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Abstract  33 

Multiple sclerosis (MS) is an autoimmune condition of the central nervous system with a well-34 

characterized genetic background. Prior analyses of MS genetics have identified broad 35 

enrichments across peripheral immune cells, yet the driver immune subsets are unclear. We 36 

utilized chromatin accessibility data across hematopoietic cells to identify cell type-specific 37 

enrichments of MS genetic signals. We found that CD4 T and B cells were independently 38 

enriched for MS genetics and further refined the driver subsets to Th17 and memory B cells, 39 

respectively. We replicated our findings in data from untreated and treated MS patients and 40 

found that immunomodulatory treatments suppress chromatin accessibility at driver cell types. 41 

Integration of statistical fine-mapping and chromatin interactions nominated numerous putative 42 

causal genes, illustrating complex interplay between shared and cell-specific genes. Our study 43 

highlights how careful integration of genetics and epigenetics can provide fine-scale insights into 44 

causal cell types and nominate new genes and pathways for disease.  45 
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Introduction 46 

Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease characterized by 47 

demyelinating focal lesions in the central nervous system (CNS)1.  Despite the CNS being the 48 

target of autoimmunity, there is extensive evidence from basic science models and human 49 

studies that dysregulation of the peripheral immune compartment is key for disease 50 

manifestation and progression 2. MS has long been regarded as a T cell-mediated disease, with 51 

several T cell subpopulations implicated 3,4. More recently, other peripheral immune cell 52 

populations, most notably B cells, have also been shown to drive disease pathogenesis3,5.  53 

Moreover, immune modulating therapies targeting B cells have been demonstrated to be 54 

remarkably effective in treating patients with MS6,7.  55 

 56 

MS has a strong genetic component and is characterized by a polygenic architecture. To date, 57 

over 200 independent genetic variants have been associated with MS risk, the vast majority of 58 

which are common variants with small effect sizes on disease risk8,9. Prior studies have shown 59 

enrichment of GWAS target genes in the peripheral immune system, but it is unclear exactly 60 

which cell types within the peripheral immune system drive these observed enrichments of 61 

genetic signals. 62 

 63 

Human genetics has emerged as a powerful tool for probing the underlying biology of a 64 

disease10. The identification of genes and pathways prioritized by GWAS associations is not 65 

constrained by our prior knowledge of disease mechanisms and can therefore identify novel 66 

biological mechanisms. However, a key challenge for translating GWAS findings into biological 67 

insights is that most associations are noncoding in nature and likely act by modulating 68 

regulatory elements to mediate gene expression11,12. Identifying the causal gene at these 69 

GWAS signals can be challenging since it is usually unclear which gene a given regulatory 70 

element regulates 10,13,14. A key step in translating genetic associations into biological 71 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


mechanisms is identifying the cell types in which GWAS variants act and the genes they 72 

modulate. To help understand the function of disease-associated variants, genetic associations 73 

can be intersected with orthogonal epigenetic and gene expression data12. As the epigenetic 74 

and gene expression landscape differ from cell type to cell type, examining the enrichments of 75 

GWAS data on these orthogonal datasets can identify specific cell types that may be implicated 76 

in disease pathogenesis15,16.   77 

 78 

We and others have previously reported a strong enrichment of MS GWAS variants in 79 

regulatory regions of multiple cell types of the peripheral immune system8,9,15,17. However, it has 80 

yet to be determined if these enrichments are driven by shared regulatory mechanisms common 81 

to many immune cell types, or whether different mechanisms are present in distinct immune cell 82 

populations. To address this gap, we performed detailed analyses of the enrichment of MS 83 

GWAS variants in the peripheral immune system to identify cell populations that independently 84 

mediate the effects of MS GWAS variants on disease risk. 85 

 86 

Results 87 

MS GWAS associations are enriched in progenitor and terminal peripheral immune cells 88 

To identify the causal cell types that uniquely and independently contribute to MS pathogenesis 89 

via mediation of genetic effects, we leveraged bulk ATAC-seq data from 16 flow-sorted 90 

hematopoietic progenitor and terminal cell populations isolated from human peripheral blood or 91 

bone marrow18–20. These cells represent progenitor and terminal populations from across the 92 

hematopoietic tree, enabling investigation of MS GWAS enrichments broadly and across stem, 93 

progenitor, and mature cell populations (Figure 1A).  ATAC-seq data were processed and open 94 

chromatin regions (OCRs, i.e. ATAC-seq peaks), were identified as previously described18,21. 95 

We applied stratified LD SCore regression (LDSC)22,23 to estimate the enrichment of MS GWAS 96 
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in OCRs from each of the 16 hematopoietic cell types. LDSC has the distinct advantage in that it 97 

leverages the genome-wide polygenic signal in the GWAS summary statistics rather than 98 

selecting variants based on p-value thresholds or fine-mapping posterior probabilities.  99 

 100 

Applying LDSC, we observed strong statistically significant enrichments across all 101 

hematopoietic cell populations, even after correcting for multiple hypothesis testing (Bonferroni-102 

corrected p-value threshold of 3.13x10-3) (Figure 1B; Supplemental Table 1). The strongest 103 

enrichments for MS GWAS were observed in OCRs from CD4 T cells (enrichment p-value = 104 

1.47x10-18), CD8 T cells (p-value = 4.00 x10-18) and B cells (p-value = 3.27x10-15); reflecting their 105 

known and emerging roles in MS pathogenesis and as targets of treatment1,3,24. We also 106 

detected strong enrichment in OCRs from natural killer (NK) cells (p-value =4.23x10-14) which 107 

have a less well-established role in MS24. Interestingly, we observed enrichments across all 108 

progenitor cells, suggesting that many MS genetic associations are located in regulatory regions 109 

involved in core cellular processes in immune cell populations.  110 

   111 

CD4 T and B cell regulatory regions independently mediate MS genetics 112 

Many of the studied cell populations share common cellular regulatory signatures, which is 113 

reflected in the substantial correlation of the OCR profiles across cell populations (Figure S1). 114 

Hence, we examined whether the strong enrichment observed across cell populations is a result 115 

of truly independent cell type-specific enrichments or whether it is due to shared regulatory 116 

landscape across immune cell types. To address this question, we applied a joint model in 117 

LDSC to measure the contribution of OCRs from a given cell type, stratified on all other cell 118 

types in the model along with a set of baseline annotations. We report the p-value of the 119 

coefficient 𝜏!, which reflects the SNP heritability of a given annotation stratified on all other 120 

annotations in the model. In this joint model where OCRs from all 16 cell types were included, 121 
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we observed that B cells and CD4 T cells contributed significantly to SNP heritability (coefficient 122 

p-value = 3.99x10-5 and 3.49x10-4, respectively), suggesting independent contributions of B and 123 

CD4 T cell OCRs to MS GWAS heritability (Figure 2A, Supplemental Table 2).  124 

 125 

To further delineate the cell types with OCRs that specifically mediate the effect of MS GWAS 126 

results, we performed a series of pairwise LDSC analyses. In brief, OCRs of a given 127 

hematopoietic cell type were stratified against the OCRs of each of the other 15 cell types, as 128 

well as the LDSC baseline annotations (Figure 2B; Supplemental Table 3). As above with the 129 

joint model, we report the p-value of the coefficient 𝜏!. We observed that B cells remained 130 

significant even after stratifying on OCRs of any of the other 15 cell populations (coefficient p-131 

value ranging from 1.47x10-12 when stratifying against HSCs, to 8.33x10-5 when stratifying 132 

against CD4 T cells). This was also the case for CD4 T cells, which remained significant after 133 

stratifying on OCRs from any of the other 15 cell populations (coefficient p-values ranging from 134 

3.82x10-17 when stratifying against HSCs, to 2.39x10-4 when stratifying against CD8 T cells). In 135 

contrast, CD8 T cell OCRs were no longer significant after stratifying against OCRs from CD4+ 136 

T cells (coefficient p-value = 0.21), though they were significant when stratifying on any of the 137 

other cell populations. NK cells were also no longer significant after stratifying against either 138 

CD4 T cells (coefficient p-value = 0.165) or against CD8 T cells (coefficient p-value: 0.356). 139 

These results indicate that the enrichment of both CD8 T cells and NK cells can be largely 140 

explained by shared regulatory landscapes that are also present in CD4 T cells. Prior studies 141 

have also suggested a role for monocytes in MS24,25. OCRs from monocytes had an enrichment 142 

p-value of 4.17x10-9, but we observed that stratifying on OCRs from CD4 T cells or B cells 143 

ameliorated this monocyte heritability enrichment (coefficient p-values 0.166 and 0.266, 144 

respectively).  145 

 146 
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We also performed a separate analysis examining whether OCRs specific to a given cell type 147 

mediate MS heritability enrichments. For each of the mature hematopoietic cell populations, we 148 

performed LDSC on only the cell type-specific OCRs, i.e. ATAC-seq peaks present in only that 149 

cell type. B cells exhibited a statistically significant enrichment of cell-specific OCRs for MS 150 

GWAS (enrichment p-value = 3.27x10-4). CD4 T cell-specific peaks were nominally significant at 151 

a p-value of 0.013 but did not survive correction for multiple hypothesis testing (Bonferroni 152 

corrected p-value threshold of 5.6x10-3). Cell type-specific peaks for all other terminal 153 

hematopoietic cell types had enrichment p-values > 0.05 (Figure S2; Supplementary Table 4). 154 

 155 

MS genetic associations are mediated in terminal immune cell populations  156 

In the lymphoid lineage, we observed stronger enrichments in terminal cell populations than we 157 

did for the progenitor populations (Figure 1B). For example, the strongest enrichment in 158 

progenitor cells was observed for common lymphoid progenitor cells (CLP, enrichment p-value: 159 

2.32x10-4), and it was orders of magnitude less statistically significant compared to the 160 

enrichment observed for CD4 T or B cells (Figure 1B). For each of the terminal populations, the 161 

significance remained even after stratifying against OCRs from CLP; however, the converse 162 

was not true (Figure 2B). The enrichment in CLP was completely ameliorated by stratifying 163 

against B cell or CD4 T cell OCRs (coefficient p-value 0.98 and 0.966, respectively, Figure 2B). 164 

Together, these results suggest that terminal cells of the lymphoid compartment retain cellular 165 

regulatory features from their progenitor populations that are important for MS pathogenesis, but 166 

have also developed specific regulatory features of additional importance to MS susceptibility.   167 

 168 

Comparison of immune cell enrichment with neuropsychiatric and autoimmune disorders 169 

We next sought to understand how the immune cell enrichments in MS might be similar or 170 

different from those of other autoimmune or neuropsychiatric disorders. To test this, we 171 
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calculated heritability enrichment within these 16 hematopoietic OCRs for GWAS of various 172 

other neuropsychiatric disorders and autoimmune disorders: Alzheimer disease (AD)26, 173 

schizophrenia (SCZ)27, bipolar disorder (BPD)28, type 1 diabetes (T1D)29, Crohn’s disease 174 

(CD)30, ulcerative colitis (UC)30, systemic lupus erythematosus (SLE)31, rheumatoid arthritis 175 

(RA)32, and primary biliary cirrhosis (PBC)33 (Figure 3A; Supplemental Table 5). We identified 176 

previously recognized cell-type enrichments across these other diseases, such as enrichments 177 

in OCRs from B cells (enrichment p-value: 1.93x10-7), CD4 T cells (p-value: 7.34x10-8) and CD8 178 

T cells (p-value: 2.09x10-6) for RA15,32. However, the heritability enrichments for OCRs from 179 

these hematopoietic cell populations tended to be much stronger for MS, despite similar sample 180 

sizes, e.g. 41,505 disease cases for MS and 38,242 disease cases for RA. To parse out cell 181 

type-specific enrichments in these other disorders, we also tested heritability enrichments under 182 

the joint model in LDSC by including OCRs from all 16 cell types (Figure 3B, Supplemental 183 

Table 6). In a similar fashion to the MS GWAS joint analyses above, we measured the 184 

contribution to heritability for a given set of OCRs of interest, controlling for the effects of a set of 185 

baseline annotations and OCRs from all other hematopoietic cell types. These analyses were 186 

performed separately for each disease. Across the nine other comparator diseases, the only 187 

other statistically significant stratified enrichments were in OCRs from B cells in SLE GWAS 188 

(coefficient p-value: 8.53x10-5). We also identified other enrichments in this joint model that were 189 

nominally significant, including signals for several diseases in either B or CD4 T cells. This is in 190 

contrast to our MS findings, which show strong enrichments in both CD4 T cells and B cells, 191 

highlighting a dual role of these cell types in MS and distinguishing it from other diseases where 192 

the cell types are more restricted to specific lineages.  193 

 194 
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The CD4 T cell MS GWAS enrichment is driven by the Th17 subset  195 

To further focus in on the MS GWAS enrichment observed in OCRs from CD4 T cells, we 196 

utilized ATAC-seq data from various subsets of human CD4 T cells (Figure 4A)21. We examined 197 

data from effector CD4 T cells (naïve effector CD4 T cells, Th1, Th2, Th17, and follicular Th) as 198 

well as, regulatory CD4 T cells (naïve Tregs and memory Tregs). We observed strong enrichments 199 

for OCRs from both effector and regulatory CD4 T cell populations (Figure 4B; Supplementary 200 

Table 7). Next, to identify the independent contribution of a given cell type, we applied the joint 201 

model in LDSC by including OCRs from all CD4 T cell populations together. This joint LDSC 202 

analysis revealed that OCRs from Th17 cells independently contributed to heritability (coefficient 203 

p-value = 4.69x10-4; Figure 4C; Supplemental Table 8). Performing pairwise stratified LDSC 204 

confirmed the independent contribution of OCRs in Th17 cells to MS GWAS heritability (Figure 205 

4D; Supplemental Table 9). OCRs from Th17 remained enriched in MS GWAS even after 206 

stratifying against any of the other Teff cell populations or Treg cell populations. Conversely, the 207 

enrichments for all other Teff cell populations or Treg cell populations were ameliorated when 208 

stratifying against Th17 cells. 209 

 210 

Based on the LDSC analyses in the joint model, we note that enrichments tended to be stronger 211 

in OCRs from the memory effector CD4 T cell populations than from naïve effector cells. For 212 

each of these memory effector CD4 T cell populations, OCRs retained statistical significance 213 

even after stratifying against OCRs from naïve Teff  cells: Th1 (coefficient p-value after stratifying 214 

against naïve Teff  cells: 8.22x10-6), Th2 (p-value = 1.45x10-4), Th17 (p-value = 7.27x10-7) or 215 

follicular Th cells (p-value = 1.77x10-7) (Figure 4D). The converse was not true; the statistical 216 

significance of the naïve Teff cell OCRs was completely lost when stratifying against OCRs from 217 

any of the memory Teff cell populations. These results suggest that among CD4 T cells, OCRs 218 

from Th17 cells drive the signal for enrichment in MS GWAS. 219 

 220 
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Memory subpopulations explain the enrichment of MS GWAS in B cells 221 

We next examined enrichments of MS GWAS data in ATAC-seq from the B cell lineage 222 

including naïve B cells, memory B cells, and plasmablasts (Figure 5A) 21. We found that OCRs 223 

from all B cell lineage cell types were significantly enriched for MS heritability (Figure 5B; 224 

Supplemental Table 10). LDSC under a joint model including all B cell lineage cell types 225 

revealed an independent contribution from memory B cells (coefficient p-value = 1.10 x 10-3), 226 

but not naïve B cells or plasmablasts Figure 5C; Supplemental Table 11). Pairwise stratified 227 

LDSC confirmed the independent enrichment of OCRs from memory B cells. Memory B cell 228 

OCRs remained statistically significant even after stratifying on naïve B cells (coefficient p-value 229 

= 1.26x10-5) or plasmablasts (coefficient p-value: 3.29x10-4; Figure 5D; Supplemental Table 230 

12). In contrast, OCRs from naïve B cells and plasmablasts were no longer statistically 231 

significant when stratifying on memory B cells OCRs (coefficient p-value: 0.71 and 0.27, 232 

respectively). These results suggest that in the B cell lineage, the MS GWAS enrichment signal 233 

is driven by OCRs in memory B cells. 234 

 235 

Immune cells from MS patients reinforce independent CD4 T and B cell enrichments  236 

Next, we tested whether the MS GWAS enrichment in CD4+ T and B cells were also present in 237 

OCRs from the respective immune cell types derived from individuals with MS. We utilized 238 

ATAC-seq data performed in flow-sorted bulk CD4 T and B cell subsets (n=6) derived from six 239 

patients with MS who were not treated with immunomodulatory therapy within at least 4 months 240 

of sample collection (see Supplementary Table 13 for clinical details). LDSC showed 241 

statistically significant enrichments of transitional B cells (traB; enrichment p-value=2.08x10-3), 242 

class switched classical memory B cells (cMBc; p-value = 2.58x10-4), effector memory CD4 T 243 

cells (T4em; p-value = 1.87x10-4), and CD45RA+ effector memory CD4 T cells (T4ra; p-value = 244 

3.02x10-4). Central memory CD4 T cells had an enrichment p-value of 1.53x10-3, which was not 245 
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significant after correcting for multiple hypothesis testing (Figure 6A; Supplementary Table 246 

14).  247 

 248 

To further identify independent cell type enrichments, we performed joint models in LDSC as 249 

described above. We first tested a model that included CD4 T cell subsets (T4nv, T4cm, T4em, 250 

and T4ra). In this joint model, only T4em was statistically significant (coefficient p-value 7.45 x 251 

10-3), reflecting the independent contribution of effector CD4 T cells in MS that we observed 252 

above using cells from healthy individuals (Figure 6B; Supplementary Table 15). We also ran 253 

a model that included B cell subsets (traB and cMBc). In this joint comparison, neither cell type 254 

was statistically significant when correcting for multiple hypothesis testing. However, cMBc had 255 

a coefficient p-value that was nominally significant (p-value=0.037), reiterating the independent 256 

contributions of mature B cell types (Figure 6C; Supplementary Table 16).  257 

 258 

Immunomodulatory treatments suppress mediation of MS genetics in cell-specific fashion 259 

Next, we tested whether immunomodulatory treatments alter the cell-specific mediation of MS 260 

genetic associations by utilizing data for the same immune subsets sorted from patients with MS 261 

(n=3) under treatment with either natalizumab, interferon, or glatiramer acetate. Following 262 

treatment with any of the agents still resulted in statistically significant enrichments of cMBc and 263 

T4em (Figure 6D; Supplementary Table 17), though the magnitude of the enrichments were 264 

attenuated relative to the signals observed from cells from untreated patients (compare Figure 265 

6A and 6D). To better understand this attenuation of enrichments, we ran joint models in LDSC 266 

for T4em and cBMc cells in which we included OCRs from untreated patients and treated 267 

patients. In a joint model with T4em OCRs from treated and untreated MS patients, only OCRs 268 

from untreated patients were statistically significant (Figure S3A; Supplementary Tables 18). 269 

Similarly, in a joint model with cMBc OCRs from treated and untreated MS patients, only OCRs 270 
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from untreated patients were statistically significant (Figure S3B; Supplementary Table 19). 271 

Together, these results suggest that immune-modulating therapies may attenuate the chromatin 272 

accessibility signals at MS GWAS. 273 

     274 

MS GWAS signals in B and CD4 T cells driven by active enhancer and promoter regions  275 

We next sought to gain further insight into the functional consequences of the B and CD4 T cell 276 

OCRs underlying MS GWAS signals. We examined enrichments for MS GWAS in chromatin 277 

immunoprecipitation sequencing (ChIP-seq) peaks from various histone modifications 278 

(H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3) 34,35. In Th17 cells 279 

(Figure S4A; Supplementary Table 20), we detected statistically significant enrichments for 280 

H3K27ac (enrichment p-value = 6.54x10-9), H3K4me1 (p-value = 3.96x10-19) and H3K4me3 (p-281 

value = 2.29x10-8). Similarly, in B cells (Figure S4B; Supplementary Table 21), we also 282 

detected significant enrichments for H3K27ac (enrichment p-value = 1.18x10-11), H3K4me1 (p-283 

value = 4.96x10-16) and H3K4me3 (p-value = 3.93x10-8). These results suggest that MS genetic 284 

association are primarily enriched at active noncoding elements: primed enhancers (H3K4me1), 285 

active enhancers (H3K27ac and H3K4me1) and active promoters (H3K4me3). 286 

 287 

To further delineate the chromatin states with the strongest MS genetic associations, we 288 

examined enrichments of MS GWAS results in the predicted chromatin states for B cells and 289 

Th17 T cells as available in the RoadMap Epigenomics Project 36. For Th17 CD4 T cells, the 290 

“EnhA2” chromatin state (Active Enhancer 2) were statistically enriched (enrichment p-291 

value=1.19 x 10-3) (Figure S5A; Supplementary Table 22). For B cells, “Tx3” (Transcribed 3’ 292 

preferential; enrichment p-value=1.80x10-3) and “PromD1” (Promoter Downstream TSS 1; p-293 

value=4.40x10-4) were statistically enriched, again reflecting the strongest enrichments at active 294 

regulatory elements (Figure S5B; Supplementary Table 23). These results demonstrate that 295 
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MS GWAS variants act through activating regulatory elements, consistent with the autoimmune 296 

nature of MS. 297 

 298 

Fine-mapping of MS GWAS loci in cell-specific OCRs 299 

We next sought to understand underlying mechanisms by nominating putative causal genes and 300 

variants in a cell-specific fashion. First, we applied statistical fine-mapping to nominate likely 301 

causal SNPs. Most statistical fine-mapping approaches require association information across 302 

all SNPs in a given locus. In contrast, for MS GWAS, genome-wide results are based on 303 

targeted replication analyses, which by design included only a select subset of SNPs within 304 

each locus. To overcome this challenge, we applied PICS to perform statistical fine-mapping, 305 

which as compared to other statistical fine-mapping approaches, does not require GWAS 306 

summary statistics for all SNPs in a region15. We defined for each locus a 95% credible set such 307 

that the sum of the posterior probabilities for variants in that credible set is greater than or equal 308 

to 95%. For fine-mapping, we used the joint analysis MS GWAS results, which include only 309 

replicated genome-wide effects8. We included all 200 non-MHC loci where the MS GWAS joint 310 

association p-value was less than 5 x10-8. Next, we prioritized SNPs if they had a PICS 311 

posterior probability (PP) > 1% and were included in the 95% PICS credible set. This is a liberal 312 

threshold for defining prioritized SNPs, aimed at increasing sensitivity for detecting possible 313 

causal variants. Across the 200 loci, there were 3436 credible set variants (1-58 variants per 314 

locus) (Figure S6A). At 19 loci, there was only one variant in the credible set, and at 37 loci, 315 

there were four or fewer prioritized variants (Figure S6B).  316 

 317 

Next, we intersected the 3436 credible set variants with OCRs from the 16 hematopoietic cell 318 

populations, which we chose to use as they cover a broad range of hematopoietic cell types18. 319 

Across the 200 loci, 870 of the prioritized variants overlapped an OCR in at least one cell type. 320 
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Remarkably, 163 out of the 200 loci had at least one prioritized variant overlapping an OCR in 321 

any cell type. B and CD4 T cells were the cell types with the greatest number of loci with a 322 

credible set SNP overlapping an OCR,126 and 125 loci respectively (Figure S7).  323 

 324 

Integration of genetic and epigenetic data identifies putative causal genes 325 

The vast majority of GWAS-associated variants are noncoding and regulate genes that may be 326 

far from the variant in terms of linear distance on the genome. To address this challenge and 327 

nominate putative causal genes that are regulated by the MS-associated OCRs, we leveraged 328 

promoter capture Hi-C data (PCHiC), which identifies chromatin looping interactions between 329 

regulatory elements and target gene promoters. We utilized PCHiC data performed on 17 330 

hematopoietic cell populations, which partially overlap with the cell types for which we have 331 

ATAC-seq data37. These cell populations include naïve B cells, total B cells, activated CD4 T 332 

cells, non-activated CD4 T cells, and total T cells. We considered only GWAS loci where a 333 

credible set MS GWAS SNP overlapped both an OCR and a PCHiC interaction.  334 

 335 

Through these analyses, we nominated 261 genes within 86 MS loci in B cells and 364 genes 336 

within 115 MS loci in CD4 T cells (Supplemental Table 24). We note that these genes are 337 

putative causal genes, representing a list of genes that could be linked with the MS loci via a 338 

regulatory mechanism in the respective cell types. The majority of these genes were shared 339 

between B and CD4 T cells (n=178; 68.2% and 48.9% respectively; Figure 7A). We have 340 

previously suggested a list of putative causal genes (n=551) based on an ensemble of methods 341 

that did not include ATAC-seq or chromatin interactions8. Of these 551 previously nominated 342 

genes, 67 (12.2%) overlapped with our B cell prioritized genes and 111 (20.1%) with our CD4 T 343 

cell prioritized genes, highlighting that our current mechanism-specific gene prioritization is 344 
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capturing a large number of potentially causal genes that have not been previously implicated in 345 

MS genetic studies. 346 

  347 

Next, we utilized the list of putative causal genes to identify enriched canonical pathways. 348 

Starting with CD4 T and B cell lists, we created additional lists for the common genes (shared 349 

between CD4 T and B cells), and finally genes unique to CD4 T cells and B cells.  We observed 350 

widespread pathway enrichment for the putative causal genes of the CD4 T cells (n=294) and B 351 

cells (n=236) at FDR<5%. The common set of genes was enriched in 85 pathways 352 

(Supplemental Table 25). The B unique gene list (n=83) was enriched in 22 canonical 353 

pathways, including lipoprotein and cholesterol pathways, the CD40 pathway, and JAK-STAT 354 

pathway (Figure 7B-C). The unique genes in CD4 T cells (n=186) were enriched in 99 355 

pathways, including TCR pathways, various interleukin pathways, and MAPK/ERK signaling 356 

pathways (Figure 7B-C).  357 

 358 

Pathway analyses utilize known biological connections for a given set of genes but many of 359 

underlying mechanisms could be still uncharacterized. Thus, we leveraged protein-protein 360 

interaction (PPI) data to test whether the respective putative causal gene lists exhibit a high 361 

degree of connectivity38. A similar percent of the mapped CD4 T cell and B cell prioritized genes 362 

were directly connected, 48.9% and 43.7% respectively (Supplementary Table 26; Figures 363 

S8-12). Only the CD4 T and CD4 T unique gene lists demonstrated a higher degree of 364 

connectivity than expected (p-value<0.05), although all gene lists had communities of genes 365 

with high connectivity (p-value<0.05; Supplementary Table 26). These results are consistent 366 

with the pathway analyses, implying that the MS genetics are mediated by several different 367 

mechanisms in both cell types, some of which are shared and some of which are cell-type 368 

specific.           369 
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 370 

A fine interplay between shared and cell-specific B and CD4 T cell putative causal genes 371 

The results of the pathways and PPI analyses suggest that the MS genes common and unique 372 

to B and CD4 T cells do not act independently but rather have shared cellular mechanisms. We 373 

illustrate this by studying a locus on chromosome 19 (Figure 8) where the lead SNP rs1465697 374 

(chr19:49837246 C>T) has a MS GWAS association p-value of 3.02x10-18. The lead SNP is the 375 

most highly prioritized variant by statistical fine-mapping out of 21 overall SNPs in the 95% 376 

credible set (PP=15% for rs1465697; next highest PP 9%). This SNP overlies an OCR present 377 

in all lymphoid lineages, including B cells, CD4 T cells, and CD8 T cells. We have previously 378 

suggested five putative causal genes for this locus: DKKL1, CCDC155, CD37, TEAD2, and 379 

SLC6A16 8. Using PCHiC data, this OCR forms a chromatin loop interaction with TEAD2 and 380 

DKKL1, but not the other three genes. This chromatin loop interaction is observed in activated 381 

CD4 T cells, naïve B cells, total B cells, naïve CD8 T cells, and fetal thymus, but none of the 382 

other hematopoietic cell types 37. Furthermore, this SNP is an eQTL for TEAD2 in B cells, but is 383 

not an eQTL for any other gene in this locus in any of the available hematopoietic cell types 384 

(Figure 8)39. Together, these lines of evidence support TEAD2 as the causal gene at this locus.  385 

 386 

Interestingly, TEAD2 is a transcription factor with 1459 predicted regulated genes 40, including 387 

38 putatively causal CD4 T cell genes and 25 B cell genes as nominated above (FDR < 1 %, 388 

FDR < 1%, respectively; Figures S13-14). The majority of these genes are common in both 389 

CD4 T and B cells (n=23; FDR < 1%; Figure S15). To identify genes whose expression is 390 

modulated by TEAD2 in CD4 T and B cells, we examined TEAD2 knock-down (KD) and over-391 

expression (OE) in cancer cell lines (n=8, respectively) from the Library of Integrated Network-392 

Based Cellular Signatures (LINCS) Program 41. Although these cell lines do not represent an 393 

ideal experimental model to study the effect of TEAD2 in immune cells, they can still be used to 394 

understand mechanisms reflecting core cellular functions. Within each cell line we identified 395 
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genes whose expression changed in the opposite direction (top or bottom 10%) in the KD 396 

versus OE models. These ranged from 7 to 24 for the CD4 T cell prioritized genes 397 

(Supplementary Table 27; Figure S16) and from 3 to 16 for the B cell genes (Supplementary 398 

Table 28; Figure S17). Of these, 17 genes and 9 genes changed expression in at least 2 cell 399 

lines, respectively (Supplementary Tables 27-28). These data demonstrate that perturbation of 400 

TEAD2, a key immune cell transcription factor, results in indirect changes of putative MS causal 401 

genes in B and CD4 T cells. 402 

 403 

Discussion 404 

In this paper, we integrated MS GWAS with chromatin accessibility data from a broad array of 405 

peripheral immune cells in order to identify putative causal cell types. Our analyses identified 406 

regulatory regions in B cells and CD4 T cells as each being independently enriched for MS 407 

genetics. Within the CD4 T cell and B cell populations, we further identified OCRs from Th17 408 

cells and memory B cells as specifically driving their respective enrichments. Chromatin data 409 

from MS patients reiterated these findings and further suggested that immunomodulatory 410 

treatments alter the chromatin accessibility overlying MS-associated GWAS variants. Integration 411 

of PCHiC data led to prioritization of putative causal genes in B and CD4 T cells, identifying 412 

target genes that are both shared and specific to each of these cell populations. The putative 413 

causal genes implicate several known signaling pathways, mostly due to the cell-specific MS-414 

associated genes, despite these representing a smaller percentage compared to genes shared 415 

between B and CD4 T cells. Finally, we illustrate that the B and CD4 T cells mechanisms are 416 

intertwined by describing how TEAD2, a putative causal gene shared between B and CD4 T 417 

cells, contributes to disease susceptibility directly and indirectly by targeting both shared and 418 

cell-specific MS genes.         419 

 420 
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Our study provides genetic evidence for the independent involvement of both CD4 T and B cells 421 

in the pathogenesis of MS 1–3 . It further supports the long-debated causal role of memory B 422 

cells in MS24,42,43, shown by the highly effective therapies targeting B cell receptors, most 423 

notably ocrelizumab7. Through our analyses, we also corroborate decades of research that have 424 

demonstrated a primary role of CD4 T cells in MS, including the importance of Th17 T cells 425 

24,44,45. For both the B cell and Th17 T cell populations, we find that active enhancers and 426 

promoters drive the enrichment signal, consistent with activating roles of these cell types in MS 427 

as an autoimmune condition. The complex interplay between the B and CD4  cells in MS 428 

pathogenesis 2,3,42  is also reflected by our finding of some OCRs present in both cell types, 429 

while other OCRs are present only in specific cell populations.   430 

 431 

Although other peripheral immune cell types have been shown to be involved in MS, including 432 

monocytes, CD8 T cells, and mDCs24, we did not identify independent enrichments for these 433 

cell types. One possible explanation for this apparent contradiction is that these cell types might 434 

work secondarily to memory B and Th17 cells, which are more directly under influence from MS 435 

GWAS-associated variants. Non-genetic effects, e.g. environment-specific response, could also 436 

explain their role in MS above and beyond any shared mechanisms with B and CD4 T cells. 437 

Further, context-specific studies, such as under various cell activation conditions, would be 438 

necessary to unravel any potential independent influence of these cells by MS genetic variants. 439 

Lastly, while our analyses do not identify an independent genome-wide enrichment for cell types 440 

other than B and CD4 T cells, GWAS variants may still act at individual loci in these other cell 441 

types. 442 

 443 

One of the key challenges of GWAS is moving from genetic association to biological 444 

mechanisms10,13,14. This is driven by three main challenges. First, linkage disequilibrium, while 445 

highly advantageous to discovery of genetic associations, limits our ability to identify the causal 446 
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variant. Second, as most GWAS variants are noncoding, identifying the gene(s) that are 447 

affected by the causal variant can be difficult. Third, the cell type(s) in which a given associated 448 

variant acts can be unclear. Our study demonstrates how we can use statistical fine-mapping to 449 

help solve the first challenge, though this is not without multiple caveats46. We integrated 450 

orthogonal datasets (ATAC-seq, PCHiC) to help delineate the likely causal genes and cell types 451 

and overcome the latter two challenges. We document how shared and cell-specific genes 452 

affect putative causal pathways. We further illustrate the complex interplay between shared and 453 

cell-specific putative causal MS genes by studying the TEAD2 locus, a transcription factor 454 

recently implicated in immune regulation47. Together, our study generates important insights into 455 

the driver subpopulations of peripheral immune cells in MS, reinforcing how MS genetics act 456 

primarily through B and CD4 T cells. Our study also demonstrates the need for in-depth context-457 

specific cellular data to carefully delineate the causal role of each immune cell subset in MS. 458 

 459 

Methods 460 

GWAS summary statistics 461 

We utilized available MS GWAS summary statistics, which included data from 8,278,136 462 

variants across 14,802 individuals with MS (cases) and 26,703 individuals without MS 463 

(controls) 8. For enrichment analyses, we included only the 6,773,531 variants that were 464 

analyzed in all 15 cohorts of the discovery stage meta-analysis; this resulted in 6,773,531 465 

variants carried forward. We additionally utilized GWAS summary statistics from various 466 

neuropsychiatric disorders or autoimmune disorders: Alzheimer disease (AD)26, schizophrenia 467 

(SCZ)27, bipolar disorder (BPD)28, type 1 diabetes (T1D)29, Crohn’s disease (CD)30, ulcerative 468 

colitis (UC)30, systemic lupus erythematosus (SLE)31, rheumatoid arthritis (RA)32, and primary 469 

biliary cirrhosis (PBC)33. All GWAS data were converted to the “.sumstats” format as required by 470 

LDSC using the “munge.py” function in LDSC with default parameters. 471 
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 472 

Epigenetic and eQTL datasets 473 

Hematopoietic progenitor and terminal ATAC-seq data: ATAC-seq data for 16 different human 474 

hematopoietic progenitor and terminal populations was obtained from Corces et al.18 and 475 

Buenrostro et al.19. These ATAC-seq profiles were generated on bulk FACS-sorted cells from 476 

human peripheral blood or bone marrow cells. Alignment of the ATAC-seq data and peak-calling 477 

were performed as previously described20. To identify cell-type specific peaks for each cell type, 478 

we used ATAC-seq peaks for that cell type and removed any peaks that overlapped with a peak 479 

present in any one of the other 15 cell types. A single base pair overlap was considered to be 480 

overlapping. 481 

 482 

Immune cell ATAC-seq data: We used publicly available immune cell ATAC-seq data (NCBI 483 

GEO GSE 118189) derived from flow-sorted peripheral blood cells 21. As each cell type had 484 

between 1-4 human donors, we merged the raw ATAC-seq data from the individual donors for a 485 

given cell type. We aligned ATAC-seq reads using bowtie2 version 2.2.148 with default 486 

parameters and a maximum paired-end insert distance of 2000 base pairs. The bowtie2 index 487 

was constructed with the default parameters for the hg19 reference genome. We filtered out 488 

reads that mapped to the mitochondria and used samtools version 1.1049 to filter out reads with 489 

MAPQ < 30 and with the flags ‘- F 1804’ and ‘-f 2’. Additionally, duplicate reads were discarded 490 

using picard version 2.20.6 (http://broadinstitute.org.github.io/picard). Finally, chromatin 491 

accessibility peaks were identified with MACS2 version 2.1.150 under default parameters and ‘--492 

nomodel --nolambda --keep-dup all --call-summits’.  493 

 494 

ChIP-seq data: We downloaded available pre-processed ChIP-seq peak calls from ENCODE for 495 

B cells34. Where replicates were available, the bed files for the replicates were merged to create 496 

a composite set of peaks for each histone mark. Data for Th17 histone ChIP-seq were 497 
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downloaded from the Roadmap Epigenomics Project35 (NCBI GEO GSM997225); we used pre-498 

processed ChIP-seq peak calls generated in Amariuta et al51. 499 

 500 

chromHMM: We used a 25 chromatin state model36, which are imputed based on 12 epigenetic 501 

marks from across 127 epigenomes generated as part of the Roadmap Epigenomics Project35. 502 

We used the chromatin states from B cells and Th17 CD4+ T cells. Chromatin states were 503 

downloaded from https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html. We 504 

excluded the “Quiescent/Low” cell state, as it encompasses a large proportion of the genome, 505 

resulting in unstable estimates of heritability. 506 

 507 

Verily ATAC-seq data: We utilized immune cell ATAC-seq data generated from Verily as part of 508 

the SysteMS collaboration with Brigham & Women’s Hospital (PIs: Dr. Chitnis and Dr. Weiner).  509 

Cell sorting: Frozen cryovials in liquid nitrogen were thawed in a 37℃ bead bath and centrifuged 510 

for 5 min at 600 x g, 4℃. The cell pellet was washed with 1 mL of FACS buffer, and the wash 511 

repeated. The cell pellet was resuspended in the residual volume with 2.5 uL of 0.33mg/mL S7 512 

DNAse. 50 uL of staining cocktail was added for the respective flow cytometry panels to be 513 

analyzed (T cell, B cell, myeloid panel) and incubated for 25 min on ice and in the dark. Cells 514 

were washed in FACS buffer, resuspended in a final volume of 400 uL FACS buffer, and passed 515 

through a 35 µm cell strainer cap. Stained samples were sorted on a FACSAria Fusion (BD 516 

Biosciences, San Jose, CA). Using FACSDiva v8.0.1 software, the samples were gated first by 517 

forward and side scatter properties, then FSC-H vs FSC-A for singlet discrimination, and finally, 518 

with their respective markers for each cell type (Supplementary Table 29). For each cell type 519 

of interest, up to 500 cells were sorted into the tagmentation buffer. 520 

ATAC-seq library preparation and sequencing: Cells were sorted directly into 20 uL of cold 521 

tagmentation buffer (10 uL TD, 2 uL 2% IGEPAL CA-630, 6 uL nuclease-free H2O, 2 uL TDE1 522 

per sample), followed by incubation at 37℃ for 30 min with shaking at 500 RPM. Samples were 523 
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stored at -20℃ until further processing. DNA was extracted with the QIAGEN MinElute PCR 524 

purification kit according to the manufacturer's protocol, and samples were amplified with KAPA 525 

HiFi kits and Illumina Nextera indices. The amplified material was cleaned with the QIAGEN 526 

MinElute PCR purification kit and quantified using KAPA library quantification kits. Samples 527 

were normalized and pooled for sequencing on the NextSeq (Illumina).   528 

Processing: Paired-end raw ATAC-seq reads were trimmed using NGmerge 60 using the default 529 

parameters. The reads were then aligned to GRCh38 using Bowtie2 version 2.3.5 49. The 530 

resulting SAM files were converted and sorted into BAM format using samtools version 1.5 50. 531 

We filtered out the reads with MAPQ<10 and reads that were aligned to mitochondria using 532 

samtools. In addition, duplicate reads were removed using picard version 2.20.6 533 

(http://broadinstitute.org.github.io/picard). Finally, peaks were called using MACS2 version 2.2.5 534 

51 with default parameters and --keep-dup all --nomodel –nolambda. To obtain peaks for each 535 

cell type, we merged the peak files from all samples for that specific cell type using bedtools 536 

version 2.29 61.  537 

 538 

Enrichment of GWAS results within ATAC-seq peaks 539 

To calculate enrichments of the MS GWAS data within annotations (e.g., ATAC-seq or ChIP-540 

seq peaks), we applied stratified LD SCore regression (LDSC)16,23. LDSC was performed using 541 

LDSC v1.0.0 (https://github.com/bulik/LDSC), which was run on the discovery summary 542 

statistics from the MS GWAS discovery stage summary statistics8. The human MHC locus was 543 

excluded given its complex LD patterns as recommended by Finucane et al.16  544 

To run LDSC, we used precomputed LD scores based on the European ancestry samples of the 545 

1000 Genomes Project Phase 152 which was restricted to HapMap3 SNPs53, and we generated 546 

partitioned LD scores for each set of annotations. To perform LDSC, we regressed the summary 547 

statistics (χ2) from a given GWAS on to annotation-specific LD scores, with baseline scores 548 
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(original 53 annotation model), regression weights and allele frequencies based on 1000 549 

Genome Project Phase 1 data as precomputed by software authors. We applied partitioned 550 

heritability analyses using LDSC under three different models: 551 

1) To ask how much a given annotation contributes to trait heritability, we used a LDSC 552 

model that includes baseline annotations and an annotation of interest. The heritability 553 

enrichment of the annotation was defined as the proportion of SNP heritability in the 554 

category divided by the proportion of SNPs in that category; we report statistical 555 

significance of this enrichment as p-values.  556 

2) When comparing multiple annotations (e.g., ATAC-seq peaks from different cell types), 557 

we ran a LDSC model that includes the baseline model and annotations from all cell 558 

types. In this scenario, we calculate for each annotation the coefficient 𝜏! which 559 

measures the contribution to SNP heritability for a given annotation to heritability in this 560 

overall model, stratified on other annotations in the model. Z-scores for the coefficient 𝜏! 561 

were converted to a one-sided p-value, which we report as a measure of statistical 562 

significance. 563 

3) We also performed LDSC on pairs of annotations, which we term pairwise stratified 564 

LDSC. In these models, we include the baseline model, an index annotation of interest, 565 

and a comparator annotation of interest. To run LDSC, we used a previously described 566 

extension of LDSC 54. 567 

Throughout, all default LDSC parameters were used.  568 

 569 

Statistical fine-mapping 570 

Statistical fine-mapping was performed using the marginal p-values from the replication (joint 571 

analysis) summary statistics from the MS GWAS 8. The 200 genome-wide significant loci at 572 

p<5x10-8 were used. LD was calculated between each lead variant and all variants with r2>0.2 573 

and within a 2 Mb window based on the 1000 Genomes Phase 1 (European subset) reference 574 
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panel52. PLINK v1.90b3.32 was used to perform LD calculations55,56 with parameters of ‘--r2 --ld-575 

window-kb 2000 --ld-window 999999 --ld-window-r2 0.2’.  576 

 577 

We then applied PICS to each locus15. Briefly, PICS uses the lead association p-value and LD 578 

structure of the locus to calculate the most likely causal SNPs given the observed lead 579 

association signal. PICS probabilities represent the probability of a given SNP in a locus being 580 

the causal SNP. Default PICS parameters were used. From the PICS probabilities, we 581 

calculated 95% credible sets (CS). We defined the 95% CS as a set of variants such that the 582 

true causal variant has a 95% chance of being in the credible set. To calculate credible sets, for 583 

each locus, we ranked variants in descending order by their PICS probabilities. We then 584 

iteratively added variants to the credible set for that locus until the sum of their PICS 585 

probabilities was greater than or equal to 0.95. For CS inclusion, we also required the variant to 586 

have a PICS probability > 0.1. 587 

 588 

Identification of target genes 589 

We leveraged promoter capture Hi-C (PCHiC) data from 17 hematopoietic cell populations to 590 

link genetic associations with genes that they may regulate 37. We filtered the PCHiC dataset for 591 

looping interactions with a CHiCAGO score > 557. An overlap between a GWAS variant and a 592 

PCHiC looping interaction was considered if the GWAS variant overlapped any position in the 593 

non-promoter (“other end”) of the PCHiC interaction. For CD4+ T cells, we considered only 594 

GWAS SNPs that overlapped an ATAC-seq peak in bulk CD4+ T cells or any of the CD4+ T cell 595 

subsets (naïve effector CD4+ T cells, Th1, Th2, Th17, follicular Th, naïve Tregs and memory Tregs), 596 

and which overlapped a PCHiC interaction in naïve CD4+ T cells (nCD4), total CD4+ T cells 597 

(tCD4), non-activated total CD4+ T cells (naCD4), or activated total CD4+ T cells (aCD4). For B 598 

cells, we considered only GWAS SNPs that overlapped an ATAC-seq peak in bulk B cells or 599 
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any of the B cell subsets (naïve B cells, memory B cells, or plasmablasts), and which 600 

overlapped a PCHiC interaction in naïve B cells (nB) or total B cells (tB). 601 

 602 

Correction for multiple hypothesis testing 603 

Throughout our manuscript, we use Bonferroni corrections when testing multiple hypotheses. To 604 

generate a Bonferroni-corrected p-value threshold, we used a traditional p-value threshold of 605 

0.05 divided by the number of tests being performed in a given analysis. We note that as many 606 

of the tests are correlated (since the underlying annotations are often highly correlated with 607 

each other), the effective number of independent tests being performed is fewer than the 608 

number of tests actually performed. As such, our analyses are overly conservative. We decided 609 

on this approach of using Bonferroni corrections as opposed to false discovery rate (FDR) 610 

approaches, as the number of tests being performed is often small, leading to unstable 611 

estimates of FDR. 612 

 613 

Gene set enrichment analyses 614 

We performed pathway analyses utilizing the canonical pathways (CP) of the Molecular 615 

Signatures Database (MSigDB v7.2), as it is available from the Gene Set 616 

Enrichment Analysis website (http://software.broadinstitute.org/gsea/msigdb). We 617 

ran the Canonical Pathways, Biocarta, KEGG, and Reactome gene sets categories 618 

together in the same model. We estimated statistical significance using the hypergenometric 619 

distribution and applied false discovery correction, as previously described8. The same model 620 

was applied for the enrichment of prioritized gene sets with Gene Transcription Regulation 621 

Database (GTRD) transcription factor targets gene sets40. Significant enrichment level was set 622 

to a false discovery rate < 5%. 623 

 624 

Protein-protein interaction networks 625 
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We utilized GeNets (https://apps.broadinstitute.org/genets)38 to leverage known protein-protein 626 

interactions (PPI) of our prioritized gene sets. GeNets uses a random forest 627 

classified, trained in PPI data with 18 parameters that capture information about 628 

centrality and clustering. It creates communities of genes, sets of genes (nodes) that are 629 

connected to each other more than genes outside this community. Furthermore, it uses the 630 

random forest classifier and the connectivity to the tested gene set to propose candidate 631 

genes. For each described network the p-value is estimated by testing whether the number 632 

of observed edges divided by the numbers of possible edges using permutations. We ran 633 

GeNets via the web interface with the GeNets Metanetwork v1.0 and utilizing the InWeb model 634 

(“Override network the analysis model was trained on” option).  635 

 636 

TEAD2 knockdown and over-expression in LINCS cell lines 637 

Robust z-scores, “level 5 data”, from knock-down (KD) or over-expression (OE) of TEAD2 in 638 

cancer cell lines41 were downloaded from clue.io 639 

(https://clue.io/command?q=/sig%20%22TEAD2%22). The robust z scores represent differential 640 

expression for each genetic perturbagen, adjusted for the gene expression of all other 641 

perturbagens on the same physical plate. For knockdown and over-expression experiments the 642 

differential expression comparator were samples using a vector control, which are negative 643 

genetic controls that either lack a gene-specific sequence or target a non-human gene (like 644 

GFP).   645 

  646 
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Data availability 647 

MS GWAS summary statistics are available via request to the IMSGC (https://imsgc.net/). LD 648 

score regression software and reference panels were obtained from software developers 649 

(https://github.com/bulik/LDSC). Processed GWAS summary statistics for diseases other than 650 

MS were obtained from https://alkesgroup.broadinstitute.org/LDSCORE/independent_sumstats/. 651 

1000 Genomes Phase 1 reference panel was obtained from 652 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/. Hematopoietic ATAC-seq data for Buenrostro et al 653 

was obtained from NCBI GEO (accession GSE74912). Hematopoietic ATAC-seq data from 654 

Calderon et al was obtained from NCBI GEO (accession GSE118189). ChIP-seq data from 655 

Roadmap were obtained from NCBI GEO (accession GSM997225). chromHMM chromatin state 656 

partitions for ENCODE were obtained from 657 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html. PCHiC data were 658 

downloaded from Data S1 in the referenced manuscript 659 

(https://www.sciencedirect.com/science/article/pii/S0092867416313228). DICE eQTL data were 660 

obtained from https://dice-database.org/.  661 

The Verily Life Sciences ATAC-seq from the SysteMS data can be requested by Charlie Kim 662 

(charliekim@verily.com). 663 

The LINCS KD and OE TEAD2 data can be accessed through the Broad Connectivity Map 664 

portal at clue.io: https://clue.io/command?q=/sig%20%22TEAD2%22.  665 

  666 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


References 667 

1.  Filippi M, Bar-Or A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis Prim. 2018;4(1):43. 668 

doi:10.1038/s41572-018-0041-4 669 

2.  Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and 670 

Immunotherapy. Neuron. 2018;97(4):742-768. doi:10.1016/j.neuron.2018.01.021 671 

3.  van Langelaar J, Rijvers L, Smolders J, van Luijn MM. B and T Cells Driving Multiple 672 

Sclerosis: Identity, Mechanisms and Potential Triggers. Front Immunol. 2020;11:760. 673 

doi:10.3389/fimmu.2020.00760 674 

4.  Chihara N. Dysregulated T cells in multiple sclerosis. Clin Exp Neuroimmunol. 2018;9:20-675 

29. doi:10.1111/cen3.12438 676 

5.  Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple 677 

sclerosis: Current and future therapies. Cell Immunol. 2019;339:10-23. 678 

doi:10.1016/j.cellimm.2018.10.006 679 

6.  Greenfield AL, Hauser SL. B-cell Therapy for Multiple Sclerosis: Entering an era. Ann 680 

Neurol. 2018;83(1):13-26. doi:10.1002/ana.25119 681 

7.  Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing 682 

Multiple Sclerosis. N Engl J Med. 2017;376(3):221-234. doi:10.1056/NEJMoa1601277 683 

8.  Patsopoulos NA, Baranzini SE, Santaniello A, et al. Multiple sclerosis genomic map 684 

implicates peripheral immune cells and microglia in susceptibility. Science (80- ). 2019. 685 

doi:10.1126/science.aav7188 686 

9.  Consortium IMSG. Low-Frequency and Rare-Coding Variation Contributes to Multiple 687 

Sclerosis Risk. Cell. 2018;175(6):1679-1687.e7. doi:10.1016/j.cell.2018.09.049 688 

10.  Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, Function, 689 

and Translation. Am J Hum Genet. 2017;101(1):5-22. doi:10.1016/j.ajhg.2017.06.005 690 

11.  Gusev A, Lee SH, Trynka G, et al. Partitioning heritability of regulatory and cell-type-691 

specific variants across 11 common diseases. Am J Hum Genet. 2014;95(5):535-552. 692 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


doi:10.1016/j.ajhg.2014.10.004 693 

12.  Cano-Gamez E, Trynka G. From GWAS to Function: Using Functional Genomics to 694 

Identify the Mechanisms Underlying Complex Diseases. Front Genet. 2020;11:424. 695 

doi:10.3389/fgene.2020.00424 696 

13.  Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: Illuminating the Dark 697 

Road from Association to Function. Am J Hum Genet. 2013;93(5):779-797. 698 

doi:10.1016/j.ajhg.2013.10.012 699 

14.  Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. Am 700 

J Hum Genet. 2018;102(5):717-730. doi:10.1016/j.ajhg.2018.04.002 701 

15.  Farh KK-H, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal 702 

autoimmune disease variants. Nature. 2015;518(7539):337-343. 703 

doi:10.1038/nature13835 704 

16.  Finucane HK, Bulik-Sullivan B, Gusev A, et al. Partitioning heritability by functional 705 

annotation using genome-wide association summary statistics. Nat Genet. 706 

2015;47(11):1228-1235. doi:10.1038/ng.3404 707 

17.  International Multiple Sclerosis Genetics Consortium. A systems biology approach 708 

uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. 709 

Nat Commun. 2019;10(1):2236. doi:10.1038/s41467-019-09773-y 710 

18.  Corces MR, Buenrostro JD, Wu B, et al. Lineage-specific and single-cell chromatin 711 

accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 712 

2016;48(10):1193-1203. doi:10.1038/ng.3646 713 

19.  Buenrostro JD, Corces MR, Lareau CA, et al. Integrated Single-Cell Analysis Maps the 714 

Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell. 715 

2018;173(6):1535-1548.e16. doi:10.1016/j.cell.2018.03.074 716 

20.  Ulirsch JC, Lareau CA, Bao EL, et al. Interrogation of human hematopoiesis at single-cell 717 

and single-variant resolution. Nat Genet. 2019;51(4):683-693. doi:10.1038/s41588-019-718 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


0362-6 719 

21.  Calderon D, Nguyen MLT, Mezger A, et al. Landscape of stimulation-responsive 720 

chromatin across diverse human immune cells. Nat Genet. 2019. doi:10.1038/s41588-721 

019-0505-9 722 

22.  Finucane HK, Bulik-Sullivan B, Gusev A, et al. Partitioning heritability by functional 723 

annotation using genome-wide association summary statistics. Nat Genet. 724 

2015;47(11):1228-1235. doi:10.1038/ng.3404 725 

23.  Bulik-Sullivan BK, Loh P-R, Finucane HK, et al. LD Score regression distinguishes 726 

confounding from polygenicity in genome-wide association studies. Nat Genet. 727 

2015;47(3):291-295. doi:10.1038/ng.3211 728 

24.  Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev 729 

Immunol. 2015;15(9):545-558. doi:10.1038/nri3871 730 

25.  Fani Maleki A, Rivest S. Innate Immune Cells: Monocytes, Monocyte-Derived 731 

Macrophages and Microglia as Therapeutic Targets for Alzheimer’s Disease and Multiple 732 

Sclerosis. Front Cell Neurosci. 2019;13. doi:10.3389/fncel.2019.00355 733 

26.  Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals 734 

identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 735 

2013;45(12):1452-1458. doi:10.1038/ng.2802 736 

27.  Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological 737 

insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-738 

427. doi:10.1038/nature13595 739 

28.  Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-740 

wide association analysis of bipolar disorder identifies a new susceptibility locus near 741 

ODZ4. Nat Genet. 2011;43(10):977-983. doi:10.1038/ng.943 742 

29.  Bradfield JP, Qu H-Q, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes 743 

cohorts identifies multiple associated loci. McCarthy MI, ed. PLoS Genet. 744 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


2011;7(9):e1002293. doi:10.1371/journal.pgen.1002293 745 

30.  Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the 746 

genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119-124. 747 

doi:10.1038/nature11582 748 

31.  Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate 749 

aberrant regulation of innate and adaptive immunity genes in the pathogenesis of 750 

systemic lupus erythematosus. Nat Genet. 2015;47(12):1457-1464. doi:10.1038/ng.3434 751 

32.  Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology 752 

and drug discovery. Nature. 2014;506(7488):376-381. doi:10.1038/nature12873 753 

33.  Cordell HJ, Han Y, Mells GF, et al. International genome-wide meta-analysis identifies 754 

new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun. 755 

2015;6(1):8019. doi:10.1038/ncomms9019 756 

34.  Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated 757 

encyclopedia of DNA elements in the human genome. Nature. 2012;489:57-74. 758 

doi:10.1038/nature11247 759 

35.  Consortium RE, Kundaje A, Meuleman W, et al. Integrative analysis of 111 reference 760 

human epigenomes. Nature. 2015;518(7539):317-330. doi:10.1038/nature14248 761 

36.  Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. 762 

Nat Protoc. 2017. doi:10.1038/nprot.2017.124 763 

37.  Javierre BM, Burren OS, Wilder SP, et al. Lineage-Specific Genome Architecture Links 764 

Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell. 765 

2016;167(5):1369-1384.e19. doi:10.1016/j.cell.2016.09.037 766 

38.  Li T, Kim A, Rosenbluh J, et al. GeNets: A unified web platform for network-based 767 

genomic analyses. Nat Methods. 2018;15(7):543-546. doi:10.1038/s41592-018-0039-6 768 

39.  Schmiedel BJ, Singh D, Madrigal A, et al. Impact of Genetic Polymorphisms on Human 769 

Immune Cell Gene Expression. Cell. 2018;175(6):1701-1715.e16. 770 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


doi:10.1016/j.cell.2018.10.022 771 

40.  Yevshin I, Sharipov R, Kolmykov S, Kondrakhin Y, Kolpakov F. GTRD: A database on 772 

gene transcription regulation - 2019 update. Nucleic Acids Res. 2019. 773 

doi:10.1093/nar/gky1128 774 

41.  Subramanian A, Narayan R, Corsello SM, et al. A Next Generation Connectivity Map: 775 

L1000 Platform and the First 1,000,000 Profiles. Cell. 2017. 776 

doi:10.1016/j.cell.2017.10.049 777 

42.  Jelcic I, Al Nimer F, Wang J, et al. Memory B Cells Activate Brain-Homing, Autoreactive 778 

CD4+ T Cells in Multiple Sclerosis. Cell. 2018;175(1):85-100.e23. 779 

doi:10.1016/j.cell.2018.08.011 780 

43.  Li R, Rezk A, Miyazaki Y, et al. Proinflammatory GM-CSF-producing B cells in multiple 781 

sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7(310):310ra166. 782 

doi:10.1126/scitranslmed.aab4176 783 

44.  Kebir H, Ifergan I, Alvarez JI, et al. Preferential recruitment of interferon-γ-expressing T H 784 

17 cells in multiple sclerosis. Ann Neurol. 2009;66(3):390-402. doi:10.1002/ana.21748 785 

45.  Kebir H, Kreymborg K, Ifergan I, et al. Human TH17 lymphocytes promote blood-brain 786 

barrier disruption and central nervous system inflammation. Nat Med. 2007;13(10):1173-787 

1175. doi:10.1038/nm1651 788 

46.  Benner C, Havulinna AS, Järvelin M-R, Salomaa V, Ripatti S, Pirinen M. Prospects of 789 

Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from 790 

Genome-wide Association Studies. Am J Hum Genet. 2017;101(4):539-551. 791 

doi:10.1016/j.ajhg.2017.08.012 792 

47.  Bai X, Huang L, Niu L, et al. Mst1 positively regulates B-cell receptor signaling via CD19 793 

transcriptional levels. Blood Adv. 2016;1(3):219-230. 794 

doi:10.1182/bloodadvances.2016000588 795 

48.  Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 796 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


2012;9(4):357-359. doi:10.1038/nmeth.1923 797 

49.  Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and 798 

SAMtools. Bioinformatics. 2009;25(16):2078-2079. doi:10.1093/bioinformatics/btp352 799 

50.  Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome 800 

Biol. 2008;9(9):R137. doi:10.1186/gb-2008-9-9-r137 801 

51.  Amariuta T, Luo Y, Gazal S, et al. IMPACT: Genomic Annotation of Cell-State-Specific 802 

Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors. Am J 803 

Hum Genet. 2019;104(5):879-895. doi:10.1016/j.ajhg.2019.03.012 804 

52.  1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of 805 

genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65. 806 

doi:10.1038/nature11632 807 

53.  Altshuler DM, Gibbs RA, Peltonen L, et al. Integrating common and rare genetic variation 808 

in diverse human populations. Nature. 2010;467(7311):52-58. doi:10.1038/nature09298 809 

54.  Finucane HK, Reshef YA, Anttila V, et al. Heritability enrichment of specifically expressed 810 

genes identifies disease-relevant tissues and cell types. Nat Genet. 2018;50(4):621-629. 811 

doi:10.1038/s41588-018-0081-4 812 

55.  Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 813 

PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7. 814 

doi:10.1186/s13742-015-0047-8 815 

56.  Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association 816 

and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575. 817 

doi:10.1086/519795 818 

57.  Cairns J, Freire-Pritchett P, Wingett SW, et al. CHiCAGO: robust detection of DNA 819 

looping interactions in Capture Hi-C data. Genome Biol. 2016;17(1):127. 820 

doi:10.1186/s13059-016-0992-2 821 

  822 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


Acknowledgements  823 

NAP was supported in part by National Multiple Sclerosis Society (grants 824 

JF-1808-32223 and RG-1707-28657). This work was supported in part by the Water Cove 825 

Charitable Foundation. We thank Jacob Ulirsch for technical assistance with the use of LD 826 

score regression. 827 

 828 

Author contributions.  829 

MHG and NAP had the original idea and supervised the project. JB, CC, XD, PK, CCK, TO, TS, 830 

and DZS generated data. HLW and TC provided samples. MHG, PS, BAL, HL, and NAP 831 

performed analyses. MHG and NAP wrote a first draft of the paper. All authors reviewed results, 832 

contributed to writing and final approval of the paper.  833 

Competing interests.  834 

JB, CC, XD, PK, CCK, TO, TS, and DZS employment in Verily Life Sciences at time of study.  835 

 836 

Correspondence.  837 

Correspondence should be addressed to Nikolaos Patsopoulos 838 

(npatsopoulos@rics.bwh.harvard.edu) and Michael Guo 839 

(michael.guo@pennmedicine.upenn.edu)  840 

 841 

Computer code 842 

Code used in this paper can be accessed in bitbucket: 843 

https://bitbucket.org/patslab/pis_ms_enrichment/  844 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


Figures 845 

Figure 1: A: Experimental Design. Top box shows the hematopoietic cell types analyzed. MS 846 

discovery GWAS results were integrated with ATAC-seq profiles generated from the 847 

hematopoietic cell types. LDSC was performed to evaluate enrichment of MS GWAS in the 848 

OCRs of each hematopoietic cell type. Statistical fine-mapping was also performed on the MS 849 

GWAS results, which were then integrated with orthogonal epigenetic data such as promotor 850 

capture HiC interactions. This integration of fine-mapping and epigenetic data allowed for 851 

identification of putative causal mechanisms at individual loci. B: Enrichment of MS GWAS 852 

heritability in hematopoietic cell OCRs. Enrichment p-values are shown as –log10(p-value).  853 

 854 

Figure 2: A: LDSC enrichment results for MS GWAS enrichment in OCRs from across 855 

hematopoietic cell types in a joint model. Heights of the circles reflect LDSC coefficient (𝜏!) p-856 

values, which measures whether the annotation (i.e., OCRs for a given cell type) contributes 857 

significantly to SNP heritability in an overall model that includes OCRs for all hematopoietic cell 858 
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types and baseline annotations. Sizes of the circles are proportional to the enrichment p-values 859 

for that given cell type, with larger circles reflecting more significant p-values. B: LDSC 860 

enrichment p-values for pairwise stratified LDSC of MS GWAS results in OCRs from 861 

hematopoietic cell types. Y-axis are the index cell types with LDSC enrichment p-values prior to 862 

stratifying in parentheses. X-axis shows the comparator cell type being conditioned upon. Boxes 863 

are shaded by the LDSC coefficient p-values for the index cell type after conditioning on the 864 

comparator cell type in the pairwise model (with darker colors representing stronger 865 

enrichments). Red stars indicate pair-wise comparisons that are statistical significant a 866 

Bonferroni corrected p-value threshold of 2.2x10-4.  867 

 868 

 869 

Figure 3: A: Enrichments of GWAS results from 10 neuropsychiatric or autoimmune conditions 870 

in OCRs across various hematopoietic cell types. B: LDSC coefficient p-values in the joint 871 

model across hematopoietic cell ATAC-seq in 10 neuropsychiatric or autoimmune conditions. 872 

For A and B, boxes are shaded by –log10(p-value), with darker shading reflecting more 873 

statistical significance, and statistically significant p-values (p-values<3.13x10-3) are starred. 874 
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 875 

 876 

Figure 4: A: Schematic of lineage relationships among CD4+ T cell subsets for which ATAC-seq 877 

data was analyzed. B: LDSC heritability enrichment p-values for CD4+ T cell subsets in MS 878 

GWAS. See Figure 1B for additional description. C: LDSC coefficient p-values for CD4+ T cells 879 

in MS GWAS. See Figure 2A for additional description. D:  LDSC coefficient p-values for 880 

pairwise stratified analyses of MS GWAS results in ATAC-seq data from CD4+ T cell subsets. 881 

See Figure 2B legend for additional desc882 
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883 

ription. 884 

 885 

 886 

Figure 5: A: Schematic of lineage relationships among B cell lineage cell types for which ATAC-887 

seq data was analyzed. B: LDSC heritability enrichment p-values for B cell lineage cell types in 888 

MS GWAS. See Figure 1B for additional description. C: Stratified LDSC coefficient p-values for 889 

B cell lineage cell types in MS GWAS. See Figure 2A for additional description. D:  LDSC 890 

coefficient p-values for pairwise stratified analyses of MS GWAS results in ATAC-seq data from 891 

B cell lineage cell types. See Figure 2B legend for additional description. 892 
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 893 

Figure 6: A: Enrichment of MS GWAS heritability in OCRs from untreated patients with MS. 894 

Enrichment p-values are shown as –log10(p-value). B, C: LDSC results for MS GWAS 895 

enrichment in a joint model for T4cm (B) and cMBc (C) OCRs from untreated patients with MS. 896 

Heights of the circles reflect stratified LDSC coefficient p-values.  Sizes of the circles are 897 

proportional to the enrichment p-values for that given cell type, with larger circles reflecting more 898 

significant p-values. D: Enrichment of MS GWAS heritability in OCRs from MS patients 899 

undergoing immunomodulatory treatment. Enrichment p-values are shown as –log10(p-value). 900 

Treatments include glatiramer acetate, interferon, or natalizumab. 901 
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 902 

 903 

Figure 7: A. Venn diagram of the putative causal CD4 T and B cell genes. B. Heatmap of 904 

canonical pathway enrichment for the putative causal genes in CD4 T cells, B cells, common in 905 

CD4 T and B cells, unique in CD4 T cells, and unique in B cells. Only pathways with FDR<5% in 906 

at least one gene list are displayed (n=1950). The grayscale depicts level of statistical 907 

significance. C. Scatterplot of -log10(FDR) of canonical pathway enrichment for putative causal 908 
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genes unique in CD4 T cells (X axis) vs. B cells (Y axis). The dashed red lines indicated 909 

FDR<5%. The size of the dots depicts the total number of genes in the respective pathway. 910 

 911 

 912 

Figure 8: A: Visualization of TEAD2 locus. Lead SNP rs1465697 (PICS of 15%) is depicted 913 

with a red line. The blue box on the left illustrates the overlap with the ATAC-seq peaks present 914 

in CD4 T (orange) and B cells (purple). The SNP and ATAC-seq peaks also overlap a PCHiC 915 

looping interaction with the promoter for the TEAD2 gene (arc; the boundaries of the 916 

enhancer/promoter regions are indicated in green; the promoter of TEAD2 is highlighted with 917 

the blue box on the right). B. Gene expression of TEAD2 across immune cells available in the 918 

DICE database (https://dice-database.org/). X axis display transcripts per million (TPM). C. Cis-919 

eQTL boxplot per genotype status of rs1465697 in naïve B cells in the DICE database 920 

(https://dice-database.org/). D. Transcription factor enrichment in the GTRD database for the 921 
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putative causal genes that are common in CD4 T and B cells. Each dot represents one of 526 922 

transcription factors. The Y axis indicates the -log10 of the FDR. The TEAD2 enrichment is 923 

highlighted (p-value = 1.34x10-8, FDR = 8.81x10-7).       924 

 925 

 926 

Supplemental Figure Legends 927 

Figure S1: Correlation (Pearson’s r2) in ATAC-seq profiles across hematopoietic cell types. 928 

 929 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445445


 930 

Figure S2: LDSC enrichments for MS GWAS in cell-type specific ATAC-seq peaks in each of 931 

the nine mature hematopoietic cell type. Y-axis shows –log10(p-value) of the LDSC heritability 932 

enrichment. 933 

 934 

 935 

Figure S3: A. LDSC enrichment results for MS GWAS enrichment in T4cm OCRs from treated 936 

and MS treated patients in a joint model. B. Stratified LDSC enrichment results for MS GWAS 937 

enrichment in cMBc OCRs from treated and MS treated patients in a joint model. Heights of the 938 

circles reflect stratified LDSC coefficient p-values.  Sizes of the circles are proportional to the 939 

enrichment p-values for that given cell type, with larger circles reflecting more significant p-940 

values. 941 
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 942 

 943 

Figure S4: A: LDSC enrichment p-values for MS GWAS data in CD4+ T cell ChIP-seq peaks of 944 

various histone markers. Y-axis shown as –log10(p-value). B: Same as Figure S3A, except 945 

performed for B cell ChIP-seq histone markers. 946 
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 947 

 948 

Figure S5: A: LDSC enrichment p-values for chromHMM chromatin states in CD4+ T cells from 949 

ENCODE. B: Same as Figure S5A, except for B cells from ENCODE. TssA: Active TSS; 950 

PromU: Promoter Upstream TSS; PromD1: Promoter Downstream TSS 1; PromD2: Promoter 951 

Downstream TSS 2; Tx5: Transcribed - 5' preferential; Tx: Strong transcription; Tx3: 952 

Transcribed - 3' preferential; TxWk: Weak transcription; TxReg: Transcribed & regulatory 953 

(Prom/Enh); TxEnh5: Transcribed 5' preferential and Enh; TxEnh3: Transcribed 3' preferential 954 

and Enh; TxEnhW: Transcribed and Weak Enhancer; EnhA1: Active Enhancer 1; EnhA2: Active 955 

Enhancer 2; EnhAF: Active Enhancer Flank; EnhW1: Weak Enhancer 1; EnhW2: Weak 956 

Enhancer 2; EnhAc: Primary H3K27ac possible Enhancer; DNase: Primary DNase; ZNF: ZNF 957 

genes & repeats; Het: Heterochromatin; PromP: Poised Promoter; PromBiv: Bivalent Promoter; 958 

ReprPC: Repressed Polycomb. 959 
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 960 

Figure S6: A: Histogram of the number of credible set (CS) variants across loci. B: Histogram 961 

of the PICS probability of the top variant in each locus.  962 

 963 

 964 

Figure S7: Number of MS GWAS loci (out of 200) with at least one CS SNP overlapping an 965 

ATAC-seq peak in the listed cell types.  966 
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 967 

 968 

Figure S8: Protein-protein interaction communities of putative causal genes in CD4 T cells. 969 

 970 

Figure S9: Protein-protein interaction communities of putative causal genes in B cells. 971 
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 972 

Figure S10: Protein-protein interaction communities of putative causal genes shared in CD4 T 973 

and B cells.  974 

 975 

 976 

Figure S11: Protein-protein interaction communities of putative causal genes unique in CD4 T 977 

cells.  978 
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 979 

 980 

Figure S12: Protein-protein interaction communities of putative causal genes unique in B cells.  981 

 982 

 983 

Figure S13: Enrichment of CD4 T cell putative causal genes in GTRD database. Each dot 984 

represents one transcription factor. The Y axis displays -log10 of false discovery rate (FDR). 985 

The dashed red line indicates the threshold of 1% FDR. The enrichment for TEAD2 predicted 986 

target genes is labeled.  987 
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 988 

Figure S14: Enrichment of B cell putative causal genes in GTRD database. Each dot 989 

represents one transcription factor. The Y axis displays -log10 of false discovery rate (FDR). 990 

The dashed red line indicates the threshold of 1% FDR. The enrichment for TEAD2 predicted 991 

target genes is labeled. 992 

 993 

Figure S13
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 994 

Figure S15: Enrichment of shared between CD4 T and B cells putative causal genes in GTRD 995 

database. Each dot represents one transcription factor. The Y axis displays -log10 of false 996 

discovery rate (FDR). The dashed red line indicates the threshold of 1% FDR. The enrichment 997 

for TEAD2 predicted target genes is labeled. 998 

 999 

 1000 

Figure S16: Change of gene expression of CD4 T cell putative causal genes in knock-down 1001 

(KD) and over-expression (OE) models in cancer cell lines. Eight cancer cell lines are displayed: 1002 

A375, A549, HA1E, HEPG2, HT29, MCF7, PC3, and VCAP. Putative causal genes are 1003 

represented with lines connecting the ranked KD gene expression data (left column) with the 1004 

ranked OE gene expression data (right column). Genes that are in the extreme 10% in opposite 1005 

directions are indicated with green solid lines or red solid lines if these are also a predicted gene 1006 

target for TEAD2. The light grey lines display all over putative causal genes.    1007 
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 1008 

Figure S17: Change of gene expression of B cell putative causal genes in knock-down (KD) 1009 

and over-expression (OE) models in cancer cell lines. Eight cancer cell lines are displayed: 1010 

A375, A549, HA1E, HEPG2, HT29, MCF7, PC3, and VCAP. Putative causal genes are 1011 

represented with lines connecting the ranked KD gene expression data (left column) with the 1012 

ranked OE gene expression data (right column). Genes that are in the extreme 10% in opposite 1013 

directions are indicated with green solid lines or red solid lines if these are also a predicted gene 1014 

target for TEAD2. The light grey lines display all over putative causal genes.     1015 
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 1016 

 1017 

 1018 

 1019 

Supplementary Tables 1020 

Supplementary Table 1: MS GWAS enrichment in 16 hematopoietic cell types. Results 1021 

from LDSC from a model including annotation of interest and set of baseline annotations. 1022 

Column 2 shows the Proportion of SNPs in OCRs of that cell type. Column 3 shows the SNP 1023 

heritability (h2
g) for the annotation. Column 4 shows the standard error for h2g. Column 5 shows 1024 

enrichment of SNP heritability, defined as proportion of SNP heritability in the annotation divided 1025 

by the proportion of SNPs in that annotation. Column 6 shows the standard error of the 1026 

enrichment of SNP heritability. Column 7 shows the p-value of the enrichment of SNP 1027 

heritability.  1028 

 1029 

Supplementary Table 2: MS GWAS enrichment of hematopoietic cell types in joint model: 1030 

Results from LDSC from a joint model including annotations from all cell types and set of 1031 
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baseline annotations. Column 1 shows the coefficient 𝜏! which measures the contribution for a 1032 

given annotation to heritability in this overall model, stratified on other annotations in the model. 1033 

Column 2 shows the standard error for the coefficient 𝜏!. Column 3 shows the z-score for 1034 

coefficient 𝜏! and column 4 shows the p-value for coefficient 𝜏!. 1035 

 1036 

Supplementary Table 3. MS GWAS pairwise enrichment in 16 hematopoietic cell types. 1037 

Index cell types are shown on the left. The comparator cell types are shown on top. Coefficient 1038 

p-values are shown for the index cell type in a model that includes the index cell type, 1039 

comparator cell type, and the set of baseline annotations. 1040 

 1041 

Supplementary Table 4: MS GWAS cell-specific enrichment within terminal hematopoietic 1042 

cell types. Columns are the same as in Supplementary Table 1. 1043 

 1044 

Supplementary Table 5: Heritability enrichments (single model) for other disorders. 1045 

Heritability enrichment p-values for each cell types across 10 autoimmune or neuropsychiatric 1046 

disorders. 1047 

 1048 

Supplementary Table 6: Heritability enrichments (joint model) for other disorders. 1049 

Heritability enrichments (p-values for coefficient 𝜏!) for each cell type under joint model across 1050 

10 autoimmune or neuropsychiatric disorders.  1051 

 1052 

Supplementary Table 7. MS GWAS enrichment in CD4+ T cell subpopulations. Columns 1053 

are the same as in Supplementary Table 1. 1054 

 1055 

Supplementary Table 8. Stratified LDSC in CD4+ T cell subpopulations. Columns are the 1056 

same as in Supplementary Table 2. 1057 
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 1058 

Supplementary Table 9. MS GWAS pairwise enrichment in CD4+ T subpopulations. 1059 

Columns are the same as in Supplementary Table 3. 1060 

 1061 

Supplementary Table 10. MS GWAS enrichment in B cell subpopulations. Columns are the 1062 

same as in Supplementary Table 1. 1063 

 1064 

Supplementary Table 11. Stratified LDSC in B cell subpopulations. Columns are the same 1065 

as in Supplementary Table 2. 1066 

 1067 

Supplementary Table 12. MS GWAS pairwise enrichment in B cell subpopulations. 1068 

Columns are the same as in Supplementary Table 3. 1069 

 1070 

Supplementary Table 13. Clinical characteristics of MS subjects. EDSS: Expanded 1071 

Disability Status Scale. * for the Untreated subjects it indicates number of months since last 1072 

treatment. 1073 

 1074 

Supplementary Table 14. MS GWAS enrichment across OCRs in 6 cell types isolated 1075 

from untreated MS patients. Columns are the same as in Supplementary Table 1. 1076 

 1077 

Supplementary Table 15. MS GWAS enrichment across OCRs in joint model in CD4 T cell 1078 

types isolated from untreated MS patients. Columns are the same as in Supplementary 1079 

Table 2. 1080 

 1081 
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Supplementary Table 16. MS GWAS enrichment across OCRs in joint model in B cell 1082 

types isolated from untreated MS patients. Columns are the same as in Supplementary 1083 

Table 2. 1084 

 1085 

Supplementary Table 17 MS GWAS enrichment across OCRs in 6 cell types isolated from 1086 

treated MS patients. Columns are the same as in Supplementary Table 1, except column 1087 

added for the immune-modulating treatment 1088 

 1089 

Supplementary Table 18. MS GWAS enrichment across OCRs in joint model in T4em 1090 

isolated from untreated and treated MS patients. Columns are the same as in 1091 

Supplementary Table 2 1092 

 1093 

Supplementary Table 19. MS GWAS enrichment across OCRs in joint model in cMBc 1094 

isolated from untreated and treated MS patients. Columns are the same as in 1095 

Supplementary Table 2 1096 

 1097 

Supplementary Table 20. MS GWAS enrichments in histone ChIP-seq from Th17 cells. 1098 

Columns are the same as in Supplementary Table 1. 1099 

 1100 

Supplementary Table 21. MS GWAS enrichments in histone ChIP-seq from B cells. 1101 

Columns are the same as in Supplementary Table 1. 1102 

 1103 

Supplementary Table 20. MS GWAS enrichments in chromatin states from Th17 cells. 1104 

Columns are the same as in Supplementary Table 1. 1105 

 1106 
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Supplementary Table 21. MS GWAS enrichments in chromatin states from B cells. 1107 

Columns are the same as in Supplementary Table 1. 1108 

 1109 

Supplementary Table 24: Summary of gene prioritizations. For each GWAS locus, the lead 1110 

SNP (“Effect SNP”), region annotation according to Patsopoulos et al., lead SNP chromosome, 1111 

lead SNP position (in hg19), A1 allele, A2 allele, odd’s ratio (OR) and lead SNP p-value are 1112 

shown. Previous gene prioritizations from Patsopolous et al., based on various criteria are 1113 

listed. For columns “B Cell ATAC (Buenrostro)”, “B Cell ATAC (Calderon)”, ”Memory B Cell 1114 

ATAC (Calderon)”, ”CD4 Cell ATAC (Buenrostro)”, ”CD4 Cell ATAC (Calderon)”, ”Th17 Cell 1115 

ATAC (Calderon)”, a “1” indicates that a credible set SNP in the locus directly intersects an 1116 

OCR from the indicated ATAC-seq dataset (“0” if no credible set SNP in the locus directly 1117 

intersects. “PCHiC CD4 genes” and “PCHiC B genes” columns list genes that have a promoter 1118 

capture HiC looping interaction to a credible set SNP in the indicated cell type. “PCHiC + ATAC 1119 

CD4 genes” indicates a credible set SNP intersect an OCR in CD4 T cells and forms a PCHiC 1120 

looping interaction in CD4 T cells to that gene. “PCHiC + ATAC B genes” indicates a credible 1121 

set SNP intersect an OCR in B cells and forms a PCHiC looping interaction in B cells to that 1122 

gene. The number of credible set SNPs in each locus is shown in the last column.  1123 

 1124 

Supplementary Table 25: Canonical pathway enrichment for prioritized MS genes. 1125 

 1126 

Supplementary Table 26: Protein-protein interaction connectivity summaries for 1127 

prioritized gene lists. Detailed outputs from GeNets are provide.  1128 

 1129 

Supplementary Table 27: CD4 T prioritized genes ranked in the opposite extreme 10% of 1130 

gene expression changes in KD and OE cell lines. 1131 

 1132 
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Supplementary Table 28: B prioritized genes ranked in the opposite extreme 10% of gene 1133 

expression changes in KD and OE cell lines. 1134 

 1135 

Supplementary Table 29: Markers for FACS sorting strategy of Verily ATAC-seq data 1136 

 1137 

 1138 
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