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This paper describes how certain shrimp-like clusters of stability organize themselves in the 
parameter space of dynamical systems. Clusters are composed of an infinite affine-similar 
repetition of a basic elementary cell containing two primary noble points, a head and a tail, 

defining an axis of approximate symmetry. Knowledge of the axis and the skewness of the 
k-periodic main cell of a k × 2" cluster is enough to define the orientation of the whole cluster 
in space. Peculiarly simple directions along which shrimp-like clusters align are formed by the 

locus of doubly degenerate saddle zero multipliers corresponding to the main shrimp head. In 
addition, we report a family of models having the boundaries of all isoperiodic domains of 

stability totally degenerate and describe different aspects of their mathematical arrangement 
and some of their consequences for example, that shrimps are diffeomorphic copies of 

shrimps. 

I. Introduction 

A considerable effort has been done so far to understand and classify 

properties associated with generic bifurcations that appear in mathematical 

models of natural phenomena. Regarding this topic there is already a relatively 

large number of results collected in several books, for example, in refs. [1-10]. 

One interesting development is the observation of Feigenbaum [11] that some 

behaviors scaling with a geometric rate for quadratic maps are universal 

properties of other dynamical systems and can be calculated with renormaliza- 

tion techniques. This observation has motivated numerous investigations of 

bifurcation properties of dynamical systems, most notably of maps and 

differential equations. The original work of Feigenbaum considered families of 
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unimodal discrete maps of the interval and, perhaps as a consequence, this is 

the family of systems that since then has by far received the greatest attention. 

However, during the last ten years or so there has also been work devoted to 

understand bifurcations of bimodal maps. A sample of papers arranged more 

or less chronologically by topic and discussing specifically the parameter space 

of bimodal maps are works concerning quartic maps [12], the Hrnon map 

[8,13,14], some circle maps [15-17] and two normal forms of cubic maps 

[17-119]. Research on these dynamical systems was started more or less 

simultaneously in the early 80s. 

A valuable tool to investigate the structure of the parameter space of 

dynamical systems is the topological concept of kneading invariants [20]. 

Simply put, by studying the relative ordering of points as they appear in certain 

periodic sequences passing through critical points of the equations of motion of 

the system, the so-called superstable orbits, one obtains the locus of super- 

stable parameters, i.e. a continuous curve in parameter space defined by all 

those and only those parameters corresponding to orbits found (in the space of 

variables) to go through extrema of the map. The network of parameters 

corresponding to such superstable orbits was the basic ingredient of the 

classification schemes discussed in several of the aforementioned works. 

Thanks to these studies, many important facts are known today about the 

structure of the parameter space, for example, one knows about the existence 

of a skeleton [15] with bones [17]. The mathematical determination and 

characterization of the whole set of parameters corresponding to super- 

stable orbits involves considering all possible orbits passing through the critical 

points of a model map of interest. Loosely speaking, the locus of superstable 

orbits correspond to "centers of stability" of isoperiodic regions. However, 

apart from knowing the locations of centers of stability, a precious information 

frequently needed for applications in physics is the precise extent of each 

individual k-periodic region around such centers. One of the main points of the 

present paper is to discuss from a totally algebraic point of view how the 

problem of delimiting the full extent of regions of periodicity may be solved 

and to implement it on a number of representative cases. Such algebraic 

approach contributes effectively to abbreviate the stability analysis of physical 

systems. As shown below in section 6, it also allows one to obtain a number of 

interesting results which do not seem easy to obtain by other means. Thus, 

such approach might be of interest as a complement to the topologic approach 

frequently used nowadays. 

The basic motivation of this paper is the wish to understand several 

regularities recently found [14,19,21] to be present in isoperiodic diagrams of 

1D and 2D families of polynomial dynamical systems. By numerically inves- 

tigating parameter regions corresponding to stable periodic orbits for all 
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periods up to 128, it was possible to obtain a fairly broad view of the way in 

which bifurcation cascades organize themselves in discrete-time dynamical 

systems when high-periods are also taken into account. The parameter space 

contains a number of interesting regularities, for example, it contains many 

shrimp-like structures, i.e. many complex nestings of isoperiodic shells follow- 

ing k x 2 n doubling cascades from a main k-periodic central body. Such 

structures were found to appear aligned along very specific simple directions. 

The main k-periodic region of some of the first few low-period shrimps was 

already known from earlier studies, for example, from refs. [8,12,13,15-18]. 

Some of these references may also contain other doubling shells. But the fact 

that domains of stability appear affine-like aligned along simple directions over 

extended parameter ranges appears to have been first described in ref. [14]. 

This paper argues that isoperiodic shrimps result from a countable doubly- 

infinite affine repetition of a basic elementary cell characterized by ten noble 

points where specific degeneracies in the dynamics occur. Two primary noble 

points in the cell are their head and their tail. (A quick look at fig. 7 below 

might be useful at this point.) A line through these points defines an axis of 

approximate symmetry for every cell and tells roughly how the cell appears 

oriented in space. All in all, the fundamental message is that the a direction of 

ref. [14] (Hrnon map) and ref. [19] (two cubic maps) is in fact the head locus 

of the main head of every shrimp cluster. Since the equations of motion 

constrain unambiguously the orientation of the stability domains around the 

axis, knowledge of the orientation of the axis along with the proper "skew- 

ness" of the cell is essentially equivalent to the knowledge of the orientation of 

the full cluster. The infinite structure-parallel-to-structure sequence [14] of 

isoperiodic shrimps results from an infinite sequence of affine transformations 

of a "basic shrimp" in the parameter space which, in their turn, are themselves 

composed via affine repetitions of a "mother cell". As the periodicity 

increases, iterative processes going on in the space of variables produce in the 

parameter space infinite progressions of a two-cycle operation: distort and 

translate. Thus, the regular structures reported in refs. [14,19,21] are seen to 

arise from a doubly-infinite continued repetition of just two relatively elemen- 

tary operations on a mother cell, or atom. All clusters may be diffeomorphical- 

ly mapped to a basic cluster which is itself composed of an infinite number of 

cells obtained diffeomorphicaUy from the mother cell. 

We start in the next section, section 2, by recalling a concept that will be our 

fundamental tool for dissecting the parameter space, the century-old concept of 

multipliers. As  an important warm-up, in section 3 we evaluate multipliers for 

the familiar quadratic map xt÷ 1 = a - x ~ .  More than a trivial exercise, this 

example will prepare the ground for discussing the parameter space of physical 

systems depending on several parameters. In fact, this example is the basic key 
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for understanding situations involving more parameters. In section 4 we 

calculate multipliers for one of the two families of cubic maps for which 

detailed color isoperiodic diagrams have been recently presented [19] and 

dissect cubic shrimps. Section 5 presents a few interesting dynamical systems 

resulting from processes involving compositions of one or several quadratic 

maps. In particular, we present a highly symmetric canonical stability structure 

in parameter space. This structure is shown to have degenerate borders and to 

delimit all domains of stability for isoperiodic motions of families of dynamical 

systems, e.g. eqs. (5.2) and (5.3) below, having different dimension and 

following different routes to chaos. In other words, the cartographic subdivi- 

sion of the parameter space for these quite different dynamical systems 

contains borders which are exactly degenerate, the distinction between each 

degenerate "lot" in both charts being the periodicity, which depends on the 

equations of motion. Section 6 dissects the period-1 mother cell from which all 

others are obtained, shows where the ten noble points of degeneracy occur in 

this cell and presents explicitly one example of affine transformation for 

"tunneling" between shrimps of period-1 and shrimps of period 3--->9--->..., 

etc. In addition, section 6 argues that the period-1 mother cell can be 

heuristically expected to be the canonical one for a wide class of physical 

systems. Finally, section 7 summarizes our main conclusions, some of its 

consequences, and advances a preliminary view of the dynamics of triplets 

(x, a, b), the "algebra of critical points," as imposed by the equations of 

motion. The corresponding discussion for multidimensional systems is slightly 

more involved and will be presented in a separate paper. 

2. Definitions and tools for one-dimensional dissections 

Whether simple or generalized, isoperiodic structures that we generate in the 

parameter space correspond always to islands of stability. The basic tool 

needed to delimit the boundaries of such islands is the concept of multiplier. 

This useful concept may be conveniently borrowed, for example, from the 

historical works of Fatou [22] and Julia [23] where it was used to analyse the 

dynamics of rational functions in the complex plane. Multipliers, however, 

were already used much earlier by Fuchs, by Floquet and by Poincar6 among 

several others. 

All variables and parameters considered here are assumed to be real 

quantities. We study one-dimensional discrete-time dynamical systems written 

in the usual way as 

x , + , = f ( x , , a , b ) ,  t = 0 , 1 , 2  . . . . .  (2.1) 
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and, for simplicity, assumed to only depend on two parameters: a and b. All 

definitions remain valid, however, for any number of parameters. Maintaining 

parameters fixed, we refer to a sequence of iterates Xo, X l , X  2 . . . .  of eq. (2.1) 

as an "orbit"  or equivalently, "trajectory".  Orbits are said to be p e r i o d i c  if 

after eventually a transient regime, they repeat. They are k - p e r i o d i c  or k - c y c l e s  

if k is the smallest number of 'clock-units' t between repetitions of the 

sequence. An arbitrary point x t in the sequence {xt} is reached by c o m p o s i n g  

inductively t times the function f with itself: ft~f°ft_l = f o f o f t _  2, etc. The 

function f~(x, a, b) so obtained gives then a generic point x t in the sequence as a 

function of the initial point x0, in other words, it connects the generations x0 

and x,: 

x t = ft(x0, a, b ) .  (2.2) 

It does not seem necessary to overload the notation by introducing a special 

symbol to explicitly distinguish function compositions from indices of c o n -  

s e q u e n t  points. Note, however, that while formally eqs. (2.1) and (2.2) might 

look innocently similar, they are in fact very different. For example, if 

f ( x ,  a ,  b )  is a cubic polynomial, then ft(x, a, b) will also be a polynomial but 
3 t 

with variable and explosive degree: x , i.e. a polynomial which becomes 

quickly too long to be written down explicitly as t increases. 

Let us consider now a generic k-periodic sequence of points 

X o , X I ~ X 2 , X 3 ~  • . . , X k  ~ X  0 , (2.3) 

assumed obtained by iterating eq. (2.1) after discarding eventual transient 

behaviors. From eq. (2.2) it is clear that x 0 must be a fixed point offk.  Let us 

further consider generic points x t lying very close to the fixed point x 0 and 

study how they behave as time evolves. For this purpose we build the sequence 

of differences 

x,+~ - x o - ~ f k ( x , )  - f k ( X o )  = (x  t - X o ) f '  ~ + h.o.t. , (2.4) 

where 'h.o.t . '  stands for 'higher order terms' in the series expansion. From this 

expansion it follows that as time evolves 

X t +  k - -  X 0 

X t - -  X 0 

(2.5) 

showing that the derivative f~ rules simultaneously the stability around x 0 and 

the way in which the sequence { x t }  converges/diverges close to the fixed point, 

either by flipping or by moving continuously to / f rom the fixed point. The orbit 

is therefore characterized by the quantity 
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m k -- m ( x  k, a, b) =f~(x 0, a, b) - dfk(x '  a, b) x=xo 
dx 

(2.6) 

which is called the multiplier of the orbit in eq. (2.3). By explicitly evaluating 

the derivative, eq. (2.6) can be conveniently written in the form 

m =-m(x , ,  a, b) = f t ( X k _ l )  f t (Xk_2)  f t ( X k _ 3 ) . . ,  f ' ( X o ) ,  (2.7) 

which then shows why m was very properly called 'multiplier' quite a while 

ago. From eq. (2.7) one recognizes a very important property: m is a 

"mean-field-like" quantity containing cumulative information sampled along all 

points  of the trajectory. We explicitly introduced the point x k into the definition 

of m as a useful mnemonic index to help keep track of the particular orbit with 

which m is associated and of its periodicity. Let M-= Iml. From eq. (2.5), the 

k-periodic orbit of eq. (2.3) is therefore seen to be attracting if M < 1, repelling 

if M > 1 and indif ferent  if M = 1. Superstable orbits are those for which M = 0. 

In parameter space, boundaries of k-periodic cells o f  stability are obtained by 

sweeping a and b and recording those values for which m k = +1 ("fold"  or 

" tangent"  or "saddle-node" bifurcations) and m k = - 1  ("flip" or "pitchfork" 

or "period-doubling" bifurcations). This is done by solving the following sets of 

equations 

x = fk (x ,  a, b) ~ x  = fk(X, a, b) 
(2.8) 

m k = + 1 ,  ' ~ ( m  k = - 1 ,  ' 

where k is the period of the cell. With these definitions we are now equipped to 

study the stability of sequences of points generated by eq. (2.1). As will 

become clear from the figures to follow, multipliers are extremely valuable 

tools to investigate the parameter space. By acting as a powerful "X-ray" ,  they 

expose and facilitate the study of the intrinsic internal structure of stability cells 

and of any other more complicated structures living in the parameter space. 

Multipliers sample all points along trajectories and are therefore very sensitive 

detectors of changes in the dynamics. Observe that Lyapunov exponents are 

quite simply related to log Iml. 

3. Anatomy of unimodal shrimps: a quadratic example 

Before considering two parameters, let us first briefly evaluate multipliers for 

a familiar and simpler situation having just a single parameter,  namely, for the 

quadratic map 
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x , + ,  = f ( x , ,  a) = a (3.1) 

In this case f ' ( x , ,  a )  = - 2 x ,  and the multiplier of a k-periodic orbit is then 

m ~ m k = ( - 2 ) ~ X o X l X 2  . . . .  X k_  1 , k = 1, 2 ,  3 , . . . (3.2) 

From this equation one immediately sees that for the quadratic map, zero 

multipliers may only occur for those particular orbits containing the point 

x = 0, the o n l y  possible point where the derivative of the map is zero, a rather 

atypical situation. Generic physical models are more likely to involve deriva- 

tives containing several zeros occurring in many parameter-dependent loca- 

tions. 

Fig. 1 shows the familiar bifurcation diagram for eq. (3.1), together with a 

plot of the first few m k. From this figure one recognizes that altogether the 

multiplier is a piecewise continuous function of the parameter a. Discon- 

tinuities exist at relatively few isolated points where b i f u r c a t i o n s  occur, with m 

changing abruptly from -1---> +1 (for a increasing) or equivalently, from 

+1---> - 1  (a decreasing). This shows the m u l t i v a l u e d n e s s  of multipliers corre- 

sponding to n o n h y p e r b o l i c  parameters, i.e. those parameters for which Lm~l = 

1. This multivaluedness is responsible for much of the mathematical difficulty 

associated with nonhyperbolic periodic orbits. But it is simultaneously respon- 

sible for the rich physical multistability and fractal structure found for 

parameters at the tail region of isoperiodic cells where multipliers are 

multivalued functions over e x t e n d e d  domains and hysteretic behavior is typical 

while varying parameters (see discussion below). The use of M = Iml instead of 
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Fig. 1. Multipliers for the quadratic map x,+ 1 = a - x ~ ,  eq. (3.1). 
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m hinders the recognition of the multivaluedness at nonhyperbolic parameters.  

Note that appellations currently used to describe bifurcations assume implicitly 

parameters to vary in specific directions, usually increasing, and completely 

disregard the important  multivaluedness concomitant with the bifurcation 

process. For example, m = +1 is not an exclusive privilege of those parameter  

values where stability appears to be suddenly created ex nihilo. As for any 

multivalued process, it is important  to always keep track of the proper  

Riemann surfaces involved in discontinuities occurring at bifurcations. Indi- 

cated in fig. 1 are also the first three m i = 0 (superstable) orbits which, as 

mentioned,  must always pass through x = 0  for the quadratic map. The 

geometric scaling obeyed by the several bifurcation windows is sensibly 

reflected in the m curves, and appears as an increase of the spacing between 

their points as a grows. Note that the slope of the several mi curves tends very 

fast to oo at the 2 n accumulation point of the cascade. From fig. 1 one sees that,  

instead of the actual numerical value of m, it might be sometimes convenient  

and /o r  enough to characterize regions having identical parity, i.e. to character- 

ize a whole sub-region inside a cell using just the sign of m in it. This will be 

the case in the figures below. 

4. Anatomy of bimodal shrimps: a cubic example 

From eq. (2.7) one sees that m = 0 orbits are those for which the derivative 

of the physical model f(x, a, b) is zero for at least one point along an orbit. 

While for the quadratic map the derivative had no f reedom to be zero at any 

point other  than x = 0, the situation may radically change for systems with 

complicated equations of motion and which will then almost invariably involve 

more than one parameter.  For  more complicated maps the derivative may be 

zero at more than one value of x. Noble points of degeneracy will arise in 

parameter  space when these values of x are simultaneously fixed points of 

fk(x,a, b). In this case the question is then to know whether  sequences 

generated by the different x values are the same or not. Since the x are 

different, most of the times their associated sequences will be different. The  

only way in which two sequences of iterates corresponding to different fixed 

points might be equal is if they contain both fixed points simultaneously. For 

high-period sequences, there are in addition several possible valid permutations 

for the occurrence of fixed points along such sequences. In fact, for multi- 

parameter  dynamical systems all these degeneracies are exactly the most 

interesting points to look for. The dynamical behaviour as observed in the 

space of variables of physical systems is therefore seen to be ruled by the group 

of all possible permutations of the degenerate fixed points of fk(x, a, b). This 
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group  is at the origin o f  the peculiar  directions along which shrimps align in 

pa r ame te r  space. As  the per iod  increases smaller groups  of  pe rmuta t ions  

r eappea r  again and again as subgroups  of  larger groups  o f  permuta t ions .  

For tuna te ly ,  relatively few points  inside the unit  cell are enough  to comple te ly  

character ize  the posi t ion and or ienta t ion of  the full cluster o f  stability (shrimp) 

in pa rame te r  space. We now address the p rob lem of  how to c o m p u t e  t h e m  

exactly. 

Cons ider  the following normal  fo rm of a family of  cubic maps:  

xt+ 1 = - x t ( x ~  - 3a) - b .  (4.1) 

This is one  of  the two c o m m o n  normal  forms of  cubic maps  [17-19] ,  xt+ 1 = 

+ - x , ( x ~ -  3 a ) -  b, to which every o ther  real cubic map  can be reduced.  Refs.  

[17,18] present  a very  nice and detai led discussion of  the locat ion of  the m = 0 

centers  of  stability, i.e. of  the locus of  supers table  orbits in p a r a m e t e r  space.  

Ref.  [19] contains many  detai led color  pictures of  the full extent  (i .e. ,  for  

- 1 ~< m ~< 1) of  each cor responding  isoperiodic cell of  stability cen te red  on  the 

superstable  locus showing precisely how they all are organized.  The  derivat ive 

o f  eq. (4.1) is - 3 ( x  ~ - a) and,  accordingly,  the multiplier  o f  a k-per iodic  orbits  

is 

m = m  = ( _ 3 ) k ( x ~  a ) ( x Z _ a )  2 . . . .  - a )  
1 (4.2) 

implying m = 0 wheneve r  x ~ = a, with the obvious  solutions 

xj = +x/-d and xj = -x / -~ .  (4.3) 

The  first three  genera t ions  of  points  descending f rom these two are 

f~(-+v'-d) = - b  -+ 2ax#d,  (4.4) 

f z ( -+v~)  = 12a3b - 3ab + b 3 - b +- (6a 2 - 8 a  4 - 6ab2)x/-d, (4.5) 

f3(---v~) = - b  + b 3 - 3b 5 + 3 b  7 - b 9 

+ a5b(108 + 324a - 288a 2 - 2160a 3 + 192a 4 + 4032a 5 - 2304a 7) 

+ ab3(9 + 27a - 9a 2 - 432a 3 - 1080a 4 + 720a 5 + 5040a 6 - 5376a 8) 

+ a b S ( - 1 8  - 27a + 180a 2 + 756a 3 - 2016a 5) + abT(9 - 144a 2) 

--+ [3a + a 7 ( - 2 1 6  + 864a 2 - 1152a 4 + 517a 6) 

+ a2bZ(-18  - 108a - 138a 2 + 576a 3 + 2160a 4 - 576a 5 - 6048a 6 + 4608a 8) 
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+ ab4(18 + 144a + 270a 2 - 480a 3 - 2520a 4 + 4032 a6) 

+ ab6(-36 - 126a + 672a 3) + 18abS]x/'a. (4.6) 

Analysis of the genealogy implied by these and similar equations clearly shows 

that underlying the iterative process there is a generalized algebraic structure 

with a "projection" along the real axis totally isomorphic to that of the 

complex numbers, with V-~ playing the role of V~--] -. In this framework, 

successive iterations correspond to visiting criteriously chosen vertices of a kind 

of polygonal lattice embedded in the high-dimensional space defined by some 

generalized numbers, a very peculiar set of numbers containing both real and 

complex numbers at specific particular limits. The symmetric critical points 

+ v ~  and -x/-d are conjugate to each other. This structure arises by extending 

and iterating considerations which show that a quite simple way to obtain the 

dynamics of any real quadratic x2+ ax  +/3 = 0 is by defining u = - a / 2  and 

d = ot2/4 - / 3  and working with the resolvent x 2 - 2ux + u 2 - d = 0. This 

corresponds to a very convenient optimization of parameters. Solutions for this 

normal form are readily seen to be now u-+ X/d, with the sign of d directly 

"exposing" the nature of vertices, i.e. directly telling whether roots are real or 

not and whether they may be further reduced to a lower surface. To study the 

dynamics of iterated quadratic maps one does not need to necessarily extract 

square roots at every stage. At  any rate, for our present purposes it suffices to 

say that eqs. (4.4)-(4.6) allow one to conveniently choose even or odd 

combinations of functions (not depending on the signs in eqs. (4.3)) which 

considerably simplify analytical calculations. 

Fig. 2 shows the portion of the parameter space of eq. (4.1) for which the 

dynamics of most of the parameters is characterized by finite attractors with 

relatively large basins of attraction. This figure introduces conventions that are 

also used in several subsequent figures. The basic convention is that regions of 

similar shadings correspond to regions of similar properties: periodicity in fig. 

2a (and similar subsequent "a"  figures), and parity of multipliers in fig. 2b (and 

other similar "b"  figures). Integer numbers indicate the periodicity of the main 

cell (i.e. of the k-periodic cell of every k x 2" cluster). Fig. 2a contains 

explicitly indicated the regions of period 1 and 2 which, as all other regions, 

have a symmetric counterpart with respect to the b = 0 line. There are also two 

period-3 regions centered along the line a = 0 . 3 6 4 . . . ,  as indicated. In this and 

similar figures, white shadings are used to represent parameters for which 

generic initial conditions near x 0 = 0 lead to chaotic attractors. The symbols 

- ~  and +o0 reflect the structure of a Cantor set of initial conditions confined 

between the two extreme turning points of the cubic "potential":  this complex 

structure may be identified as being a sort of measure giving the "diffusion- 

t ime" needed for tunneling beyond the turning points and to start from there 
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Fig. 2. Basic stability region for the cubic map x , ÷  I = - x , ( x ~  - 3a) - b, eq. (4.1). Similar shading 

indicates identical periodicities. White regions correspond to chaos. (a) Isoperiodic domains, 
numbers indicating periods; (b) parity of multipliers, eq. (4.2). The intersection of the lines at 

a=0 .364  and b =  1.044 indicates the location of head of the period-3 shrimp shown further 

magnified in figs. 3 and 4. 
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to move towards infinity either by flipping or moving steadily, depending on 

the sign of the cubic term. Finer details in this region correspond to points 

lying deeper and deeper in the Cantor set. Fig. 2b presents "m-ray" views of 

the internal structure of every domain of stability, made possible by using two 

shadings to represent the parity of the multiplier corresponding to each 

individual point (a, b). The parity of the first few larger regions is as indicated 

and also defines the shading convention used. In the (relatively small) regions 

of multistability the figures present features as obtained for one of the possible 

attractors, usually that with the largest basin of attraction near x 0 --0. All 

isoperiodic diagrams in this paper involve a 1024 x 768 grid of equally spaced 

points in the a × b plane, respectively, consider periods higher than 128 as 

chaos and were computed by forward-incrementing a along lines of constant b 

using some convenient initial value for the orbit (typically x 0 = 0). We followed 

the orbit [14a], i.e. used the last obtained x i as the initial condition to compute 

the periodicity for every newly incremented value of a. (As opposed to the 

other simple possibility: to restart each orbit repeatedly from one and the same 

X 0 .)  

Part of the upper portion of fig. 2 is shown magnified in fig. 3, with fig. 4 

showing a much closer view of the period-3 shrimp. This sequence of 

magnifications allows one to recognize the great regularity of the internal 

structure of all isoperiodic shrimp clusters. From figs. 2, 3 and 4 one sees that 

shrimps are composed of a perfectly countable infinite affine repetition of a 

self-similar basic "cell" or "atom", each one containing two fundamental 

points: a head and a tail. A line through them is an axis of approximate 

symmetry for each individual cell. Internally, every cell is symmetrically 

divided into four adjacent quadrants, characterized by the parity of the 

multiplier, and centered on the unique saddle point which defines the head. 

Border lines between regions of different parity are loci of m = 0 parameters, 

i.e. parameters corresponding to the superstable orbits studied previously in 

refs. [15-18], for example. Each cell contains two lines of superstability: one 

corresponding to orbits passing through the point x = + x/d, the other to those 

through x -- -x/-d. Figs. 2 and 3 show that the alignment of shrimps previously 

found in refs. [14,19,21] corresponds to the heads locus of the main isoperiodic 

regions. This head locus should not be confused with the known locus of 

superstable orbits [15-18]. As seen from the figures, the head locus corre- 

sponds to a discrete sequence of  points in the parameter space. It contrasts with 

loci of superstable orbits which are continuous curves. Since altogether the 

cells composing shrimps are structures rigidly attached to each other by the 

dynamics, from the figures it is clear that to fix the relative 

orientation of a full shrimp in parameter space one essentially needs to know 

two fundamental quantities: the relative orientation of the approximate axis of 
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Fig. 3. Magnified view of the upper region in fig. 2, concentrating many shrimps along the 
direction defined by the head locus. (a) Isoperiodic domains, numbers indicating periods; (b) parity 
of multipliers, eq. (4.2). Shrimps are diffeomorphic copies of shrimps. 
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and b = 1.044223 indicating the location of the head. (a) Regions of stability, numbers indicating 
periods; (b) parity of multipliers, eq. (4.2). Heads are unique saddle points inside each cell, 
dividing them into quadrants. 



210 J.A.C. Gallas / Dissecting shrimps 

symmetry and the relative skewness of their main isoperiodic cell. The figures 

also give a recipe to obtain the numerical values of the parameters corre- 

sponding to heads and tails: look in the space of variables for degeneracies 

involving the zeros of the derivative. Inside each cell, the head H is the unique 

saddle point (a, b) for which the multiplier contains a double zero of the 

derivative of the map (double superstability). In the dual space of variables, 

this point corresponds to very particular orbits going simultaneously through 

both critical points of the map. Tails are slightly more subtle to be found. They 

also correspond to a degeneracy, not however to orbits going simultaneously 

through more than one zero of the derivative as for the heads, but instead, to 

that point (a, b) for which there are two different fixed-points of fk(x, a, b) 

(lying in different Riemann surfaces), each one corresponding to individual 

orbits of f(x, a, b) containing a different zero of the derivative of the map. 

From these definitions one sees that neighborhoods around the two fun- 

damental points of each cell will invariably show characteristics of a quite 

distinct nature. Isoperiodic attractors are non-degenerate robust and indepen- 

dent of the initial conditions for a ball B h of parameters containing the head. 

This implies primarily the existence of a unique basin of attraction for all orbits 

characterized by a common periodicity. In contrast, for balls B t containing the 

tail one necessarily finds degenerate isoperiodic attractors, implying sensitive 

dependence on the initial conditions. Thus, because more than one isoperiodic 

attractor coexist for parameter values inside the tail ball (multistability), the 

global basin of attraction corresponding to all possible orbits sharing a common 

period is in fact the union of more than one sub-basins, each of them the basin 

of a different (but isoperiodic) attractor. These sub-basins exist for extended 

parameter domains showing that now, in sharp contrast with the situation 

depicted in fig. 1, multivalued multipliers occur not as isolated points but rather 

over extended domains. This phenomenon (extended domains of multivalued 

multipliers) explains why in all figures tails are not numerically as well defined 

as heads: tails are quite sensitive to the initial conditions used to compute 

periodicities. As seen from the figures, in some small overlap regions there are 

also basins of stable attractors with different periods coexisting concomitantly 

with the intertwining of basins of the several isoperiodic attractors described 

above. Such small (but far from measure-zero) regions are those where one 

finds the largest possible number of different stable attractors living together in 

a cell. 

As a simple example, we now show how to locate exactly the head of 

period-3 shrimps of eq. (4.1), the first non-trivial ones. We already know that 

fixed-points offk(x, a, b) corresponding to heads involve orbits of f (x ,  a, b) that 

must pass through degenerate zeros of the derivative, in the present case, 

through +x/-~ and -x/-~. Let us start by choosing to go from +x/-d to -x/-d. 
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Period-3 means eventually converging to the following forever repeating 

sequence of numbers: 

• ' ' ' - > X 0  : N / " a - - - - > x  I : --Va-->X2---->X 3 ~ X  0 : V a - . - - > ' ' ' .  (4.7) 

Substituting x 1 and x 0 in eq. (4.1) one sees that these two points in this order 

will belong to the sequence of eq. (4.7) if and only if b = (1 + 2a)x/-d. With this 

x 1 and b replaced in eq. (4.1) one obtains x 2 = - ( 1  + 4a)x/-d, conspicuously 

showing the algebraic closure of the set of numbers ruling the dynamics of 

orbits through critical points. When replacing x 2 and b in eq. (4.1) (thereby 

completing the third iterate x 3 -=x0) one obtains the condition defining the 

possible values of a, namely 

32a 4 +24a 3 -  2 a -  1 = 0 .  (4.8) 

This equation may be solved exactly. Approximate roots are enough for the 

argument here: a =0.364636, -0.713268 and -0.200684-i0.28263. Since a 

must be real and non-negative to produce real fixed-points, there is a 3- 

periodic head located at 

(a h , bff ) = (0.3646364723..., 1.044223829...). (4.9) 

Reversing the order of the points in eq. (4.7) produces b = - (1  + 2a)x/-a and 

the same polynomial for a as in eq. (4.8). Therefore, there is another period-3 

shrimp symmetrically located at 

(a~, b~) = (0.3646364723 . . . .  -1.044223829...).  (4.10) 

Since eq. (4.1) has only two critical points and there is no other possible 

permutation of them while circulating through a period-3 orbit, one concludes 

that these two are the only period-3 shrimps possible for the map of eq. (4.1). 

More than to simply obtain the locations of heads, this example was intended 

also as a plausibility argument to show that though quickly increasing as the 

period grows, the number of periodic cells with any period k is perfectly 

countable and depends solely (i) on the number of zeros of the derivative of 

the map and (ii) on the number of different possibilities of visiting all 

permutations of groups of such zeros through the equation defining the physics. 

The number of different possibilities grows obviously fast with k. Regarding 

the relative visible volume of isoperiodic domains, note that sizes are de- 

termined as roots of those polynomials with "explosive" degrees mentioned 

previously and which can be shown to oscillate faster and faster as the period 
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increases. Accordingly, sizes decrease with the period in the same proport ion,  

i.e. very fast. 

Let  A be the number  of minimum possible iterates needed to move from 

one zero of the derivative to the next, for example, to go from x/-d to -x/-d. 

All shrimps having degenerate zeros appearing immediately following each 

other,  i.e. having A = I ,  will live along either the " l+- ray  '' b = ( l + 2 a )  

n / - d = + ~ / a + 4 a 2 + 4 a  3 (if...---~x/-d---~-x/-d---~...) or along the " l - - r a y "  

b = - ( 1  + 2a)x/-d = - ~ a  + 4a 2 + 4a 3 ( i f . . .  ~ -V~d--* n/-d---~...). For  example,  

both 5-shrimps with heads approximately at (0.3955724609987 . . . .  

---1.1265325656333...), derived from the unique real and non-negative root a 

of a polynomial of degree 121. A = 2 shrimps will exist along rays which 

contain, for example, points obtained by substituting each one of the two real 

roots of 64a 4 - 12a 2 - 6a + 1 = 0 into the equations b = +-~1 + 3a - 12a 3. They 

correspond to four 4-shrimps located roughly at (0 .1341351918. . . ,  

---1.171940...) and (0.553103312 . . . .  ---0.792986... ). By plotting several similar 

locations on a single graph one realizes that they all divide the "big fish" seen 

in fig. 2 into a more or less concentric infinite number  of "onion-shells",  well 

approximated by Tschirnhausen-like cubics of the generic type Kb 2=  (r 1 

- a ) ( a  + r2) 2. The aforementioned "rays"  run roughly perpendicular to these 

shells. In addition to containing the shrimps with heads defined by eqs. (4.9) 

and (4.10), the most prominent  direction of shrimp-alignment is defined by the 

curve containing the "fat  shrimps" (those larger and more readily discernible 

in the figures, defining almost visually the alignment locus). This curve contains 

two branches which cross each other at the very important  4-shrimp with head 

defining a center of symmetry at exactly b = 0  and a = ~ / ( 3 + V ~ ) / 8  

=0.9436038381 . . . .  This salient curve corresponds to the locus called a-  

direction in ref. [14]. The exceptional symmetry centered around this 4-shrimp 

may be seen in colors in fig. 7 of ref. [19], where it is shown for the 6-shrimp of 

the +x~ cubic. Several diagrams derived from the analysis of the algebraic 

structure underlying the dynamics ruling the very regular distribution of shrimp 

clusters in parameter  space will be presented elsewhere. 

5. Anatomy of a few more complex shrimps 

A recent paper [24] has shown that the ~-= 1 family of non-Markovian 
2 

processes described by X t + l ~ - a - x t _ . r  contains routes to chaos that are 

degenerate with the familiar doubling route 1---~ 2---4---~8---~... known to be 

present in unimodal maps having 'quadratic extrema'  such as xt+ 1 = a -  x 2 t" 

The ~- = 1 process can be written as a two dimensional discrete map: 
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2 
x,+l = a - Y t ,  Yt+i = x , .  (5.1) 

Fig. 5 shows "generalized bifurcation trees" comparing (x, y ) ~  ( a -  x 2, x) (a 

2D embedding of the familiar period-doubling route) and the new degenerate 

route [24] as obtained from eq. (5.1). As seen from the figure, eq. (5.1) 

presents a hiccup route 1---> 4---> 8---> . . . .  , i.e. a route in which subsequently to 

the region characterized by fixed points one finds a period quadrupling instead 

of the familiar period doubling. As it is not difficult to realize, this quadrupling 

comes from the delay introduced by the equation of motion Yt+l = xt: although 

sequences of values generated by eq. (5.1) are numerically identical to those 

generated by the quadratic map, in this new map one has to wait a proper 

number of "clock units" for sequences of now two points to repeat. As already 

discussed in refs. [21,24], the delay-mechanism implied by the equation Yt+I = 

x t is rather common for a large class of processes and allows an extremely rich 

variety of possibilities for "composing" the dynamics. 
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Fig. 5. The two degenerate routes to chaos: (a) for the 2D embedding of the quadratic map 
defined by (x, y ) ~ - ~ ( a - x 2 , x ) ;  and (b) for the map of eq. (5.1): (x, y)~-->(a-y2, x). This is one 
example of parametrically coupled oscillators. 
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Of particular interest for this paper is to consider the most general process 

leading to the same type of shrimp shapes and ordering found in the previous 

section for the cubic map (see ref. [19] for detailed color pictures of many 

high-period clusters of stability) and for the H6non map [14]. By considering 

the dynamics of eq. (5.1) as done in ref. [24] one sees that this can be achieved 

coupling, i.e. synchronizing two quadratic maps in the following simple way: 

xt+ 1 = a - b - y ~ ,  (5.2a) 

Y,+i = a  + b - x ~ .  (5.2b) 

This 2D map displays the same hiccup route 1--)4---)8---)... as eq. (5.1). 

Exploring memory effects of the "internal clock" of the system one may also 

realize how to further simplify, synchronize and build a corresponding one- 

dimensional (now trimodal) model presenting the same basic dynamics as both 

eqs. (5.1) and (5.2): 

xt+ I = ( a -  b - x ~ )  2 -  (a + b).  (5.3) 

Exactly as previously found [24] for the map of eq. (5.1) and for the 

aforementioned 2D embedding of the quadratic map, eq. (5.3) presents the 

same borders in parameter space as eq. (5.2) but now, as expected due to the 

double composition, with adjacent cells following the familiar doubling route 

instead of the new hiccup route. All three maps, eqs. (5.1), (5.2) and (5.3) are 

particularly interesting highly degenerate situations for which it is possible to 

obtain a number of analytical results relatively easily. With the same conven- 

tions as before, fig. 6 presents the degenerate parameter space corresponding 

to both the one-dimensional dynamical systems of eq. (5.3) and the two- 

dimensional system of eq. (5.2). Contours in the parameter space for both 

models are exactly the same, the only difference being that when dealing with 

the two-dimensional map, similarly to what happens for the degenerate routes 

shown in fig. 5, instead of period k one has period 2k for all k > 1. Apart from 

this degeneracy, fig. 6 is also highly symmetric with the first two heads and the 

first tail occurring at very particular and convenient numerical values. 

Yet another interesting example of a dynamical system is provided by the 

model 

xt+ 1 = [(a - b) 2 -x~]  2 -  (a + b) ,  (5.4) 

closely related to that of eq. (5.3). This example is intended to show that when 

iterating nonlinear functions, not only nonlinearities in the variables are 

important, but that the structure of the parameter space will be also affected by 
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Fig. 6. Basic symmetric and degenerate stability structure corresponding simultaneously to the 2D 
map of eq. (5.2), the 1D map of eq. (5.3) and several others [24]. (a) Isoperiodic domains, 
numbers indicating periods for eq. (5.3); (b) parity of multipliers. Note the self-inverse nature of 
superstable loci. 
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all sorts of nonlinearities eventually present in the parameters. The reason for 

this can be recognized by considering the location of the zeros of the 

multipliers. The multiplier of eq. (5.3) involves products of 4 x [ x E - ( a -  b)] 

while that of eq. (5.4) contains 4x[x 2 -  ( a -b )2 ] .  Apart from x =0 ,  the 

multiplier of eq. (5.3) has zeros at 

V ~ a - b ,  and - ~ / a - b .  (5.5) 

The nontrivial zero derivatives of eq. (5.4), however, are located at 

la-bl and - [ a -  bl. (5.6) 

This means that in sharp contrast with eq. (5.5), eq. (5.6) will now have real 

critical points for a -  b < 0. One sees that while the map of eq. (5.3) might 

perhaps correspond to a kind of "fundamental" possibility of spreading zeros 

of the derivative in the parameter space, as shown by eq. (5.4) it is quite far 

from being a unique possibility. A further point worth noticing is that as the 

main period of the stability clusters increases, in addition to the central body 

which is relatively easy to detect numerically, it is possible to find for some 

high-dimensional systems several further structures of many different forms 

(e.g. cusp-like) along the prolongation of some "legs" and in other places 

[14a]. For example, such structures appear in specific locations along the legs 

which are seen to penetrate the region of parameters where most of the initial 

conditions lead to divergence. At these specific places the legs change their 

relatively smoothly varying original orientation, being abruptly deflected into a 

quite different direction. The location of these "measure zero" parameter 

regions corresponds to zeros of high-degree polynomials (obtained similarly as 

eq. (4.8)) and having relatively large a and/or b coordinates. Being zeros of 

very high degree polynomials, such regions are quite small and usually 

relatively hard to detect numerically. As the period increases, this behavior 

implies the possible existence of one or more places along the m = 0 locus 

where there are discontinuities of derivatives. To locate such regions requires 

using accurately chosen initial conditions. In other words, such regions are 

relatively "transparent" to the majority of initial conditions. 

6. The fundamental period-1 cell 

The aim of this section is to describe with more detail the structure of the 

fundamental period-1 cell of stability and to define the location of the ten noble 

points of degeneracy in it. We will also argue that knowledge of the bifurcation 



J . A . C .  Ga l la s  / D i s s e c t i n g  s h r i m p s  217 

structure for the 1-shrimp might be eventually sufficient to characterize that of 

all higher-periodic k-shrimps. 

Fig. 7 shows the period-1 cell of stability corresponding simultaneously to 

both dynamical systems defined by eqs. (5.2) and (5.3). This cell of stability is 

the same seen in fig. 6 but, to enhance the symmetry on the parameters, it is 

shown here rotated counterclockwise by 45 degrees, i.e. having a - b replaced 

by a and a + b replaced by b, respectively, in both equations. As the figure 

shows, this cell contains altogether ten noble points of degeneracy. The 

primary points H and T are the intersections of the dotted sel f - inverse  

parabolic curves which correspond to the locus of m = 0 values. As explained 

before, while H corresponds to a true intersection of the parabolas, T 

is just a pseudo-intersection since each rn = 0 parabola is located at different 

x quotas (i.e. in different Riemann surfaces). Collinear with H and T one sees 

the points C and R, which together with points A, above  the axis, and B, 

be low the axis, form a "ki te"  at the end of the cell. A is located 

at (a, b) = (1.01905888,1.16529086), while B appears symmetrically at 

(1.16529086, 1.01905888). Fig. 7 also shows the location of four additional 

points of degeneracy. From the figure it is clear how to obtain them: looking 

for all the remaining possible combinations of pairs of intersections of the 

m = - 1 ,  0 and + 1 lines. These four points are not particularly relevant for our 

purposes and, accordingly, will not be further discussed here. 
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Fig. 7. Structure of the fundamental period-1 cell of stability, showing the location of the ten noble 

points of degeneracy. Numbers refer to the values of m. (a) Definition of the head H and the 

"collineation triangle" through the points H, A and B; (b) detail showing the Mte  formed by the 

points C, A, R and B. The tail is represented by the letter T. The points H, C, T and R lie all on 

the axis of symmetry. The two self-inverse parabolas intersecting at H and pseudo-intersecting at T 

are the locus of m = 0 (superstable) orbits. 
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By comparing figs. 6 and 1 with fig. 7 one sees that now, rather than having 

multivalued multipliers occurring at simple and isolated border points, multi- 

valuedness clearly exists over extended parameter domains. In particular, 

multivaluedness (with corresponding intertwined basins of attraction) exists in 

the "complicated V" domain, i.e. at the borders and inside the two infinitely 

long legs obtained as upward prolongations of the curves C -  A and B -  R 

(first leg) and C - B  and A - R  (second leg). As seen in figs. 1 and 6, as 

parameters increase past the m = - 1  borders there is either a period-4 (for eq. 

(5.2)) or period-2 (for eq. (5.3)) bifurcation. Therefore, inside the domain 

starting at the upper-right corner in fig. 7b and containing the letter R one finds 

a characteristic build-up of the multivaluedness, double that occurring before 

entering this domain. As clear from fig. 6, such legs are quite long, in fact 

infinitely long, but then for exceptionally narrow intervals of stability. The 

situation described for the period-1 cell recurs for all other cells, with 

corresponding noble points and singularity loci being connected through 

families of affine-like transformations. Preliminary results obtained by consid- 

ering the interrelation of triplets (x, a, b) and the equations of motion defining 

the singularity loci present in the unit cell shown in fig. 7 indicate that for any 

domain containing parameters (a0, b0) for which degenerate orbits xt occur 

with multiplicity /~, one will necessarily have singularities behaving as powers 

of 1//x in parameter space. This result is useful to obtain analytical relations 

between triplets (x, a, b) defining singularity loci in parameter space [25]. In 

particular, it allows one to obtain for cubic maps two basic shrimp shapes: one 

involving shrimps with main cells of parabolic curvature, arising from parame- 

ter singularities behaving like powers of 1/2, and another one involving 

shrimps with cusp-like main cells, arising from singularities behaving like 

powers of 1/3. This latter type of singularity is the same one responsible for the 

so-called [1-9] "Arnold tongues" while the former is responsible for parabolic- 

shaped cells similar to those discussed here and in ref. [14]. Detailed color 

pictures for these two shapes as obtained for cubic maps are given in ref. [19]. 

Since any two triangles are related by a unique affine collineation [26], we 

may conveniently elect, for example, the points H, A and B to explicitly obtain 

affine transformations connecting cells of different periodicity (and different 

shrimps). For this choice of triangles the affine transformation connecting 

shrimps having main periodicities 1---~ 3---~ 9---~ 3 j. . .  with j = 0, 1, 2 . . . .  (corre- 

sponding to the uppermost nested sequence of windows above the line b = a) is 

well approximated by 

a' = 0.07837a + 0.02807b + 0.72543, (6.1a) 

b' = 0.03271a + 0.05661b + 1.37799. (6.1b) 
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If (a ,b)  is in the 1-shrimp, then (a', b ')  defined by eq. (6.1) will be the 

corresponding point located in the 3-shrimp (that indicated by the number 3 in 

fig. 6a), with subsequent ] compositions being (approximately) in shrimps of 

main periodicity 3 (  Eq. (6.1) maps all isoperiodic domains composing the 

shrimp simultaneously, not just the period k cell. To our knowledge, eq. (6.1) 

is the first one ever given showing how to connect a doubly-infinite number of 

domains of stability in the space of parameters which correspond to completely 

different physical behaviors in the space of variables. If proved valid for the 

full extent of the unit cell, transformations like that defined by eq. (6.1) would 

show that period-3 as well as all other subsequent 3 j shrimp windows, rather 

than corresponding to something new, are just affine repetitions of the 

phenomena contained in the fundamental period-1 shrimp with main cell 

described in fig. 7. This quite interesting consequence of the algebraic analysis 

does not seem to have been anticipated before. Our numerical evidence shows 

such scenario to be a quite good approximation of the situation found. 

Knowledge of a possible "first cell/shrimp reduction" is of interest because it 

would allow greatly simplifying the study of stability domains by breaking it 

into two broad problems: (i) to understand the detailed anatomy of the 

period-1 cell/shrimp and (ii) to study which groups of transformations spread 

them in the whole space of parameters. Note that since stability domains for 

the dynamical systems defined by eqs. (5.2) and (5.3) are degenerate, eq. (6.1) 

is simultaneously valid for different physical models. In fact, we believe the 

results presented here to provide heuristic evidence that the period-1 shrimp 

dissected in figs. 6 and 7 is a kind of "canonical" one for an extremely large 

family of physical models (all those characterized by singularity loci behaving 

as powers of 1/2), and which would all display just sequences of copies of it. 

Thus, once understood how bifurcations occur for the fundamental shrimp, the 

problem of characterizing domains of stability for physical models of interest 

would amount to studying the proper group of transformations implied by their 

equations of motion. 

Transformations similar to that of eq. (6.1) allow one to easily "fish little 

shrimps" of any periodicity living in domains (a', b ' )  (along with all micro- 

structures belonging to them) by "transporting" them onto the fundamental 

structure in the domain (a, b) seen in figs. 6 and 7, a parameter range where 

they can be more comfortably dissected. For this purpose, instead of the HAB 

isosceles triangle used to obtain eq. (6.1), a more convenient choice from the 

point of view of locating vertices of triangles numerically is to use the " H  3 ' '  

triangle formed by the heads of the three first larger cells of the shrimp. As 

easy to recognize from fig. 7 however, up-side down isosceles triangles (with 

basis simultaneously tangent, say, to both m = - 1  borders of the main cell and 

with opposite vertex located somewhere above the tail) are expected to 
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produce much better overall fits although parameters for them might be 

somewhat harder to obtain numerically for arbitrary k. 

7. Conclusions 

The main purpose of this paper was to delimit the full extent of certain 

shrimp-like clusters of stability and to explain the great regularity with which 

they are seen to appear in the parameter space of representative dynamical 

systems which arise when modeling nonlinear physical phenomena with 

discrete-time models. Using the parity of multipliers we argued that the k × 2 n 

isoperiodic clusters heuristically described in refs. [14,19,21] for the Hrnon, 

cubic and other maps, are generated by a countable infinite sequence of 

repetitions of a basic elementary cluster, this elementary cluster being itself 

composed of affine-like repetitions of the elementary "unit cell" reproduced in 

fig. 7. Every isoperiodic cell for the dynamical systems discussed here (which 

are representative of a large class of models) contains two primary noble points 

of degeneracy with a line segment through them being an axis of approximate 

symmetry of the cell. The orientation of every k × 2 n shrimp in parameter 

space is defined essentially by the orientation of the axis of their main cell and 

its skewness. The peculiar directions along which shrimps were previously 

found [14] to align are formed as the locus of the main head of several k x 2 n 

shrimps. These simple directions are generic and arise as intrinsic consequences 

of the peculiar algebraic structures resulting from the occurrence of certain 

degenerate fixed-points of fk(x, a, b). The corresponding orbits obtained by 

considering iterates of f(x, a, b) will contain in this case one or more critical 

points of the equations of motion ruling the dynamics. 

We also reported two dynamical systems (eqs. (5.2) and (5.3)) that in spite 

of having different dimensions and displaying different routes to chaos, display 

exactly the same arrangement of borders of stability in parameter space. We 

emphasized the role of nonlinearities present in parameters, not only in 

variables. While it might be tempting to conclude some of the systems 

discussed here to represent perhaps a kind of "universality" intrinsic to 

bimodal maps, from the discussion and figures of ref. [24] one sees that there 

are several other possible compositions presenting "generalized" shrimps 

having shapes rather different from that discussed at length in this paper. The 

precise delimitation and classification of all possible fundamental shapes for 

domains of stability in the parameter space would be certainly of considerable 

interest and, as preliminary results indicate, is anticipated to depend strongly 

on the multiplicity /z of fixed points of f~(x, a, b) along loci of degeneracy. 

Section 6 presented a number of consequences derived from the structure- 
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parallel-to-structure affine symmetry present in the space of parameters and 

argued that knowledge of the bifurcation patterns for the 1-shrimp should 

suffice to understand that of all other shrimps. We would also like to add to 

have empirically observed that for many (mainly polynomial) systems investi- 

gated so far there is frequently a quite regular periodicity pattern according to 

which shrimps appear to organize themselves along the head locus: the largest 

isoperiodic shrimps with period not smaller than k appearing along the locus 

simultaneously on both sides of a shrimp of main period k and having 

approximately the same visible area, seem to always have period k + j, j an 

integer, apparently always either 1 or 2, depending on the equations of motion. 

A quite interesting result is the symmetry and high degeneracy of the 

parameter space of eqs. (5.2) and (5.3). For these equations it is possible to 

derive analytically a number of features and, in particular, to hope to be able 

to eventually find an analytical expression for the head locus defining the 

principal shrimp alignment. Preliminary results indicate all these regular 

features to arise as projections along the real line of a regular finite lattice with 

vertices formed by certain commensurability properties of the parts composing 

the aforementioned generalized numbers and which are implicitly contained in 

the equations of motion. For systems with one variable and two parameters 

(a, b) as here, adjusting a is equivalent to choosing initial conditions that define 

the algebraic structure of the set of roots that may be reduced to the form 

uj + ojx/-~. Then, by simultaneously adjusting a and b, one may bring the 

system to privileged (but rather abundant) locations in the parameter space 

such that the dynamics observed in the space of variables will periodically cycle 

through some of all possible vertices (those not defined by complex numbers) 

of a kind of polygon where the full dynamics lives. The location of such 

2 v~, a and - a ,  quantities which also define the vertices depends on u j, 

singularity loci and the noble points of degeneracy. This whole picture arises 

because for particular but infinite in number combinations of parameters, 

"resonances", the dynamics succeeds in eluding and evading most of the many 

prisons of being under square and cubic root signs similarly as the following 

few of an infinite series of possible identities show 

2=~/7 + V ~ +  ~/7 - X/~ = ~V~-08 + 1 0 -  ~/l~/-i-~ - 10 

= ~/~/26 + 15X/3 + ~/26 - 15V3 = X/-4. 

It would be of interest to investigate the +x ~ normal form of the cubic map 

[19]. As shown in ref. [19], +x~ cubics present shrimp shapes fundamentally 

different from that typical for the - x  ~ cubic discussed here. Stability structures 

for +x ~ cubics involve mother cells similar to the well-known Arnold tongues 
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[15-17] obtained for circle maps when congruences involved in the definitions 

of these maps are removed. Such congruences appear to be non-essential since 

it is possible to produce full cascades of Arnold tongues using polynomial 

dynamical systems without congruences, for example, with the system [24] 

(x,  y )  ~-~ (a - py2  _ q x  2, x ) .  Circle maps are very important models, frequently 

used to describe quasiperiodicity in natural phenomena. 

We conclude by observing that in 1799 Gauss proved the so-called "fun- 

damental theorem of algebra" (ref. [26], page 144), asserting the ex i s tence  of 

roots for polynomials of any arbitrary degree, even when expressions for the 

roots are not obtainable. Unfortunately, as of this date there is no prescription 

to obtain the n u m b e r  of real roots for a polynomial of arbitrary degree, not 

even for particular cases when some not too restrictive relations are known to 

hold among arbitrary coefficients. Knowledge of such information is equivalent 

to classifying all possible bifurcations (singularity loci) for polynomial models, 

an extremely interesting and needed result for practical applications. For 

example, to delimit the extent of stability regions of periodic motions in 

physical models. 

Note 

A recent paper by J. Milnor (Exp. Math. 1 (1992) 5), among several other 

things, discusses the dynamics of iterated cubic maps and the c o n n e c t e d n e s s  

locus  for eq. (5.3). This locus is different from the superstable locus and from 

the locus discussed in the present paper. I thank Prof. Milnor for giving me this 

reference and for helpful discussions and suggestions. 
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