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Abstract
Key message We developed the ZDX1 high-throughput functional soybean array for high accuracy evaluation and 
selection of both parents and progeny, which can greatly accelerate soybean breeding.
Abstract Microarray technology facilitates rapid, accurate, and economical genotyping. Here, using resequencing data from 
2214 representative soybean accessions, we developed the high-throughput functional array ZDX1, containing 158,959 SNPs, 
covering 90.92% of soybean genes and sites related to important traits. By application of the array, a total of 817 accessions 
were genotyped, including three subpopulations of candidate parental lines, parental lines and their progeny from practical 
breeding. The fixed SNPs were identified in progeny, indicating artificial selection during the breeding process. By identify-
ing functional sites of target traits, novel soybean cyst nematode-resistant progeny and maturity-related novel sources were 
identified by allele combinations, demonstrating that functional sites provide an efficient method for the rapid screening of 
desirable traits or gene sources. Notably, we found that the breeding index (BI) was a good indicator for progeny selection. 
Superior progeny were derived from the combination of distantly related parents, with at least one parent having a higher BI. 
Furthermore, new combinations based on good performance were proposed for further breeding after excluding redundant 
and closely related parents. Genomic best linear unbiased prediction (GBLUP) analysis was the best analysis method and 
achieved the highest accuracy in predicting four traits when comparing SNPs in genic regions rather than whole genomic 
or intergenic SNPs. The prediction accuracy was improved by 32.1% by using progeny to expand the training population. 
Collectively, a versatile assay demonstrated that the functional ZDX1 array provided efficient information for the design and 
optimization of a breeding pipeline for accelerated soybean breeding.

Abbreviations
ABLUP  Pedigree-based best linear unbiased prediction
BLUE  Best linear unbiased estimates
BI  Breeding index
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GBLUP  Genomic best linear unbiased prediction
HBLUP  Combined best linear unbiased prediction
PCA  Principal component analysis
SNP  Single nucleotide polymorphism
THP  The high-performance progeny

Introduction

The goal of crop breeding is to develop plant varieties with 
ideal traits, such as higher yield, improved quality, and 
enhanced environmental adaptability. The yield of soybean 
[Glycine max (L). Merr.] increase per unit area has not been 
improved significantly during the past few decades (Liu 
et al. 2020) due to the limitation of traditional phenotyping 
methods to develop new varieties (Barabaschi et al. 2016). 
Innovative genotyping platforms can accelerate the process 
of identification, evaluation, and use of elite germplasm 
resources (Bailey-Serres et al. 2019; Viquez-Zamora et al. 
2013; Yu et al. 2014).

The publication of the soybean genome has facilitated 
the discovery of single nucleotide polymorphisms (SNPs) 
(Schmutz et al. 2010), and SNP arrays have become a key 
technology in soybean genetics research. Despite low SNP 
density, previously developed soybean arrays have been used 
for research, including diversity analysis, genetic mapping, 
and association analysis (Hyten et al. 2008; Song et al. 2020; 
Wang et al. 2018b). More recently, the 50 K soybean array, 
which has higher density, was used to genotype 96 elite, 
landrace, and wild accessions, and to identify candidate 
genomic regions shaped by domestication or recent selection 
(Song et al. 2013). Similarly, this array was used to correlate 
protein- and oil-related loci via genome-wide association 
study (GWAS) analysis of 298 strains (Hwang et al. 2014). 
When 180 K (Lee et al. 2015) and 355 K (Wang et al. 2016) 
arrays were developed, natural hybrids between cultivated 
and wild soybean, as well as a candidate interval affecting 
grain weight, were identified. These arrays laid the founda-
tion for the application of SNP arrays in genetic research and 
molecular breeding.

One of the key challenges facing plant breeders is the 
selection of suitable parents to generate sufficiently rich 
genetic variation to allow a maximal selection response 
during the breeding cycle in self-pollinating crops (Ji 
et al. 2018). To meet this challenge, new and more effec-
tive breeding strategies that combine phenotypic data with 
high-throughput genotyping should be developed to better 
identify prospective germplasm and to evaluate progeny 
(Varshney et al. 2014). Soybeans of different types (Pan-
dey et al. 2017) and from different sources (Marrano et al. 
2019) can be distinguished using microarrays to provide a 
basis for determining the most suitable parents. Molecular 
markers associated with agronomically valuable traits that 

are not easily scored can also help in the early evaluation of 
parents and the identification of desirable progeny (Rasheed 
et al. 2017). With the development of microarrays, genomic 
selection based on a large number of markers can be more 
informative and robust in selecting for complex traits con-
trolled by multiple genes, such as yield, seed quality, and 
disease resistance (Xu et al. 2020). However, there are rela-
tively few reports describing how to integrate high-through-
put sequencing into the main breeding process.

Currently, there is an urgent need to develop a functional 
SNP array that covers the entire soybean genome and also 
contains representative and important sites to facilitate 
genetic research and molecular breeding. Here, we screened 
representative SNPs from a wide range of soybean acces-
sions and developed the “Zhongdouxin No.1” (ZDX1) func-
tional array. Using a breeding population comprised of 817 
accessions, including candidate parental line subpopulations, 
parental lines, and their derived progeny subpopulations, 
we demonstrate the use of this array in improving steps in 
breeding, including screening for new genetic resources, 
population diversity analysis, optimizing hybrid combina-
tions, and progeny selection. The ZDX1 array described in 
this work, with associated breeding selection strategies, can 
accelerate all of the steps in the breeding process.

Materials and methods

SNP detection, filtering, and selection for array 
development

Using resequencing data from 2214 soybean accessions 
(including 862 improved cultivars (Glycine max (L.) 
Merr.), 1131 landraces, 218 annual wild soybean acces-
sions (Glycine soja Sieb. & Zucc.), and three perennial 
wild soybean accessions (Glycine subgenus Glycine) as 
the basic information and based on the Illumina platform 
(Fig. S1), we obtained the VCF file by comparison with 
the reference genome Wm82.a2.v1 (Gmax_275_v2.0) 
and we also obtained 11,048,862 initial polymorphic SNP 
sites, including commercialized array sites, important gene 
sites, quantitative trait locus (QTL) and GWAS sites, and 
important trait functional sites. After the removal of sites 
with a deletion rate of > 0.1 and a degree of heterozygo-
sity > 15%, 9,092,282 sites were retained. We then screened 
2,379,054 sites according to the criteria of “retaining sites 
with MAF ≥ 0.01”. We deleted the sites with variants within 
50 bp of the flanking regions, keeping the tiling order = 1 
site, and 2,039,377 sites remained. Based on 2214 soybean 
accessions, we deleted the sites with errors, tested 41 sliding 
window gradients for site screening, and selected a 4800-bp 
window. The principle for site selection was “priority + Illu-
mina score ≥ 0.4 + non-AT/GC selection site (if there is no 
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non-AT/GC, then select the sites with higher priority),” 
among which the priority definition principles were: I. 
excellent QTL sites, GWAS sites, important genes, selec-
tive genes, genome-wide genes, and terminator/alternative 
splicing/nonsynonymous mutation sites; II. interspecies and 
intraspecific subgroup unique sites; III. selection interval 
(domestication) sites; IV. whole-genome coverage sites; and 
V. gap-filling sites. Finally, 158,959 SNP sites were obtained 
for ZDX1 (Fig. 1a).

Plant materials and phenotypic data 
collection

The plants used in this study consisted of 817 accessions 
from the actual breeding population, including 77 parental 
lines, 169 candidate parental lines, and 571 elite progeny. 
Progeny were stable lines obtained by the pedigree method 
after crossing. Among them, there were 298 progeny for 
which both parents were included in parental lines and 273 

progeny for which only single parents (male or female) 
were included in parental lines. Additionally, 283 of the 
571 progeny were bred in 2015, while 288 progeny were 
bred in 2016.

The field experiment with the 817 accessions was per-
formed with three replicates (designated as environments 
L1 and L2) in Zhalantun City, Inner Mongolia (47°40′ N, 
122°36′ E) in 2017 and 2018, and one replicate in Keshan 
County, Heilongjiang Province in 2018 (48°33′ N, 126°8′ 
E) (designated as environment L3). The experiment used a 
randomized block design and one control line (Neidou4hao 
or Keshan1hao) was planted for every 20 experimental lines, 
with a row spacing of 0.65 m, plant spacing of 0.05 m, and 
a row length of 3 m. One row was planted for each mate-
rial, and the area of each plot was 1.95 square meters. The 
sowing dates in the three environments of L1, L2, and L3 
were May 12, May 9, and May 7 for each year, and the emer-
gence dates of seedlings were May 25, May 21, and May 19 
each year. A total of six quantitative traits were investigated: 
These included VE, defined as the date of emergence of 

Fig. 1  Summary information content of ZDX1 array. a Pipeline of 
single nucleotide polymorphism (SNP) identification and selection 
for the ZDX1 array. b The distribution of SNP loci on the soybean 
chromosomes. c The percentage of gene coverage in the ZDX1 array, 
the SoySNP50K array, the 180  K  AXIOM® array, and the NJAU 

355 K SoySNP array. d The number of SNPs belonging to different 
minor allele frequency (MAF) classes based on 2214 soybean acces-
sions. e Venn diagram showing the overlap of SNP positions between 
the ZDX1, SoySNP50K, 180 K  AXIOM®, and NJAU 355 K SoySNP 
arrays
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the cotyledons. Beginning maturity (R7) was defined as the 
days from emergence to when one pod on the main stem 
had reached a mature pod color (Fehr et al. 1971). For each 
row, the R7 date was defined as when 50% of the plants meet 
the above condition. In the middle of each plot, 20 plants 
were continuously harvested when there was no shortage of 
seedlings. The seed yield in each plot (SY), 100-seed weight 
(SW), protein content, and oil content were also measured. 
One qualitative trait, leaf shape, was recorded as either a 
narrow or broad leaflet (Qiu et al. 2020).

Genotypic data collection

A commercial kit (Tiangen Plant Genomic DNA Kit, 
DP305) was used to extract genomic DNA from young soy-
bean leaves. We used the ZDX1 SNP array developed based 
on the  Illumina® platform as a typing tool (Zhao et al. 2018), 
used GenomeStudio software to obtain the SNP genotypes 
(GenomeStudio 2008), tested and adjusted the typing sig-
nal, which was > 3 (Fig. S2). The ZDX1 array contained 14 
reported functional loci, including six for the growth period, 
namely, e1-fs, e1-as (Tsubokura et al. 2014; Xia et al. 2012), 
e3-fs (Tardivel et al. 2014; Xu et al. 2013), e4-keshuang 
(Langewisch et al. 2014; Tsubokura et al. 2013), e4-oto 
(Langewisch et al. 2014; Tsubokura et al. 2013), and GmG-
PRR3b/Tof12 (Li et al. 2020); three sites in genes for cyst 
nematode resistance, namely rhg1-a/GmSNAP18 (Cook 
et al. 2012; Shi et al. 2015), Rhg4/GmSHMT08 (Liu et al. 
2012; Shi et al. 2015), and GmSNAP11 (Tian et al. 2019, 
2018); leaf shape Ln/ln (Jeong et al. 2012); stem termina-
tion, Dt1/Gmtfl1-ta and Dt1/Gmtfl1-ab (Langewisch et al. 
2014; Tian et al. 2010); seed coat color, Gm850 (Wang et al. 
2018a); and seed coat gloss, Bloom1 (Zhang et al. 2018).

Population genetic analysis

PLINK v2.1.1 (Purcell et al. 2007) was used to control the 
genotypes. We screened out 7099 sites with a genotyping 
success rate of < 90%, eight Insertion/Deletion (Indel) sites, 
745 sites on scaffolds, and 82,085 sites with MAF < 0.05. A 
total of 69,022 valid SNPs remained. Linkage disequilibrium 
(LD) analysis was performed with Ldheatmap software, in 
which the maximum distance (kb) between two SNPs was 
set to 1000, and the correlation coefficient (r2) of alleles was 
calculated to measure the LD in each group level. The LD 
decay rate was defined as the chromosomal distance at which 
the average r2 dropped to half its maximum value. The kin-
ship matrix was calculated using the VanRaden method in 
Gapit software to obtain the genetic relationships between 
lines in the population.

To remove the SNPs whose LD is greater than 0.5 to any 
other SNPs in the window we defined with parental lines and 
candidate parental lines, the following method was used: (a) 
a window of 50 SNPs was considered; (b) the LD between 
each pair of SNPs in the window was calculated; (c) one of a 
pair of SNPs was removed if the LD was greater than 0.5; (d) 
the window was shifted five SNPs forward and the procedure 
was repeated. This method was used to obtain a total of 8940 
loci. PLINK v2.1.1 was used for principal component analy-
sis (PCA), and R software was used to draw PCA diagrams.

Best linear unbiased estimates and breeding 
index

The R asreml data package was used to calculate the best lin-
ear unbiased estimates (BLUE) from the phenotypic data for 
genomic selection (He et al. 2016) and to provide a breeding 
index (BI).

For the BI, the index is a linear combination of the pre-
dicted values of comprehensive traits, with each having a 
unique weight, as follows:

where Ij is the selection index score for individual j, wk is the 
economic weight for the kth trait for k = 1,2,…,5, and ŷ∗

jk
 is 

the standardized predicted value for trait k from the jth indi-
vidual accession, which is calculated by standardizing the 
values for each trait by subtracting the mean value and divid-
ing by the SD. We included five traits in the selection index 
corresponding to the following order, R7, SW, protein, oil, 
and SY (Cui et al. 2019; Zhao et al. 2015). The weight of the 
five traits is shown below:

Among the 246 parents, the BI of the top third, middle 
third, and bottom third from high to low was designated as 
high parents, medium parents, and low parents, respectively, 
with 82 accessions in each group. In addition, the term “rate 
over best-parent” meant the proportion of progeny with bet-
ter performance than that of the “best” parent.

Heritability and genomic selection

PLINK v2.1.1 was used to control the genotype, which 
left 69,022 valid SNPs remaining. Pedigree-based best 
linear unbiased prediction (ABLUP) (Song et al. 2019), 
genomic best linear unbiased prediction (GBLUP) (Zhe 
et al. 2015), and combined best linear unbiased prediction 

Ij =

5
∑

k=1

wkŷ
∗

jk

w = [−0.2, 0.1, 0.2, 0.1, 0.4]
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(HBLUP) (Li et al. 2014; Lourenco et al. 2020; Song 
et al. 2017) were performed by BGLR (Pérez and de Los 
Campos 2014), asreml (Gilmour et al. 2015), and R soft-
ware, respectively. We computed the broad-sense herit-
ability using the following formula in QTL ICIMapping 
(Meng et al. 2015):

where �2

G
 is the variance among soybean lines, �2

GE
 is the 

genotype-by-environment interaction variance, �2
�
 is the 

residual variation, and e and r are the number of environ-
ments and replications within environments, respectively.

The Pearson correlation coefficient between the pre-
dicted and observed phenotype (rMP) was estimated, 
and the prediction accuracy (rGS) was calculated for the 
standardized rMP by the square root of the broad-sense 
heritability (Lehermeier et al. 2013). When comparing 
the prediction effects of gene regions, intergenic regions, 
and whole-genome markers, the following strategies were 
adopted for marker sampling. Among the 69,022 loci 
retained after filtering, the number of gene regions was 
33,756 and the number of intergenic regions was 35,266. 
To eliminate the influence of the number of loci on the 
prediction accuracy, all 33,756 of the loci were reserved 
in the gene regions, 33,733 of the loci were uniformly 
selected in the intergenic regions, and 33,761 of the loci 
were uniformly selected from the 69,022 loci over the 
whole genome (of which 16,457 were in genes and 17,304 
were in intergenic regions). When comparing different 
traits, different models, and different marker sampling 
strategies, a fivefold cross-validation method was used 
to evaluate the prediction accuracy of the genomic selec-
tion model. To reduce the sampling error, each sampling 
method was repeated 100 times, and the “pairwise.t.test” 
function in R was used to analyze the significance of the 
differences.

H2 =
�
2

G

�
2

G
+

�
2

GE

e
+

�2
�

er

Results

Developing the ZDX1 array with evenly distributed 
SNPs

The 158,959 high-quality SNPs (Supplemental Table 1) 
were evenly distributed across the 20 soybean chromo-
somes. The number of SNP sites on each chromosome 
ranged from 6086 to 9315, of which 90.23% fell within 
10 kb (Supplemental Table 2). In addition, the SNP num-
ber showed a highly significant positive correlation with 
chromosome length, with a Pearson correlation coefficient 
of 0.98 (p = 8.61E-14) (Fig. 1b). We mapped 64,435 of the 
candidate SNPs to 50,592 annotated genes, accounting for 
90.92% of the total number of predicted genes in the soy-
bean reference genome (Fig. 1c). In addition, another 4.29% 
of the large-effect SNPs could potentially affect gene func-
tion, including 5684 nonsynonymous SNPs, 119 stoploss 
SNPs (four of which were both nonsynonymous or stoploss), 
604 stopgain SNPs, six frameshift SNPs, and 414 alterna-
tive splicing SNPs. The SNPs selected for inclusion in the 
ZDX1 array also included 14,685 synonymous sites, 6120 
unknown sites, 14,845 sites located in intronic regions, 
12,158 sites located within 1000 bp upstream or downstream 
of a gene, 9804 sites located in untranslated regions, and 
94,524 sites located in intergenic regions (Supplemental 
Table 1). A/G and T/C (transitions) represented the main 
nucleotide variants on the array, accounting for 68.25% of 
the total SNPs. The site frequency spectrum (SFS) for the 
2214 re-sequenced accessions showed that the sites with 
minor allele frequency (MAF) > 0.1 accounted for 81.3% of 
the total. SNPs with MAFs between 0.10–0.20, 0.20–0.30, 
0.30–0.40, and 0.40–0.50 accounted for 31.48%, 19.20%, 
15.79%, and 14.85%, respectively (Fig. 1d). Collectively, the 
array had high gene coverage and utilization.

In addition, the ZDX1 array retained high-priority loci, 
including 2402 SNPs for genes related to important traits 
and 627 SNPs for genes that underwent domestication or 

Table 1  Allelic combinations at the rhg1-a, Rhg4, and GmSNAP11 loci

Combination rhg1-a/GmSNAP18 
Gm18_1643660

Rhg4/GmSHMT08 
Gm08_8361148

GmSNAP11 
Gm11_32970174

Number of 
parental lines

Number of candidate 
parental lines

Number of 
progeny

Com1 GG GG TT 0 6 1
Com2 CC CC CC 76 162 557
Com3 CC CC TT 0 0 3
Com4 GG CC TT 0 0 2
Com5 CC GG CC 1 0 6
Com6 GG CC CC 0 0 1
Com7 CG CC CC 0 0 1
Com8 CG GC TC 0 1 0
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improvement (Supplemental Table 3). In addition, it also 
included 953 SNPs in QTL intervals, 547 GWAS-identified 
SNPs (https:// soyba se. org), and 110,811 SNPs that differed 
between ecological groups (Supplemental Table 4). Moreo-
ver, 3869 SNPs from the 1.5 K BeadChip (Hyten et al. 2008) 
and the BARCSoySNP6K array (Song et al. 2020) were also 
included (Supplemental Table 5). Compared with the three 
high-density arrays SoySNP50K, 180 K  AXIOM®, and 
NJAU 355 K SoySNP, the ZDX1 array contained 134,737 
characteristic sites (Fig. 1e), with a specificity rate as high 
as 84.8%. In addition, 14 important functional sites (causal 
SNPs) related to traits such as growth period, resistance 
to cyst nematodes, leaf shape, pod setting habit, seed coat 
color, seed dormancy, and phosphorus efficiency (Supple-
mental Table 6) were selected for the array.

As a final step in marker selection, we evaluated the 
accuracy of the marker using 817 well-established breed-
ing materials (Supplemental Table 7), and we found that 
the detection rate for each sample was between 84.40 and 
95.98%, with an average of 95.19%. Three DNA samples 
were randomly selected twice, and the genotype similar-
ity between the two repetitions was > 99.9% (Supplemental 
Table 8). These results indicated that the high-density ZDX1 
array was both reliable and accurate.

Screening divergent and fixed sites 
of soybean in breeding

Based on the phenotypic data obtained by the multi-point 
field identification for two years, we obtained the BLUE of 
817 materials for all five traits with good phenotypic diver-
sity. R7 ranged from 80.73 to 123.68 days, SW ranged 

from 12.44 to 28.16 g, protein content ranged from 37.32 
to 46.50%, oil content ranged from 17.47 to 22.63%, and 
SY ranged from 142.53 to 533.72 g. These materials were 
widely distributed and phenotypically divergent. The 
broad-sense heritability was lowest (0.65) for plot yield 
among the 5 traits (Supplemental Table 9). The genetic 
diversity among three subpopulations was compared using 
LD analysis (indicated by r2), and the results showed that 
the attenuation rate of candidate parental line r2 values 
was higher than that of the progeny and parental lines, and 
the distances at which the r2 decayed by half were 243 kb, 
279 kb, and 301 kb, respectively (Fig. 2a). These findings 
indicated that the candidate parental lines were helpful to 
broaden the genetic diversity of the parental lines. Simi-
larly, PCA confirmed that the candidate parental lines had 
higher genetic diversity than the parental lines (Fig. 2b).

The percentages of fixed sites (MAF = 0) in candidate 
parental lines, parental lines, and progeny were 34.72%, 
41.79%, and 34.63%, respectively (Supplemental Table 10, 
Fig. S3). In order to clarify which sites were selected and 
fixed during the breeding process from germplasm to elite 
progeny, only 6579 sites were retained, where the MAF 
value was 0 for progeny, 0–0.0390 for parental lines, and 
0–0.1317 for candidate parental lines (Fig. 2c). A total 
of 235 sites were identified where the MAF value of the 
parental and candidate parental lines was both > 0.01, 
including 21 nonsynonymous SNPs and 2 stopgain SNPs 
in 23 important genes (Supplemental Table 11), which 
may have been an ideal type at the genomic level.

Fig. 2  Analysis of genetic diversity of breeding population and 
screening of fixed sites in breeding improvement. a Linkage dis-
equilibrium (LD) decay of r2 and physical distance between single 
nucleotide polymorphisms (SNPs) in parental lines, candidate paren-
tal lines, and progeny. b Principal component analysis (PCA) of 77 

parental lines and 169 candidate parental lines based on kinship. Indi-
viduals from the same species are shown in the same color. c A scat-
ter plot showing the minor allele frequencies (MAFs) for the parental 
lines and candidate parental lines at 6579 sites with the MAF of prog-
eny = 0

https://soybase.org
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Identifying elite lines with desirable traits 
using functional sites in the ZDX1 array

In order to select elite lines or varieties, the functionally 
informative SNP sites were analyzed. The Ln/ln locus 
appeared to coincide with phenotypes at a rate of almost 
100%, because 649 narrow leaflet soybeans all carried the 
lnln alleles, 166 broad leaflet soybeans harbored the LnLn 
alleles, and only two soybeans segregating for broad and 
narrow leaflets carried Lnln. Interestingly, a greater pro-
portion of round-leaf accessions was present in candidate 
parental lines (32.0%), while round-leaf accessions in the 
parental lines and progeny accounted for 10.4% and 18.4%, 
respectively. These proportions again reflected that breed-
er’s favor narrow leaflets.

We next analyzed three maturity loci of E1, E3, and 
E4, among which the e1-fs, e1-as/e3-fs/e4-kes, e1-as/e3-fs, 
and e1-as/e4-kes genotypes were associated with precoc-
ity (Supplemental Table 12). Notably, only one accession, 
Dongnong36 (80.73 d), carried the e1-fs genotype. Among 
the materials with two or more loci of e1-as, e3-fs, and 
e4-kes, nine parental lines and candidate parental lines 
exhibited earlier maturity (87.14–97.98 d), while three 
progeny (HJ15-1231, HJ15-896, and HJ15-897) had rela-
tively late growth periods (109.17–114.32 d). These prog-
eny may have expressed an inhibitor of early maturity.

The nematode-resistant loci of rhg1, Rhg4, and SCN3-
11 (Table 1) in the tested materials had relatively low fre-
quencies of 1.22%, 1.71%, and 1.47%, respectively. These 
consisted of eight allelic combinations. A total of seven 
accessions carried all of the resistance loci, including three 
known resistant varieties, namely Kangxian1hao, Kangxi-
an5hao, and Kangxian8hao. For the other four accessions, 
searching the pedigree revealed that the progenitors of 
HJ15-863 had resistance, while Qinong1hao, Shundou-
5hao, and Fengdou23 had no available information. This 
indicates that genotyping is the most efficient way to iden-
tify elite lines.

Exploring optimization of parental 
subpopulation by integrating BI and genetic 
distance

Using genotype data to generate a kinship matrix for all of 
the materials, pairwise genetic distances ranged between 
0.54 and 2.56, with larger values indicating closer kinship 
(Fig. S4). Analysis of each of five traits in 298 progeny 
showed that the rate over best-parent was non-signifi-
cantly negatively correlated with the genetic relationship 
between their parents (p = 0.30–0.97), and the correlation 

coefficients (rhd) were − 0.42 to − 0.02. This finding sug-
gested that greater distance between parental lines resulted 
in a better performance potential for progeny compared to 
the parental lines. In addition, the mean value of each trait 
among progeny was positively correlated with the average 
parental value, with correlation coefficients (rpo) ranging 
from 0.33 to 0.73, of which oil and SW appeared to be 
extremely significant (p < 0.01) (Fig. 3). These results 
indicate that elite progeny can be selected from hybrid 
combinations with elite parents.

To select for high yield accompanied by the proper per-
formance of the other traits, the BI was used to score the 
parental lines into high, medium, or low phenotypes (Sup-
plemental Table 7). The 30 (top 10%) high-performance 
progeny (THP) with greater genetic distances (− 0.0298) 
were traced back to five types of parental combination, con-
sisting of two progeny from high × high types, 11 progeny 
from high × medium types, nine progeny from high × low 
types, three progeny from medium × medium types, and 
five progeny from medium × low types. Of these THP, 
73.3% were descended from at least one parent with high 
BI (Fig. 4). These results suggest that the selection of more 
distantly related parents, including at least one parent with 
high BI, will be more likely to produce progeny with good 
agronomic performance. This standard was also confirmed 
by developing two new varieties, Mengdou1137 and Meng-
dou640 which have been released for national trials.

To enable efficient breeding, the redundant parental lines 
were firstly eliminated. Among them, the lower 30 progeny 
(bottom 10%) were derived from 12 parental lines, includ-
ing Dengke4hao and Hujiao1120 (Supplemental Table 13). 
These will not be used in future breeding. Meanwhile, com-
pared to the parental lines (Fig. S5a), 21 candidate parental 
lines including Mei1 and Nenao08-1092, based on kinship 
scores of > 1.0, were also excluded due to small genetic dis-
tance (Supplemental Table 14). Finally, the 82 accessions 
with the top 10% of BI values were selected as the new 
parental lines to form all of the potential combinations, 
with distances of − 0.5 to 0 (Fig. S5b). Using a genetic 
distance <  − 0.3 as the standard, 46 high-potential combi-
nations were proposed for future breeding (Supplemental 
Table 15). By eliminating redundant parents and designing 
new combinations, the development of soybean varieties will 
be improved in the near future.

Improve the accuracy of genomic selection 
in theoretical and actual breeding based 
on the ZDX1 array

The results of GBLUP analysis to test the accuracy of selec-
tion based on the ZDX1 array revealed that the prediction 
accuracy was 0.79 for R7, 0.73 for SW, 0.78 for protein 
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content, 0.77 for oil content, and 0.69 for SY. These scores 
were all significantly higher than those of ABLUP and 
HBLUP based on both pedigree relationship and genotype 
data (p < 0.01) (Fig. 5a, Supplemental Table 16).

We subsequently identified 33,756, 33,733, and 33,761 
sites that were selected as marker subsets from gene regions, 
intergenic regions, or the whole genome, respectively. 
GBLUP analysis confirmed that these three marker sets 
showed no significant differences in their accuracy for pre-
dicting yield. For each of the other four traits, the accuracy 
of prediction using markers for genic regions was 2.33% 
higher than that of SNP markers for intergenic regions, with 
highly significant (p < 0.01) differences among methods. In 
addition, markers associated with genic regions were more 
accurate by an average of 0.57% compared to those sam-
pled from across the whole genome and were significantly 

(p < 0.01) more accurate for predicting SW, protein content, 
and oil content (Fig. 5b, Supplemental Table 16). Further-
more, the use of only 33,756 SNPs in genic regions also 
significantly (p < 0.01) improved the predictive accuracy 
for selecting these three traits compared with the accuracy 
provided by using all 69,022 of the SNPs. In most cases, the 
strategy of sampling SNP markers for gene-encoding regions 
can reduce the number of requisite markers while improving 
the accuracy of genomic selection.

In order to improve the efficiency in predicting progeny 
of actual breeding, we first selected 246 parents as train-
ing population I and 283 of the 571 progeny bred in 2015 
as predicted population I. The prediction accuracy for five 
traits in 141 high-value lines ranged from 0.30 to 0.45 (Cir-
cle 1). The training population I, with the 141 high-value 
progeny, was then expanded to generate training population 

Fig. 3  Mean value of parents and progeny, and the rate over best-
parent of progeny for five traits plotted against genetic distance. The 
blue diamonds represent the average parental values, the red circles 
represent the average progeny, and the yellow triangles represents 
the rate over best-parent of progeny. The genetic distance is the mean 
value under different rate over best-parent; rhd represents the corre-

lation coefficient between the rate over best-parent of progeny and 
the genetic relationship between parents; and rpo represents the cor-
relation coefficient between the mean value of progeny and the mean 
value of parents. Beginning maturity (R7), 100-seed weight (SW), 
seed yield (SY)
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II to further predict the 288 progeny bred in 2016 (predicted 
population II) (Fig. 5c). With the exception of yield, the pre-
dictive accuracy was improved for the other four traits, rang-
ing from 0.48 to 0.67 (Circle 2), while the average accuracy 
was significantly increased by 32.1% (p = 0.024) (Fig. 5d, 
Supplemental Table 16). Collectively, the above “cycling 
training population” strategy greatly improved the predic-
tion accuracy through the use of a model that established 
with the parental lines and continuously expanded with high-
performing progeny obtained through practical breeding.

Discussion

Characteristics of SNPs in the ZDX1 array

The previous soybean arrays were developed based on infor-
mation obtained from only a few to dozens of cultivated or 
wild species (Lee et al. 2015; Song et al. 2013; Wang et al. 
2016). However, the use of a wide variety of accessions can 
reduce the possibility of losing rare alleles found only in a 
small number of samples. A similar strategy has been pre-
liminarily applied in the development of arrays for other spe-
cies such as Eucalyptus (Silva-Junior et al. 2015). The initial 
locus information in our ZDX1 array was derived from 2214 
representative soybeans and included a core collection from 
soybeans originating from China. This was the biggest dataset 

used to date far in the development of soybean arrays. We 
selected SNPs not only based on high MAF (Lee et al. 2015; 
Wang et al. 2016), but also their positions in the genome. The 
uniform distribution of loci enables the SNPs in the ZDX1 
to capture variation in the centromere region. In particular, 
the extremely high coverage of annotated genes and many 
important sites make the array useful for correlation analy-
sis and genetic mapping, which has been proved in pigeon 
pea (Singh et al. 2020). The average distance between adja-
cent SNPs was 6.0 kb for ZDX1, which was much smaller 
than the reported extents of LD of 12 kb and 58 kb in G. soja 
and landraces, respectively (Li et al. 2019). Compared with 
the other three arrays, SoySNP50K, 180 K AXIOM®, and 
NJAU 355 K SoySNP, ZDX1 contains more than 80% unique 
sites. In addition, we also preferentially added functional sites 
related to important agronomic traits. The functional and cost-
effective genotyping platform provided by the ZDX1 array 
will be widely used in soybean breeding and genetic research. 
More importantly, we made innovative use of an actual breed-
ing population step by step and integrated high-throughput 
sequencing, which has provided strong guiding significance 
in breeding.

Fig. 4  The relationship between the top 10% of progeny in multi-
ple traits and their parental lines. The blue box in the center is the 
top 10% of progeny with high breeding index (BI) values. They are 
arranged in order from high to low from left to right. The BI values 
are given below the box. The parents of these lines are classified by 

BI value; the top third of lines with the highest BI values are the high 
parents; the middle third are the medium parents; and the bottom 
third are the low parents. The bar graph at the bottom shows the kin-
ship between the parental lines
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Discovering novel lines and genes using 
functional sites in the ZDX1 array

When screening germplasm for potential use as parents, 
phenotypic identification is time-consuming and laborious, 
and the results are strongly influenced by environmental 
factors. Therefore, the molecular marker-assisted selection 
represents an efficient and effective method for screening 
target traits (Barabaschi et al. 2016). For the leaflet shape in 
the present study, the genotypes detected by functional SNPs 
corresponded closely to phenotypes. Parental lines had a 
higher frequency of narrow leaflets (89.6%), indicating that 
either breeders favor narrow leaflets or that local soybeans 
exhibit narrow leaflets in northeast China in response to 
environmental conditions. Another reason that this genotype 
is favored is that it usually has good performance, with more 
than four seeds per pod (Fang et al. 2013), and it enables 

greater light transmission through the canopy. However, the 
most important traits were quantitative traits controlled by 
multiple genes. Maturity is one of the most important traits 
for adaptability, and five functional sites were included in 
this array. Interestingly, we found that three progeny (HJ15-
1231, HJ15-896, and HJ15-897) had relatively late growth 
periods (109.17–114.32 d) even though they carried alleles 
linked to early growth (e1-as, e3-fs, or e4-kes), indicating 
that they may be sources for identifying novel genes related 
to maturity. By identifying functional sites related to soy-
bean cyst nematode resistance, three resistant parental lines 
were confirmed. In addition, we identified four novel resist-
ant lines, among which only HJ15-863 could be traced to a 
resistant source progenitor, indicating that genotyping is the 
best method to find new soybean cyst nematode-resistant 
sources. In comparison with above the three traits, leaflet 
shape is controlled by few genes and has a higher selection 
rate than maturity, which is controlled by multiple genes. 

Fig. 5  Different strategies based on the ZDX1 array in genomic selec-
tion. a The prediction accuracy (rGS) of three models for five traits 
with 100 repetitions using fivefold cross-validation. The prediction 
accuracy is shown as the mean value ± standard deviation. b Predic-
tion accuracy of selected sites for gene region, whole genome, and 
intergenic region markers. The prediction accuracy is shown as the 
mean value ± standard deviation. c Simulating the process of predict-
ing progeny performance by parental resources in actual breeding 

and the prediction process after using progeny to expand the train-
ing population. d Prediction accuracy for five traits for the 246 par-
ents (Training Population I) and 246 parents + 141 progeny (Training 
Population II) used as training populations for prediction. Genomic 
best linear unbiased prediction (GBLUP), pedigree-based best linear 
unbiased prediction (ABLUP), combined best linear unbiased predic-
tion (HBLUP), beginning maturity (R7), 100-seed weight (SW), seed 
yield (SY)
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With an increasing number of functional markers involved 
in ZDX1 array, such as the soybean cyst nematode resist-
ance gene, the array will play a much more important role 
in directional selection.

Increasing the selection rate of parents 
and progeny for soybean improvement

Previous studies have shown that if the genetic variation 
and distance between accessions are sufficiently large 
in the parent population, then a progeny population with 
greater genetic variation can be obtained (Mikel et al. 2010). 
Although the SNP array data in this study confirmed that 
greater genetic distance between parents resulted in a higher 
rate of progeny performing better than their best-parent, we 
found that six elite progeny came from closely related par-
ents with genetic distances ranging from 0.2404 to 0.5843, 

because there were superior local varieties with good com-
bined abilities in their pedigree. Our results suggest a strat-
egy for combining parents with a greater chance of obtain-
ing excellent progeny while avoiding blindly formulating 
a large number of suboptimal combinations. The results 
of two major subpopulations in indica (Xie et al. 2015) 
showed that, in the process of domestication, the selection 
and fixation of target SNPs or genome regions may reflect 
the preference of local breeders and the adaptability of varie-
ties to the local climate. Elite progeny have accumulated a 
complement of selected SNPs. By querying the Arabidop-
sis homologous genes corresponding to the 23 important 
genes mentioned above, we found that Glyma.06G083500 
was involved in regulating reproductive development, while 
Glyma.06G081300 may confer drought resistance (https:// 
soyba se. org). These potentially functional genes may be 
used in future breeding.

Fig. 6  Optimized scheme for using genome-wide molecular marker 
breeding combined with array screening. Germplasm resources are 
introduced from a resource bank, redundant accessions are elimi-
nated through genetic diversity analysis, and accessions with excel-
lent alleles are retained. Germplasm accessions with higher breeding 
index (BI) values are used as one of the candidate parents in cross 
breeding, and the superior resources are further screened for those 
with highly distant genetic relationships for cross breeding. A micro-
array is then used for  F1 identification, hybrid segregation combined 
with phenotypic selection, and whole-genome selection. Germplasm 

with high breeding values with multiple excellent traits can also be 
used as recurrent parents. When germplasm with specific traits is 
used for backcross improvement, functional markers can be used 
for foreground selection, and microarrays can be used for genome-
wide background scanning, combined with phenotypes for selection, 
resulting in the selection of excellent stable lines. The green dashed 
boxes indicate the commonly used breeding method, and the boxes 
enclosed by solid yellow lines represent the improved scheme pro-
posed in this study

https://soybase.org
https://soybase.org
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In soybean genomic selection research, scientists have 
used genetic resources (Shu et  al. 2013; Zhang et  al. 
2016), breeding varieties (Jarquín et al. 2014; Ma et al. 
2016; Xavier et al. 2016), and germplasm and recombi-
nant inbred lines (Matei et al. 2018; Stewart-Brown et al. 
2019). Compared with some studies on the brink of opera-
tional implementation of genomic selection (Silva-Junior 
et al. 2015), the population used in the present study was 
closely related to breeding. This method is rarely reported. 
We innovatively simulated the cyclical process used in 
actual breeding practices and expanded the training group 
of parental lines. Using progeny with higher predicted val-
ues can greatly improve the accuracy of predictions. In this 
study, prediction accuracy provided by GBLUP reached 
an average of 0.75, which was similar or higher to that 
in previously reported results (Supplemental Table 17). 
These findings further indicate that genomic information 
reflected by ZDX1 can better reflect the genetic structure 
of the breeding population than pedigree relationships. For 
complex traits with low-to-moderate heritability, high-
density SNPs were largely sufficient to obtain reliable pre-
dictions (Zhang et al. 2015), especially selecting a subset 
of highly efficient markers (e Sousa et al. 2019; Liu et al. 
2019; Ma et al. 2016). However, sampling SNPs located 
within genic regions was more informative than sampling 
SNPs from intergenic or random regions in this study, sug-
gesting that the ZDX1 array can solve the problem caused 
by marker effects and may be widely used for different 
purposes. Indeed, sampling SNPs from genic regions can 
ensure or even significantly improve the accuracy of pre-
diction and reduce sequencing costs.

For hybrid crops, the identification of  F1 heterosis often 
involves the relationship between parent selection and 
progeny performance (Zhong and Jannink 2007), which is 
relatively rare for selfing crops such as soybean. In tradi-
tional plant breeding, breeders mainly rely on phenotype 
and experience, which may be confounded by a range of 
factors (Barabaschi et al. 2016). Molecular breeding is there-
fore considered the best option for improving breeding effi-
ciency (Chen et al. 2014). However, molecular techniques 
have thus far failed to effectively integrate high-throughput 
genotyping with the whole breeding process. In this study, 
we propose an optimization strategy to comprehensively 
improve the breeding processes of parental evaluation, 
selection for crosses, and progeny selection using the ZDX1 
array (Fig. 6). However, whenever breeders try to introduce 
new genetic resources, genotypes should be examined first 
to eliminate redundant candidate parental lines compared 
to the original pool of parents, and phenotypes with high 
BI values need to be considered in order to improve the 
selection efficiency for elite lines. By using the most dis-
tant parents, the distribution range of the progeny expanded 
and effectively increased the probability of obtaining elite 

progeny. Undoubtedly, the mechanism of good perfor-
mance in the remaining progeny from medium × medium 
and medium × low crosses needs to be elucidated, which 
further indicates that the direct selection of parents based 
on phenotypes is inefficient. In this study, we combined an 
affordable and high-throughput functional SNP array, ZDX1, 
to improve conventional breeding procedures. This is a suc-
cessful example of applying the principles of molecular 
breeding from theory to practice.
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