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Abstract— Recent advances in vehicular communications make
it possible to realize vehicular sensor networks, i.e., collaborative
environments where mobile vehicles equipped with sensors of
different nature (from toxic detectors to still/video cameras)
inter-work to implement monitoring applications. In particular,
there is an increasing interest in proactive urban monitoring
where vehicles continuously sense events from urban streets,
autonomously process sensed data, e.g., recognizing license plates,
and possibly route messages to vehicles in their vicinity to
achieve a common goal, e.g., to permit police agents to track
the movements of specified cars. This challenging environment
requires novel solutions, with respect to those of more traditional
wireless sensor nodes. In fact, different from conventional sen-
sor nodes, vehicles exhibit constrained mobility, have no strict
limits on processing power and storage capabilities, and host
sensors that may generate sheer amounts of data, thus making
inapplicable already known solutions for sensor network data
reporting. The paper describes MobEyes, an effective middleware
specifically designed for proactive urban monitoring, that exploits
node mobility to opportunistically diffuse sensed data summaries
among neighbor vehicles and to create a low-cost index to query
monitoring data. We have thoroughly validated the original
MobEyes protocols and have demonstrated their effectiveness in
terms of indexing completeness, harvesting time, and overhead.
In particular, the paper includes i) analytic models for MobEyes
protocol performance and their consistency with simulation-
based results, ii) evaluation of performance as a function of
vehicle mobility, iii) effects of concurrent exploitation of multiple
harvesting agents with single/multi-hop communications, iv) eval-
uation of network overhead and overall system stability, and v)
MobEyes validation in a challenging urban tracking application
where the police reconstructs the movements of a suspicious
driver, say, by specifying the car license number.

I. INTRODUCTION

Vehicular Ad Hoc Networks (VANETs) are acquiring com-

mercial relevance because of recent advances in inter-vehicular

communications and decreasing costs of related equipment.

This is stimulating a brand new family of visionary services for

vehicles, from entertainment applications to tourist/advertising

information, from driver safety to opportunistic transient con-

nectivity to the fixed Internet infrastructure [1], [2], [3], [4].

In particular, Vehicular Sensor Networks (VSN) are emerging

as a new tool for effectively monitoring the physical world,

especially in urban areas where a high concentration of vehi-

cles equipped with on board sensors is expected [5]. Vehicles

are typically not affected by strict energy constraints and can

be easily equipped with powerful processing units, wireless

transmitters, and sensing devices even of some complexity,

cost, and weight (GPS, chemical spill detectors, still/video

cameras, vibration sensors, acoustic detectors, etc.). VSN

represent a significantly novel and challenging deployment

scenario, considerably different from more traditional wireless

sensor network environments, thus requiring innovative spe-

cific solutions. In fact, differently from wireless sensor nodes,

vehicles usually exhibit constrained mobility patterns due to

street layouts, junctions, and speed limitations. In addition,

they usually have no strict limits on processing power and

storage capabilities. Most important, they can host sensors

that may generate huge amounts of data, such as multimedia

video streams, thus making impractical the instantaneous data

reporting solutions of conventional wireless sensor networks.

VSN offer a tremendous opportunity for different large scale

applications, from traffic routing and relief to environmental

monitoring and distributed surveillance. In particular, there is

an increasing interest in proactive urban monitoring services

where vehicles continuously sense events from urban streets,

maintain sensed data in their local storage, autonomously pro-

cess them, e.g., recognizing license plates, and possibly route

messages to vehicles in their vicinity to achieve a common

goal, e.g., to permit police agents to track the movements of

specified cars. For instance, proactive urban monitoring could

usefully apply to post-facto crime scene investigation. Reflect-

ing on tragedies such as 9/11 and the London bombings, VSN

could have actually helped emergency recovery and forensic

investigation/criminal apprehension. In the London bombings

police agents were able to track some of the suspects in the

subway using closed-circuit TV cameras, but they had a hard

time finding helpful evidence from the double-decker bus;

this has motivated the installation of more cameras in fixed

locations along London streets. VSN could be an excellent

complement to the deployment of fixed cameras/sensors. The

completely distributed and opportunistic cooperation among

sensor-equipped vehicles has the “deterrent” effect of making

it harder for potential attackers to disable surveillance. Another

less sensational but relevant example is the need to track the

movements of a car, used for a bank robbery, in order to

identify thieves, say. It is highly probable that some vehicles

have spotted the unusual behavior of thieves’ car in the hours

before the robbery, and might be able to identify the threat by

“opportunistic” correlation of their data with other vehicles



in the neighborhood. It would be much more difficult for the

police to extract that information from the massive number

of multimedia streams recorded by fixed cameras. As for

privacy, let us briefly note that people are willing to sacrifice

privacy and to accept a reasonable level of surveillance when

the data can be collected and processed only by recognized

authorities (with a court order), for forensic purposes and/or

for counteracting terrorism and common crimes.

As shown by the above examples, the reconstruction of a

crime and, more generally, the forensic investigation of an

event monitored by VSN require the collection, storage, and

retrieval of massive amounts of sensed data. This is a major

departure from conventional sensor network operations where

data is dispatched to “sinks” under predefined conditions such

as alarm thresholds. Obviously, it is impossible to deliver all

the streaming data collected by video sensors to a police

authority sink because of sheer volume. Moreover, input

filtering is not possible because a priori nobody knows which

data will be of use for future investigations. The problem

becomes one of searching for sensed data in a massive, mobile,

opportunistically collected, and completely decentralized stor-

age. The challenge is to find a completely decentralized VSN

solution, with low impact on other services, good scalability

(up to thousands of nodes), and tolerance of disruption caused

by mobility and attacks.

To that purpose, we have designed and implemented

MobEyes, a novel middleware that supports VSN-based

proactive urban monitoring applications. MobEyes exploits

wireless-enabled vehicles equipped with video cameras and

a variety of sensors to perform event sensing, process-

ing/classification of sensed data, and inter-vehicle ad hoc

message routing. Since it is impossible to directly report

the sheer amount of sensed data to the authority, MobEyes

keeps sensed data in mobile node storage; on board processing

capabilities are used to extract features of interest, e.g., license

plates; mobile nodes periodically generate data summaries

with extracted features and context information such as times-

tamps and positioning coordinates; mobile agents, e.g., police

patrolling cars, move and opportunistically harvest summaries

as needed from neighbor vehicles. MobEyes adopts VSN cus-

tom designed protocols for summary diffusion/harvesting that

exploit intrinsic vehicle mobility and simple single-hop inter-

vehicle communications. In that way, MobEyes harvesting

agents can create a low-cost opportunistic index to query the

distributed sensed data storage, thus enabling us to answer

questions such as: which vehicles were in a given place at a

given time? which route did a certain vehicle take in a given

time interval?, and which vehicle collected and stored the data

of interest?

In this paper, we make the following contributions:

• We define a vehicular sensing platform and propose

MobEyes vehicular sensing architecture. We synthesize

the existing techniques to build a MobEyes system that

satisfies the key design principles, namely disruption

tolerance, scalability, and non-intrusiveness.

• We propose an analytic model that can accurately pre-

dict MobEyes performance, and formally show that our

protocol is scalable and non-intrusive.

• We provide extensive simulation results as follows: i)

evaluation of performance dependence on vehicle mo-

bility models, ii) effects of concurrent exploitation of

multiple harvesting agents with single/multi-hop com-

munications, iii) evaluation of network overhead and

overall system stability, and iv) MobEyes validation in a

challenging urban tracking application where the police

obtain the route followed by a car by simply specifying

its plate number.

• We overview the primary security requirements stemming

from VSN-based proactive urban monitoring applications,

and show how they can be addressed via state-of-the-art

solutions in the literature. MobEyes integrates these so-

lutions and permits to enable/disable them at deployment

time depending on the required degree of security/privacy.

The rest of the paper is organized as follows. Section II

describes background and related work, by positioning the

original MobEyes contributions. Section III presents the over-

all MobEyes architecture, while Section IV details our origi-

nal protocols for opportunistic summary diffusion/harvesting.

Section V analytically models the performance of MobEyes

protocols, which are extensively evaluated via simulations

in Section VI. Section VII gives a rapid overview of secu-

rity/privacy issues and related solutions. Finally, Section VIII

concludes the paper.

II. BACKGROUND AND RELATED WORK

The idea of embedding sensors in vehicles is very novel. To

our knowledge, the only research project dealing with similar

issues is MIT’s CarTel [6], [7]. In CarTel users submit their

queries about sensed data on a portal hosted on the wired In-

ternet. Then, an intermittently connected database is in charge

of dispatching queries to vehicles and of receiving replies

when vehicles move in the proximity of open access points

to the Internet. Differently from CarTel, MobEyes exploits

mobile collector agents instead of relying on the wired Internet

infrastructure, thus improving robustness. Related work has

recently emerged in two other related fields: VANET and

“opportunistic” sensor networks. Finally, to permit the full

understanding of the MobEyes proposal, we provide a brief

illustration of how Bloom filters work and of their exploitation

in networking fields.

A. VANET

Recent research is envisioning a large number of appli-

cations specifically designed for VANET, including: (i) safe

cooperative driving where emergency information is diffused

to neighbor vehicles and real-time response is required to

avoid accidents [3]; (ii) entertainment support, e.g., content

sharing [1], advertisements [2], peer-to-peer marketing [8]; and

(iii) distributed data collection, e.g., parking lot [9] or traffic

congestion info [10]. So far, however, most VANET research

has focused on routing issues. Several VANET applications,

e.g., related to safety or traffic/commercial advertising, call
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for the delivery of messages to all nodes located close to

the sender, with high delivery rate and short delay. Recent

research addressed this issue by proposing original broad-

cast strategies [11], [3]. However, single-hop broadcast does

not provide full support to advertising applications; effective

multi-hop dissemination solutions should be also investigated

[12].

Packet delivery issues in areas with sparse vehicles have

stimulated several recent research contributions to investi-

gate carry-and-forward strategies. In [13], authors simulate

a straight highway scenario to compare two ideal strategies:

pessimistic (i.e., synchronous), where sources send packets to

destinations only as soon as a multi-hop path is available,

and optimistic (i.e., carry-and-forward), where intermediate

nodes hold packets until a neighbor closer to the destination

is detected. Under the implicit assumptions of i) unbounded

message buffers and bandwidth, and ii) of easily predictable

mobility patterns as for vehicles on a highway, the latter has

demonstrated to achieve a lower delivery delay. However, in

more realistic situations, carry-and-forward protocols call for

careful design and tuning. MaxProp [14], part of the UMass

DieselNet project [15], is a ranking strategy to determine

packet delivery order when node encounters occasionally

occur, as well as dropping priorities in the case of full

buffers. Precedence is given to packets destined to the other

party, then to routing information, to acknowledgements, to

packets with small hop-counts, and finally to packets with a

high probability of being delivered through the other party.

VADD [16] rests on the assumption that most node encounters

happen in intersection areas. Effective decision strategies are

proposed, highly reducing packet delivery failures and delay.

Applications for distributed data collection in VANET call

for geographic dissemination strategies that deliver packets to

all nodes belonging to target remote areas, despite possibly

interrupted paths [17], [10]. MDDV [17] exploits geographic

forwarding to the destination region, favoring paths where

vehicle density is higher. In MDDV, messages are carried by

head vehicles, i.e., best positioned toward the destination with

respect to their neighbors. As an alternative, [10] proposes

several strategies based on virtual potential fields generated

by propagation functions: any node estimates its position

in the field and retransmits packets until nodes placed in

locations with lower potential values are found; this procedure

is repeated until minima target zones are detected.

B. Opportunistic Sensor Networking

Traditionally, sensor networks have been deployed in static

environments, with application-specific monitoring tasks. Re-

cently, opportunistic sensor networks have emerged, which

exploit existing devices and sensors, such as cameras in mobile

phones [18], [19], [20], [21]. Several of these networks are

relevant to our research because they can easily implement

opportunistic dissemination protocols [22], [23].

Dartmouth’s MetroSense [24], [18] is closely related to

MobEyes. [18] describes a three tier architecture for Met-

roSense: servers in the wired Internet are in charge of

storing/processing sensed data; Internet-connected stationary

Sensor Access Points (SAP) act as gateways between servers

and mobile sensors (MS); MS move in the field opportunis-

tically delegating tasks to each other, and “muling” [25],

[26] data to SAP. MetroSense requires infrastructure support,

including Internet-connected servers and remotely deployed

SAP. Similarly, Wang et al. proposed data delivery schemes

in Delay/Fault-Tolerant Mobile Sensor Network (DFT-MSN)

for human-oriented pervasive information gathering [27]. The

trade-off between data delivery ratio/delay and replication

overhead is mainly investigated in the case of buffer and

energy resource constraints. In contrast, MobEyes does not

require any fixed infrastructure by using mobile sinks (or

agents) and addresses VANET-specific deployment scenarios;

e.g., powerful sensing platforms, distributed index collection,

etc.

Application-level protocols for the resolution of queries

to sensed data have been proposed in [19], [20]. Contory

abstracts the network as a database and can resolve declarative

queries; Spatial Programming hides remote resources, such

as nodes, under local variables, thus enabling transparent

access; finally, Migratory Services are components that react

to changing context, e.g., the target moving out of range by

migrating to other nodes [19]. [20] presents VITP, a query-

response protocol to obtain traffic-related information from

remote areas: the primary idea is that the source specifies the

target area when injecting a query in the environment,; nodes

in the target area form a virtual ad hoc query server.

Among recent research projects about opportunistic sensing,

we mention Intel IrisNet [28] and Microsoft SenseWeb [29].

Both projects investigate the integration of heterogeneous

sensing platforms in the Internet via a common data publishing

architecture. Finally, we point out CENS’ Urban Sensing

project [30], [21], a recently started multi-disciplinary project

addressing “participatory” sensing, where urban monitoring

applications receive data from mobile sensors operated by

people.

Finally, regarding dissemination of sensed data through

peers, we can mention two solutions from the naturalistic

environment, namely ZebraNet [22] and SWIM [23]. ZebraNet

addresses remote wildlife tracking, e.g., zebras in Mpala

Research Center in Kenya, by equipping animals with collars

that embed wireless communication devices, GPS, and biomet-

ric sensors. As GPS-equipped animals drift within the park,

their collars opportunistically exchange sensed data, which

must make its way to the base station (the ranger’s truck).

ZebraNet proposes two dissemination protocols: a flooding-

based approach where zebras exchange all the data within

their buffers (either locally generated or received from other

animals) with neighbors, and a history-based protocol where

data is uploaded only to zebras with good track record of base

station encounters. SWIM [23] addresses sparse mobile sensor

networks with fixed Infostations as collecting points. Sensed

data is epidemically disseminated via single-hop flooding to

encountered nodes and offloaded when Infostations are in

reach.
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While all the above schemes implement peer-to-peer dis-

semination, none fits the performance requirements of the

MobEyes target scenario. Flooding generates excessive over-

head, while history-based is ineffective in the very dynamic

VANET where the base station (the agent’s vehicle) rapidly

moves without following a specific mobility pattern [22]. In

addition, let us note that MobEyes nodes do not transmit raw

collected data but, thanks to abundance of on board computing

resources, they locally process data and relay only short

summaries. That is a relevant advantage since data collected

in VSN, e.g., from video cameras, may be order-of-magnitude

larger than data sensed in naturalistic scenarios.

C. Bloom Filter and Its Applications

Bloom filter [31] is a space-efficient randomized data struc-

ture for representing a set and is mainly used for membership

checking. A Bloom filter for representing a set of ω elements,

S = {s1, s2, · · · , sω}, consists of m bits, which are initially

set to 0. The filter uses ℓ independent random hash functions

h1, · · · , hℓ within m bits. By applying these hash functions,

the filter records the presence of each element into the m bits

by setting ℓ corresponding bits; to check the membership of

the element x, it is sufficient to verify whether all hi(x) are

set to 1. Although membership checking in a Bloom filter

is probabilistic and false positives are possible, it has been

widely used for applications where “space saving” outweighs

the drawback of errors.

Bloom filters have gained momentum in networking fields

by virtue of their space efficiency, thus reducing the amount of

transmitted data and consequently saving energy. Readers can

find a survey of Bloom filter-based networking applications in

[32]. Bloom filters are mostly used for: simple membership

checking [33], [34], set difference (or reconciliation) [35],

and set intersection [36]. Fan et al. proposed a Summary

Cache where a set of distributed Web proxies use Bloom

filters to disseminate the content of their cache [33]. Similarly,

Ye et al. exploited them to store MAC addresses for simple

membership checking in wireless sensor networks [34]. For

set reconciliation, Byers et al. proposed a method that uses

a comparison tree over a Bloom filter [35], which allows for

faster search of elements in the difference set (when difference

sets are small). To find set intersection without transmission

entire sets, Reynolds et al. used Bloom filters for keyword

search in a P2P overlay network [36].

III. MOBEYES ARCHITECTURE

For the sake of clarity, we present the MobEyes solu-

tion using one of its possible practical application scenarios:

collecting information from MobEyes-enabled vehicles about

criminals that spread poisonous chemicals in a particular

section of the city (say, subway station). We suspect that the

criminals have used vehicles for the attack. Thus, MobEyes

will help detect the vehicles and permit tracking and capture.

Here, we assume that vehicles are equipped with cameras and

chemical detection sensors. Vehicles continuously generate a

MSI (Sensor Interface)

DSRC Compliant  Driver

MDP (Data Processing)

J2SE

JMF API
Java Comm. 

API
Java Loc. 

API

GPS
Radio Transceiver

Bio/Chem
Sensors

A/V
Sensors

MDHP 

(Diffusion/Harvest ing)

Summary
Database

Raw  Data
Storage

Fig. 1. MobEyes sensor node architecture.

UID
Msg.

Type

HEADER

SEQ # X-loc Y-loc

SUMMARY  CHUNK 1

Time

Stamp
X-loc Y-loc Summary Chunk Payload

Time

Stamp
X-loc Y-loc Summary Chunk Payload

Time

Stamp

SUMMARY  CHUNK  N

Fig. 2. Packet format: a single summary packet contains multiple summary

chunks.

huge amount of sensed data, store it locally, and periodi-

cally produce short summary chunks obtained by processing

sensed data, e.g., license plate numbers or aggregated chemical

readings. Summary chunks are aggregated in summaries that

are opportunistically disseminated to neighbor vehicles, thus

enabling metadata harvesting by the police in order to create a

distributed metadata index, useful for forensic purposes such

as crime scene reconstruction and criminal tracking.

To support all the above tasks, we have developed MobEyes

according to the component-based architecture depicted in

Figure 1. The key component is the MobEyes Diffu-

sion/Harvesting Processor (MDHP) which will be discussed

in detail in the next section. MDHP works by opportunis-

tically disseminating/harvesting summaries produced by the

MobEyes Data Processor (MDP), which accesses sensor data

via the MobEyes Sensor Interface (MSI). Since vehicles are

not strictly resource-constrained, our MobEyes prototype is

built on top of the Java Standard Edition (J2SE) virtual ma-

chine. MDP is in charge of reading raw sensed data (via MSI),

processing it, and generating chunks. Chunks include metadata

(vehicle position, timestamp, vehicle ID number and possible

additional context such as simultaneous sensor alerts) and

features of interest extracted by local filters (See Figure 2). For

instance, in the above application scenario, MDP includes a

filter determining license plate numbers from multimedia flows

taken by cameras [37]. Finally, MDP commands the storage

of both raw data and chunks in two local databases. MDHP

disseminates/harvests summaries by packing a set of chunks

into a single packet for the sake of effectiveness. Therefore, the

generation rate and size of chunks and summaries are relevant

to MobEyes performance. Additional details about the design

and implementation of the MobEyes prototype are out of the

scope of this paper and can be found in [38].

Developers of MobEyes-based applications can specify the

desired generation rate as a function of vehicle speed and
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expected vehicle density. The chunk size mainly depends

on application-specific requirements: in the scenario under

consideration, each recognized license plate is represented

with 6B, sensed data with 10B (e.g., concentrations of po-

tential toxic agents), timestamp with 2B, and vehicle location

with 5B. Then, in our scenario, MDP can pack 65 chunks

in a single 1500B summary, even without exploiting any

data aggregation or encoding technique. In usual deployment

environments chunks are generated every [2-10] seconds and,

thus, a single summary can include all the chunks about a

[2-10] minute interval. MSI permits MDHP to access raw

sensed data independently of actual sensor implementation,

thus simplifying the integration with many different types

of sensors. MSI currently implements methods to access

camera streaming outputs, serial port I/O streams, and GPS

information, by only specifying a high-level name for the

target sensor. To interface with sensor implementations, MSI

exploits well known standard specifications to achieve high

portability and openness: the Java Media Framework (JMF)

API, the Sun Communication API, and the JSR179 Location

API.

IV. MOBEYES DIFFUSION/HARVESTING PROCESSOR

In this section, we review the design principles of MobEyes

Diffusion/Harvesting Processor (MDHP) protocols, namely

disruption tolerance, scalability, and non-intrusiveness. Private

vehicles (regular nodes) opportunistically and autonomously

spread summaries of sensed data by exploiting their mobility

and occasional encounters. Police agents (authority nodes)

proactively build a low-cost distributed index of the mobile

storage of sensed data. The main goal of the MDHP process

is the creation of a highly distributed and scalable index

that allows police agents to place queries to the huge urban

monitoring database without ever trying to combine this index

in a centralized location.

A. MDHP Protocol Design Principles

A vehicular sensing platform, built on top of a vehicular

ad hoc network, has the following specific characteristics

that differentiates it from more established and investigated

deployment scenarios. First, it has unique mobility patterns.

Vehicles move at relatively high speed (e.g., up to 80mph)

on roads that may have multiple lanes and different speed

limits. Instead of random motion patterns, drivers navigate a

set of interest points (e.g., home, work place, etc.) by following

their preferred paths. The dynamic behavior of mobile nodes,

i.e., join/leave/failure, usually result in modifications of the set

of participating nodes (called churning). Moreover, there are

time-of-the-day effects such that the overall volume of vehicles

changes over time, e.g., high density during rush hours or

some special event. Thus, the spatial distribution of vehicles

is variable, non-uniform and, in some cases, the network can

be partitioned. As a result, vehicles may experience disruptions

and intermittent connectivity. Second, the network scales up to

hundreds of thousands vehicles because sensing applications

primarily target urban environments. Finally, unlike conven-

tional sensor networks where the communication channel is

dedicated to sensing nodes, the primary purpose of vehicular

communications is for safety navigation and sensing platforms

cannot fully utilize the overall available bandwidth.

Under these circumstances, we have decided to consider the

following design principles for MDHP protocols:

• Disruption tolerance: it is crucial that MDHP protocols

must be able to operate even with disruptions (caused by

sparse network connectivity, obstacles, and non-uniform

vehicle distribution) and with arbitrary delays. High

churning of vehicles must be considered; for robustness

purposes, data replication is a must.

• Scalability: MDHP protocols must be able to scale up to

hundreds of thousands nodes (e.g., the number of vehicles

potentially interworking in a large city).

• Non-intrusiveness. Intrusive protocols may cause severe

contention with safety applications and could deter re-

liable propagation of important messages in a timely

fashion. MDHP protocols should not disturb other safety

applications; limiting the use of bandwidth below a

certain threshold is imperative.

Given the above motivations and the deriving design prin-

ciples, simple flooding and probabilistic gossiping cannot be

used for MDHP. In fact, they require the network to be fully

connected (i.e., non-delay-tolerant) and cause the network

traffic to scale with the number of nodes in the network (i.e.,

non-scalable, intrusive). For instance, in Epidemic Data Dis-

semination (EDD) where data is spread whenever connectivity

is available (i.e., data is replicated without any restriction),

the size of exchanged data scales with network size; thus,

EDD is intrusive and non-scalable. EDD is more suitable

for sparse and small-scale wireless networks. Note that the

formal analysis corroborating this sketched observation can be

found in Section V-B. Unlike these approaches, we propose to

use “mobility-assist” information dissemination and harvesting

in MobEyes. Data are replicated via periodic “single-hop”

broadcasting (i.e., only the data originator can broadcast its

data) for a given period of time. Through the mobility of

carriers, the data will be delivered to a set of harvesting agents.

Mobility-assist dissemination and harvesting per se are delay-

and disruption-tolerant, and, as extensively detailed in the fol-

lowing, single-hop broadcasting-based localized information

exchange makes our protocols non-intrusive and scalable.

B. Summary Diffusion

By following the above guidelines, in MobEyes any regular

node periodically advertises a new packet with generated

summaries to its current neighbors in order to increase the

opportunities for agents to harvest summaries. Clearly, ex-

cessive advertising will introduce too much overhead (as in

EDD), while no advertising at all (i.e., direct contact) will

introduce unacceptable delays, as agents will need to directly

contact each individual source of monitoring information to

complete the harvesting process. Thus, MobEyes tries to trade

off delivery latency with advertisement overhead. As depicted
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Fig. 3. MobEyes single-hop passive diffusion

in Figure 2, a packet header includes packet type, generator ID,

locally unique sequence number, packet generation timestamp,

and generator’s current position. Each packet is uniquely

identified by a <generator ID,sequence number> pair and

contains a set of summaries locally generated during a fixed

time interval.1

Neighbor nodes receiving a packet store it in their local

summary databases. Therefore, depending on the mobility and

the encounters of regular nodes, packets are opportunistically

diffused into the network (passive diffusion). MobEyes can be

configured to perform either single-hop passive diffusion (only

the original source of the data advertises its packet to current

single-hop neighbors) or k-hop passive diffusion (the packet

travels up to k-hop as it is forwarded by j-hop neighbors with

j < k). Other diffusion strategies could be easily included in

MobEyes, for instance single-hop active diffusion where any

node periodically advertises all packets (generated by itself

and received from others) in its local summary databases,

at the expense of a greater traffic overhead. As detailed in

the experimental evaluation section, in a usual urban VANET

(node mobility restricted by roads), it is sufficient for MobEyes

to exploit the lightweight k-hop passive diffusion strategy with

very small k values to achieve the desired diffusion levels.

Figure 3 depicts the case of two sensor nodes, C1 and C2,

that encounter with other sensor nodes while moving (the

radio range is represented as a dotted circle). For ease of

explanation, we assume that there is only a single encounter,

but in reality any nodes within dotted circle are considered

encounters. In the figure, a black triangle with timestamp

represents an encounter. According to the MobEyes summary

diffusion protocol, C1 and C2 periodically advertise a new

summary packet SC1,1 and SC2,1 respectively where the

subscript denotes 〈ID, Seq.#〉. At time T−t4, C2 encounters

C1, and thus they exchange those packets. As a result, C1

carries SC2,1 and C2 carries SC1,1.

1The optimal interval can be determined by noting that the harvesting time
distribution is characterized by average (µ) and standard deviation (ρ). Then,
Chebyshev inequality, P (|x − µ| ≥ kρ) ≤ 1

k2
allows us to choose k such

that we can guarantee the needed harvesting latency, thus fixing the period
as µ + kρ. Readers can find related details in Section V.

Summary diffusion is time and location sensitive (spatial-

temporal information diffusion). In fact, regular nodes keep

track of freshness of summary packets by using a sliding

window with a maximum window size (i.e., fixed expiration

time). In addition, since a single summary packet may contain

multiple summaries, we define “aggregate” packet sensing

location as the average of the sensing locations of all sum-

maries in the packet. When a packet expires or the packet

originator moves away more than a threshold distance from the

aggregate packet sensing location, the packet is automatically

disposed. The expiration time and the maximum distance are

system parameters that should be configured depending on

urban monitoring application requirements. Let us also briefly

note that summaries always include, of course, the time and

location where the sample was taken. Upon receiving an

advertisement, neighbor nodes keep the encounter informa-

tion (the advertiser’s current position and current timestamp).

This also allows MobEyes nodes, when the type of urban

monitoring applications makes it applicable, to exploit spatial-

temporal routing techniques such as last encounter routing [39]

and to maintain a geo-reference service that can be used

to proactively access the data. That is obtained as a simple

byproduct of summary dissemination, without additional costs.

C. Summary Harvesting

In parallel with diffusion, MobEyes summary harvesting

takes place. There are two possible modes of harvesting “dif-

fused” information, namely on-demand mode and proactive

(or background) mode. The on-demand mode is suitable for

cases when the police agents react to an emergency call, for

example, the earlier mentioned poisonous gas incident. Police

agents will converge to the outskirts of the area (keeping a safe

distance of course) and will query vehicles for summaries that

correspond to a given time interval and area (i.e., time-space

window). The agents can flood a query with such information

(à la Route Request in on-demand routing). Each regular node

resolves the query and returns its summary to the agents (à

la Route Reply in on-demand routing). So, the on-demand

strategy is more likely a traditional sensor network-based data

harvesting protocol, e.g., Directed Diffusion [40] – i.e., the

reply is “diffused” in the direction of the querier. The main

difference in MobEyes would be that a query has a spatio-

temporal range. The police agents as a team will collect as

many summaries of interests as they can.

However, it is not very practical to exploit an on-demand

strategy in MobEyes for the following reasons. First, agents

should provide a query with the range of spatio-temporal

information even in the usual cases when they have no precise

prior information. An improperly chosen query range may

require accessing a large number of vehicles: e.g., for a given

chemical attack that happened in a busy street, the Police

may want to find out all the vehicles passing by the scene

within the last several hours, resulting in tens of hundreds

of vehicles. Second, the on-demand scheme is quite similar

to conventional data harvesting and requires maintaining a

“concast” tree from the query originator. But the number of
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Fig. 4. MobEyes proactive summary harvesting

vehicles is expected to be very large in MobEyes and vehicles

are mobile; thus, route management would have relevant

implementation costs in terms of overhead. Third, collecting

a complete set of summaries would be non-trivial and not

always possible due to intermittent connectivity and network

partitions. To overcome intermittance, query/response can be

opportunistically disseminated in a Delay Tolerant Network

style. However, in such a case, the delay will be comparable

to “proactive” harvesting, with the additional cost of a separate

dissemination process. Finally, in “covert” operations, agents

may not want to broadcast a query (e.g., in order not to

alert the criminals that are currently being pursued, say).

Then, the Police must consider physically dispatching agents

to the location of interest and collect summaries via physical

contacts. In summary, this on-demand “mechanical” search

will be extremely costly and potentially very time consuming.

To overcome such issues, we are proposing a “proactive”

version of the search, based on distributed index construction.

Namely, in each area there are agent vehicles that collect all the

summaries as a background process and create a distributed

index. In this case, there is no time-space window concern

during collection. The only requirement is to collect all the

summaries in a particular area. Now, for specific information

(e.g., the poisonous gas level monitoring), the query is di-

rected to the target regular vehicles by exploiting the agents’

distributed index. The time-space window concept can be

applied to the “index” to find the vehicles in a particular place

and time and then pursue the hot leads. For example, upon

receiving a specific query, the agents collectively examine the

“index,” find a match, and decide to inspect in more detail the

video files collected by a “limited” number of vehicles. The

vehicles can be contacted based on the originator’s vehicle

ID number stored in each summary. A message is sent to

each vehicle requesting it to upload the file at the nearest

police access point. Note that the request message can exploit

georouting, either exploiting the Geo Location Service that

maps vehicle ID to the current vehicle location or using

“Last Encounter Routing” techniques [41], [39]. The latter is

particularly convenient here because nodes memorize the time

and place of encounters at the time summary exchanges take

place,.

After the desired summaries have been found, both on-

demand and proactive processes require contacting the cars

under consideration. However, the proactive approach is much

more powerful as it can speed up the search considerably.

For instance, if the inspection of the information collected in

the crime area indicates a possible escape direction by the

terrorists, one can immediately search again the proactively

created index for a new time-space window, without having

to do another time consuming collection of summaries from

vehicles. On the negative side, maintaining that index is costly,

as agent resources must be dedicated to the task.

In the sequel we will assume proactive index construction.

Thus, the agents collect all summaries indiscriminately. There

is no loss of generality, however, since the procedure will

also allow on-demand index construction for a specific time-

space request. In fact, the only difference between the two

harvesting schemes is the size of the set being harvested. In

the on-demand scheme, the target set is a specific space-time

window. In the proactive scheme, the target set is the entire

geographic area within agent responsibility; there is no limit

on harvesting time, though old records are timed out.

By considering the proactive (or background) harvesting

model, the MobEyes police agent collects summaries from

regular nodes by periodically querying its neighbors. The goal

is to collect all the summaries generated in the specified

area. Obviously, a police node is interested in harvesting only

summary packets it has not collected so far: to focus only on

missing packets, a MobEyes authority node compares its list

of summary packets with that of each neighbor (set difference

problem), by exploiting a space-efficient data structure for

membership checking, i.e., a Bloom filter.2 A MobEyes police

agent uses a Bloom filter to represent its set of already har-

vested and still valid summary packets. Since each summary

has a <unique node ID, sequence number> pair, we use

this as input for the hash functions. The MobEyes harvesting

procedure consists of the following steps:

1) The agent broadcasts a “harvest” request message with

its Bloom filter.

2) Each neighbor prepares a list of “missing” packets based

on the received Bloom filter.

3) One of the neighbors returns missing packets to the agent.

4) The agent sends back an acknowledgment with a piggy-

backed list of returned packets and, upon listening to or

overhearing this, neighbors update their lists of missing

packets.

5) Steps 3 and 4 are repeated until all missing packets are

sent.

2see also Section II
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An example of summary harvesting is shown in Figure

4. The agent first broadcasts its Bloom filter related to the

packets collected so far (P2, P4, P6, P7, P9 and P10) as in

Figure 4(a). Each neighbor receives the filter and creates a

list of missing packets. For example, C3 has P3 and P8 to

return, while C4 has P1 and P8. In Figure 4(b), C2 is the

first node to return missing packets (P1, P3) and the agent

sends back an acknowledgement piggybacked with the list of

received packets. Neighbor nodes overhear the message and

update their lists: C3 and C4 both remove P1 from their lists,

as depicted in Figure 4(c).

Note that membership checking in a Bloom filter is proba-

bilistic and false positives are possible, even if rare (as rapidly

shown in the following section). In Figure 4(b), for example,

a false positive on P1 makes C2 return only P3. None of the

neighbors can send P1. To deal with this problem, the agent

periodically changes the set of hash functions. Suppose that we

use m hash functions. Each hash function is a pseudo random

function (PRF) where a PRF takes two arguments, Xk is the

key (k=1, 2, · · · ,m) and i is the input value, and produces

an output value o = FXk
(i). All nodes are initially given the

same set of keys Xk where k=1, 2, · · · ,m. For the purpose of

periodic changes, the key for k-th hash function in n-th epoch,

Xn
k can be calculated by hashing the initial value Xn

k n times.

The Bloom filter contains the epoch number, which allows the

neighbors to find the set of keys for m hash functions. Even

with failure, by periodically incrementing the epoch number,

the agent can gather the missing packets. Note also that in

our application a set changes over time with summaries being

inserted and deleted because summaries have spatio-temporal

properties. For deletion operations, Fan et al. introduced the

idea of counting Bloom filters, where each entry in the Bloom

filter is not a single bit but rather a small counter [33]. When an

item is inserted, the corresponding counters are incremented;

when an item is deleted, the corresponding counters are

decremented. For actual filter transfer, instead of sending the

full counting Bloom filter, each counter is represented as a

single bit: i.e., 1 if its value is greater than 0; 0 otherwise.

For the sake of simplicity, thus far we assumed that there

is a single agent working to harvest summaries. Actually,

MobEyes can handle concurrent harvesting by multiple agents

(possibly several hops apart) that can cooperate by exchanging

their Bloom filters among multi-hop routing paths; thus, this

creates a distributed and partially replicated index of the sensed

data storage. In particular, whenever an agent harvests a set

of j new summary packets, it broadcasts its Bloom filter to

other agents, with the benefits in terms of latency and accu-

racy shown in the following sections. Note that strategically

controlling the trajectory of police agents, properly scheduling

Bloom filter updates, and efficiently accessing the partitioned

and partially replicated index are part of our future work. In

the following section, instead, we focus on the primary goal of

identifying the tradeoffs between dissemination and harvesting

in a single geographic area, and the dependence of MobEyes

performance on various parameters. We also analyze the traffic

overhead created by diffusion/harvesting and show that it can

scale well to very large node numbers.

V. DELAY AND SCALABILITY ANALYSIS

In this section, to evaluate and validate the effectiveness

of the MobEyes protocols, we present analytic results about

summary diffusion/harvesting and scalability.

A. Summary Harvesting Delay

In MobEyes regular nodes receive summaries from their

neighbors (passive harvesting) and these summaries are har-

vested by police agents (active harvesting). Obviously, the ef-

fectiveness of active harvesting also depends on how extensive

passive harvesting was. Therefore, we model the progress of

passive harvesting, from which we formulate the progress of

active harvesting. Finally, we extend the model to analyze k-

hop relay scope. We assume that there are N nodes moving

within L × L m2 area, and each node advertises a single

summary packet (total N summary packets). For the sake

of analysis, we use two different mobility models, both with

uniform spatial node distribution, namely random direction

and Manhattan mobility models. In the random direction mo-

bility model, nodes move towards random directions (chosen

out of [0, 2π]) at a speed of v on average. The Manhattan

mobility model restricts node’s mobility patterns along grids.

Because a target direction is uniformly chosen in both cases,

the steady state node distribution is uniform [42], [5] – thus,

node density is location independent. The Manhattan mobility

model exhibits uniform node distribution in the sense that

nodes are uniformly distributed in the area where mobile nodes

can go along. So, the node density could be simply expressed

as ρ = δN/L2, where δ is used to control the size of the

area covered area by mobile nodes in the Manhattan mobility

model and δ = 1 in the random direction mobility model. The

value δ for Manhattan mobility is a function of grid layout and

communication range R, because node movement patterns are

restricted to the exploited grids, i.e., the covered area size C
is smaller than L2. Thus, we have δ = L2/C. For instance, let

us say that given a L×L area, the mobility pattern is restricted

to a single strip: the covered area size is 2R × L (where

2R is the radio range of mobile nodes), instead of L2; thus,

δ = L×L
2R×L

= L
2R

. Let v∗ denote the average relative speed of

nodes. As shown in [43], v∗ = v
2π

R

2π

0

p

(1 + cos θ)2 + sin2 θdθ

= 1.27v. In general, we simply assume that the average

relative speed can be modeled as proportional to the average

speed: v∗ = cv where c is a constant.

By extending [44], we now develop a deterministic discrete-

time model. Let us first reason on how many summaries a node

can receive for a given time slot. For ease of exposition, we

assume that all nodes are static except one regular node. This

node randomly moves and collects summaries by passively

listening to advertisements from encountered nodes. In this

case, the node (or the passive harvester) behaves just as a

data mule in traditional sensor networks [25]. During the time

slot ∆t, a regular node travels a distance r = v∆t and the

covered area size is v∆t2R where R is the radio range. The

expected number of encountered nodes in this area is simply
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α = ρv∆t2R. Since each of these nodes will advertise its

summaries, the regular node will receive α summaries. The

dual scenario is when all nodes are mobile but the passive

harvesting node is static. Without loss of generality, if all nodes

are mobile, we can simply replace the average speed with the

average relative speed: α = ρv∗∆t2R where v∗ is the average

relative speed.3

Given α, we can estimate the progress of passive harvesting

as follows. Let Et denote the number of distinct summaries

collected by a regular node by time slot t. As described above,

during time slot ∆t a regular node will receive α summaries.

Since the node has Et summaries, the probability that the

received summary is new is simply 1 − Et/N . Thus, the

expected number of new summaries out of α is given as

α(1−Et/N). It is obvious that restricted movement patterns

(e.g., two nodes moving together along the same path in a

Manhattan mobility model) will affect the effective number of

neighbors. Since we are interested in the average behavior,

we can model this by simply multiplying α with a constant

compensation factor η. Therefore, we have the following

relationship:

Et − Et−1 = αη

„

1 −
Et−1

N

«

(1)

Equation 1 is a standard difference equation with solution:

Et = N − (N − αη)
“

1 −
αη

N

”t

(2)

Equation 2 tells us that the distinct number of collected sum-

maries is geometrically increasing. As time tends to infinity,

Et = N . Let us define a random variable T to denote the

time for a regular node to encounter any random node, thus

receiving a summary from it. The cumulative distribution of

random variable T can be derived by dividing Equation 2 by

N .

FT (t) = 1 −
“

1 −
αη

N

”t+1

(3)

From this, we can derive the Probability Mass Function fT (t)
as follows

fT (t) =
αη

N

“

1 −
αη

N

”t

(4)

Equation 4 is a modified geometric distribution with success

probability p = αη
N

. The average is given as E[T ] = 1

p
− 1 =

N
αη

− 1. Since α = ρv∗∆t2R, by replacing ρ = δN/L2 we have

α = N/L2v∗∆t2R. Thus, we have:

E[T ] =
N

αη
− 1 =

L2

δv∗∆t2Rη
− 1 (5)

As shown in Equation 5, given a square area of L2, the

average time for a regular node to collect a summary is

3We can think of this as follows. Let us say that in front of a freeway
(where everybody is driving in one direction at a constant speed v), we count
the number of vehicles passing by. During ∆t, it will be ρv∆t. Now, let us
assume that an observer is moving also. If it moves on the same direction, i.e.,
the relative speed is 0, it always observes the same vehicles. On the contrary,
if it moves on the opposite direction, the relative speed is 2v and it will see
ρ2v∆t vehicles.

independent of node density. In fact, it is a function of average

relative speed and communication range. Intuitively, as node

density increases (N increases), a node can collect more

summaries during a given time slot. However, higher density

means that the total number of summaries to collect is higher.

Thus, the two factors compensate each other.

Unlike regular nodes, the agent actively harvests summaries

from its neighbors. Since every node moves randomly and

starts passive harvesting at time 0, it is expected that every

node has the same number of summaries collected by time t
(Et). Therefore, the probability that a neighbor node does not

have a random summary is given as 1 − Et

N
. The probability

that none of αη neighbors has a summary is simply (1− Et

N
)αη.

The probability that at least one of neighbors has a random

summary is 1 − (1 − Et

N
)αη. The expected number of distinct

summaries the agent receives from its neighbors at time slot

t can be expressed by simply multiplying that probability by

N :

N

„

1 −
“

1 −
Et−1

N

”αη
«

(6)

Let Ht denote the expected number of distinct summaries

harvested by the agent till time slot t. Since the agent has

Ht summaries, the probability of acquiring a new summary is

1−Ht/N . Hence, multiplying this probability by the expected

number of summaries harvested from neighbors (Equation 6)

gives us the number of new summaries harvested during time

slot t as follows:

Ht − Ht−1 = γN

„

1 −
“

1 −
Et−1

N

”αη
« „

1 −
Ht−1

N

«

(7)

where the constant compensation factor γ adjusts the expected

number of summaries received from neighbors to consider the

restricted mobility. Note that, as described before, restricted

mobility such as in the Manhattan model reduces the rate

of new encounters (adjusted by η) and also exerts baleful

influence on the rate of active harvesting since neighbors tend

to carry overlapping summaries (adjusted by γ).

From Equation 7, we see that Ht grows much faster than

Et. During a time slot, the number of collected summaries

in Equation 2 is constant (α), whereas in Equation 7 it is a

function of time. Moreover, Equation 6 is a function of the

number of neighbors, i.e., related to node density. As N (or

node density) increases, we can see that the harvesting delay

also decreases.

The growing rates of Et and Ht depend on mobility models.

The above equations are based on the random motion model,

but for restricted mobility models such as the Manhattan

model, the rate will be smaller than for the others (as shown

in Section VI). In this case, MobEyes decides to use k-hop

limited scope flooding where a summary is forwarded up to

k hop neighbors as long as there is connectivity. As stated

before, we are assuming a rectangular area, ∆t2R. Increasing

by k-hop the relay scope is the same as multiplying the area

by k times.
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Fig. 5. Fraction of harvested summaries with k = 1, 2

Let Ek denote the number of summaries collected by time

slot t with k-hop relay scope. Thus, we have:

Ek
t − Ek

t−1 = kαη

„

1 −
Ek

t−1

N

«

(8)

This tells us that even though Et grows rather slowly due

to the mobility model, by increasing the hop count we can

increase the Et rate (from α to k ∗ α). Let Hk denote the

number of summaries harvested by the agent by time slot t
with k-hop relay scope. Then, we have:

Hk
t − Hk

t−1 = γN

„

1 −
“

1 −
Ek

t−1

N

”kαη
« „

1 −
Hk

t−1

N

«

(9)

For illustration, we assume that we have total N = 200
nodes within an area of 2400m × 2400m. The transmission

range is R = 250m, and node relative speed is 10m/s on

average. For system parameters, we used η = 1, γ = 0.2
and ∆t = 1s. The iterative solutions of both Et and Ht are

presented in Figure 5. The figure shows that the agent can

harvest summaries much faster than a regular node. The figure

also shows that k-hop relay relevantly decreases the overall

delay.

B. Scalability

The feasibility of MobEyes strictly depends on its scalability

over wide VSN, in terms of the network traffic due to both

passive diffusion when the number of regular nodes grows and

the number of regular nodes that a single harvesting agent can

handle with a reasonable latency.

About passive diffusion network traffic, it is possible to

analytically estimate the MobEyes radio channel utilization.

In the diffusion process, nodes periodically advertise their

packets, without any synchronization among them. Therefore,

we can model the process by considering a packet randomly

sent within [iTa, (i + 1)Ta) time slot for all i, where Ta is

the advertisement period. So, the number of packets received

by a node is bounded by the number of its neighbors while

it is traveling for Ta, thus depending on node density but not

on the overall number of nodes. In contrast, any “flooding”-

based diffusion protocol is not scalable because a node could

potentially receive a number of packets proportional to the

network size.

To give a rough idea of the traffic generated by MobEyes

diffusion, let us simply use Ta = 2R/v∗ (the time for a

mobile node to traverse the diameter of its coverage area)

where R is the transmission range and v∗ denotes the relative

speed of two nodes. In fact, for a given speed, the Ta interval

should be neither too short nor too long compared to the

average connection duration among nodes: if it is too short,

then we are unnecessarily sending out more packets to the

same set of nodes, thus increasing link bandwidth utilization;

on the contrary, if it is too long, a node misses chances

to send packets to encountered nodes, thus slowing down

dissemination. In our target deployment environment, v∗ =
20m/s, R = 250m, the advertisement period Ta = 12.5s,

and the fixed packet size S = 1500B. Consequently, the

transmission time for one packet is about Tx = 1ms. While

traveling for Ta, a node moves 2R and the covered rectangular

area size is 4R2. In addition, the covered area includes two

half circles at the beginning and ending of the rectangle (due to

the wireless communication range). Thus, a regular node will

be exposed to advertisements from an area of A = πR2+4R2.

In the worst case, all nodes within this area are distinct and

potentially send their generated packets to the considered node

(potential senders n = Aρ). Therefore, the worst case link

utilization could be estimated as nTx/Ta where Tx is the

transmission time of a packet: for instance, given a relatively

high populated area with N = 2, 000, the number of potential

senders is n ≃ 179, and the MobEyes protocol has a very

low worst case link utilization of 0.014, thus showing high

scalability in terms of link bandwidth exploitation.

Similarly, we can give an approximated idea of the scala-

bility of the harvesting process via a simple queuing model.

Consider the usual situation of a police agent that harvests

only fresh summaries, i.e., generated in the last Texp seconds.

Let us assume that the summary arrival rate is Poisson with

rate λ = Nλ′ and the harvesting rate is deterministic with

rate µ. Given that the harvesting rate is limited by the channel

utilization ϑ, the maximum µ is simply
ϑTexp

Tx
. As a result, the

system can be modeled using an M/D/1 queue. The stability

condition, Nλ′ <
ϑTexp

Tx
, gives us the upper bound N <

ϑTexp

λ′Tx
.

Therefore, it is possible to conclude that for a given Texp and

arrival rate, there is a limit in the number of regular nodes

that a single harvesting agent can handle. For instance, in the

considered scenario (ϑ = 0.01, λ′ = 2, and Texp = 250s),

that number is N < 0.01×250

2×0.001
= 1, 250. As a consequence, in

the case of node numbers equal or not far from 1,250, there is

the need to deploy more than one harvesting agent to maintain

the system stable, i.e., to be able to harvest summaries more

rapidly than regular nodes generate them.
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Fig. 6. Map of Westwood area in vicinity of UCLA campus

VI. MOBEYES PERFORMANCE EVALUATION

We evaluated MobEyes protocols via extensive ns-2 [45]

simulations. This section shows the most important results,

with the goal of investigating MobEyes performance from the

following perspectives:

1) Analysis Validation. We simulate MobEyes protocols for

summary collection on regular nodes as well as for agent

harvesting and show that they confirm our main analytic

results;

2) Effect of k-hop Relay and Multiple Agents. We examine

how MobEyes effectiveness can be increased by lever-

aging k-hop passive diffusion and the deployment of

multiple agents;

3) Summary Diffusion Overhead. We investigate the tradeoff

between harvesting delay and the load imposed on the

communication channel;

4) Stability and Scalability Check. We verify that the system

is stable/scalable, even in the worst case of a single

harvesting agent and of the highest summary generation

rate reported in Section V;

5) Tracking Application. We prove MobEyes effectiveness

in supporting a challenging tracking application, where

trajectories of regular nodes are locally reconstructed by

a police agent based on harvested summaries;

6) Border Effects and Turn Over. We show that MobEyes

performance does not relevantly change even in the case

of more complex mobility models, where nodes are

allowed to enter/exit from the simulated area.

Additional experimental results and MobEyes implementation

details are available at http://www.lia.deis.unibo.

it/Research/MobEyes/

A. Simulation Setup

We consider vehicles moving in a fixed region of size

2400m × 2400m. The default mobility model is Real-Track

(RT), introduced by our colleagues in [46]. RT permits to

model realistic vehicle motion in urban environments. In

RT nodes move following virtual tracks, representing real

accessible streets on an arbitrary loaded roadmap. For this set

of experiments, we used a map of the Westwood area in the

vicinity of the UCLA campus, as obtained by the US Census

Bureau data for street-level maps [47] (Figure 6). At any

intersection, each node randomly selects the next track it will

run through; speed is periodically allowed to change (increase

or decrease) by a quantity uniformly distributed in the interval

[0,±∆s]. To evaluate the impact of the adopted mobility model

on MobEyes performance, thus quantitatively estimating the

generality of the reported experimental results, we tested two

additional well-known models, namely Manhattan (MAN) [44]

and Random WayPoint (RWP) [48]. Similarly to RT, MAN

builds node trajectories following urban roads; however, in

MAN roads are deployed according to a regular grid, thus

allowing a more uniform deployment of mobile nodes. In

our simulation, we adopted a 10 × 10 grid. RWP instead

does not constrain node positions to follow actual road tracks,

but moves nodes toward randomly selected destinations with

random speeds. When a node reaches its destination, it pauses

for a fixed period (which we set equal to 0 by homogeneity

with the other models), and then selects a new destination.

Surprisingly, RWP is considered “a good approximation for

simulating the motion of vehicles on a road [49]”, generally

producing limited distortion on protocol performance. Let

us remark that MobEyes agents do not exploit any special

trajectory or controlled mobility pattern, but move conforming

with regular nodes.

Our simulations consider number of nodes N =
100, 200, 300. Vehicles move with average speed v =
5, 15, 25; to obtain these values, we tuned the minimum speed

to vm = 1 and the maximum speed to vM = 11, 31, 51
respectively. The summary advertisement period of regular

nodes and the harvesting request period are kept constant and

equal to 3s through all the simulations. We use a Bloom filter

with 8192bits (1024B) and 10 hash functions. Since we have

a large filter size (i.e., 8192bits) compared to the number of

summaries, the false positive probability is negligible.4 We

note that if the value of this parameter is too large, MobEyes

effectiveness is reduced since it is possible that two nodes

do not exchange messages, even if they occasionally enter in

each other transmission range; this effect is magnified, as node

speed v increases. The chosen value has been experimentally

determined to balance the effectiveness of our protocol and

the message overhead, even in the worst case, i.e., v = 25. A

deeper and more formal investigation of the optimal value of

the advertisement period is object of future work.

Finally, we modeled communications as follows: IEEE

802.11 MAC protocol, 2.4 GHz transmission band, 11Mbps

bandwidth, 250m nominal radio range, and Two-ray Ground

propagation model [50]. The values of these parameters have

been chosen similar to other work in the literature [16] [13].

Where not differently stated, reported results are average

4The false positive probability is pf = (1− (1− 1

m
)ℓω)ℓ ≃ (1−e−

ℓω
m )ℓ

where m is total number of bits, ω is the number of elements, and ℓ is the
number of hash functions.
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values out of 35 repetitions. Other MobEyes configuration

parameters will be introduced in the following sub-sections,

when discussing the related aspects of MobEyes performance.

B. Analysis Validation

Our first goal is to validate the results obtained in Section V.

In particular, we investigate the regular node collection and

agent harvesting processes, as described respectively by Equa-

tions 2 and 7. Without loss of generality (see Section VI-E), let

us assume that new summaries are synchronously generated

by all regular nodes. A generation epoch is the time interval

between two successive summary generations. In this set of

experiments, every regular node continuously advertises the

single summary it generated in the epoch t = 0 for the rest

of the simulation run. Since Equations 2 and 7 characterize

the spreading processes of all summaries generated in the

same epoch, it is not necessary that regular nodes generate

additional summaries. We remark that this assumption does

not undermine the relevance of our results because the process

is stationary as described in Section VI-E.

Figures 7 and Figure 8 show results collected for number

of nodes N = 100/300, average speed v = 5/25, and all

the three RWP, MAN, and RT mobility models. In particular,

Figure 7 plots the cumulative distribution of summaries col-

lected by regular nodes as a function of time. The figure shows

that the process highly depends on the average node speed;

in fact, the speed determines to a large extent how quickly

nodes “infect” other participants with their own summaries.

The results do not depend on node density as we have shown in

Equation 4. Our analytic model (Equation 2) accurately fits the

simulation results for RWP and MAN. The curves for the RT

model exhibit slightly worst fitting; they start deviating from

analytical results after certain thresholds (analytical results are

not reported in Figure 7(c) and Figure 8(c) for the sake of

figure readability). RWP shows slightly better accuracy mainly

due to unconstrained motion of nodes and to their tendency to

gather at the center of the field as time passes [42]. Although

both MAN and RT show the restricted mobility patterns, their

node distributions are different: MAN has almost uniform

node distribution over the grids, whereas RT exhibits non-

uniform node distribution over the map as shown in [51]. Since

our analytic model is based on uniform node distribution, as

expected, it fits slightly better the MAN simulation results. In

addition, experimental results helped us to tune the constant

compensation factor η we introduced in Section V to take

into account the non-uniform movement patterns. In detail, the

values we found are 0.97 and 0.9 respectively for v = 15m/s
and v = 25m/s in RWP and 0.40 and 0.36 in MAN. As

restrictions on node mobility grow due to the mobility model,

the values of η decreases, thus representing a slower process.

Figure 8 plots the cumulative distribution of summaries

harvested by a police agent as a function of time. The figure

shows that the results are mainly dependent on the speed.

Unlike passive harvesting, the density plays an important role

in active harvesting. In the analysis section, we show that

the higher the density, the faster is the harvesting progress

(Equation 7). Intuitively, if there are more neighbors, the

agent has a higher chance of getting a random summary. Our

analytic model fits well the simulations, especially when we

have large N and v. This set of results allowed us to tune

the parameter γ accounting for the effect of overlapping of

summaries contributed from regular agents (see Section V).

In detail, the values we found are 0.21 and 0.21 respectively

for v = 5m/s and v = 25m/s in RWP and 0.15 and 0.20 in

MAN.

C. Effect of k-hop Relay and Multiple Agents

The effectiveness of MobEyes harvesting can be measured

in terms of the fraction of summaries harvested by the agent(s)

in function of time. To enhance the validity of our conclusions,

it is important to determine the dependence of the performance

indicators on different mobility models. In [52] we only

investigated the RT mobility model; here, we extend the

results also to RWP and MAN. For every mobility model,

we show plots for 1, 3 agents (a#) and for 1, 3 relay hops

(k). For k-hop relaying, we use a probabilistic flooding: i.e.,

a node re-broadcasts a newly received packet with probability

p = 0.5.5 The summary harvesting latency is a crucial figure

to determine the feasibility of the MobEyes approach, since it

allows us to estimate the fraction of harvested summaries by

the agent within a certain time t. This estimation is useful

to decide the tuning of the parameters (k-hop relay scope

and number of agents) to address the application-specific

requirements of services built on top of MobEyes. Figure 9

shows how the number of agents, the choice of the number of

relaying hops k, and the average speed v of the nodes influence

the process. Figure 9 plots the cumulative distribution of the

summaries harvested for N = 300, v = 15m/s. In the case

of multiple agents, the harvesting process considers the union

of the summary sets harvested by agents. The figure clearly

shows that k-hop relay scope and multiple agents highly

impact harvesting latency.

By carefully inspecting the results in Figure 9, it is possible

to obtain some guidelines for the choice of MobEyes parame-

ters. For example, given as a baseline a network with N = 300
nodes moving with an average speed v = 15m/s, fixed k = 1,

a single agent employs 530s, 236s, and 116s to harvest 95%
of the summaries generated respectively in RT, MAN, and

RWP mobility models. By increasing k to 3, times respectively

reduce to 420s, 176s, 86s, showing an improvement of about

20−30% in all cases. Instead, increasing the number of agents

to three, times become respectively 280s, 123s, and 68s; in

this case, the improvement is in the 40− 50% range. Finally,

if we set v = 25m/s, times become 211s, 67s, and 43s; the

improvement is around 60 − 70%. Interestingly, the relative

impact of the three parameters (harvesting team size, multihop

forwarding, and speed) shows a limited dependence on the

mobility model. This holds also for the results we collected

5In the simulation, we use this arbitrary value, but for a given scenario,
we can pick the probability that can minimize the overhead (i.e., redundant
broadcasts). Note that we can further reduce the overhead by exploiting
solutions for efficient broadcast, such as the ones proposed in [53].
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Fig. 7. Fraction of passively harvested summaries by a regular node
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Fig. 8. Fraction of actively harvested summaries by an agent
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Fig. 9. Fraction of actively harvested summaries by multiple agents with k-hop relay (N = 300 and v = 15)

for different cases (different values of N and v): in particular,

speed has a larger impact than the number of agents, and k is

the less decisive factor.

D. Summary Diffusion Overhead

The study of the diffusion overhead helps us understand the

requirements imposed on the underlying vehicular communi-

cation technology and to determine if MobEyes can coexist

with other applications. For example, the parameter k shows

the largest impact on the performance; the effect due to a

small number of agents is negligible, since they are only

responsible for local single-hop traffic. Figure 10 shows the

average received packets per node per second, obtained during

a simulation time of 1000s. In this set of simulations, we

fixed k = 1, and changed all the other parameters, i.e.,

mobility model (RWP, MAN, RT), N (100, 200, 300), and

v (5, 15, 25). As expected, the number of received packets

linearly increases as the number of nodes increases. Therefore,

for the sake of clarity, the figure only reports the case with

N = 300. In addition, the number of received packets exhibits

no dependence on v. In all considered cases, the overhead

is limited, on the order of few (two to five) packets per

second, proving the low impact of MobEyes on the available

bandwidth.

The latter result could mislead to conclude that speed

increments would not impact the harvesting latency, since

the number of received packets would not change. This only

apparently invalidates our previous results (see Figure 7) for

13



 2

 2.5

 3

 3.5

 4

 4.5

 5

 5  15  25

R
e
c
e
i
v
e
d
 
p
a
c
k
e
t
s
 
p
e
r
 
s
e
c
o
n
d

Average speed (meters/seconds)

RWP
RT

MAN

Fig. 10. Total number of received packets (k=1)

the reasons illustrated in the following. For a fixed advertise-

ment interval, as average speed increases, the probability of

useful meetings (i.e., of receiving a non-redundant summary)

increases because there is more mixing among mobile nodes.

For example, given an average speed v, let us assume that

the average period during which any two nodes are within

their communication ranges simply be 2R/2v. Then with v
set to 5 and 25 m/s, and R = 250m, the periods can

be estimated as 50s and 10s respectively. This implies that

the cases of 5m/s has roughly 5 times higher chances of

receiving redundant advertisements than the case of 25m/s. It

is interesting to note that, fixed the average speed, there exists

an optimal advertisement period allowing to maximize non-

redundant summary diffusion, while minimizing the overhead.

It will be part of our future work to analytically determine this

value.

Figure 11 shows the magnifying effect produced by an

increase of the parameter k. k-hop relaying produces an

enlargement of the area where summary packets are diffused

intuitively proportional to k2. Consequently, also the number

of nodes affected by a single summary diffusion will be

about k2 larger than the single-hop case. Moreover, while in

the single-hop case nodes receive any summary packet only

once, with k-hop relaying any node within k-hops from the

originator receives it a number of times proportional to the

number of its neighbors. Thus, the total overhead is expected

to increase by a factor larger than k2 but lower than k2

times the average number of neighbors (please note that k-

hop distant nodes do not relay packets, thus reducing the

latter factor for k-hop as well as (k − 1)-hop distant nodes).

The combination of these results with those in Figure 9

lead us to conclude that parameter k permits to decrease

harvesting latency (about 20− 30% for k = 3) at the price of

relevant overhead increase (around 15−20 times). The proper

balance of latency/k tradeoff can be only decided depending

on specific characteristics and requirements of the supported

urban monitoring application.
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E. Stability and Scalability Check

In the following, we investigate the stability of MobEyes, by

verifying that continuous summary injections do not influence

its performance to a large extent. In particular, we show that

the ratio of summaries harvested on longer periods remains

acceptable and that the harvesting latency does not grow as

time passes. With regard to the results presented so far, here we

remove the assumption about the single summary generation

epoch at t = 0. Nodes generate new summaries with period

T = 120s and advertise the last generated summary: let

us observe that according to the discussion presented in

Section III this rate represents a practical worst case. For the

sake of clarity of presented results, we hold the synchronicity

assumption: all nodes simultaneously generate new summaries

at intervals multiple of T . We obtained similar performance

with differently distributed generation intervals, i.e., Poisson

with average value T but plots (especially related to results in

Figure 13) are far more jumbled; anyway, they are available at

the already referred MobEyes Web site. The following results

are reported for the case of a single harvesting agent, k = 1,

N = 100, v = 15m/s, and nodes moving according to the

RT model.

Figure 12 plots the cumulative distribution of the number

of summaries generated and harvested as a function of time

(we ran simulations for 6000s). The graph shows that the

harvesting curve tracks the generation curve with a certain

delay, which can be traced to the harvesting latency in Sec-

tion VI-B. This also motivates the difference of the endpoints

of the two plots. Figure 13 provides further evidence of the

stability of the system; curves show the harvesting latency for

summaries generated during some generation epochs. For the

sake of figure clarity, the graph does not exhaustively represent

every generation epoch, but only samples one generation

epoch every T ∗ 7 = 840s till the end of the simulation

time. The different curves show similar trends, without any

performance degradation caused by the increase of the number

of summaries in the network. The harvesting related to the
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last summary generation epoch is evidently incomplete (25%
of the summaries are harvested within the timeline), since the

epoch starts 120s before the end of the simulation.

In addition, we evaluate the most challenging scenario

with N=1000 to quantitatively evaluate MobEyes scalability.

Figure 14 shows that the harvesting latency is reduced consid-

erably compared to the case with N = 100, thus confirming

that the proposed protocol scales well. The result matches with

the observation from our analytic model in Section V-A where

we found that the harvesting delay decreases as the number

of nodes increases.

We also investigated whether higher summary generation

rates afflict MobEyes performance. We shortened T from

120s to 6s (with T = 6s, the chunk generation period is

100ms). Such a generation frequency is largely greater than

the one required for the set of applications addressed by

MobEyes. Simulation results prove that MobEyes performance

starts degrading only when T < 30s. Figure 15 shows

the harvesting process for two epochs (0s and 2520s) and

compares T = 120s with T = 6s. The second case shows that

MobEyes performance degrades gracefully as the generation

epoch shortens, thus demonstrating the high stability of the

system when operating in usual summary rate conditions. Let

us observe that we expect performance degradation to occur in

an earlier stage as the number of nodes increases. However, the

advertisement period can be shortened because the harvesting

delay is decreased as well. This reduces the overall overhead

and, thus, the performance degradation occurs rather gracefully

with the number of nodes. For instance, our results with

N=1000 show that the performance starts degrading when

T < 50s. Note that if a single agent cannot sustain the

configuration, there is also the opportunity to deploy multiple

agents for better scalability as discussed in Section V-B.

F. Tracking Application

In the Introduction we sketched some application cases

for MobEyes. For the sake of proving its effectiveness in
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supporting urban monitoring, we also simulated a vehicle

tracking application where the agent reconstructs node trajec-

tories exploiting the collected summaries. This is a challenging

urban monitoring application, since it requires our system

(1) to monitor a large number of targets, i.e., all participant

vehicles, (2) to periodically generate fresh information on

these targets, since they are highly mobile, (3) to deliver to

the agent a high share of the generated information to well

reconstruct the targeted node trajectory. Moreover, since nodes

are generally spread all over the area, this application shows

that a single agent can maintain a consistent view of a large

zone of responsibility.

More in details, as regular cars move in the field, they gener-

ate new summaries every T = 120s and continuously advertise

the last generated summary. Every summary contains 60 sum-

mary chunks, which are created every ChunkPeriod = 2s
and include the license plate and position of the vehicle nearest

to the summary sender at the generating time, tagged with a

timestamp. The application exploits the MobEyes diffusion

protocol with k = 1 to spread the summaries and deliver

as much information as possible to a single agent scouting

the ground. As the agent receives the summaries, it extracts

the information about node plates and positions, and tries to

reconstruct node trajectories within the area. This is possible

by aggregating data related to the same license plate, reported

from different summaries.

To determine the effectiveness of MobEyes we decided

to evaluate the average uncovered interval and maximum

uncovered interval for each node in the field. Given a set

of summary chunks related to the same vehicle and ordered

on a time basis, these parameters measure respectively the

average and longest periods during which the agent does not

have any record for that vehicle. The longest period typically

represents situations in which a node moves in a zone where

vehicle density is low; thus, it cannot be traced by any

other participant. We associated the average and maximum

uncovered intervals to each simulated node, and present the

results in Figure 16 (note the logarithmic scale on the Y-

axis). Every point in the figure represents the value of the

parameter for a different node. We sorted nodes on the X-axis

so that they are reported with increasing values of uncovered

interval. Results are collected along a 6000s simulation. The

plot shows that in most cases the average uncovered interval

floats between [2.7s−3.5s]; the maximum uncovered interval

shows that even in the worst case the agent has at least one

sample every 200s for more than 90% of the participants. A

more immediate visualization of the tracking accuracy is given

in Figure 17. This figure shows, for the case of a node with

a maximum uncovered interval equal to 200s (i.e., locating

this node in the lowest 10th percentile), its real trajectory (the

unbroken line), and the sample points the agent collected.

G. Border Effects and Turnover

Usual mobility models [54], such as RWP, MAN, and RT,

assume that nodes remain within the simulated area during the

entire simulation (in the following, we indicate them as closed
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mobility models). Even if this does not necessary hold for

MobEyes applications, we observe that this assumption does

not invalidate our findings. First, if we consider a sufficiently

large area, on the order of several hundreds square Kms,

the amount of time that nodes continuously reside within

the area is likely very long, namely, for most nodes we can

assume a closed mobility model. Second, the worst effect of

dynamic scenarios takes place when nodes leave a specific area

carrying several summaries (locally generated or collected) not

harvested by the local agent yet. Nonetheless, we remark that

carried information does not vanish as nodes leave, but can be

harvested later by remote agents, responsible for the adjacent

area the leaving nodes are moving into.

However, to estimate how node entrances/exits impact the

previously presented results, we also tested MobEyes with a

novel mobility model, open-RT, which takes these effects into

account. In open-RT nodes follow the same patterns of RT,

with one exception: as soon as a node reaches the endpoint

of a track, close to the boundary of the area, it suddenly

16



disappears. To maintain unchanged the number of nodes within

the area, and obtain results comparable to the ones presented

before, we assume that the net vehicle flow in/out the area

is null. Thus, any node exiting from the area is immediately

replaced with one node entering; the latter is placed at the

endpoint of a random road, close to the boundary of the

targeted geographical area.

This dynamic effect is better evaluated for long simulation

periods and periodic summary generation epochs. Thus, we

confirm the settings used in Sections VI-E and VI-F; in

addition, we consider a single harvesting agent, k = 1,

N = 100, v = 15m/s. Nodes generate new summaries

synchronously, and only as long as they remain in the area.

To avoid that nodes stay within the area only for very short

periods, we introduce a constraint on their minimum residing

time equal to 10% of the whole simulation. Even with this

assumption, more than 550 nodes need to take turns on the

simulation area, to maintain 100 nodes always present. The

agent does not follow open-RT model, but traditional RT, i.e.,

it always remains within the area.

Figures 18 and 19 present the experimental results corre-

sponding to those in Sections VI-E and VI-F, but obtained with

the open-RT model. Significant conclusions can be drawn,

especially from Figure 18: also under these unfavorable as-

sumptions, the agent is able to collect more than 85% of

any generated summary, and in most cases it reaches 90%.

By inspecting simulation traces, we could find that missing

summaries generally originate by vehicles leaving the area

within a short interval from any epoch. In that case, the last

generated summary is only advertised for that short interval

and cannot spread enough to reach the agent. Let us remark

once more that those summaries are not irreparably lost, but

will be probably harvested by agents in charge of the adjacent

areas. Figure 19 shows average and maximum uncovered

intervals as obtained with the open-RT model. The quality of

the reconstructed trajectories is only slightly degraded, given

that the average uncovered interval is below 4s for more than

75% of the nodes (and below 10s for 90%) and that the 85th
percentile of the vehicles can be tracked with a worst-case

inaccuracy of 200s.

H. Discussion

Mobile vs. Static agents: We assume that Police agents are

also mobile. It would be also possible that stationary agents

can be placed on the roadside for the purpose of summary

harvesting. Then, the question is whether the performance of

static agents is comparable with that of mobile agents. The

answer is that mobile agents performs better than the static

agents since for a given period of time, mobile agents will

encounter more number of nodes than static nodes. To be

precise, in Section V, we show that the number of mobile

nodes encountered during ∆t is given as α = ρv∗∆t2R where

v∗ is the average relative speed. If the agent is static, the

relative speed is simply replaced with the average speed. The

relative speed between mobile nodes is typically higher than

that between mobile and static nodes, and thus, α is greater
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Fig. 18. Cumulative distribution of harvested summaries per epoch (open-RT)
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if the agents are mobile (i.e., lower latency). In addition,

especially in urban grids, it is usually the case that the spatial

distribution of vehicles in steady state is non-uniform. If an

agent is misplaced (i.e., where there are few vehicles on

average), the harvesting latency will be large. In order to

clearly understand the performance difference and how the

position of a static node affects the latency, we use a scenario

with 100 nodes moving at the average speed of 25 m/s.

We intentionally fix the location of a random node (as an

agent) to its initial position which is uniformly distributed

in the simulated area; i.e., for a given scenario file (N=100,

V=25m/s), we generate 100 scenario files by fixing a node one

by one to its initial position. Our simulation results show that

the average latency widely varies depending on the location.

We find that the area with high spatial node distribution

minimizes the latency, but the average latency of mobile agents

is still lower than that of static agents.

Impact of radio range: The radio range is an important

performance parameter. Recall that the radio range controls the
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number of encountered nodes per unit time (α = ρv∗∆t2R).

The performance with various radio ranges can be analytically

determined using our models in Section V. The large commu-

nication range reduces the dissemination/harvesting latency,

but this will limit scalability due to increased wireless channel

contention.

Comparison with other schemes: Let us compare the per-

formance with other two naı̈ve schemes, namely direct contact

and probabilistic flooding. In direct contact, regular vehicles

do not advertise summaries and the agent harvests the sum-

maries only from the summary originator. CarTel [6] uses

direct contact for data uploading. In probabilistic flooding,

regular vehicles use probabilistic flooding to broadcast their

summaries. Upon receiving a message, each node re-broadcast

the message with probability p. The performance of direct

contact is the same as that of “passive harvesting.” Recall that

a regular node performs passive harvesting since it only stores

summaries received from its 1-hop neighbors. Our analytic

model clearly shows that the agents harvest summaries much

faster than the regular nodes. Thus, it makes sense to focus

only on the performance of the flooding scheme. Given p = 1,

we measure the fraction of collected summaries generated for

a period of 2000s. Each message is generated every 20s (total

100 messages per node). We simulate 50 nodes moving at

the average speed of 15m/s according to the RT mobility

model. We measure the completeness of summary harvesting,

i.e., the fraction of harvested messages out of their total

number. Our results show that MobEyes can collect 100%

of summaries whereas the probabilistic scheme collects only

32% of summaries. Note that, of course, the completeness gain

achieved by MobEyes comes at the cost of increased latency.

VII. MOBEYES PRIVACY AND SECURITY

MobEyes nodes continually generate and diffuse summaries

containing private information, e.g., license plate numbers.

Thus, privacy is of critical importance. On the one hand,

non authorized nodes must not be allowed access to private

information. On the other hand, the harvesting process should

not reveal the information that is being sought, since this may

tip the attackers or may cause unnecessary panic in the public.

In general, we can summarize the security requirements of

MobEyes as follows:

• Authentication. Harvesting agents (authority nodes) must

authenticate summary senders and vice versa.

• Non-repudiation. A summary originator cannot deny the

transmission of a summary (liability issue); in that way,

upon request from the agent, the summary sender must

submit the full file with related sensed data.

• Privacy. Only legitimate users (authority nodes) can ac-

cess summaries. Moreover, summaries must be privately

advertised such that the attackers cannot track users.

• Service Availability. MobEyes summary diffu-

sion/harvesting should be protected from Denial of

Service (DoS) attacks.

• Data Integrity. MobEyes should be able to filter out false

summary data injected by attackers.

• Query Confidentiality. In some cases, e.g., bio-attacks and

search for crime suspects, even the nature of the query

should not be disclosed, not to create unnecessary panic

in the population or to avoid tipping the criminals.

One important aspect that sets apart MobEyes “forensic

sensed data” security from conventional “safe navigation”

VANET security is the “real time” and “criticality” of the

safe navigation application. Consider for example a dangerous

curve on the road monitored by an “e-mirror”. If no car is

coming, the e-mirror tells the driver to proceed at normal

speed, else, it tells her to slow down. An adversary can

“anticipate” the message from the mirror and tell her that

the way is clear, while instead a truck is coming at high

speed behind the curve. In this “safe drive” application, it

is mandatory to authenticate alert messages. Thus, in safe

navigation applications, message authentication is far more

important than privacy. For instance, privacy concerns should

not prevent a driver from alerting the vehicles behind her that

there is a boulder on the road.

MobEyes has strongly different security requirements. A

false report cannot create much damage since it is not acted

upon immediately (for example, a wrong set of license plates

at the crime scene). There is plenty of time to detect and if

necessary punish the “impostors.” On the other hand, drivers

that propagate summaries want to be assured that their privacy

will not be violated. This major difference in security concerns

leads to MobEyes security approaches that are quite different

(and in fact much simpler and generally more efficient) than

conventional VANET security solutions. Readers can find

general security issues for VANET in [55]. For the sake of

brevity, in this section we will simply outline several MobEyes

security approaches, reserving the detailed, rigorous discussion

of MobEyes security to future publications.

A. PKI Model

In MobEyes, we assume the existence of Public Key Infras-

tructure (PKI). Every node has a private/public key pair, which

is issued through the Certificate Authority (CA) such as the

police. Let PKA and SKA denote the node A’s public and

secret key pair. Let H(·) denote a one-way hash function (e.g.,

SHA-1). For the sake of illustration, we assume that each node

reads license plate numbers of nearby vehicles and prepares

a summary which may contain a set of license plate numbers

annotated with time and location. The summary should be

encrypted by using the police public key (PKCa
) so no one

but the police can read it. Only the police need to authenticate

the signature of the summary generator, while neighboring

vehicles have no such need. Therefore, MobEyes does not need

continuous access to the distributed PKI infrastructure. The

digital signature and the certificate of the originator (CertCx
)

are also encrypted in the same way. The verifier (i.e., the

Police), upon decryption, uses the certificate CertCx
signed

by the authority where Cx is the node ID. Thus, for a given

summary SCx
generated at time T and position P , node Cx

sends the following advertisement to its one hop neighbors
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(denoted as ∗).

Cx → ∗ : Mx, T, P

where Mx = {SCx , T, P, {H(SCx)}SKCx
, CertCx}PKCa

.

The parameters T = time and P = location, corresponding to

summary collection, are in the clear as they are the indexes to

the summary database kept by each private vehicle. They are

necessary to process on demand queries by the police. Every

time the originator reissues the same summary, it introduces

“jitter” in T and P (say several seconds and several meters) so

that the police agent can still retrieve the record (as it falls in

its space time window of interest), but the eavesdropper cannot

infer the presence of the same user along the path as detailed

in Section VII-C. Then, neighbor nodes will store the message

in their local database, indexed by T and P . Through Bloom

filter set reconciliation, the agent will harvest the encrypted

summary if it falls within the space-time window of interest.

After decrypting the summary (and eliminating aliases), the

agent stores it in its local database.

B. Attack Model

As just shown, standard PKI mechanisms provide authenti-

cation and non-repudiation. In this section we focus on the

rest of the MobEyes requirements, namely privacy, service

availability, and data consistency, by addressing the following

MobEyes-specific attack models:

• Location Tracking. Periodic broadcasting of identical

summaries could facilitate attackers in tracking the route

of a vehicle.

• Denial of Service (DoS). Attackers could inject a large

number of bogus summaries in order to slow down correct

summary harvesting by agents.

• False Data Injection. Attackers could inject fabricated

summaries in order to mislead investigations or make the

data inconsistent.

• Query Confidentiality. Attackers could infer “important”

information from the content of police queries.

Let us finally note that in MobEyes we can exclude Sybil

attacks, where a node illegitimately claims multiple identities.

In fact, the certification authority issues a public/private key

pair for a given vehicle (unique identifier per node). We will

assume that the signature/certificate cannot be forged.

C. Location Tracking Attack

Let us consider a typical tracking scenario where the attack-

ers can infiltrate base stations on the roadsides and listen to

all the advertised summaries. In MobEyes, a node periodically

advertises its encrypted summary. If the message remains the

same, the attacker can infer the trajectory of the sender node.

We have solved this problem in a very simple way. Each

repeated summary is slightly altered by changing T and P
(i.e., it is a slightly modified clone). Assuming that the traffic

was moderately dense when the sample was collected (say a

few cars within a 100m street segment), the attacker cannot

recognize the presence of the same vehicle from the sequence

of summaries. The overhead introduced by this solution is

minimal. Since it is less likely that a node meets the same

vehicles many times, a few vehicles will store two or more

“clones.” The police agent detects and discards clones upon

collecting and decrypting summary messages.

D. Denial of Service

Apart from channel jamming (which can be easily detected

at the physical layer and immediately stopped and punished by

authorities), a serious DoS attack to MobEyes may be caused

by the injection of a large number of summaries into the

network, e.g., caused by sensor data interface malfunctioning.

If the summaries are playback messages, they are immediately

detected and dropped. If the summaries look like legitimate

summaries, the attack can be handled by using rate limited

summary diffusion which shares the same idea of RREQ rate

limit in a secure routing protocol [57]. Each node keeps track

of the incoming rate of summary for each MAC address.

Recall that a node will periodically rotate its MAC address

for privacy. However, the rate monitoring period (say, a few

seconds) is much smaller than the rotation period. If the rate is

above a certain threshold, intermediate nodes simply discard

incoming summaries. The rate is a system parameter and is de-

termined based on the types of sensed data. Suspicious activity

is reported to authorities for further analysis. For instance, the

authorities can map pseudorandom MAC addresses to vehicle

numbers, thus requesting the owner to fix the device or (in case

of malicious attack) by revoking key pairs and prosecuting the

abuser.

E. False Data Injection

False data injection is a very serious attack in conventional

sensor networks [58], [34], [59]. Fortunately, in a VSN de-

signed for forensic investigation, this type of attack is easy

to detect and neutralize thanks to the observations of other

nodes. There are several possible attacks of this type. First,

the attacker could aim to mislead the search for kidnapping

criminals, say, and it reports that it was at the right place/time

of crime and saw a set of “fabricated” license plates. The

attacker (or colluding attackers) will be quickly uncovered

when the police investigate the phony license plates. A second

false report attack is for the criminal to claim it was at a

different place at the time of crime. Video taped records from

crime witnesses will also permit to uncover the false report.

A third type of attack could be the reporting of false sensed

values. If the attackers collude, they may indeed create enough

false reports to offset the scale. However, fluctuations in values

would prompt the authorities to investigate, thus leading to

the vehicle IDs of the cars injecting false reports, with their

possible prosecution.

F. Query Confidentiality

Agents must retrieve information confidentially. Specifi-

cally, the agent tries to avoid a situation where criminals

may take an evasive action if they realized the police are

on their heels. Another possible concern is the investigation

of chemicals that might be connected to a bio-attack. Since
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this investigation may be launched after a tip, and in most

cases will turn out to be a false alarm, the public should not

be told of the specific target of this investigation. Otherwise

phenomenal traffic congestion may follow, with potentially

very serious damage to vehicles and drivers. This requires a

secure query such that the vehicles cannot tell what the agent is

searching for. To this end, MobEyes exploits private keyword

searching, proposed by Ostrovsky et al. [61].

Let us assume that the harvesting agent aims to retrieve

images of some target vehicles. The agent has already har-

vested the summaries in the suspect area and has determined

which vehicles were in the right place/time and might store

the original images/licenses she is interested in. The agent

cannot bluntly ask these vehicles if they have the target data.

Rather, it prepares a dictionary of the license plate numbers

in the nearby area (acquired from the harvested summaries).

Each item is tagged E(1) if interested; otherwise E(0). E(x)
is a homomorphic public-key encryption function which has

two important properties: i) E(x) is probabilistic, in particular

it will encrypt a single bit in many different ways, such

that any instance of E(0) and any instance of E(1) cannot

be distinguished; and ii) E(x) is homomorphic such that

E(x) × E(y) = E(x + y).
The agent will broadcast this tagged dictionary as a query in

the vicinity of each of the vehicles that hold the information.

After receiving a query, a vehicle start resolving the query

by processing each document in its local storage as follows.

For each document D with license plate number x, compute

the encrypted value g (g = E(1) or g = E(0)) and then

calculate gD. If the agent is interested in D, gD will result in

gD = E(D); otherwise, gD = E(0). Given output gD, the

agent can find D exactly. Each vehicle has an output buffer

initialized with E(0). Hashing is used to find a slot to store

the output. The output will be multiplied with the value in the

slot, leading to the result that only interested documents will be

stored in the buffer. The output buffers of all the local vehicles

(neighbors of the vehicles with useful data) are later read by

the agent. As a result, the police agent discovers the vehicles

with useful information and instructs them to upload all of

their data for a proper time-space window (not too narrow to

raise suspicions, nor too large to bring in too much junk data)

to the next police access point.

VIII. CONCLUSIONS

In this paper, we proposed the decentralized and oppor-

tunistic MobEyes solution for proactive urban monitoring

in VSN. The MobEyes key component is MDHP, which

works by disseminating/harvesting summaries of sensed data

and uses original opportunistic protocols that exploit intrinsic

mobility of regular and authority nodes. One of the reasons

for using original dissemination protocols is, for instance, to

overcome the intermittent connectivity of urban grids in off

peak hours, which precludes the exploitation of conventional

search/propagation techniques based on ad hoc multicast and

broadcast. We showed that MDHP protocols are disruption tol-

erant, scalable, and non-intrusive via both analytic models and

extensive simulations. MobEyes can be configured to achieve

the most suitable tradeoff between latency/completeness and

overhead by properly choosing primarily its k-hop relay scope

and the number of harvesting agents. These encouraging

results are stimulating further research activities. In particular,

we are extending the MobEyes prototype to determine the best

trajectory of mobile agents when collaborating in summary

harvesting. In addition, we are formally investigating how to

determine the optimal value for the summary advertisement

period depending on node speed/population and on urban

monitoring requirements about traffic/latency. Finally, we will

explore hybrid strategies that combine broadcast with epidemic

dissemination, even dynamically adapting to urban density

conditions and application needs.
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