current, respectively.

Note that the gating variable of INaP has been approximated, since it is
evolving a fast time scale, by the adiabatic approximation p(v) = p∞(v). On
the other hand, the gating variable rf is supposed to be governed, as in Appendix
A, by first-order kinetics of type (12) where φ = 1. The functions defining p∞,
rf,∞ and τrf are, respectively,

p∞(v) = 1/(1 + exp((v + 38)/6.5)),
rf,∞(v) = 1/(1 + exp((v + 79.2)/9.78)),
τrf (v) = 0.51/(exp((v1.7)/10) + exp((v + 340)/52))) + 1,

The biophysical parameters through this model are:

Conductances (mS/cm2) : gL = 0.5, gp = 0.5, gh = 1.5;
Reversal potentials (mV ) : VL = −65, VNa = 55,

Vh = −20, VE = 0, VI = −80;
Capacitance (µF/cm2) : Cm = 1;
Non− dimensional constants : φ = 1.

Finally, we take Iapp ∈ [−4,−3]µA/cm2.
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Supplementary figures

Supplementary Figure 1: Complete conductance traces. Complete (1ms) time
courses of the excitatory (gE(t), solid trace) and inhibitory (gI(t), dashed trace) con-
ductances used to drive the activity of the target neuron. The conductance traces
have been obtained from a computational network that models layer 4Cα of primary
visual cortex (see McLaughlin et al (2000) and Tao et al (2004)).
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