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RESEARCH ARTICLE
◥

ECONOMICS

Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex

health needs. We show that a widely used algorithm, typical of this industry-wide approach and

affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients

are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.

Remedying this disparity would increase the percentage of Black patients receiving additional

help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than

illness, but unequal access to care means that we spend less money caring for Black patients than

for White patients. Thus, despite health care cost appearing to be an effective proxy for health

by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of

convenient, seemingly effective proxies for ground truth can be an important source of algorithmic

bias in many contexts.

T
here is growing concern that algorithms

may reproduce racial and gender dis-

parities via the people building them or

through the data used to train them (1–3).

Empirical work is increasingly lending

support to these concerns. For example, job

search ads for highly paid positions are less

likely to be presented to women (4), searches

for distinctively Black-sounding names are

more likely to trigger ads for arrest records

(5), and image searches for professions such

as CEO produce fewer images of women (6).

Facial recognition systems increasingly used

in law enforcement perform worse on recog-

nizing faces of women and Black individuals

(7, 8), and natural language processing algo-

rithms encode language in gendered ways (9).

Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:

Algorithms deployed on large scales are typically

proprietary, making it difficult for indepen-

dent researchers to dissect them. Instead, re-

searchers must work “from the outside,” often

with great ingenuity, and resort to clever work-

arounds such as audit studies. Such efforts can

document disparities, but understanding how

and why they arise—much less figuring out

what to do about them—is difficult without

greater access to the algorithms themselves.

Our understanding of a mechanism therefore

typically relies on theory or exercises with

researcher-created algorithms (10–13). With-

out an algorithm’s training data, objective func-

tion, and predictionmethodology, we can only

guess as to the actual mechanisms for the

important algorithmic disparities that arise.

In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm

deployed nationwide today. It is one of the

largest and most typical examples of a class

of commercial risk-prediction tools that, by

industry estimates, are applied to roughly

200 million people in the United States each

year. Large health systems and payers rely on

this algorithm to target patients for “high-risk

care management” programs. These programs

seek to improve the care of patients with

complex health needs by providing additional

resources, including greater attention from

trained providers, to help ensure that care is

well coordinated. Most health systems use

these programs as the cornerstone of pop-

ulation health management efforts, and they

are widely considered effective at improving

outcomes and satisfaction while reducing costs

(14–17). Because the programs are themselves

expensive—with costs going toward teams of

dedicated nurses, extra primary care appoint-

ment slots, and other scarce resources—health

systems rely extensively on algorithms to iden-

tify patients who will benefit the most (18, 19).

Identifying patients who will derive the

greatest benefit from these programs is a

challenging causal inference problem that

requires estimation of individual treatment ef-

fects. To solve this problem, health systems

make a key assumption: Those with the great-

est care needs will benefit the most from the

program. Under this assumption, the targeting

problem becomes a pure prediction policy prob-

lem (20). Developers then build algorithms

that rely on past data to build a predictor of

future health care needs.

Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-

tions as well as the data needed to understand

its inner workings: that is, the underlying in-

gredients used to form the algorithm (data,

objective function, etc.) and links to a rich

set of outcome data. Because we have the

inputs, outputs, and eventual outcomes, our

data allow us a rare opportunity to quantify

racial disparities in algorithms and isolate the

mechanisms by which they arise. It should be

emphasized that this algorithm is not unique.

Rather, it is emblematic of a generalized ap-

proach to risk prediction in the health sec-

tor, widely adopted by a range of for- and

non-profit medical centers and governmental

agencies (21).

Our analysis has implications beyond what

we learn about this particular algorithm. First,

the specific problem solved by this algorithm

has analogies in many other sectors: The pre-

dicted risk of some future outcome (in our

case, health care needs) is widely used to tar-

get policy interventions under the assumption

that the treatment effect is monotonic in that

risk, and the methods used to build the algo-

rithm are standard. Mechanisms of bias un-

covered in this study likely operate elsewhere.

Second, even beyond our particular finding,

we hope that this exercise illustrates the im-

portance, and the large opportunity, of study-

ing algorithmic bias in health care, not just

as a model system but also in its own right. By

any standard—e.g., number of lives affected,

life-and-death consequences of the decision—

health is one of the most important and wide-

spread social sectors in which algorithms are

already used at scale today, unbeknownst

to many.

Data and analytic strategy

Working with a large academic hospital, we

identified all primary care patients enrolled

in risk-based contracts from2013 to 2015. Our

primary interest was in studying differences

betweenWhite and Black patients.We formed

race categories by using hospital records,which

are based onpatient self-reporting. Any patient

who identified as Black was considered to be

Black for the purpose of this analysis. Of the

remaining patients, those who self-identified

as races other thanWhite (e.g., Hispanic) were

so considered (data on these patients are pre-

sented in table S1 and fig. S1 in the supplemen-

tary materials). We considered all remaining

patients to beWhite. This approach allowed

us to study one particular racial difference of

social and historical interest between patients

who self-identified as Black and patients who

self-identified as White without another race

or ethnicity; it has the disadvantage of not

allowing for the study of intersectional racial
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and ethnic identities. Our main sample thus

consisted of (i) 6079patientswho self-identified

as Black and (ii) 43,539 patients who self-

identified as White without another race or

ethnicity, whom we observed over 11,929 and

88,080 patient-years, respectively (1 patient-

year represents data collected for an indivi-

dual patient in a calendar year). The sample

was 71.2% enrolled in commercial insurance

and 28.8% in Medicare; on average, 50.9 years

old; and 63% female (Table 1).

For these patients, we obtained algorith-

mic risk scores generated for each patient-

year. In the health system we studied, risk

scores are generated for each patient during

the enrollment period for the system’s care

management program. Patients above the

97th percentile are automatically identified

for enrollment in the program. Those above

the 55th percentile are referred to their pri-

mary care physician, who is provided with

contextual data about the patients and asked

to consider whether they would benefit from

program enrollment.

Many existing metrics of algorithmic bias

may apply to this scenario. Some definitions

focus on calibration [i.e., whether the realized

value of some variable of interest Y matches

the risk score R (2, 22, 23)]; others on statis-

tical parity of some decision D influenced by

the algorithm (10); and still others on balance

of average predictions, conditional on the real-

ized outcome (22). Given this multiplicity and

the growing recognition that not all condi-

tions can be simultaneously satisfied (3, 10, 22),

we focus on metrics most relevant to the real-

world use of the algorithm, which are related

to calibration bias [formally, comparing Blacks

B and WhitesW, E½Y jR;W � ¼ E½Y jR;B� indi-
cates the absence of bias (here, E is the ex-

pectation operator)]. The algorithm’s stated

goal is to predict complex health needs for the

purpose of targeting an intervention that

manages those needs. Thus, we compare the

algorithmic risk score for patient i in year t

(Ri,t), formed on the basis of claims data Xi,(t−1)

from the prior year, to data on patients’ real-

ized health Hi,t, assessing how well the algo-

rithmic risk score is calibrated across race for

health outcomesHi,t. We also ask howwell the

algorithm is calibrated for costs Ci,t.

To measureH, we link predictions to a wide

range of outcomes in electronic health record

data, including all diagnoses (in the form of

International Classification of Diseases codes)

as well as key quantitative laboratory studies

and vital signs capturing the severity of chro-

nic illnesses. To measure C, we link predictions

to insurance claims data on utilization, includ-

ing outpatient and emergency visits, hospital-

izations, and health care costs. These data, and

the rationale for the specific measures of H

used in this study, are described inmore detail

in the supplementary materials.

Health disparities conditional on risk score

We begin by calculating an overall measure of

health status, the number of active chronic

conditions [or “comorbidity score,” a metric

used extensively in medical research (24) to

provide a comprehensive view of a patient’s

health (25)] by race, conditional on algorith-

mic risk score. Fig. 1A shows that, at the same

level of algorithm-predicted risk, Blacks have

significantly more illness burden thanWhites.

We can quantify these differences by choosing

one point on the x axis that corresponds to

a very-high-risk group (e.g., patients at the

97th percentile of risk score, at which patients

are auto-identified for program enrollment),

where Blacks have 26.3% more chronic ill-

nesses than Whites (4.8 versus 3.8 distinct

conditions; P < 0.001).

What do these prediction differences mean

for patients? Algorithm scores are a key input

to decisions about future enrollment in a care

coordination program. So as we might expect,

with less-healthy Blacks scored at similar risk

scores to more-healthy Whites, we find evidence
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Table 1. Descriptive statistics on our sample, by race. BP, blood pressure; LDL, low-density

lipoprotein.

White Black

n (patient-years) 88,080 11,929
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

n (patients) 43,539 6079
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Demographics
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Age 51.3 48.6
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Female (%) 62 69
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care management program
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Algorithm score (percentile) 50 52
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Race composition of program (%) 81.8 18.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care utilization
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Actual cost $7540 $8442
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospitalizations 0.09 0.13
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospital days 0.50 0.78
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Emergency visits 0.19 0.35
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Outpatient visits 4.94 4.31
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Mean biomarker values
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

HbA1c (%) 5.9 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Systolic BP (mmHg) 126.6 130.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diastolic BP (mmHg) 75.5 75.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Creatinine (mg/dl) 0.89 0.98
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hematocrit (%) 40.7 37.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

LDL (mg/dl) 103.4 103.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Active chronic illnesses (comorbidities)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Total number of active illnesses 1.20 1.90
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypertension 0.29 0.44
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, uncomplicated 0.08 0.22
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arrythmia 0.09 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypothyroid 0.09 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Obesity 0.07 0.18
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Pulmonary disease 0.07 0.11
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Cancer 0.07 0.06
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Depression 0.06 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Anemia 0.05 0.10
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arthritis 0.04 0.04
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Renal failure 0.03 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Electrolyte disorder 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart failure 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Psychosis 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Valvular disease 0.03 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Stroke 0.02 0.03
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Peripheral vascular disease 0.02 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, complicated 0.02 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart attack 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Liver disease 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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of substantial disparities in program screening.

We quantify this by simulating a counterfactual

world with no gap in health conditional on

risk. Specifically, at some risk threshold a, we

identify the supramarginal White patient (i)

with Ri > a and compare this patient’s health

to that of the inframarginal Black patient ( j )

with Rj < a. IfHi >Hj , as measured by number

of chronic medical conditions, we replace the

(healthier, but supramarginal) White patient

with the (sicker, but inframarginal) Black patient.

We repeat this procedure until Hi = Hj, to

simulate an algorithm with no predictive gap

between Blacks and Whites. Fig. 1B shows the

results: At all risk thresholds a above the 50th

percentile, this procedure would increase the

fraction of Black patients. For example, at a =

97th percentile, among those auto-identified

for the program, the fraction of Black patients

would rise from 17.7 to 46.5%.

We then turn to amoremultidimensional pic-

ture of the complexity and severity of patients’

health status, as measured by biomarkers that

index the severity of the most common chro-

nic illnesses in our sample (as shown inTable 1).

This allows us to identify patients who might

derive a great deal of benefit from care man-

agement programs—e.g., patients with severe

diabetes who are at risk of catastrophic com-

plications if they do not lower their blood sugar

(18, 26). (The materials and methods section

describes several experiments to rule out a large

effect of the program on these health measures

in year t; had there been such an effect, we

could not easily use the measures to assess the

accuracy of the algorithm’s predictions onhealth,

because the program is allocated as a function

of algorithm score.) Across all of these impor-

tant markers of health needs—severity of diabe-

tes, highbloodpressure, renal failure, cholesterol,

and anemia—we find that Blacks are substan-

tially less healthy than Whites at any level of

algorithmpredictions, as shown in Fig. 2. Blacks

havemore-severe hypertension, diabetes, renal

failure, and anemia, and higher cholesterol.

Themagnitudes of these differences are large:

For example, differences in severity of hyper-

tension (systolic pressure: 5.7 mmHg) and

diabetes [glycated hemoglobin (HbA1c): 0.6%]

imply differences in all-causemortality of 7.6%

(27) and 30% (28), respectively, calculatedusing

data fromclinical trials and longitudinal studies.

Mechanism of bias

An unusual aspect of our dataset is that we

observe the algorithm’s inputs and outputs

as well as its objective function, providing us

a unique window into the mechanisms by

which bias arises. In our setting, the algorithm

takes in a large set of raw insurance claims

data Xi,t−1 (features) over the year t − 1: demo-

graphics (e.g., age, sex), insurance type, diag-

nosis and procedure codes, medications, and

detailed costs. Notably, the algorithm specifi-

cally excludes race.

The algorithm uses these data to predict Yi,t
(i.e., the label). In this instance, the algorithm

takes total medical expenditures (for simplic-

ity, we denote “costs” Ct) in year t as the label.

Thus, the algorithm’s prediction on health

needs is, in fact, a prediction on health costs.

As a first check on this potential mechanism

of bias, we calculate the distribution of real-

ized costs C versus predicted costs R. By this

metric, one could call the algorithm unbiased.

Fig. 3A shows that, at every level of algorithm-

predicted risk, Blacks andWhites have (rough-

ly) the same costs the following year. In other

words, the algorithm’s predictions are well cal-

ibrated across races. For example, at the med-

ian risk score, Black patients had costs of $5147

versus $4995 for Whites (U.S. dollars); in the

top 5% of algorithm-predicted risk, costs were

$35,541 for Blacks versus $34,059 for Whites.
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,

by race. (A) Mean number of chronic conditions by race, plotted against

algorithm risk score. (B) Fraction of Black patients at or above a given risk

score for the original algorithm (“original”) and for a simulated scenario

that removes algorithmic bias (“simulated”: at each threshold of risk, defined

at a given percentile on the x axis, healthier Whites above the threshold are

replaced with less healthy Blacks below the threshold, until the marginal patient

is equally healthy). The × symbols show risk percentiles by race; circles

show risk deciles with 95% confidence intervals clustered by patient. The

dashed vertical lines show the auto-identification threshold (the black

line, which denotes the 97th percentile) and the screening threshold (the gray

line, which denotes the 55th percentile).
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Because these programs are used to target

patients with high costs, these results are large-

ly inconsistent with algorithmic bias, as mea-

sured by calibration: Conditional on risk score,

predictions do not favor Whites or Blacks any-

where in the risk distribution.

To summarize, we find substantial disparities

in health conditional on risk but little disparity

in costs. On the one hand, this is surprising:

Health care costs and health needs are highly

correlated, as sicker patients need and receive

more care, on average. On the other hand, there

aremany opportunities for awedge to creep in

between needing health care and receiving

health care—and crucially, we find that wedge

to be correlated with race, as shown in Fig. 3B.

At a given level of health (again measured by

number of chronic illnesses), Blacks generate

lower costs thanWhites—on average, $1801 less

per year, holding constant the number of chron-

ic illnesses (or $1144 less, if we instead hold

constant the specific individual illnesses that

contribute to the sum). Table S2 also shows

that Black patients generate very different

kinds of costs: for example, fewer inpatient

surgical and outpatient specialist costs, and

more costs related to emergency visits and

dialysis. These results suggest that the driv-

ing force behind the bias we detect is that

Black patients generate lesser medical ex-

penses, conditional on health, even when we

account for specific comorbidities. As a re-

sult, accurate prediction of costs necessarily

means being racially biased on health.

How might these disparities in cost arise?

The literature broadly suggests two main po-

tential channels. First, poor patients face sub-

stantial barriers to accessing health care, even

when enrolled in insurance plans. Although

the population we study is entirely insured,

there are many other mechanisms by which

poverty can lead to disparities in use of health

care: geography and differential access to trans-

portation, competing demands from jobs or

child care, or knowledge of reasons to seek care

(29–31). To the extent that race and socioeco-

nomic status are correlated, these factors will

differentially affect Black patients. Second, race

could affect costs directly via several channels:

direct (“taste-based”) discrimination, changes

to the doctor–patient relationship, or others. A

recent trial randomly assigned Black patients

to a Black or White primary care provider and

found significantly higher uptake of recom-

mended preventive carewhen the provider was

Black (32). This is perhaps the most rigorous

demonstration of this effect, and it fits with a

larger literature on potential mechanisms by

which race can affect health care directly. For

example, it has long been documented that

Black patients have reduced trust in the health

care system (33), a fact that some studies trace

to the revelations of the Tuskegee study and

other adverse experiences (34). A substantial

literature in psychology has documented phys-

icians’differential perceptions of Black patients,

in terms of intelligence, affiliation (35), or pain

tolerance (36). Thus, whether it is communi-

cation, trust, or bias, something about the inter-

actions of Black patients with the health care

system itself leads to reduced use of health care.

The collective effect of these many channels is

to lower health spending substantially for Black

patients, conditional on need—a finding that has

been appreciated for at least two decades (37).

Problem formulation

Our findings highlight the importance of the

choice of the label on which the algorithm is

trained. On the one hand, the algorithmman-

ufacturer’s choice to predict future costs is rea-

sonable: The program’s goal, at least in part, is
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Fig. 2. Biomarkers of health versus

algorithm-predicted risk, by race. (A to

E) Racial differences in a range of biological

measures of disease severity, conditional

on algorithm risk score, for the most common

diseases in the population studied. The ×

symbols show risk percentiles by race, except

in (C) where they show risk ventiles; circles

show risk quintiles with 95% confidence

intervals clustered by patient. The y axis in

(D) has been trimmed for readability, so the

highest percentiles of values for Black patients

are not shown. The dashed vertical lines

show the auto-identification threshold (black

line: 97th percentile) and the screening

threshold (gray line: 55th percentile).
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to reduce costs, and it stands to reason that

patients with the greatest future costs could

have the greatest benefit from the program.

As noted in the supplementary materials,

the manufacturer is not alone. Although the

details of individual algorithms vary, the cost

label reflects the industry-wide approach. For

example, the Society of Actuaries’s compre-

hensive evaluation of the 10 most widely

used algorithms, including the particular al-

gorithm we study, used cost prediction as its

accuracy metric (21). As noted in the report,

the enthusiasm for cost prediction is not

restricted to industry: Similar algorithms are

developed and used by non-profit hospitals,

academic groups, and governmental agen-

cies, and are often described in academic

literature on targeting population health

interventions (18, 19).

On the other hand, future cost is by no

means the only reasonable choice. For exam-

ple, the evidence on care management prog-

rams shows that they do not operate to reduce

costs globally. Rather, these programs primar-

ily work to prevent acute health decompensa-

tions that lead to catastrophic health care

utilization (indeed, they actually work to in-

crease other categories of costs, such as pri-

mary care and home health assistance; see

table S2). Thus avoidable future costs, i.e.,

those related to emergency visits and hospi-

talizations, could be a useful label to predict.

Alternatively, rather than predicting costs

at all, we could simply predict a measure of

health; e.g., the number of active chronic health

conditions. Because the program ultimately

operates to improve the management of these

conditions, patients with the most encoun-

ters related to them could also be a promis-

ing group on which to deploy preventative

interventions.

The dilemma of which label to choose re-

lates to a growing literature on “problem formu-

lation” in data science: the task of turning an

often amorphous concept we wish to predict

into a concrete variable that can be predicted

in a given dataset (38). Problems in health

seem particularly challenging: Health is, by

nature, holistic and multidimensional, and

there is no single, precise way to measure it.

Health care costs, though well measured and

readily available in insurance claims data,

are also the result of a complex aggregation

process with a number of distortions due to

structural inequality, incentives, and ineffi-

ciency. So although the choice of label is

perhaps the single most important decision

made in the development of a prediction al-

gorithm, in our setting and in many others,

there is often a confusingly large array of

different options, each with its own profile

of costs and benefits.

Experiments on label choice

Through a series of experiments with our data-

set, we can gain some insight into how label

choice affects both predictive performance and

racial bias. We develop three new predictive

algorithms, all trained in the same way, to

predict the following outcomes: total cost in

year t (this tailors cost predictions to our own

dataset rather than the national training set),

avoidable cost in year t (due to emergency

visits and hospitalizations), and health in year

t (measured by the number of chronic condi-

tions that flare up in that year). We train all

models in a random ⅔ training set and show

all results only from the ⅓ holdout set. Fur-

thermore, as with the original algorithm, we

exclude race from the feature set (more details

are in the materials and methods).

Table 2 shows the results of these experi-

ments. The first finding is that all algorithms

perform reasonably well for predicting not

only the outcome on which they were trained

but also the other outcomes: The concentra-

tion of realized outcomes in those at or above

the 97th percentile is notably similar for all

algorithms across all outcomes. The largest

difference in performance across algorithms

is seen for cost prediction: Of all costs in the

holdout set, the fraction generated by those

at or above the 97th percentile is 16.5% for the

cost predictor versus 12.1% for the predictor
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Fig. 3. Costs versus algorithm-predicted risk, and costs versus health, by race. (A) Total medical expenditures by race, conditional on algorithm risk score.

The dashed vertical lines show the auto-identification threshold (black line: 97th percentile) and the screening threshold (gray line: 55th percentile). (B) Total medical
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of chronic conditions. We then test for label

choice bias, defined analogously to calibra-

tion bias above: For two algorithms trained to

predict Y and Y ', and using a threshold t

indexing a (similarly sized) high-risk group,

we would test p½BjR > t� ¼ p½BjR′ > t� (here,
p denotes probability and B represents Black

patients).

We find that the racial composition of this

highest-risk group varies far more across algo-

rithms: The fraction of Black patients at or

above these risk levels ranges from 14.1% for

the cost predictor to 26.7% for the predictor

of chronic conditions. Thus, although there

could be many reasonable choices of label—

all predictions are highly correlated, and any

could be justified as a measure of patients’

likely benefit from the program—they have

markedly different implications in terms of

bias, with nearly twofold variation in composi-

tion of Black patients in the highest-risk groups.

Relation to human judgment

As noted above, the algorithm is not used for

program enrollment decisions in isolation.

Rather, it is used as a screening tool, in part

to alert primary care doctors to high-risk

patients. Specifically, for patients at or above

a certain level of predicted risk (the 55th per-

centile), doctors are presented with contex-

tual information from patients’ electronic health

records and insurance claims and are promp-

ted to consider enrolling them in the prog-

ram. Thus, realized enrollment decisions largely

reflect how doctors respond to algorithmic

predictions, along with other administrative

factors related to eligibility (for instance, pri-

mary care practice site, residence outside of

a nursing home, and continual enrollment in

an insurance plan).

Table 3 shows statistics on those enrolled in

the program, accounting for 1.3% of observa-

tions in our sample: The enrolled individuals

are 19.2% Black (versus 11.9% Black in our en-

tire sample) and account for 2.9% of all costs

and 3.3% of all active chronic conditions in the

population as a whole. We then perform four

counterfactual simulations to put these num-

bers in context; naturally, these simulations

use only observable factors, not the many un-

observed administrative and human factors

that also affect enrollment. First, we calculate

the realized program enrollment rate within

each percentile of the original algorithm’s pre-

dicted risk bins and randomly sample patients

in each bin for enrollment. This simulation,

which mimics “race-blind” enrollment condi-

tional on algorithm score, would yield an en-

rolled population that is 18.3% Black (versus

19.2% observed; P = 0.8348). Second, rather

than randomly sampling, we sample thosewith

the highest predicted number of active chronic

conditions within a risk bin (using our ex-

perimental algorithm described above); this

would yield a population that is 26.9% Black.

Finally, we compare this to simply assigning

those with the highest predicted costs, or the

highest number of active chronic conditions,

to the program (also using our own algorithms

detailed above), which would yield 17.2 and

29.2% Black patients, respectively. Thus, al-

though doctors do redress a small part of the

algorithm’s bias, they do so far less than an

algorithm trained on a different label.

Discussion

Bias attributable to label choice—the difference

between some unobserved optimal prediction

and thepredictionof an algorithm trained onan

observed label—is a useful framework through

which to understand bias in algorithms, both
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Table 3. Doctors’ decisions versus algorithmic predictions. For those

enrolled in the high-risk care management program (1.3% of our sample),

we first show the fraction of the population that is Black, as well as

the fraction of all costs and chronic conditions accounted for by these

observations. We also show these quantities for four alternative program

enrollment rules, which we simulate in our dataset (using the holdout

set when we use our experimental predictors). We first calculate the program

enrollment rate within each percentile bin of predicted risk from the original

algorithm and either (i) randomly sample patients or (ii) sample those

with the highest predicted number of active chronic conditions within a bin

and assign them to the program. The resultant values are then compared

with values obtained by simply assigning the aforementioned 1.3% of

our sample with (iii) the highest predicted cost or (iv) the highest number

of active chronic conditions to the program.

Population Fraction Black (SE) Fraction of all costs (SE) Fraction of all active chronic conditions (SE)

Observed program enrollment (1.3%) 0.192 (0.003) 0.029 (0.001) 0.033 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Simulated alternative enrollment rules
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Random, in predicted-cost bin 0.183 (0.003) 0.044 (0.002) 0.034 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Predicted health, in predicted-cost bin 0.269 (0.003) 0.044 (0.002) 0.064 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Highest predicted cost 0.172 (0.003) 0.100 (0.002) 0.047 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Worst predicted health 0.292 (0.004) 0.067 (0.002) 0.076 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Table 2. Performance of predictors trained on alternative labels. For each new algorithm, we show the label on which it was trained (rows) and the

concentration of a given outcome of interest (columns) at or above the 97th percentile of predicted risk. We also show the fraction of Black patients

in each group.

Algorithm training

label

Concentration in highest-risk patients (SE) Fraction of Black patients in

group with highest risk (SE)
Total costs Avoidable costs Active chronic conditions

Total costs 0.165 (0.003) 0.187 (0.003) 0.105 (0.002) 0.141 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Avoidable costs 0.142 (0.003) 0.215 (0.003) 0.130 (0.003) 0.210 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Active chronic conditions 0.121 (0.003) 0.182 (0.003) 0.148 (0.003) 0.267 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Best-to-worst difference 0.044 0.033 0.043 0.126
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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in the health sector and further afield. This is

because labels are often measured with errors

that reflect structural inequalities (39). Within

the health sector, using mortality or readmis-

sion rates to measure hospital performance

penalizes those serving poor or non-White pop-

ulations (40, 41). Outside of the health arena,

credit-scoring algorithms predict outcomes re-

lated to income, thus incorporating disparities

in employment and salary (2). Policing algo-

rithms predict measured crime, which also re-

flects increased scrutiny of some groups (42).

Hiring algorithms predict employment deci-

sions or supervisory ratings, which are affec-

ted by race and gender biases (43). Even retail

algorithms, which set pricing for goods at the

national level, penalize poorer households,

which are subjected to increased prices as a

result (44).

This mechanism of bias is particularly perni-

cious because it can arise from reasonable

choices: Using traditional metrics of overall

prediction quality, cost seemed to be an effec-

tive proxy for health yet still produced large

biases. After completing the analyses described

above, we contacted the algorithm manufac-

turer for an initial discussion of our results. In

response, themanufacturer independently rep-

licated our analyses on its national dataset of

3,695,943 commercially insured patients. This

effort confirmed our results—by one measure

of predictive bias calculated in their dataset,

Black patients had 48,772 more active chronic

conditions thanWhite patients, conditional on

risk score—illustrating how biases can indeed

arise inadvertently.

To resolve the issue, we began to experiment

with solutions together. As a first step, we sug-

gested using the existing model infrastructure—

sample, predictors (excluding race, as before),

training process, and so forth—but changing

the label: Rather than future cost, we created

an index variable that combined health pre-

diction with cost prediction. This approach

reduced the number of excess active chronic

conditions in Blacks, conditional on risk score,

to 7758, an 84% reduction in bias. Building on

these results, we are establishing an ongoing

(unpaid) collaboration to convert the results of

Table 3 into a better, scaled predictor of multi-

dimensional health measures, with the goal of

rolling these improvements out in a future

round of algorithm development. Of course,

our experience may not be typical of all algo-

rithm developers in this sector. But because

the manufacturer of the algorithm we study is

widely viewed as an industry leader in data

and analytics, we are hopeful that this en-

deavor will prompt other manufacturers to

implement similar fixes.

These results suggest that label biases are

fixable. Changing the procedures by which

we fit algorithms (for instance, by using a new

statistical technique for decorrelating predic-

tors with race or other similar solutions) is

not required. Rather, we must change the data

we feed the algorithm—specifically, the labels

we give it. Producing new labels requires deep

understanding of the domain, the ability to

identify and extract relevant data elements,

and the capacity to iterate and experiment.

But there is precedent for all of these func-

tions in the literature and, more concretely,

in the private companies that invest heavily

in developing new and improved labels to

predict factors such as consumer behavior

(45). In addition, although health—as well

as criminal justice, employment, and other

socially important areas—presents substan-

tial challenges to measurement, the impor-

tance of these sectors emphasizes the value

of investing in such research. Because labels

are the key determinant of both predictive

quality and predictive bias, careful choice

can allow us to enjoy the benefits of algo-

rithmic predictions while minimizing their

risks.
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