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Dissecting transcriptomic signatures of neuronal
differentiation and maturation using iPSCs
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Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation

and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC

donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early

neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated

neuronal cells. We identify widespread changes in the expression of both individual features

and global patterns of transcription. We next demonstrate that co-culturing human NPCs

with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific

expression data can be extracted using only sequencing read alignments without cell sorting.

We lastly adapt a previously generated RNA deconvolution approach to single-cell expres-

sion data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and

human brain tissue. Using many public datasets, we demonstrate neuronal cultures are

maturationally heterogeneous but contain subsets of neurons more mature than previously

observed.
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H
uman induced pluripotent stem cells (hiPSCs) present a
unique opportunity to generate and characterize different
cell types potentially representative of those in the human

brain that may be difficult to ascertain during development or
isolate from postmortem tissue. Better-characterizing cortico-
genesis, and identifying subsequent deficits in psychiatric and
neurological disorders, has been the focus of much hiPSC and
human embryonic stem cell (hESC) research over the past dec-
ade1. These cellular models have been especially appealing to
study neurodevelopmental disorders where direct analyses of
neurodevelopmental changes in patients that would be diagnosed
with disorders later in life are very challenging2.

Transcriptomics is an increasingly powerful tool in both brain
and stem cell research. In addition to changing gene expression,
alternative RNA splicing is also an important regulator of cortical
development3. Ongoing large-scale efforts use gene expression
data from postmortem human brains to further identify mole-
cular mechanisms that mediate genetic risk for psychiatric dis-
ease4. Regulation of specific mRNA isoforms associated with
genetic risk for psychiatric disease has been modeled in human
iPSCs as they differentiate toward neural fates5. However, to date,
many large-scale transcriptomics efforts in stem cells with respect
to corticogenesis have either focused on differentiation of mouse
ESCs6, or single hESC lines profiled in bulk-like CORTECON
(WA-09 line)7 or at the single-cell level like Close et al. (H1 line)8.
Also, most large-scale hiPSC resources focus on the identity and
quality of the initial iPSCs without corresponding RNA-seq data
following these iPSCs through differentiation, like Kilpinen et al.
(301 donors)9, iPSCORE (222 donors)10, and Salomonis et al. (58
iPSC lines)11, which were all subject to extensive quality control
steps12.

Here we present the results of a hiPSC transcriptomics study
on corticogenesis from multiple donors and replicate lines across
nine time points (days 2, 4, 6, 9, 15, 21, 49, 63, and 77 in vitro)
that represent defined transitions in differentiation: self-renewal,
early differentiating cells (accelerated dorsal), neural precursor
cells (NPCs), assembled neuroepithelial rosettes13, and more
differentiated neuronal cell types (Table 1). We first identify
widespread transcriptional changes occurring across the model of
corticogenesis that were largely not influenced by the genetic
backgrounds of the iPSCs. We reprocessed and reanalyzed
existing hESC- and iPSC-based resources across both bulk and
single-cell data in the context of our differentiation signatures and
showed similar trajectories of neurogenesis. We then demonstrate
in silico that more molecularly mature neuronal cultures are
achieved through the addition of rodent astrocytes. We last
demonstrate that almost half (48%) of the RNA in our neuronal
cultures after 8 weeks of differentiation reflected signatures of
adult cortical neurons. We show that these RNA fractions can
also be included in downstream analyses to assess or reduce

technical variability and potentially enhance cell-type-specific
phenotypic effects. These data, and software tools for barcoding
the maturity of iPSC-derived neuronal cells, are available in a
user-friendly web browser (http://stemcell.libd.org/scb) that can
visualize genes and their transcript features across neuronal dif-
ferentiation and corticogenesis. We anticipate that these data and
our approaches will facilitate the identification and experimental
interrogation of transcriptional and post-transcriptional reg-
ulators of neurodevelopmental disorders.

Results
Differentiating hiPSCs to mature neuronal cultures. We
reprogrammed fibroblasts from the underarm biopsies of 14
donors creating a median 5.5 iPSC lines (interquartile range: 3–7)
per subject that were free from karyotyping abnormalities (see the
“Methods” section). Fluidigm-based qPCR expression profiling
confirmed the loss of FAP (fibroblast activation protein alpha)
expression (Supplementary Fig. 1A, p < 2.2 × 10–16) and the gain
of NANOG expression (Supplementary Fig. 1B, p= 1.87 × 10–13,
linear model with random donor effect). We subsequently dif-
ferentiated iPSCs from five of the donors and fourteen total lines
(which had comparable expression versus those donors and
subclones not selected) toward a neural stem cell specification,
followed by cortical neural progenitor cell (NPC) differentiation
and expansion, followed by neural differentiation/maturation (see
the “Methods” section). RNA-seq confirmed the expected tem-
poral behavior of canonical marker genes in 13 of the lines,
including the loss of pluripotency gene POU5F1/OCT4 (Fig. 1a),
gain of HES5 (Fig. 1b) through NPC differentiation, and gain of
SLC17A6/VGLUT2 expression through neural maturation
(Fig. 1c).

High-content imaging confirmed the self-organization of NPCs
into neuroepithelial rosettes13 (Fig. 1d). Electrophysiological
measures taken at 49, 63, and 77 days in vitro (DIV),
corresponding to 4, 6, and 8 weeks following NPC expansion,
of our neuronal samples cocultured with astrocytes show
maturation14 (Figs. 1e, f). A subset of lines were further
interrogated with immunocytochemical labeling of neurons at
8 weeks of differentiation (see the “Methods” section), and
showed expected labeling of pre- and postsynaptic proteins
(Supplementary Fig. 2). This highlights the ability of our protocol
to create neuronal cell lines that display hallmark signatures of
neuronal differentiation and are electrophysiologically active.

Global transcriptional signatures of maturing neural cells. We
first sought to transcriptionally characterize this iPSC model of
corticogenesis across five conditions: self-renewal, dorsal fate
specification, NPCs, self-organized rosettes, and maturing neural
cells. We, therefore, performed stranded total RNA-seq following

Table 1 Sample and cellular condition information.

Accelerated dorsal

(days 2, 4, 6, 9)

NPC

(day 15)

Rosette

(day 21)

Neuron+ rat

astrocyte (days 49,

63, 77)

Self-renewal

(days 2, 4, 6)

Neuron

(day 77)

Rat astrocyte

(days 49, 63, 77)

Donor 3 8 6

Donor 21 12 4 3 10 3 1

Donor 66 10 3 3 7 3 1

Donor 90 10 2 1 7 3 1

Donor 165 14 3 2 7 3 1

Rat 3

Total 54 12 9 31 18 4 3

The first four conditions—accelerated dorsal, NPC, rosette, and neuron+ rat astrocyte—make up the differentiation time course. Additional cellular conditions used in analyses included self-renewal

samples that did not differentiate, purified human neurons, and purified rat astrocytes
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ribosomal depletion on a total of 165 samples, sampling from
nine time points across five donors and a series of technical
samples (see the “Methods” section). All samples passed batch
effect and technical quality control (Supplementary Fig. 3A–C).
Six samples were dropped from the cell line that differentiated
slower than others (Supplementary Fig. 3D) and five samples
were dropped because of identity mismatches (Supplementary
Fig. 4).

We first confirmed the representativeness of our iPSC cell lines
and subsequent differentiation with the recently published
ScoreCard reference data15 (Supplementary Fig. 5A)—our self-
renewal/iPSC lines showed mean 98.1% pluripotency identity
(standard deviation (SD)= 1.5%), which significantly decreased
through differentiation (Supplementary Fig. 5B, p < 2.2 × 10–16,
linear model). We then characterized the global landscape of
transcriptional changes accompanying these differentiating and
maturing cells using principal component analysis (PCA) of gene

expression levels. The largest component of variability repre-
sented neurogenesis, while the second PC further separated those
samples in the NPC stage from self-renewing and neuronal cells
(Fig. 2a). Both of these components were highly conserved in
reprocessed data from the CORTECON hESC time-course
dataset (Fig. 2a, Supplementary Fig. 6, PC1 p= 3.49e–9, paired
one-sided Pearson correlation, PC2 p= 1.65e–8, linear regres-
sion) even though these cell lines were ESC differentiated,
processed, and sequenced in different labs. We further identified
global similarity between our differentiating and maturing cells to
recently available single- and pooled cell-level data from Close
et al.8, reprocessed using the same pipeline (Supplementary Fig. 7,
see the “Methods” section).

We then performed weighted gene co-expression network
analysis (WGCNA)16 to identify more dynamic patterns of
expression across neural differentiation and maturation. We
identified 11 signed co-expression modules (Fig. 2b) that reflected
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Electrophysiology measurements across neuronal maturation show e increasing capacitance and f decreasing membrane resistance.
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known stages of differentiation, which were confirmed using gene
set enrichment analysis (Supplementary Data 1), including genes
related to loss of pluripotency (Module 3), rise of NPCs (Module 7),
and also genes become more highly (Modules 1 and 5) and more
lowly (Module 2) expressed in neuronal cultures. We calculated the
corresponding eigengenes in these modules in the reprocessed
CORTECON dataset, and showed replication for many of the same
temporal patterns (Supplementary Fig. 8). These differentiating cells
therefore show analogous global expression patterns as other
previously published datasets of corticogenesis7,8.

Feature-level expression patterns of differentiating neurons.
We next tested for developmental regulation of individual genes
and their transcript features among the 106 time-course samples
(excluding 18 self-renewing lines and 4 neuronal lines that were
not cultured on rodent astrocytes, Table 1) using statistical
modeling (see Methods). By partitioning gene expression varia-
bility into different components, we demonstrated that differ-
entiation (condition) explains much more variability in
expression than donor/genome or sub-clonal line for the majority

of expressed genes (19,475 genes, 76.4%, Fig. 3a). The majority of
expressed genes changed in expression (false discovery rate
(FDR) < 0.01) across differentiation and maturation (20,220
genes, 79.4%), including 9067 genes differentially expressed
between accelerated dorsal differentiation and NPCs, 1994 genes
between NPCs and rosettes, and 12,951 genes between rosettes
and neuronal cultures. Across the time course, we also found
widespread differential expression at the exon (70.5% of unique
genes), exon–exon splice junction (66.2%), and full-length tran-
script summarizations (72.1%) (Figs. 3b, c, Supplementary
Table 1). We further found that a subset of our differentially
expressed junctions corresponded to unannotated transcript
sequence, including 7298 exon-skipping events and 15,002
alternative exonic boundaries (Supplementary Table 2), a much
larger number than that previously reported in smaller studies of
hESC differentiation3. We have created a user-friendly database
to visualize feature-level expression across neuronal differentia-
tion, available at http://stemcell.libd.org/scb.

In an additional analysis related to splicing, we looked into the
increase in intron retention (IR), which has previously been
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shown to play an important role in differentiation17. We
identified an overall gain in the percentage of aligned reads
assigned to introns between our NPCs/rosettes and differentiated
neuronal cells (Fig. 3d, p= 0.002, linear model), in line with
previous research describing intron retention as a mechanism of
rapid gene regulation in response to neuronal activity18. In
addition, gene ontology (GO) analysis on the genes with
significantly (FDR < 0.001) increasing IR ratios through differ-
entiation showed strongest enrichment for neuronal biological
process including synaptic signaling (GO:0099536, p= 9.23e–7,
adjusted p= 6.9e–4, hypergeometric test) and neuron develop-
ment (GO:0048666, p= 9.87e–7, adjusted p= 6.9e–4) (Supple-
mentary Fig. 9). These analyses confirm the extensive
transcriptional changes occurring during neural differentiation
and neuronal maturation among individual transcript classes.

Coculturing NPCs on astrocytes accelerates maturation. After
quantifying expression patterns across the entire time course, we
then focused our attention on interpreting the maturation of the
neuronal samples. Given the relatively diminished progenitor-like
signature of neuronal cells that were cocultured at the NPC stage
with rat astrocytes compared with neuronal cells cultured alone
(PC2 in Fig. 2a), we sought to more fully characterize the tran-
scriptional effects of astrocyte coculturing. We first demonstrated
that we could accurately separate the expression data from
human and rat cocultured cells using RNA-seq read alignment, as
an in silico RNA sorting technique. We analyzed RNA-seq data
from purified rat astrocytes and human neuronal cells and found
little cross-species mapping: human neuronal cells alone had low
alignment rates to the rat (rn6) genome (mean= 16.6%, SD=
4.5%) and rat astrocytes alone had low alignment rates to the
human (hg38) genome (mean= 10.1%, SD= 2.3%) (Supple-
mentary Fig. 10). We next remapped those rodent reads that
aligned to hg38 back to rn6 and those human reads that aligned
to rn6 back to hg38, and we found two sets of three highly
expressed genes that contributed to the majority of reads that
mapped across species (Supplementary Table 3). Each of these six
genes have either an orthologous gene or significant match with
the Basic Local Alignment Search Tool (BLAST) in the other
genome.

It is important to note that we found quasi-mapping
techniques, e.g., transcript quantification with software like
Salmon19, did not computationally separate the two species due
to the shorter lengths of the k-mer-based indices. We confirmed
this by comparing the gene counts (aligned using HISAT2) and
transcript counts (pseudo-aligned using Salmon) of our five rat
astrocyte samples. We found that when aligned to the rn6
genome the total counts per sample were similar between genes
and transcripts (gene mean= 43.9M, transcript mean= 43.1M,
p= 0.89, paired t-test), while when aligned to the hg38 genome
the transcript counts were an order of magnitude higher (gene
mean= 2.2M, transcript mean= 15.1M, p= 4.4e–5), implying
that the short k-mers are not capable of distinguishing between
sequences of the different species. Still, we showed that the
expression profiles of human neurons can be computationally
separated from rodent astrocytes using standard RNA-seq read
alignments, eliminating the need to separate through flow
cytometry that can introduce expression changes in RNAs20.

After establishing that the species alignments were separated in
silico, we then compared the human gene expression profiles
between four neuronal lines cultured alone and seven of the same
lines cocultured with rodent astrocytes at week 8, and identified
3214 genes differentially expressed (at FDR < 0.05) between the
two groups (Fig. 4a, Supplementary Data 2). We performed GO
analyses on the sets of up- and downregulated differentially

expressed genes, and found significant enrichment of genes
related to transporter activity, ion channels, and their activity
among cocultured neuronal cells plus astrocytes (Fig. 4b,
Supplementary Data 3). The upregulated genes were further
enriched for being localized in the ion channel complex
(GO:0034702, p= 1.36e–25, adjusted p= 6.86e–23), post synapse
(GO:0098794, p= 1.35e–24, adjusted p= 3.4e–22), and axon
(GO:0030424, p= 1.68e–21, adjusted p= 1.65e–19). These results
corroborate previous observations that coculturing with astro-
cytes produces cultures with more mature neuronal cell types21.

We next examined the IR ratios of the lines cultured alone and
found their IR ratios to be similar to the less mature NPCs/
rosettes (p= 0.68, linear model) and lower than those of the
neuronal samples cocultured with astrocytes (p= 0.036). Last,
using electrophysiological measures we showed increased neuro-
nal maturation from weeks 4 to 8 of coculturing with astrocytes,
through both increasing capacitance (p < 2.2e–16, Fig. 1e) and
decreasing membrane resistance (p= 2.15e–14, Fig. 1f).

As a secondary analysis, we turned to the rodent astrocytes
(quantified against the rat transcriptome) and asked whether
coculturing these with human neuronal cells altered their
transcriptomes. We found 1329 rodent genes differentially
expressed between astrocytes cocultured with neuronal cells
compared with astrocytes alone (at FDR < 0.05, Figs. 4c, d), and
the genes more highly expressed when cocultured were strongly
enriched for neuron projection morphogenesis (GO:0048812,
p= 9.78e–9, adjusted p= 1.66e–05) and axon development
(GO:0061564, p= 5.19e–6, adjusted p= 4.4e–3).

In our cocultured samples, both the human gene expression
profiles of the neurons, as well as the rodent expression profiles of
the astrocytes, showed enrichment of genes in GO terms related
to cellular maturity. These results together suggest increased
synergistic maturation of both neuronal cells and astrocytes when
cocultured together.

RNA deconvolution quantifies cortical neuron subpopulations.
Given the maturation reflected in the expression trajectories and
physiological activity among the 8-week (77 DIV) neuronal cells,
we sought to more fully characterize the underlying cellular
composition of these cultures. Previous computational approa-
ches have focused on global analyses determining the most
representative time point in brain development for iPSCs and
organoids22. Here we instead developed a strategy to quantify the
fraction of RNAs from ten different developmental, prenatal, and
postnatal neural cell types. We reprocessed and jointly inter-
rogated microfluidics-based single-cell RNA-seq datasets from
iPSCs and NPCs, fetal quiescent and replicating neurons, and
adult neurons, astrocytes, oligodendrocytes, oligodendrocyte
progenitors (OPCs), microglia, and endothelial cells23,24. These
single-cell data were selected to be more comparable to RNA-seq
of bulk cells, including the quantification of the entire gene body
(rather than 3′ read counting) and fresh brain tissue (rather than
frozen tissue that results in ruptured cell membranes and the
need for subsequent sequencing of nuclear, rather than total,
RNA). We identified a set of 228 genes (Supplementary Data 4)
that could transcriptionally distinguish each of these ten cell
classes using feature-selection strategies previously described for
cellular deconvolution with DNA methylation data25. We then
standardized the expression to reduce the technical effects across
studies (i.e., created Z scores), performed regression on these
RNA profiles to estimate the mean RNA levels for each cell class,
and implemented the quadratic programming-based approach of
Houseman et al.26 to perform RNA deconvolution (see Methods).

We describe the algorithm in Fig. 5 using data from a subset of
genes (to aid visualization). Figure 5a displays the mean
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standardized expression levels for each cell class for 131 genes
that distinguish six cell classes (vertical lines). Our standardized
data across these 131 genes are shown in Fig. 5b, which largely
depicts blocks of decreased expression of iPSC and NPC genes,
and increased expression of fetal and adult neuronal genes. The
expression levels of two adult neuronal genes selected by the
algorithm (SNAP25 and SCN2A) across the single-cell reference
and our bulk data are shown in Fig. 5c—identical boxplots for all
131 genes can be found in the supplementary materials
(Supplementary Figure 11, Supplementary Data 5). We further
performed literature searches on the 25 genes that were
preferentially expressed in adult neurons used in the RNA
deconvolution model and found that these key drivers are being
studied throughout the literature, with evidence for mouse-
knockout models relating to neurons in 18 of the genes
(Supplementary Table 4).

The RNA deconvolution algorithm estimates how similar the
expression profile of each sample is to each of the ten reference
profiles across these genes, and computes the RNA fraction of
each cell class—the shifts of these fractions across our time-course
samples are shown in Fig. 5d. More formally, we observed the loss
of RNA expression signatures from iPSCs (p= 1.3e–14), the rise
and fall of RNA expression signatures from NPCs (with a similar

pattern as the PC2 of the gene expression data in Fig. 2a), and rise
of RNA expression signatures from fetal quiescent (p= 3.4e–33)
and adult (p= 6.4e–32) neurons (Fig. 5d).

Notably, we also observed significantly increased RNA
fractions of adult-like neuronal cells when plated on (48.9%)
versus off rodent astrocytes (23.4%, Fig. 5d). The mixture of
estimated RNA fractions from neuronal classes from diverse
developmental stages highlights the heterogeneity of matura-
tion states from iPSC-derived neuronal cells. However, this
approach further demonstrates that a subpopulation of cells in
these neuronal cultures are more transcriptionally akin to adult
neurons than generally thought, and also provides a computa-
tional tool for transcriptionally assessing the relative maturity
of differentiated neurons from iPSCs (via the RNA fraction
from adult neurons) across independent datasets and
experiments.

We do emphasize that this algorithm, when applied to
expression data, only estimates the RNA fraction of each
cell class, and explicitly not the proportion of cells present
in the culture—the exact link between RNA and cellular
proportion is unclear. For example, if more mature neurons
are larger and more transcriptionally active, they would
contain more RNA than other less mature neuronal types.
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Deconvolution: maturation in iPSC-derived neuronal datasets.
To assess the generalizability of our algorithm to samples gen-
erated by other labs and research groups, and to confirm the
robustness of this deconvolution method to characterize varia-
bility in neuronal differentiation protocols, we next turned to a
series of published iPSC-derived neuronal and organoid datasets.
Within bulk RNA-seq data from differentiating neuronal cells27,
we found increases in the proportion of neurons and astrocytes
through differentiation in human iPSCs in a recent schizophrenia
and control collection (Fig. 6a). This paper had reported a resi-
dual fibroblast-like signature that was not supported by applying
this deconvolution to pure fibroblast and iPSC data15 (Supple-
mentary Fig. 12A). In data from CORTECON7, we further found
a larger proportion of endothelial—that we hypothesize could
represent an immature astrocyte signature (see below)—and NPC
signatures, and a lack of fetal or adult neuronal classes (Fig. 6b).
These less mature cell states—possibly due to the CORTECON
protocol not including astrocyte coculturing—were in line with
our global PC analysis in Fig. 2a. Similarly, in data from a bulk-
developing iPSC dataset in which the authors note that the
neurons were harvested during early differentiation stages28, we
found a high proportion of the NPC signature in the neuronal

samples (Fig. 6c). When comparing RNA fractions of bulk data
processed across five different labs29, we found high variability of
cell-type proportions by lab, particularly for neurons and endo-
thelial cell types (Fig. 6d). We further examined variability by cell
type (see the “Methods” section) and found that the largest
amount of variance is from technical variability contributed by
lab site for eight of the ten cell-type estimates (Supplementary
Table 5). Furthermore, out of the ten cell types, the cell type
explaining the largest amount of variance by lab site was the adult
neuron RNA fraction (p= 2.63e–13, nested ANOVA), demon-
strating that much of nuisance technical effects represented cel-
lular heterogeneity in maturation.

Analyses in single-cell differentiation datasets further revealed
stark differences in the underlying RNA fractions across
development, including between DCX– and DCX+ cell popula-
tions8 (Fig. 6e). Other experimental systems and approaches are
becoming popular tools in parallel to classical 2D culture
conditions, enabling us to make comparisons to 3D cultures
such as human organoids. First, we found similar RNA fractions
comparing 2D versus 3D directly induced neurons, both on
versus off astrocytes, at both 1 and 5 weeks after differentiation30

(Fig. 6f). Though the differentiation time points between 2D and
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3D protocols may not be directly equivalent, this suggests that
standard 2D cultures may generate very similar transcriptionally
mature cells to 3D cultures, at least in an induced neuron
protocol.

We additionally sought to more functionally validate the RNA
fraction originating from the adult neuron class using Patch-seq
with paired electrophysiology data31. We found a significant
positive relationship between the activity states (from 1 to 5,
excluding astrocytes, coded as 0) of iPSC-derived neuronal cells
and the estimated RNA fraction from neurons (Fig. 6g, p=
3.44e–5, linear model). These data also suggested that the
endothelial RNA fraction associated with less mature astrocyte
cells (~20% estimate, Supplementary Fig. 12B) is in line with the
CORTECON data above.

We also profiled the RNA fractions in iPSC-derived organoids
over longer periods of differentiation32, and found expected RNA
distributions within neuronal and glial cellular subtypes, includ-
ing the rise of RNA from astrocytes in HEPACAM-selected cells
(Fig. 6h, i) and RNA from fetal quiescent neurons in neuronal
populations (Fig. 6j). We do note that the interpretation of the
RNA deconvolution results is somewhat different in the organoid
system compared with neuronal cultures, as other cell types
besides neurons are intentionally present. These results suggest
that this deconvolution algorithm can quantify important
contributions to neuronal cellular systems derived from iPSCs,
and can be used to remove variability related to differences in
differentiation.

Deconvolution: applicability to brain tissue. We further asses-
sed the robustness of this RNA deconvolution strategy for
assessing neuronal maturity, using a series of publicly available
datasets on human brain as a positive control. Using data from
the BrainSpan project33, we confirmed the shift from fetal
quiescent to mature adult neurons in homogenate RNA-seq data
(Fig. 6k) and the shift from replicating to quiescent fetal neurons
in 5–20 postconception weeks (Fig. 6l) and independent 33–91
postconception day (corresponding to 5.5–13 PCW postconcep-
tion weeks, Fig. 6m) fetal neocortex single-cell RNA-seq datasets.

We performed several additional analyses to independently
assess this RNA deconvolution tool. First, we applied this RNA
deconvolution approach to a large RNA-seq dataset from
postmortem human brain tissue34, and found largely expected
developmentally regulated signals. We observed loss of fetal
quiescent neurons (p < 1e–100) and NPCs (p= 6.5e–91) and the
rise of adult neurons (p= 5.0e–39), and oligodendrocytes (p=
7.4e–54), primarily at the transition between pre- and postnatal
life (Fig. 6n). The estimated RNA fraction of neuronal RNA in the
adult samples (mean= 61.9%) was almost twice as high as
previous cell count-based approaches, including cytometry-based
fractions of NeuN+ cells (mean ~33%)35 and DNA methylation-
based deconvolution of the frontal cortex (27.9%)36, but was
lower than other RNA-based deconvolution strategies applied to
DLPFC RNA-seq data (mean= 80%)37.

Deconvolution: brain-stage model verifies neuronal signature.
In addition to our cell-type proportion algorithm, we designed
and implemented an orthogonal RNA deconvolution model using
bulk RNA-seq data from iPSCs and the BrainSpan project to
estimate the RNA fractions from eight developmental brain stages
(iPSC, early-, mid-, and late-fetal cortex, and infant, child, teen,
and adult cortex) using 169 genes (see the “Methods” section,
Supplementary Data 6). We first confirmed in the large RNA-seq
dataset from postmortem human brain tissue34 a loss of plur-
ipotency, rise and fall of the early-fetal signature, and then rise of

both mid-fetal and also adult cortical signatures (Supplementary
Figure 13A).

In our time-course data, we observed a general loss of
pluripotency through differentiation (p= 3.77e–38)—the self-
renewing and early differentiating cells had high proportions of
the iPSC signature (mean 96.1% and 75.1%, respectively), with a
rise of early-fetal neocortical-like signature (p= 4.7e–7) first in
the differentiating cells (20.6%) that became more prevalent in
NPCs (33.3%) and rosettes (33.3%) (Supplementary Fig. 13B).
We further identified the rise of a mid-fetal neocortical signature
(p= 3.0e–22) first appearing in rosettes (9.6%) and expanding
into neurons off (33.5%) and on (29.9%) astrocytes. The most
interesting class switch involved the late-fetal neocortical and
adult neocortical classes—neurons grown off astrocytes had high
class membership with late-fetal neocortex (10.1%) with low
proportions of the adult neocortex (2.7%). However, in the
neurons cocultured with rodent astrocytes, these proportions
were reversed—these transcriptionally more mature neurons
showed that 22.2% of RNA was analogous to the adult neocortex
and only 2.0% of RNA reflected late-fetal neocortex. This
developmental stage-based deconvolution presents an additional
option for deconvolution analyses. In our own data, it further
demonstrated the emergence of a more adult-like RNA signature
in neuronal cells cocultured on astrocytes.

Cell-type- and brain-stage-specific models with RNA fractions.
The RNA fractions estimated with our deconvolution methods
can further be incorporated directly into statistical models to infer
cell-type- or developmental-stage-specific phenotypic effects or
technical bias. Specifically the RNA fractions could represent
cellular phenotypes in and of themselves, or can be incorporated
into downstream analyses, either as quality control checks to
ensure comparability of samples or directly into differential
expression analysis. To demonstrate the use of these approaches
in practice, we completed three additional analyses incorporating
cell-type and developmental-stage RNA fractions.

First, we investigated two influencers of neuronal maturation
by performing two additional experiments with our iPSC samples
across differentiation. We knocked down the expression of PTEN
and NRXN1, two genes implicated in neurodevelopmental
disorders, using three complementary short hairpin RNAs
(shRNA) for each gene and performing RNA-seq through the
rosette stage. We applied our two deconvolution approaches and
directly compared the estimated cell-type and brain-stage
proportions of our time-course samples, the shRNA control
samples, and the two knockdowns (Supplementary Fig. 14A, B)
after confirming that the appropriate features were knocked down
in expression for PTEN (Supplementary Fig. 14C, D) and NRXN1
(Supplementary Fig. 14E). The deconvolutions showed similar
trajectories with little differences in the later stages in both the
cell-type model and the brain-stage model—echoing our results
of differential expression checks between the time-course and
knockdown experiments—suggesting that controlled differentia-
tion of cells produced more comparable cellular cultures, and that
these two genes do not alter maturational diversity of NPCs and
rosettes. Such a check could show that technical effects do not
differ between batches or protocols within a lab before proceeding
with analyses.

Next, the RNA fractions estimated with our deconvolution
approach could be directly incorporated into differential expres-
sion analysis to magnify phenotype effects that might be present
in only a subset of cell types. To examine this, we adapted the
CellDMC interaction modeling method originally presented for
methylation data to one of our deconvoluted RNA-seq datasets38.
Reanalysis of NPC data from Hoffman et al. (2017)27 identified

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14266-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:462 | https://doi.org/10.1038/s41467-019-14266-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


78 genes differentially expressed by schizophrenia diagnosis using
the interaction modeling strategy, none of which were found
significant using standard DE modeling (Supplementary Fig. 15,
Supplementary Data 7, 8). Utilizing these RNA fractions could
allow one to find cell-type-dependent differences that could be
missed when samples show variable cellular phenotypes.

Finally, the RNA fractions could be used as a check if technical
variabilities are consistent across cell type. To demonstrate, we
conducted differential expression analysis using the Volpato
et al.29 data consisting of samples across five lab sites. As
previously mentioned, we found high variability of cell-type
proportions by lab. In a differential expression model with lab
and adult neuronal fraction (the most variable cell type by lab),
we found 7616 genes to be differentially expressed across the sites;
however, when using the CellDMC interaction method we found
1835 DE genes by lab and 1099 DE genes by lab–neuron
interaction (bonf < 0.05). Including neuronal proportion interac-
tion greatly lessened the lab effects, demonstrating that
incorporating the RNA fractions into models could reduce
potential technical effects present in datasets.

All combined, these results from diverse RNA-seq datasets
from a variety of experimental approaches demonstrate the wide
applicability of this transcriptional deconvolution strategy. Our
RNA fraction approach can be a robust tool for a variety of
analytical methods, including quantifying technical versus
biological effects, finding cell-type-specific expression patterns
within phenotypes, and evaluating the cellular maturity of model
systems.

Discussion
Here we extensively characterized the transcriptomes of human
iPS cells as they traverse distinct neurodevelopmental transitions
defined by morphological and functional features. We used 13
independent cell lines derived from five donors to understand the
relevance of these cellular systems to model human brain devel-
opment. We identified widespread transcript-specific changes in
expression across differentiation and neuronal maturation at
varying scales among co-expressed genes, and among individual
transcript features that were assessed for replication in indepen-
dent neuronal differentiation datasets. It will be important to
relate these data to transcriptional isoforms that associate with
risk for neurodevelopmental disorders to build faithful in vitro
models for experimental applications. With these data we have
also created a web browser visualizing expression levels across
neuronal differentiation, which will be a valuable resource for
experimental designs, such as transcript-specific knockdown and
overexpression experiments.

We focused on the ability to assess neuronal maturity in our
paradigm. This was approached both experimentally through use
of rodent astrocyte cocultures, and computationally through the
use of two related deconvolution implementations to determine
the brain stage and cellular identities of differentiating cells that
we applied across thousands of samples and cells. While previous
reports have demonstrated electrophysiological and transcrip-
tional evidence for the enhancement of neuronal maturity due to
coculturing NPCs with astrocytes during differentiation39–41, to
our knowledge few studies have generated cell-type-specific gene
expression profiles without the use of cell sorting. Here we show
that the functional consequences of coculturing human NPCs
with rodent astrocytes can be detected in silico, without the need
for cell sorting, by leveraging the mappability of longer sequen-
cing reads. These cross-species analyses revealed the synergistic
effect of coculturing on neuron and astrocyte growth, simulta-
neously promoting the maturation of both the astrocytes and the
human neurons.

We have also leveraged tools previously developed for esti-
mating cell-type composition profiles from DNA methylation
data to benchmark the developmental and cellular landscapes of
human iPSCs as they differentiate toward neural fates. We show
that 8-week (77 DIV) neuronal cultures, particularly those
cocultured on rodent astrocytes, are a diverse mixture of cells at
varying maturities and cellular states. While the majority of cel-
lular and developmental classes are consistent with the prenatal
brain as previously reported using microarray-based profiling22,
we have identified subsets of more mature cells also present in our
cultures that model later developmental stages. These cells pre-
sumably account for those with evidence of more mature phe-
notypes in our electrophysiology assays. The computational
deconvolution tool we have developed here, and validated across
several public RNA-seq datasets, can be adopted by researchers to
assess the maturation of potentially heterogeneous cultures of
iPSC-derived neurons.

In addition, the two reference profiles and subsequent regres-
sion calibration-based tools for deconvoluting the relative RNA
contributions of cell stages and classes can be easily utilized by
researchers using RNA-seq data to ensure more comparable case
and control lines for discovering molecular phenotypes. This
approach will also be increasingly valuable to assess organoids
and complex three-dimensional stem cell models under devel-
opment42. Furthermore, we provided a statistical framework
showing that these estimated RNA fractions can be applied in
downstream analyses, such as to draw cell-type-specific inference
of differential expression analysis or to reduce technical biases
related to differentiation within bulk data.

Recent advances in single-cell analysis are being leveraged to
comprehensively define the human central nervous system. The
BRAIN Initiative has effectively used single-cell transcriptomics
and epigenetics to characterize cellular populations in the devel-
oping brain43. We anticipate that the tools developed in our study
will complement those efforts that depend on cellular dissociation
and selection that largely restrict data to gene-level and nuclear
expression. Future development of mathematical and computa-
tional approaches to relate datasets and enhance sparse cell-level
insight will be valuable toward understanding brain health and
disease. These expression-based resources of neuronal differ-
entiation can provide beneficial metrics for quality control (via
deconvolution) and can assist in experimental design (via our
expression browser) to more fully leverage the power of cellular
systems to better understand and model debilitating brain
disorders.

Methods
Clinical fibroblasts. Skin fibroblasts, taken in a superficial circular incision (3 mm
in diameter) in the mesial aspect of the upper arm, were cultured after informed
consent from neurotypical volunteer subjects who were participants in the Sibling
Study of Schizophrenia at the National Institute of Mental Health in the Clinical
Brain Disorders Branch (NIMH, protocol 95M0150, NCT00001486, Annual
Report number: ZIA MH002942053, DRW PI) with additional support from the
Clinical Translational Neuroscience Branch, NIMH (KFB PI). All subjects were
extensively screened with obtaining medical, psychiatric and neurological histories,
physical examinations, MRI scans, and genome-wide genotyping to rule out
diagnosable clinical disorders.

iPS cell line derivation and culture. Human iPS cell lines were generated using
the Stemgent mRNA reprogramming kit (00-0071) and the Stemgent microRNA
Booster kit (00-0073) with modifications5. Briefly, human fibroblasts were seeded
with 50,000 cells in individual wells of a six-well plate coated with Matrigel in
DMEM media+ 10% FBS and 2mM L-glutamine. The next day (day 1), the media
was changed with Pluriton human NUFF conditioned media with 300 ng/ml B18R
protein. On days 1 and 5, the microRNA booster kit was used with the StemFect
RNA transfection reagent kit from Stemgent to enhance reprogramming. On days
2–12, the OSKML RNAs were transfected. The mRNA reprogramming process was
performed in a 37 °C, 5% O2, and CO2 incubator. Individual colonies were picked
and expanded on irradiated mouse embryonic fibroblasts in DMEM-F12
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(Invitrogen), 20% knockout serum replacement (KSR), 5 ng ml–1 FGF2 (R&D
Systems), 0.1 mM 2-mercaptoethanol (Sigma), 2 mM L-glutamine, and 1× non-
essential amino acids (both from Invitrogen). Putative iPS cell lines were subjected
to karyotype analysis (Cell Line Genetics) and molecular analysis prior to the
generation of feeder-free working cell banks. Confirmation of known pluripotency
genes and silencing of fibroblast-enriched genes44 in reprogrammed cells was
measured using the Fluidigm BioMark System and TaqMan probes according to
the manufacturer’s protocol. Only cell lines with a normal chromosomal com-
plement were chosen to generate cell banks for this study. For maintenance of
banked hiPSCs in feeder-free conditions, cells were dissociated to single-cell
populations with accutase (A11105, Life Technologies), plated at a density of 1 ×
106 cells in a Matrigel (BD)-coated six-well plate, and cultured with mTeSR1 (Stem
Cell Technologies, #05850)45. The cells were cultured with 5 mM Y27632, ROCK
inhibitor (Y0503, Sigma-Aldrich) to increase the single-cell survival upon dis-
sociation. At 24 h after plating, Y27632 was removed from the medium, and cells
were cultured for another 4 days before the next passaging. Initially, a total of
71 subclonal lines from 13 subjects were reprogrammed (Supplementary Fig. 1).
Out of the 48 genes tested by the targeted Fluidigm qPCR there was only a single
gene different between the five donors selected for sequencing in this study
compared with the other eight donors not selected—which was GSTT1, a strong
copy number variant with influence on gene expression46. There were further no
differences in any gene’s expression comparing the 10 (out of 13) subclonal lines
with RNA-seq data compared with the 24 with just Fluidigm qPCR expression data
across these five donors. We therefore believe that the five donors and 13 subclonal
lines ultimately selected for RNA-seq were a representative sample.

Neural differentiation. To induce neural differentiation, iPSCs were plated under
feeder-free conditions described above. Twenty-four hours after plating, media was
changed to either the “Dorsal” condition (mTESR1 plus 100 nM LDN193198 and
2 μM SB431542) or the “Accelerated Dorsal” condition (Stem Cell Technologies
AggreWell medium plus 100 nM LDN193189 and 2 μM SB431542). Forty-eight
hours later (Day 2), the Dorsal condition media was replaced and the “Accelerated
Dorsal” condition media was changed to N2/B27 medium plus 100 nM
LDN193189 plus 2 μM SB431542. On Days 4 and 6, media for both conditions was
replaced. Total RNA was collected (RNeasy Qiagen) under both conditions at Days
2 and 6, and at Day 4 for a subset of samples. The Accelerated Dorsal Condition
was exclusively used for continued neural differentiation and media was replaced
daily up until Day 9. On Day 9, total RNA was collected, or cells were passaged
using Accutase onto Poly-L-ornithine/fibronectin-coated tissue culture dishes in N2
media plus 20 ng/ml FGF2. Media was changed each day up until Day 15 when
RNA was harvested, or cells were passaged with HBSS onto Poly-L-ornithine/
fibronectin-coated tissue culture dishes in N2 media plus 20 ng/ml FGF2. Media
was exchanged each day with fresh N2 until Day 21 when neural rosettes appear.
On Day 21, total RNA was collected, or cells were passaged with HBSS onto PDL/
Laminin coated coverglass with or without rat E18 astrocytes in N2 media in a
humidified 37 °C tissue culture incubator at 5% oxygen. After 24 h, the media was
exchanged for Neuronal Differentiation Media (NeuroBasal Invitrogen 12348-017,
1× GlutaMax Invitrogen 35050-061, 3 nM Selenite, 25 μg/ml Insulin Sigma I6634,
1× Pen/Strep final 1× Invitrogen 15140-122, 1× B27 Invitrogen 17504-044, con-
centration, 10 ng/ml BDNF R&D systems, 248-BD/CF, and 10 ng/ml NT3 R&D
systems, 267-N3/CF). In all, 50% of the media was changed every other day until
Day 28. After 7 days on astrocytes, 100% of the media was changed to Neuronal
Differentiation Media plus 20 μM AraC. In all, 50% of the media was changed with
Neuronal Differentiation Media plus 20 μM AraC every other day up to Day 35. At
Day 35, 100% of the media was exchanged for Neuronal Differentiation Media
without AraC and 50% of media was exchanged every other day for up to 8 weeks.
RNA was harvested at indicated intervals during the process.

Electrophysiology. Human neuronal cultures on glass coverslips were submerged
in our recording chamber and constantly perfused with an external bath solution
consisting of (in mM) 128 NaCl, 30 glucose, 25 HEPES, 5 KCl, 2 CaCl2, and 1
MgCl2 adjusted to pH 7.35 with NaOH. All recordings were performed at
approximately 32 °C. Patch pipettes were fabricated from borosilicate glass (N51A,
King Precision Glass, Inc.) to a resistance of 2–5MΩ. For voltage-clamp mea-
surements, cells were held at –70 mV and recording pipettes were filled with (in
mM) 125 potassium gluconate, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 0.1 EGTA, and
10 phosophocreatine, 0.05%, adjusted to pH 7.3 with KOH. Current signals were
recorded with either an Axopatch 200B (Molecular Devices) or a Multiclamp700A
amplifier (Molecular Devices) and were filtered at 2 kHz using a built-in Bessel
filter and digitized at 10 kHz. Data were acquired using Axograph on a Dell PC
(Windows 7). We tested for differences in capacitance and membrane resistance
across time in culture using linear mixed effects modeling, treating line and donor
as random intercepts, and naturally log-transforming these two measures to
improve normality assumptions of these models.

Cellular imaging. Neural progenitor cells spontaneously self-organize into rosette
structures reflecting morphological properties of the developing neural tube47.
Neural progenitors were plated in 24-well ibidi plates in triplicate for each line.
After differentiation for 6 days, an acellular lumen is detectable with antibody

directed against ZO-1. Surrounding the lumen are laminae of dorsal forebrain
progenitors identified with anti-OTX2 antibodies. Nuclei were labeled with DAPI.
Under these conditions, the structures are largely two-dimensional but are
becoming pseudo-3D. An array of 6 × 6 wide-field (non-confocal) images was
captured automatically from each of three neighboring wells using the Operetta
and processed using custom code in Columbus (both Perkin Elmer). Briefly, ZO-1
segmentation was used to reveal the core of each rosette. Anti-OTX2 immunor-
eactivity was used to identify the limits of each rosette. Nuclear morphology was
measured indirectly using the DAPI signal.

For the neural staining, iPSC-derived neural monolayers were cultured on 24-
mm glass coverslips. Samples were fixed with ice-cold 4% paraformaldehyde for 15
min. Permeabilization and blocking were performed simultaneously with 10%
normal goat serum containing 0.1% Triton X-100 for 30 min. Primary antibodies
directed against BIII-Tubulin (TuJ1), PSD-95, and synapsin1 (Syn1) were prepared
in PBS containing 10% normal goat serum and incubated with sample overnight at
4 °C. Fluorescently conjugated Goat-anti-x, y, z secondary antibodies were
prepared in 10% normal goat serum and incubated with sample for 2 h at room
temperature. Coverslips were mounted in medium containing DAPI. All samples
were imaged on a Zeiss 780 LSM microscope with 63 × 1.4 NA objective across a
range of Z positions at optimal step size for 3D reconstruction. In total, 3 × 3
adjacent fields were stitched to create example images. Ten or more of these 3 × 3
arrays were captured per coverslip.

RNA sequencing. Total RNA was extracted from samples using the RNeasy Plus
Mini Kit (Qiagen). Paired-end strand-specific sequencing libraries were prepared
from 300 ng of total RNA using the TruSeq Stranded Total RNA Library Pre-
paration kit with Ribo-Zero Gold ribosomal RNA depletion (Illumina). An
equivalent amount of synthetic External RNA Controls Consortium (ERCC) RNA
Mix 1 (Thermo Fisher Scientific) was spiked into each sample for quality control
purposes. The libraries were sequenced on an Illumina HiSeq 3000 at the LIBD
Sequencing Facility, after which the Illumina Real Time Analysis (RTA) module
was used to perform image analysis and base calling, and the BCL converter
(CASAVA v1.8.2) was used to generate sequence reads, producing a mean of 58.3
million 100-bp paired-end reads per sample.

RNA-seq: processing pipeline. Raw sequencing reads were mapped to the hg38/
GRCh38 human reference genome with splice-aware aligner HISAT2 version
2.0.448. Samples without rodent tissue averaged 86.6% alignment rate (SD= 5.1%),
while 31 samples cocultured with rat astrocytes averaged 33.9% alignment rate
(SD= 10.1%) to the human genome. Feature-level quantification based on GEN-
CODE release 25 (GRCh38.p7) annotation was run on aligned reads using fea-
tureCounts (subread version 1.5.0-p3)49 with a mean 62.9% (SD= 8.2%) of
mapped reads assigned to genes for human samples, and a mean 43.1% (SD=
9.4%) of mapped reads assigned to genes for samples containing rat astrocytes.
Exon–exon junction counts were extracted from the BAM files using regtools50 v.
0.1.0 and the ‘bed_to_juncs’ program from TopHat251 to retain the number of
supporting reads (in addition to returning the coordinates of the spliced sequence,
rather than the maximum fragment range) as described in ref. 34. Annotated
transcripts were quantified with Salmon version 0.7.219 and the synthetic ERCC
transcripts were quantified with Kallisto version 0.43.052. For an additional QC
check of sample labeling, variant calling on 740 common missense SNVs was
performed on each sample using bcftools version 1.2. After processing, statistical
analyses were completed using R versions 3.3 and 3.4, and combined figures were
generated with Adobe Illustrator version 22.0.1.

RNA-seq: quality control. After preprocessing, samples were checked for quality
control measures. All samples passed quality control checks for alignment rate,
gene assignment rate, mitochondrial mapping rates, and ERCC spike-in con-
centrations. We looked for batch effects by checking for differences in technical
metrics by batch, or for separation by batch within top principal components. In
addition, we clustered the gene expression of three sets of replicates sequenced on
seven different flow cells, finding that the replicates clustered by sample and not
flow cell. The replicates were included for quality control purposes and were not
used in any additional analyses. All of our batch effect checks indicated consistency
across batch. Next we examined expression through the differentiation time course
of known pluripotency and neuronal differentiation marker genes to confirm that
our cell lines differentiated as expected; one cell line (six samples) did not pass this
marker check due to slow differentiation and was dropped from all analyses.
Finally, a genotype check was conducted to confirm the donor labeling of all
samples. Called coding variants were matched to existing microarray-based gen-
otype calls, and five samples were dropped due to ambiguous sample identity.

RNA-seq: rat astrocytes. Purified rat astrocytes from five samples, as well as the
cocultured neuron/astrocyte samples and four samples of human neurons, were
processed with an analogous rat pipeline as discussed above (see Processing
pipeline). The samples were aligned to the rn6/Rnor_6.0 genome, and feature
counts were quantified using the Ensembl release 86 annotation of the rat tran-
scriptome. A mean 90.7% (SD= 2.1%) of rat astrocyte reads aligned to the refer-
ence genome and cocultured samples had an average 68.4% (SD= 9.9%) alignment
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rate, while human neurons averaged 16.7% (SD= 4.5%) alignment. The expression
levels of the three groups were compared to each other in assessing the neuronal
maturation effects of coculturing with astrocytes.

Public data processing. Multiple public human RNA-seq datasets were down-
loaded and used to quantify the developmental stage and cellular composition of
our samples across the differentiation time course. All public data below were run
through the same processing pipeline as outlined above to get comparable read
counts and expression values (see Processing pipeline).

Raw FASTQ files from each of the following datasets were downloaded from the
sequencing read archive (SRA).

(1) CORTECON (van de Leemput et al.7) included 24 single-end (50 bp)
samples of human cerebral cortex development from hESCs across nine timepoints
(days 0, 7, 12, 19, 26, 33, 49, 63, and 77) [SRP041179, GSE56796].

(2) The ScoreCard dataset (Choi et al.53, Tsankov et al.15) consisted of 73
paired-end (2 × 100 bp) samples of hESCs, hiPSCs, and fibroblasts [SRP063867,
GSE73211].

(3) Song et al.23 consisted of 174 single-cell samples of iPSCs, NPCs, and motor
neurons from both paired- and single-end libraries [SRP082522, GSE85908].

(4) Close et al.8 included 1733 single-cell and 40 pooled samples of paired-end
(2 × 50 bp), hESC-derived cortical interneurons at four timepoints of
differentiation (days 26, 54, 100, and 125) profiling both neurons (DCX+) and
progenitors (DCX–) [SRP096727, GSE93593].

(5) Darmanis et al.24 included 420 paired-end (2 × 75 bp) single-cell samples of
four embryonic and eight adult brains from eight types of cortical tissue
[SRP057196, GSE67835].

(6) Bardy et al.31 consisted of 56 paired-end (2 × 100 bp) single-cell samples of
iPSC-derived neurons, as well as the corresponding Patch-seq
electrophysiology data.

(7) Tekin et al.30 included 157 bulk paired-end reads of induced neurons both
on and off human and mouse astrocytes at 1 and 5 weeks after differentiation.

(8) Volpato et al.29 included 57 paired-end samples of bulk tissue processed
across five different labs and two cell lines at days 50 and 80 of differentiation.

(9) Lin et al.28 consisted of 19 paired-end (2 × 100 bp) samples in early
differentiating human neurons derived from iPSCs of 22q11.2 DS schizophrenia
patients and controls.

In addition, FASTQ files from both bulk and single-cell RNA-seq datasets were
downloaded from the BrainSpan atlas33.

(10) Homogenate data consisted of 407 single-end (75 bp) samples from
neocortical regions of 41 donors aged early fetal through adult (40 year old).

(11) Single-cell data were 932 single-end (100 bp) samples from the DLPFC and
dorsal pallium of eight early- to mid-fetal brains.

The following data from the BrainSeq Phase I consortium were downloaded
and reprocessed34:

(12) The BrainSeq data consisted of one DLPFC sample, each from 318 unique
donors, ranging from fetal through age 85, with paired-end (2 × 100 bp) libraries.

Other datasets used for evaluating the cellular deconvolution approaches
included:

(13) Raw FASTQ files from human organoids (both bulk and single-cell data)
from Sloan et al.32, which were processed with the above pipeline [SRR5676732].

(14) Publicly available gene counts (not FASTQ files) for Ensembl v70 from
Hoffman et al.27 for 94 iPSC-derived NPC and neuronal samples.

Statistical analysis: WGCNA. To identify dynamic patterns of gene expression
across neuron maturation, we performed signed weighted gene co-expression
network analysis (WGCNA)16 using the software’s R package. The analysis was
performed on 25,466 expressed genes (cutoff mean RPKM > 0.1) from 106 samples
across all time points (days 2, 4, 6, 9, 15, 21, 49, 63, and 77). Self-renewal samples
and neurons cultured without rat astrocytes were not included in the WGCNA
analysis. Normalized expression values in the form of log2(RPKM+1) were used,
with gene assignment rate (as a measure of sample quality) regressed out of the
expression matrix. To find clusters, the software first selected a soft thresholding
power of six, then, using a minimum module size of 30 and maximum block size of
10,000, assigned 22,182 of the expressed genes to 11 signed modules representing
dynamic expression patterns through differentiation. GO analysis was then carried
out on the modules to find biological processes and functions enriched by the gene
sets of each cluster. To evaluate replication of the expression patterns, we separated
the reprocessed CORTECON data into the same 11 gene sets, and compared both
the eigengenes and GO terms of the 11 modules calculated in each of the two
datasets.

Statistical analysis: time-course DE. Again looking at 106 samples and 25,466
expressed genes, we performed differential expression analysis to find genes with
changing expression through the stages of neuronal differentiation. Our statistical
model used the voom method54 of linear modeling to estimate the mean-variance
relationship of the gene log counts, adjusting for cell line and the proportion of
mapped reads assigned to genes (gene assignment rate). We found genes most
differentially expressed between each of the neighboring cell conditions of early
neuronal differentiation, NPC, rosettes, and neurons. Within the same model we

also found genes differentially expressed across the entire differentiation time
course. Voom modeling was run on genes, exons, exon–exon junctions, and
annotated transcripts, with p values adjusted for false discovery rate (FDR) within
feature type.

To find the prevalence of unannotated junctions in public datasets, we used the
snaptron_query() function from recount255,56. We queried the 49,657 samples in
the Sequence Read Archive (SRAv2) aligned to hg38 with a different aligner (Rail-
RNA). A feature was considered present in Snaptron if it was found in over 1% of
samples (>497).

Statistical analysis: alternative splicing. Alternative splicing events were further
investigated through intron retention (IR) measures. Ratios of retained introns to
spliced introns were calculated using IRFinder version 1.1.157, and linear regression
models were used to obtain a list of genes with significantly increasing or
decreasing IR ratios across the time course, adjusting for cell line and gene
assignment rate. GO analysis on the directional gene lists was then completed. In
addition, the percent of aligned reads assigned to introns was calculated by fea-
tureCounts for each sample using a GTF of the intronic features of GENCODE
release 25. Differences in intron assignment rate by condition were evaluated with a
linear regression model adjusting for cell line.

Statistical analysis: astrocyte effects. To assess the effect of astrocytes on
neuronal maturation, we compared the gene expression at day 77 of four neuronal
lines cultured alone with seven of the same lines cocultured with rodent astrocytes,
for 24,706 genes with average expression over 0.1 RPKM. A voom model adjusting
for cell line and gene assignment rate was implemented to find genes significantly
differentially expressed between the two groups at FDR < 0.05. We then performed
GO analysis on the upregulated and downregulated gene sets to investigate
enrichment of the DE genes. Similarly, using a voom model adjusting for day and
gene assignment rate, we tested for differential expression of 17,908 expressed rat
genes between the cocultured samples and three purified rat astrocytes on days 49,
63, and 77, followed by GO analysis on the up- and downregulated genes.

RNA deconvolution modeling. We used two regression calibration models to
determine the relative compositions of our iPSC model system. The first model
involved identifying the relative developmental stage of our sequenced cells, using
data from the ScoreCard15,53 and BrainSpan33 homogenate sequencing projects.
The second model involved identifying the relative cellular composition of our
sequenced cells, using the Fluidigm-based single-cell RNA-seq datasets from Song
et al.23 and Darmanis et al.24.

RNA fraction model. We combined single-cell normalized expression data
(log2(RPKM+1)) from 63 iPSC and 73 NPC samples from Song et al.23, and 25
replicating and 110 quiescent fetal neurons, 18 oligodendrocyte progenitor cells
(OPCs), 131 neurons, 62 astrocytes, 38 oligodendrocytes, 16 microglia, and 20
endothelial cells from Darmanis et al.24. We defined cell-type-specific genes using
the same framework described by Jaffe and Irizarry 201425, which involved creating
a “barcode” of 25 genes per cell type that were more highly expressed for one cell
type compared with all others (t-statistic p-value < 1e–15), and we ranked by log2
fold changes for selection. From our final set of 228 unique genes, we scaled each
gene expression value to the standard normal distribution to improve compar-
ability between single-cell and bulk RNA-seq data, and created the regression
calibration design matrix based on Houseman et al.26, shown in Supplementary
Data 4. We again then projected samples into the design matrix using the ‘pro-
jectCellType()‘ function in the minfi Bioconductor package.

Developmental-stage model. We combined normalized expression data
(log2(RPKM+1)) from the 21 iPSC samples in the ScoreCard project and 407
neocortical bulk samples from the BrainSpan project across seven timepoints (73
early-, 73 mid-, and 17 late-prenatal, as well as 53 infant, 71 child, 55 teen, and 65
adult postnatal). We defined stage-specific genes using the same framework as the
cell proportion model. Here we created a “barcode” of 25 genes per stage, which
were more highly expressed for each stage compared with all others (t-statistic p-
value < 1e–15), and ranking subsequent significant genes by log2 fold changes for
selection. As some stages had similar expression levels with others, we ended up
with 169 unique genes and created the regression calibration design matrix based
on Houseman et al.26, shown in Supplementary Data 6. We then projected samples
into this design matrix using the ‘projectCellType()‘ function in the minfi Bio-
conductor package58. Forty-four genes were shared between these two statistical
models for deconvolution.

Volpato et al.29 data analysis. We assessed variability with cell line, day in vitro,
and lab site after first running the RNA cell-type deconvolution algorithm to get
RNA fraction estimates. Then, for each of the ten cell types, we ran an ANOVA
with the full model (RNA fraction ~cell line+DIV+ lab) and a nested model
leaving out one of the three covariates. The p-values for three ANOVAs for each
cell type were recorded as shown in Supplementary Table 5, quantifying the
amount each covariate contributes to the model for that cell type.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Links for downloading all sequencing reads, including both the time-course data and all

reprocessed public data, are available at http://stemcell.libd.org/scb/. Transcriptional data

are deposited under accession code PRJNA596331. Source data are available as a Source

Data file.

Code availability
Accompanying processing and analysis code is available at https://github.com/

lieberinstitute/libd_stem_timecourse.

Received: 25 April 2019; Accepted: 23 December 2019;

References
1. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell

technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).
2. Linda, K., Fiuza, C. & Nadif Kasri, N. The promise of induced pluripotent

stem cells for neurodevelopmental disorders. Prog. Neuropsychopharmacol.
Biol. Psychiatry 84, 382–391 (2018).

3. Zhang, X. et al. Cell-type-specific alternative splicing governs cell fate in the
developing cerebral cortex. Cell 166, 1147–1162.e15 (2016).

4. BrainSeq Consortium. Brainseq: neurogenomics to drive novel target
discovery for neuropsychiatric disorders. Neuron 88, 1078–1083 (2015).

5. Li, M. et al. A human-specific AS3MT isoform and BORCS7 are molecular
risk factors in the 10q24.32 schizophrenia-associated locus. Nat. Med. 22,
649–656 (2016).

6. Hubbard, K. S., Gut, I. M., Lyman, M. E. & McNutt, P. M. Longitudinal RNA
sequencing of the deep transcriptome during neurogenesis of cortical
glutamatergic neurons from murine ESCs. F1000Res. 2, 35 (2013).

7. van de Leemput, J. et al. CORTECON: a temporal transcriptome analysis of
in vitro human cerebral cortex development from human embryonic stem
cells. Neuron 83, 51–68 (2014).

8. Close, J. L. et al. Single-cell profiling of an in vitro model of human
interneuron development reveals temporal dynamics of cell type production
and maturation. Neuron 96, 949 (2017).

9. Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity
in human iPSCs. Nature 546, 370–375 (2017).

10. Panopoulos, A. D. et al. iPSCORE: a resource of 222 iPSC lines enabling
functional characterization of genetic variation across a variety of cell types.
Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2017.03.012 (2017).

11. Salomonis, N. et al. Integrated genomic analysis of diverse induced pluripotent
stem cells from the progenitor cell biology consortium. Stem Cell Rep. 7,
110–125 (2016).

12. D’Antonio, M. et al. High-throughput and cost-effective characterization of
induced pluripotent stem cells. Stem Cell Rep. https://doi.org/10.1016/j.
stemcr.2017.03.011 (2017).

13. Ziv, O. et al. Quantitative live imaging of human embryonic stem cell derived
neural rosettes reveals structure-function dynamics coupled to cortical
development. PLoS Comput. Biol. 11, e1004453 (2015).

14. Johnson, M. A., Weick, J. P., Pearce, R. A. & Zhang, S.-C. Functional neural
development from human embryonic stem cells: accelerated synaptic activity
via astrocyte coculture. J. Neurosci. 27, 3069–3077 (2007).

15. Tsankov, A. M. et al. A qPCR ScoreCard quantifies the differentiation
potential of human pluripotent stem cells. Nat. Biotechnol. 33, 1182–1192
(2015).

16. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinforma. 9, 559 (2008).

17. Braunschweig, U. et al. Widespread intron retention in mammals functionally
tunes transcriptomes. Genome Res. 24, 1774–1786 (2014).

18. Mauger, O., Lemoine, F. & Scheiffele, P. Targeted intron retention and
excision for rapid gene regulation in response to neuronal activity. Neuron 92,
1266–1278 (2016).

19. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon
provides fast and bias-aware quantification of transcript expression. Nat.
Methods 14, 417–419 (2017).

20. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced
gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

21. Tang, X. et al. Astroglial cells regulate the developmental timeline of human
neurons differentiated from induced pluripotent stem cells. Stem Cell Res. 11,
743–757 (2013).

22. Stein, J. L. et al. A quantitative framework to evaluate modeling of cortical
development by neural stem cells. Neuron 83, 69–86 (2014).

23. Song, Y. et al. Single-cell alternative splicing analysis with expedition reveals
splicing dynamics during neuron differentiation. Mol. Cell 67, 148–161.e5
(2017).

24. Darmanis, S. et al. A survey of human brain transcriptome diversity at the
single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

25. Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol. 15, R31 (2014).

26. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinforma. 13, 86 (2012).

27. Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-
derived NPCs and neurons are concordant with post-mortem adult brains.
Nat. Commun. 8, 2225 (2017).

28. Lin, M. et al. Integrative transcriptome network analysis of iPSC-derived
neurons from schizophrenia and schizoaffective disorder patients with
22q11.2 deletion. BMC Syst. Biol. 10, 105 (2016).

29. Volpato, V. et al. Reproducibility of molecular phenotypes after long-term
differentiation to human iPSC-derived neurons: a multi-site omics study. Stem
Cell Rep. 11, 897–911 (2018).

30. Tekin, H. et al. Effects of 3D culturing conditions on the transcriptomic profile
of stem-cell-derived neurons. Nat. Biomed. Eng. 2, 540–554 (2018).

31. Bardy, C. et al. Predicting the functional states of human iPSC-derived
neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21,
1573–1588 (2016).

32. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral
cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6
(2017).

33. Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits
in the human lineage. Science 358, 1027–1032 (2017).

34. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex
transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21,
1117–1125 (2018).

35. Guintivano, J., Aryee, M. J. & Kaminsky, Z. A. A cell epigenotype specific
model for the correction of brain cellular heterogeneity bias and its application
to age, brain region and major depression. Epigenetics 8, 290–302 (2013).

36. Jaffe, A. E. et al. Mapping DNA methylation across development, genotype
and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47
(2016).

37. Fromer, M. et al. Gene expression elucidates functional impact of polygenic
risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

38. Zheng, S. C., Breeze, C. E., Beck, S. & Teschendorff, A. E. Identification of
differentially methylated cell types in epigenome-wide association studies.
Nat. Methods 15, 1059–1066 (2018).

39. Brennand, K. J. et al. Modelling schizophrenia using human induced
pluripotent stem cells. Nature 473, 221–225 (2011).

40. Song, H., Stevens, C. F. & Gage, F. H. Neural stem cells from adult
hippocampus develop essential properties of functional CNS neurons. Nat.
Neurosci. 5, 438–445 (2002).

41. Ullian, E. M., Christopherson, K. S. & Barres, B. A. Role for glia in
synaptogenesis. Glia 47, 209–216 (2004).

42. Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553,
437–445 (2018).

43. Ecker, J. R. et al. The BRAIN initiative cell census consortium: lessons learned
toward generating a comprehensive brain cell atlas. Neuron 96, 542–557
(2017).

44. Mallon, B. S. et al. StemCellDB: the human pluripotent stem cell database at
the National Institutes of Health. Stem Cell Res. 10, 57–66 (2013).

45. Chen, K. G., Mallon, B. S., McKay, R. D. G. & Robey, P. G. Human pluripotent
stem cell culture: considerations for maintenance, expansion, and
therapeutics. Cell Stem Cell 14, 13–26 (2014).

46. Jaffe, A. E. et al. Practical impacts of genomic data “cleaning” on biological
discovery using surrogate variable analysis. BMC Bioinforma. 16, 372 (2015).

47. Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally
distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008).

48. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low
memory requirements. Nat. Methods 12, 357–360 (2015).

49. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30,
923–930 (2014).

50. McDonnell Genome Institute, T. G. L. regtools. at https://regtools.
readthedocs.io/en/latest.

51. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

52. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

53. Choi, J. et al. A comparison of genetically matched cell lines reveals the
equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14266-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:462 | https://doi.org/10.1038/s41467-019-14266-z | www.nature.com/naturecommunications 13

http://stemcell.libd.org/scb/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA596331
https://github.com/lieberinstitute/libd_stem_timecourse
https://github.com/lieberinstitute/libd_stem_timecourse
https://doi.org/10.1016/j.stemcr.2017.03.012
https://doi.org/10.1016/j.stemcr.2017.03.011
https://doi.org/10.1016/j.stemcr.2017.03.011
https://regtools.readthedocs.io/en/latest
https://regtools.readthedocs.io/en/latest
www.nature.com/naturecommunications
www.nature.com/naturecommunications


54. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29
(2014).

55. Collado-Torres, L. et al. Reproducible RNA-seq analysis using recount2. Nat.
Biotechnol. 35, 319–321 (2017).

56. Wilks, C., Gaddipati, P., Nellore, A. & Langmead, B. Snaptron: querying
splicing patterns across tens of thousands of RNA-seq samples. Bioinformatics
34, 114–116 (2018).

57. Middleton, R. et al. IRFinder: assessing the impact of intron retention on
mammalian gene expression. Genome Biol. 18, 51 (2017).

58. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30,
1363–1369 (2014).

Acknowledgements
The authors gratefully acknowledge Lieber Institute for Brain Development and the

IMED Biotech Unit of AstraZeneca for funding and support of this work.

Author contributions
E.B. performed data analysis and interpretation and wrote the paper. J.C. contributed to

the design of the study, performed cellular reprograming, quality control, and experi-

ments, and wrote the paper. J.S. contributed to the design of the study and generated

RNA-sequencing data. L.C.T. performed data analysis and interpretation. S.K. con-

tributed to the design of the study, analysis, and performed cellular differentiation. N.M.

contributed to the design of the study, analysis, and performed cellular differentiation.

Y.W. performed cellular reprogramming, differentiation, and experiments. C.C. con-

tributed to the design of the study. R.S contributed to the design of the study and data

interpretation. D.Ho. contributed to the design of the study, performed experiments and

cellular imaging, and interpreted data. H.C. performed physiology experiments. A.S.

performed cellular reprograming and differentiation, quality control, and experiments.

K.S. performed cellular reprograming. G.H. performed physiology experiments. M.B.

contributed to neuronal cell culture and performed physiology experiments. B.P. ana-

lyzed data. W.U. created the searchable database and browser. C.V. provided data ana-

lysis, A.J. performed cellular differentiation. A.P. contributed to data analysis and

interpretation. A.R. generated RNA-sequencing data. S.S. performed data analysis. R.B.

contributed to the design of the study and data interpretation. J.B. contributed to the

design of the study and the data interpretation. D.Hi. contributed to cellular repro-

gramming. S.P performed cellular physiology experiments. K.M. contributed to the

design of the study and data interpretation. T.H. contributed to the design of the study

and the interpretation. J.K. contributed to the design of the study and the interpretation.

K.B. contributed to the clinical research study that generated source fibroblasts. J.A.

contributed to the clinical research study that generated source fibroblasts. A.C. con-

tributed to the design of the study and the interpretation. N.B. contributed to the design

of the study and the interpretation. D.W. contributed to the design of the study and the

interpretation, contributed to the clinical research study that generated source fibroblasts,

and wrote the paper. B.M. contributed to the design of the study and the interpretation,

performed cellular physiology experiments, and wrote the paper. R.M. contributed to the

design of the study and the interpretation. A.E.J. contributed to the design of the study

and the interpretation, performed data analysis, and wrote the paper.

Competing interests
R.W.B., A.J.C. and N.J.B. were full-time employees and shareholders of AstraZeneca at

the time these studies were conducted. No other authors have competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

019-14266-z.

Correspondence and requests for materials should be addressed to R.D.G.M. or A.E.J.

Peer review information Nature Communications thanks the anonymous reviewer(s) for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14266-z

14 NATURE COMMUNICATIONS |          (2020) 11:462 | https://doi.org/10.1038/s41467-019-14266-z | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-14266-z
https://doi.org/10.1038/s41467-019-14266-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs
	Results
	Differentiating hiPSCs to mature neuronal cultures
	Global transcriptional signatures of maturing neural cells
	Feature-level expression patterns of differentiating neurons
	Coculturing NPCs on astrocytes accelerates maturation
	RNA deconvolution quantifies cortical neuron subpopulations
	Deconvolution: maturation in iPSC-derived neuronal datasets
	Deconvolution: applicability to brain tissue
	Deconvolution: brain-stage model verifies neuronal signature
	Cell-type- and brain-stage-specific models with RNA fractions

	Discussion
	Methods
	Clinical fibroblasts
	iPS cell line derivation and culture
	Neural differentiation
	Electrophysiology
	Cellular imaging
	RNA sequencing
	RNA-seq: processing pipeline
	RNA-seq: quality control
	RNA-seq: rat astrocytes
	Public data processing
	Statistical analysis: WGCNA
	Statistical analysis: time-course DE
	Statistical analysis: alternative splicing
	Statistical analysis: astrocyte effects
	RNA deconvolution modeling
	RNA fraction model
	Developmental-stage model
	Volpato et�al.29 data analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


