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We study the generation of entanglement between two distant qubits mediated by the surface plasmons of a

metallic waveguide. We show that a V-shaped channel milled in a flat metallic surface is much more efficient

for this purpose than a metallic cylinder. The role of the misalignments of the dipole moments of the qubits, an

aspect of great importance for experimental implementations, is also studied. A careful analysis of the quantum

dynamics of the system by means of a master equation shows that two-qubit entanglement generation is essentially

due to the dissipative part of the effective qubit-qubit coupling provided by the surface plasmons. The influence

of a coherent external pumping, needed to achieve a steady-state entanglement, is discussed. Finally, we pay

attention to the question of how to get information experimentally on the degree of entanglement achieved in the

system.
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I. INTRODUCTION

In the last years, an intense effort has been made to

control and tailor the coupling between quantum emitters

and the electromagnetic (EM) field. One major force driving

the interest in this research area lies in quantum information

science, which often requires the transfer of quantum states

between matter and light degrees of freedom.1 Applications

such as quantum teleportation, quantum cryptography, and

other two-qubit operations are additionally based on the

availability of entangled two-qubit systems. There have been

many works analyzing the coupling of qubits provided by

the interchange of fermions or bosons2,3 and, in particular,

addressing the generation of entanglement due to the coupling

to a common bath.4–7 Within this context, the EM field may

constitute the agent needed to prepare a system in a targeted

entangled state or to couple two preexisting entangled systems.

In a number of proposed schemes qubit-qubit interactions are

provided either by coupling to a common EM cavity mode8–12

or, when large separations between the qubits are desired, to a

guided mode.13–15 With independence of the chosen arrange-

ment, the dominant paradigm in quantum-state engineering

relies almost exclusively on exploiting the coherent dynamics

in order to implement the operations needed for quantum

information processing.16,17 The traditional view holds that

dissipation, being responsible for decoherence, plays only

a negative role. However, it has been recently realized that

the dissipative dynamics associated with the coupling of the

system to external reservoirs can be engineered in such a way

that it can drive the system to a desired state encoding the

output of a quantum computation.18,19 Implementation of such

ideas has shown their tremendous potential demonstrating,

among other results, the generation of entangled states both in

theory20,21 and experiment.22,23

Many structures have been proposed to increase light-

matter interaction, including photonic crystal cavities24,25

and waveguides,26 photonic nanowires,27 and dielectric slot

waveguides.28 A crucial requirement for such devices is the

enhancement of the EM field, leading to a large Purcell

factor, defined as the decay rate of the emitter in the

presence of the structure normalized to the decay rate in

vacuum. Electric field intensification is favored by a tighter

confinement of the EM modes. In connection with this,

metallic structures are known to support surface plasmon

modes propagating at the metal interface and displaying strong

field concentration.29 This modal confinement can reach even

the subwavelength level,30 a feature extensively exploited

in plasmonics, e.g., for dense waveguide integration.31 The

interaction with surface plasmons has been also employed to

control certain properties of quantum emitters, including the

decay rate,32 angular directionality,33 and energy transfer.34,35

Single plasmon generation36,37 and detection38,39 have been

experimentally demonstrated, and the achievements on plas-

mon transport switching40 and plasmon-assisted qubit-qubit

interaction,41 suggest the on-chip implementation of quantum

operations involving qubits in a plasmonic waveguide network.

Along this line, we have recently explored the generation

of entanglement between two qubits linked by a plasmonic

waveguide (PW) consisting of a V-shaped channel milled in a

flat metallic surface and operating in the optical regime42,43

(see Fig. 1). In our previous work, we showed that the

mentioned configuration enables the spontaneous formation

of a high degree of entanglement, even for qubit-qubit

separations larger than the operating wavelength. In the present

paper, a more detailed analysis of the two-qubit entanglement

generation mediated by plasmons is provided, emphasizing

its essential relationship with the dissipative character of the

effective two-qubit dynamics. In addition, a more systematic

exposition of several aspects of this problem is presented. First,

we consider two different waveguide geometries, cylindrical

and channel shaped, analyzing the impact of the waveguide

type on the attainable entanglement degree. The role of

dipole moment misalignments is also assessed, which is of

great importance for experimental implementations due to the

difficulty in the controlled emitter positioning. The influence

of the intensity of the coherent external pumping, needed to

achieve a steady-state entanglement, is discussed. We also pay
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attention to the question of how to detect experimentally the

degree of entanglement achieved in the system by measuring

cross terms of a second-order coherence function. Finally, we

study the effect of pure dephasing produced by nonradiative

mechanisms.

The rest of the paper is organized in five sections: Sec. II

contains a short description of the setup and the main PWs

characteristics. In Sec. III, we summarize briefly the formalism

of the master equation governing the effective two-qubit

dynamics. In addition, the measures of entanglement and

correlation are recalled. Section IV describes how the classical

Green’s tensor and the associated coupling constants entering

the master equation are computed. Then, the influence of

various aspects such as waveguide type, emitter position,

and dipole moment orientation are analyzed. Once these

results are available, the generation of entanglement with

or without external laser pumping is discussed in Sec. V,

and its relation with the dissipative dynamics is highlighted.

We also study the relationship between entanglement and

photon-photon correlations and the influence of the pumping

rate and pure dephasing. Section VI is devoted to the

conclusions.

II. SYSTEM DESCRIPTION AND PLASMONIC

WAVEGUIDES CHARACTERISTICS

The system analyzed in this paper consists of two identical

quantum emitters positioned in closed proximity to a metallic

waveguide (see Fig. 1), in such a way that their EM interaction

is dominated by the plasmonic modes supported by the

quasi-one-dimensional structure. The emitters, which could

be atoms, molecules, quantum dots, or nitrogen-vacancy

centers in diamond, will be modeled as two-level systems,

with a transition frequency ω0 corresponding to an emission

wavelength λ = 600 nm. A point-emitter approach is assumed

because it contains all the main physics of the problem without

involving a detailed description of each qubit, which can be

cumbersome for large molecules or quantum dots.44 In order to

determine the influence of the PW geometry, we consider two

different metallic structures: the first is a cylindrical nanowire

and the second a channel waveguide (the case depicted in

Fig. 1). These waveguide types have been previously fabricated

and successfully demonstrated for dense waveguiding31 and

single plasmon generation.37 The exact geometry of both

structures is detailed in panels (a) and (b) of Fig. 2. The radius

of the cylindrical nanowire is R = 35 nm, the depth of the

V-shaped groove is L = 138 nm, and its angle is θ = 20◦. The

considered metal is silver, whose electric permittivity at the

FIG. 1. (Color online) Two qubits separated by a horizontal

distance d are positioned at a vertical distance h from the bottom of a

channel waveguide milled in a metallic surface. The plasmon modes

supported by the structure mediate the electromagnetic interaction

between the qubits.

FIG. 2. (Color online) Transverse cross section of a cylindrical

nanowire (a) and a channel waveguide (b). The color scale in (a) and

(b) renders the transverse electric field amplitude of the supported

plasmonic modes, and the arrows show the electric field polarization.

(c) Dispersion relation for the fundamental mode of the cylindrical

nanowire (black circles) and channel waveguide (red triangles). The

vacuum light line, the dispersion relation of a plasmon on a flat silver

surface, and that of the second mode supported by the cylinder are

also plotted.

mentioned wavelength is45 ε = εr + iεi = −13 + i0.8. The

geometric parameters of both structures have been chosen so

that, at the operating wavelength, only one mode is relevant

and the propagation length is identical for cylinders and

channels. The channel waveguide is single moded and the

cylinder supports two modes but the second one (black dashed

line), being extremely close to the light line, is very much

extended in the transverse cross plane and will not play a

relevant role in what follows. Since the qubit-qubit interaction

will be mediated by the plasmonic modes, having identical

propagation length ensures a meaningful comparison of the

results obtained with both PWs. The propagation length is

ℓ = [2ki]
−1 = 1.7 μm, ki being the imaginary part of the

(complex) modal wave vector, k = kr + iki. The dispersion

relation for both PWs is rendered in Fig. 2(c) and it is observed

that the curve corresponding to the cylinder (black circles)

lies to the right of that corresponding to the channel (red

triangles), implying that the EM field of the former is more

tightly confined. This is confirmed by a comparison of panels

(a) and (b), where the transverse electric field modal profiles

and polarizations are plotted. For both waveguides, the modal

size is deep subwavelength. In spite of the fact that the electric

field of both structures includes transverse and longitudinal

components, the former dominate by a factor of about ten. For

this reason, it will be later advantageous to orient the emitters

parallel to the transverse plane.
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III. TWO-QUBIT DYNAMICS, ENTANGLEMENT, AND

CORRELATION

In this section, the tools required to determine the quan-

tum state of two qubits and their entanglement degree are

reviewed. The evolution of the two qubits in interaction with

the EM field supported by a plasmonic waveguide can be

represented using a Green’s tensor approach to macroscopic

quantum electrodynamics.41,46,47 One important advantage of

this method is that all magnitudes describing the coupling

between the qubits and the EM field can be obtained from

the classical Green’s tensor appropriate for the corresponding

structure. Within this approach, the Hamiltonian for the system

in the presence of a dispersive and absorbing material is written

in the electric dipole approximation as

Ĥ =
∫

d3r

∫ ∞

0

dω h̄ω f̂†(r,ω)f̂(r,ω) +
∑

i=1,2

h̄ω0 σ̂
†
i σ̂i

−
∑

i=1,2

∫ ∞

0

dω[d̂iÊ(ri,ω) + H.c.]. (1)

Here, f̂† and f̂ represent the bosonic fields in the medium with

absorption, which play the role of the fundamental variables

of the electromagnetic field and the dielectric medium. σ̂
†
i

is the i-qubit raising operator, ri its spatial position, ω0 is

the transition frequency, and † stands for the adjoint operation.

The interaction term includes the dipole moment operator d̂i =
di σ̂i + d∗

i σ̂
†
i , where di is the dipolar transition matrix element

and ∗ denotes complex conjugation. In addition,

Ê(r,ω) = i

√

h̄

πǫ0

ω2

c2

∫

d3r′
√

εi(r′,ω)G(r,r′,ω)f̂(r′,ω) (2)

is the electric field operator. Notice the explicit appearance

of the Green’s tensor G(r,r′,ω), which satisfies the classical

Maxwell equations for an infinitesimal dipole source located

at the spatial position r′. Physically, the Green’s tensor carries

the electromagnetic interaction from the spatial point r′ to r.

This Hamiltonian description is very powerful but, as a

matter of fact, it contains too much detail for the purpose

of this paper. The following simpler description, that derives

from the previous one, will be employed here. To determine

the entanglement of the two qubits induced by their EM

interaction, we only need an equation governing the dynamics

of the reduced density matrix ρ̂ corresponding to the two-qubit

system. Such a representation of the dynamics is obtained from

Eqs. (1) and (2) by tracing out the EM degrees of freedom.

The corresponding master equation, whose derivation can be

found in Refs. 47 and 48, reads as follows:

∂ρ̂

∂t
= −

i

h̄
[Ĥs,ρ̂] −

1

2

∑

i,j

γij (ρ̂σ̂
†
i σ̂j + σ̂

†
i σ̂j ρ̂ − 2σ̂j ρ̂σ̂

†
i ),

(3)

where the Hamiltonian included in the coherent part of the

dynamics is

Ĥs =
∑

i

h̄(ω0 + δi) σ̂
†
i σ̂i +

∑

i �=j

h̄gij σ̂
†
i σ̂j . (4)

The interpretation of the various constants appearing in

Eqs. (3) and (4) is the following. The Lamb shift, δi , is due

to the qubit EM self-interaction in the presence of the PW.

At optical frequencies, for qubit-metal distances larger than

about 10 nm, δi is very small49,50 and will be neglected in what

follows. The level shift induced by the dipole-dipole coupling

is given by gij , and can be evaluated approximately from

gij =
ω2

0

h̄ε0c2
d∗

i ReG(ri,rj ,ω0) dj . (5)

Finally, the parameters in the dissipative (noncoherent) term

of Eq. (3) are given approximately by

γij =
2ω2

0

h̄ε0c2
d∗

i ImG(ri,rj ,ω0) dj , (6)

and represent the decay rates induced by the self (γii) and

mutual (γij ) interactions. Expressions (5) and (6) are obtained

by integration of the EM field Green’s function in the frequency

domain.47 To reach the result that the coherent and incoherent

contributions to the coupling are proportional to the real and

imaginary parts of the Green’s function, respectively, the

Kramers-Kronig relation between the real and imaginary parts

of the Green’s function is used.47,51 In deriving the master

equation, a Born-Markov approximation is applied, valid for

weak qubit-EM field interaction and broadband PWs. Let us

remark that, as mentioned above, both gij and γij can be

extracted from the knowledge of di and the classical Green’s

tensor in the presence of the PW. The dipole moment can

be inferred from the measurement of the decay rate of one

qubit in vacuum, whose Green’s tensor is well known. Up

to this point, it has been assumed that both dipoles have

equal frequencies, but we would like to remark that the

formalism is a good approximation when the frequencies are

unequal but sufficiently close to each other. In this regard,

various criteria can be mentioned. According to Refs. 48

and, 52 the frequency difference should be much smaller

than the average frequency, whereas Dung and coworkers47

state that the frequency difference should be smaller than the

typical frequency scale for which the Green’s tensor displays

a significant variation. We have checked that both criteria are

fulfilled for dipoles whose emission wavelengths are in the

range of 600 nm and differ by less than about ten nanometers.

To solve Eq. (3), a basis for the vector space corresponding

to the two-qubit system has to be chosen. A convenient basis

that makes Ĥs diagonal is formed by the following states: |3〉 =
|e1e2〉, |0〉 = |g1g2〉, and |±〉 = 1√

2
(|g1e2〉 ± |e1g2〉), where

|gi〉 (|ei〉) labels the ground (excited) state of the i qubit. Using

this basis, the evolution of the diagonal elements of Eq. (3) is

given by

ρ̇33(t) = −2γρ33(t),

ρ̇++(t) = (γ + γ12)ρ33(t) − (γ + γ12)ρ++(t),
(7)

ρ̇−−(t) = (γ − γ12)ρ33(t) − (γ − γ12)ρ−−(t),

ρ̇00(t) = (γ + γ12)ρ++(t) + (γ − γ12)ρ−−(t),

where it has been assumed that the positions and orientations

of the two qubits in their respective planes transverse to the

PW are identical, so that γ11 = γ22 = γ and γ12 = γ21. The

diagonal character of Ĥs in the above mentioned basis and the
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FIG. 3. (Color online) Scheme of levels for two identical qubits

located at equivalent positions with respect to the PW and with

identical orientations (γ11 = γ22 = γ and γ12 = γ21).

interpretation of Eq. (7) is depicted in Fig. 3, including the level

scheme and the collective decay rates induced by the coupling

to the EM field. Once these decay rates are evaluated in Sec. IV,

the generation of entanglement will be elucidated with the

help of this diagram. Notice that the qubit-qubit dissipative

coupling induces modified collective decay rates (γ + γ12)

and (γ − γ12) which, for particular conditions to be detailed

in Sec. V, give rise to subradiant and superradiant states.

Up to now, we have assumed that the system evolves without

the influence of any external agent. As a consequence, the

upper levels in Fig. 3 become eventually depopulated and the

ground level |0〉, an unentangled state, is reached. To prevent

this situation, the decays can be compensated by externally

pumping the two qubits, thus maintaining the system in an

excited steady state. In cavity quantum electrodynamics, the

usual situation is that of incoherent pumping53,54 due to the

practical difficulties of coherently exciting qubits that are

embedded in a cavity. However, our system is geometrically

simpler and one can produce a coherent pumping by means

of a laser whose frequency, ωL, is close to resonance with

the frequency of the qubits.42,43 The description of this new

element requires the inclusion of an additional term in the

Hamiltonian of Eq. (4):

ĤL = −
1

2

∑

i

[h̄�i σ̂
†
i eiωLt + H.c.]. (8)

Here, the strength and phase of the laser are characterized

by the Rabi frequencies �i = diEL eikLri /h̄, where EL and kL

are the amplitude and wave vector of the driving laser field,

respectively. In the most general case, the determination of

the density matrix ρ̂(t) requires the numerical integration of

Eq. (3) with appropriate initial conditions.55 When the system

is pumped, the steady-state solution can be obtained by setting
˙̂ρ = 0 and solving the corresponding linear equations.

In both scenarios (pumped and nonpumped), once the

density matrix ρ̂(t) is known, it is possible to compute

various magnitudes of interest, such as those quantifying

the two-qubit entanglement, or first- and second-order co-

herence functions, which are directly related to measurable

properties. Regarding the quantification of entanglement, there

are several alternatives but all of them are related to each

other for a bipartite system.56 In this paper, we make use of

the concurrence,57 which ranges from zero for unentangled

states to one for maximally entangled states, and is defined

as follows: C ≡ [max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}], where

{λ1,λ2,λ3,λ4} are the eigenvalues of the matrix ρTρ∗T in

decreasing order (the operator T is σy ⊗ σy , σy being the

Pauli matrix). Typical measurable magnitudes include two-

times coherence functions.58,59 Their calculation is cumber-

some but completely standard, since the quantum regression

theorem58,59 establishes that any two-times coherence function

obeys the same dynamics as that of the density matrix ρ̂(t),

i.e., Eq. (3). As it will be discussed in Sec. V, entanglement is

related with coherence functions at zero delay. These are mea-

surable by means of a Hanbury Brown-Twiss-like experiment

detecting photon-photon correlations in the emission produced

by the de-excitation of the qubits. One advantage of zero-delay

correlations is that their calculation is simple because it does

not require the use of the quantum regression theorem.

IV. COMPUTATION OF THE GREEN’S TENSOR, DECAY

RATES, AND DIPOLE-DIPOLE SHIFTS

In this section, we compute the Green’s tensor correspond-

ing to the PWs described in Sec. II. This tensor encapsulates the

influence of the inhomogeneous environment and is required

for the determination of the decay rates, γij , and dipole-dipole

shifts, gij , appearing in the master equation.

A. Purcell factor

For very symmetric structures such as metallic planes60

or cylinders,61 analytic expressions for the Green’s tensor are

available, but for the less symmetric case of a channel PW

numerical simulations are necessary. Using the relationship49

E(r) = ω2μ0G(r,r′)d, (9)

the Green’s tensor can be inferred if the electric field E(r) in

position r radiated by a classical oscillating electric dipole d

at the source position r′ is known. We compute the EM field

excited by the dipole source with the finite element method

(FEM)62,63 using commercial software (COMSOL). The point

dipole is modeled as a linear harmonic current of length l,

intensity I0, and orientation given by the unit vector n. The

associated dipole moment63 is d = (iI0l/ω)n and, to satisfy

the dipole approximation, the length l is kept very short in

comparison with the emission wavelength (l = λ/330). To

model infinitely long PWs, the spatial domain of interest is

properly terminated with perfect matching layers that absorb

the outgoing electromagnetic waves with negligible reflection.

The size of the simulation domain is of the order of 30λ3. A

nonuniform mesh is employed where the typical element sizes

are chosen to be ∼λ/300 in the dipole neighborhood, ∼λ/40

at the waveguide metal interfaces, ∼λ/12 at the planar metal

interface surrounding the channel, and ∼λ/4 in vacuum away

from the source.

Following the explained procedure, we now evaluate Eq. (6)

to compute the total decay rate, γ = γ11, of one qubit in the

presence of a PW. This magnitude appears in Eq. (7) setting the

time scale of the dynamics. The Purcell factor, γ /γ0, is plotted

in Fig. 4 as a function of the vertical distance h between the PW

and the qubit along the vertical lines displayed in the insets

(γ0 denotes the decay rate in vacuum). To achieve optimal

coupling, the dipole is aligned parallel to the field polarization,

i.e., vertically for the cylindrical waveguide and horizontally

for the channel. The Purcell factor is strongly enhanced when

the emitter is very close to the metal surface (h → 0). This
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FIG. 4. (Color online) Purcell factor (γ /γ0) vs vertical height h

of the emitter along the lines displayed in the insets; cylinder (black

circles) and channel (red triangles).

effect is more pronounced for the channel, due to a higher

electric field when the emitter lies at the bottom of the groove.

The curve corresponding to the channel waveguide displays

distinct oscillations for large h. These oscillations result from

the constructive and destructive interference of the direct field

and the field reflected mainly at the flat metallic interface

surrounding the channel.

B. β factor

The total dipole emission that we have just presented can

be either radiated to vacuum, nonradiatively absorbed in the

metal, or coupled to guided modes.63,64 It is thus customary

to express the total decay rate as the sum of those three

contributions, γ = γr + γnr + γpl. The photons absorbed in

the metal and most photons radiated to vacuum do presumably

not contribute to the qubit-qubit coupling. It will therefore be

interesting to compute the decay rate to plasmons, γpl, and the

fraction of all emission that is coupled to plasmons, β = γpl/γ .

As will be shown later, these magnitudes play a dominant role

in the qubit-qubit interaction for appropriate qubit-PW vertical

distance. In a similar way to the above mentioned total decay

rate decomposition, the total Green’s tensor can be separated

as the sum of several terms corresponding to the three emission

channels. In order to compute γpl, the plasmon contribution to

the Green’s tensor is required, which is given by65,66

Gpl(r,r
′) =

i Et(rt) ⊗ Et(r′t)

2ωμ0

∫

S∞
dS uz(Et × H∗t)

eik(z−z′). (10)

The occurrence of the exponential factor eik(z−z′) mirrors

the quasi-one-dimensional character of the PW-mediated

interaction. The lateral extension of the plasmon is taken

into account by Et(rt) and Ht(rt), which are the transverse

EM fields corresponding to the mode supported by the PW

[Figs. 2(a) and 2(b) display the transverse electric field] and

are evaluated at the transverse position rt = (x,y). S∞ is the

(infinite) transverse area, uz is a longitudinal unit vector, and ⊗
denotes the tensor product. The derivation of Eq. (10) assumes

that the mode propagates toward the right (z > z′) and its

FIG. 5. (Color online) Beta factor (γpl/γ ) vs vertical height h of

the emitter along the lines displayed in the insets; cylinder (black

circles) and channel (red triangles).

absorption is not too high. To be more precise, Eq. (10) is

the transverse part of the Green’s tensor, which is the relevant

part since we will only consider transversely oriented dipole

moments. The modal fields entering Eq. (10) are obtained by

FEM numerical simulation of the corresponding eigenvalue

problem.63,67 Inserting Eq. (10) in the expression for the decay

rate (6), we obtain

γij, pl =
ω [diE

t(rt
i)] [dj Et(rt

j )]

h̄
∫

S∞
dS uz(Et × H∗t)

e−ki(z−z′) cos[kr(z − z′)],

(11)

which, for ri = rj and di = dj , becomes the plasmonic decay

rate, γpl. This expression clarifies that γpl is largest when the

emitter is positioned at the field maximum and aligned with

the field polarization. Once γ and γpl have been determined,

we can plot the β factor as a function of the vertical distance

h between the PW and the qubit (see Fig. 5). The general

behavior is similar for both the cylindrical and channel PWs.

First, the β factor is very low for small emitter-PW distance,

in sharp contrast to what is observed for the Purcell factor in

Fig. 4. The explanation is that γnr behaves as h−3, where h is

the qubit-metal distance,64 being the dominant contribution to

γ for h → 0 and effectively quenching the plasmon emission.

For intermediate h, the plasmonic decay dominates and β

attains a maximum. Finally, for large h, the emitter is outside

the reach of the plasmon mode and the unbounded radiative

modes have a larger weight leading to a decrease in β.

Nevertheless, the precise behavior of β is not identical for

both PWs. Channels display a higher maximum than cylinders

(0.91 at h = 160 nm versus 0.62 at h = 20 nm, respectively)

and, in addition, the maximum is broader for channels than for

cylinders (β deviates less than a 10%; of the maximum value

within an h range of �h = 100 nm for channels and of only

�h = 30 nm for cylinders). These features make channels a

more attractive structure to enhance the interaction mediated

by plasmons, in the range of parameters explored.
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C. Dipole-dipole shift and decay rates

For high β factor, a dipole couples mainly to plasmon modes

and this, in turn, warrants that the qubit-qubit interaction

is predominantly plasmon-assisted. Under this condition,

Eqs. (5) and (6) for gij and γij can be evaluated using

the plasmonic contribution of the Green’s tensor, Gpl(r,r
′),

of Eq. (10) instead of the total one, G(r,r′). The resulting

approximations for the dipole-dipole shift and decay rates are

as follows:35

gij ≃ gij, pl =
γ

2
βe−d/2ℓ sin(krd), (12)

γij ≃ γij, pl = γβe−d/2ℓ cos(krd), (13)

where it has been assumed that the transverse position of

both qubits and their orientations are identical. Notice that

plasmonic decay is accounted for in Eqs. (12) and (13) by the

presence of the exponential factor e−d/2ℓ. In order to check

the validity of this approximation, a comparison of the exact

parameters (gij , γij ) and the approximate ones (gij, pl, γij, pl) is

presented in Fig. 6 for the cylinder [panel (a)] and the channel

[panel (b)]. All parameters are normalized to the vacuum

decay rate γ0. In both cases, the position and orientation of the

qubits are chosen to maximize β, i.e., h = 20 nm and vertical

orientation for the cylinder, and h = 150 nm and horizontal

orientation for the channel. The parameters are represented

as a function of the qubit-qubit separation, d, normalized

to the modal wavelength, λpl = 2π/kr (at the operating

wavelength λpl is 417 nm for the cylinder and 474 nm for

the channel). As expected, the approximation is good for the

cylinder and excellent for the channel, in consonance with the

corresponding β factors (0.6 and 0.9, respectively). For the

cylinder, at the chosen h, the radiative modes play a small but

non-negligible role, which shows up as a small disagreement

between the exact and approximate results. For both PWs and

very small d, many radiative and guided modes contribute to

the interaction and the approximation breaks down. A different

approach to this issue leading to the same result can be found

in Ref. 51. The coupling parameters gij and γij are functions

of the separation d that oscillate with a periodicity given by

the plasmonic wavelength, λpl, and decay exponentially due

to the ohmic absorption of the plasmonic mode. Notice that

the maxima of γij and those of gij are shifted a distance

λpl/4, which implies that the noncoherent and coherent

terms of the master equation have different weights for

different qubit-qubit separations, a fact that will be important

in Sec. V.

D. Dipoles with different orientations or vertical positions

To close the analysis of the coupling parameters, we now

discuss the case when the dipoles have different dipole moment

orientations or vertical locations. This is very important from

the experimental point of view since a controlled positioning

of the emitters is technically challenging.68–70 When the two

dipoles are inequivalent in orientation or position, the mutual

decay rates are obtained in a similar way than Eq. (13) and can

be expressed as

γij, pl = √
γiiγjj

√

βiβje
−d/2ℓ cos(krd), (14)

FIG. 6. (Color online) Comparison of the exact coupling param-

eters (γij , gij ) with their plasmonic contributions (γij, pl, gij, pl), as a

function of the qubit-qubit horizontal separation normalized to the

plasmon modal wavelength, d/λpl. All parameters are normalized to

the vacuum decay rate γ0. (a) Cylindrical and (b) channel waveguides.

The position and orientations of the dipoles are detailed in the main

text.

which indicates that β ′s and γ ′s of both dipoles should be as

high as possible to obtain a high γij, pl. Since the dependence

of β with the vertical distance has been discussed already, we

focus now on the case of identical transverse positions but

different orientations for the dipoles. The dependence of β

with the angular deviation of the dipole with respect to the

electric field polarization is illustrated in Fig. 7. Panels (a) and

(b) correspond to the cylinder and the channel, respectively.

In both cases, the emitter position is chosen to maximize β

(h = 20 nm for the cylinder, and h = 150 nm for the channel).

The dipole moment is parallel to the transverse plane, and

the definitions of the angular deviation, θ , are sketched in

the diagrams of the corresponding panels. As a general rule,

the deviation of the dipole from the electric field direction

has a detrimental effect, and β becomes null for θ = 90◦.

Nevertheless, there is a broad angular range where β remains

relatively stable so that it is not critically affected by relatively

large misalignements. Figure 7 shows that β deviates less than

a 10% of the maximum value within a θ range of �θ = 60◦
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FIG. 7. (Color online) Beta factor of one emitter as a function

of the angle, θ , formed by the electric field and the dipole moment.

(a) Cylinder, and (b) channel. The insets show the total (continuous

line) and plasmon (dashed line) decay rates normalized to the vacuum

decay rate, (γ /γ0, γpl/γ0), as a function of θ . The positions of the

dipoles are detailed in the main text.

for cylinders and of �θ = 40◦ for channels. The functional

dependence of β with θ is not simple because although

γpl ∝ cos θ [see Eq. (11)], γ has a more complex dependence.

This can be observed by comparison of the curves in the insets

of Fig. 7. We conclude this section with a brief summary

of its main results. We have derived simplified expressions

for gij and γij , which depend on β and γ , and the analysis

has shown that channel PWs display higher values of the

later parameters. Therefore, to achieve a larger qubit-qubit

coupling, we will mainly focus on channel waveguides in

the discussion of the generation of entanglement in the next

section.

V. ENTANGLEMENT GENERATION

A. Spontaneous decay of a single excitation

We first consider two identical qubits in front of a channel

PW without external pumping. The qubits separation is set

as d = λpl and their transverse positions and orientations are

identical and chosen to maximize the β factor. In this simple

but insightful configuration, gij vanishes and γij attains its

FIG. 8. (Color online) Concurrence (black thick line) and popu-

lations ρ++ (red dashed line) and ρ−− (blue dotted line) vs time. (a)

Ideal PW satisfying β = 1 and ℓ = ∞. (b) Realistic channel PW. The

time is scaled with the emitter lifetime (1/γ ).

maximum value [see Fig. 6(b)], which means that the two-qubit

dynamics is purely dissipative. The system is initialized in

the (unentangled) state |1〉 = |e1g2〉 = 1√
2
(|+〉 + |−〉). In this

case, the evolution is confined to the subspace spanned by

{|0〉,|+〉,|−〉}, and the master equation is reduced to

ρ̇++(t) = −(γ + γ12)ρ++(t),

ρ̇−−(t) = −(γ − γ12)ρ−−(t),
(15)

ρ̇00(t) = (γ + γ12)ρ++(t) + (γ − γ12)ρ−−(t),

ρ̇+−(t) = −γρ+−(t).

There are only a few nonzero entries in ρ̂(t) and the resulting

expression for the concurrence is very simple:

C(t) =
√

[ρ++(t) − ρ−−(t)]2 + 4Im[ρ+−(t)]2, (16)

where we see that an imbalance of the populations ρ++ and

ρ−− results in a nonzero concurrence [ρ+−(t) is real for the

chosen conditions]. Solving Eq. (15), the concurrence becomes

C(t) = e−γ t sinh [γβe−λpl/(2ℓ)t]. (17)

This concurrence and the relevant populations are plotted in

Fig. 8 as a function of time (C is the black thick line, and ρ++
and ρ−− are the red dashed and blue dotted lines, respectively).

Panel (a) corresponds to the idealized case, where β = 1 and

the plasmon propagation length is ℓ = ∞. The entanglement

grows with time monotonically up to a value of C = 0.5. This

process can be easily understood using Eq. (16) and observing

the mentioned population imbalance. Since γ12 = γ , the

population ρ++ decays at an enhanced rate 2γ , whereas ρ−−
stays constant due to its zero decay rate. Panel (b) corresponds

to a realistic channel PW with β = 0.9 and ℓ = 1.7 μm. In this

case, the concurrence reaches a maximum value of C = 0.33

for t ≃ 1/γ and then decays exponentially to zero. Again, the

entanglement generation is a consequence of the populations

imbalance. For this realistic structure, both populations have

finite decay rates and the concurrence eventually vanishes. The

same setup with a cylindrical waveguide produces qualitatively
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similar results as in Fig. 8(b) but, since β = 0.6 in this case, the

maximum of the concurrence is lower, C = 0.21. In all three

cases, |+〉 and |−〉 are examples of superradiant and subradiant

states, respectively. We can now present a qualitative picture of

more general entanglement generation processes by referring

to Fig. 3. The upper level depopulates along two routes:

through the state |+〉, with decay rate γ + γ12, and through

the state |−〉 with decay rate γ − γ12. It is the difference in

the decay rates along both routes that results in the transient

build up of the concurrence. Notice that the magnitude and

sign of γ12 depend on d (see Fig. 6) causing that the roles of

the states |+〉 and |−〉 are exchanged for d = λpl/2, |+〉 being

subradiant and |−〉 superradiant.

B. Stationary state under external continuous pumping

We have just seen the spontaneous generation of entan-

glement but, as explained above, the process is a transient

phenomenon. To compensate the depopulation of the upper

levels, the system could be externally pumped by means of a

laser in resonance with the frequency of the qubits.42,43 The

concurrence reached in the corresponding steady state, C∞,

is plotted in Fig. 9 (black lines) as a function of the qubits

separation normalized to the modal wavelength, d/λpl. Three

kinds of coherent driving have been considered, differing

in the relative phase of the laser fields acting on qubit 1

and 2: symmetric pumping means identical Rabi frequen-

cies, �1 = �2 [panel (a)], antisymmetric pumping means

FIG. 9. (Color online) Steady-state concurrence (black line) and

qubit-qubit correlation (red dashed line) as a function of the normal-

ized separation d/λpl. (a) Symmetric pumping (�1 = �2 = 0.1γ ),

(b) antisymmetric pumping (�1 = −�2 = 0.1γ ), and (c) asymmetric

pumping (�1 = 0.15γ, �2 = 0).

�1 = −�2 [panel (b)], and asymmetric pumping corresponds

to �1 �= 0,�2 = 0 [panel (c)]. The absolute value of the

nonzero Rabi frequencies is 0.15γ for the asymmetric pump-

ing and 0.1γ for the other two situations, i.e., relatively

weak. It is very important to realize that we consider now

arbitrary separations between the qubits and this implies that

both coherent and dissipative dynamics are active, its relative

weight depending on d (see Fig. 6). With independence of the

pumping scheme, the concurrences C∞ in Fig. 9 present an

oscillating behavior with the qubits separation, and damped

due to the plasmon absorption. Importantly, the concurrence

maxima occur for those d/λpl where the absolute value of γij

is maximum (see Fig. 6). This suggests a relationship between

entanglement generation and dissipative two-qubit dynamics.

Let us justify the position of the maxima of C∞ applying the

ideas developed for the undriven case. When the pumping is

symmetric [panel (a)], the laser populates the symmetric state

|+〉. This state is subradiant for d = 1
2
λpl,

3
2
λpl, . . . leading to a

population imbalance and the corresponding concurrence. For

d = λpl,2λpl, . . ., |+〉 is superradiant and the pumping is not

able to induce a significant ρ++ population. For antisymmetric

pumping [panel (b)], it is the state |−〉 that is populated. This

state is subradiant for d = λpl,2λpl, . . . again leading to a popu-

lation imbalance and entanglement. For d = 1
2
λpl,

3
2
λpl, . . ., the

situation is reversed. Finally, for asymmetric pumping [panel

(c)] both |+〉 and |−〉 are populated and the situation is a

mixture of the previous two. In this case, maxima are found

for d = 1
2
λpl,λpl,

3
2
λpl, . . ., their concurrence being slightly

smaller than that found for the symmetric or antisymmetric

pumping.

To verify that the previous interpretation is correct, we plot

the tomography of the steady-state density matrix in Fig. 10.

We choose the case of asymmetric pumping and two different

qubit separations. In panel (a), d = λpl/2 and, besides the

population of the ground state, we recognize the large ρ++
population of the subradiant state |+〉 driven by the pumping,

and the negligible ρ−− population of the superradiant state |−〉.
For d = λpl [panel (b)], we now observe a large ρ−− population

of the subradiant state |−〉 driven by the pumping, and a

negligible ρ++ population of the superradiant state |+〉. Let

us remark that, strictly speaking, Eq. (16) is not correct when

pumping is included, because now further elements of ρ̂ are

nonzero. However, the tomography shows that these additional

elements are very small and Eq. (16) should be approximately

valid, justifying the argument that population imbalance leads

to concurrence. Since this population imbalance is due to the

different decay rates of the super- and subradiant states, both

of which are produced by dissipation, we want to emphasize

that the entanglement generation is driven by the two-qubit

dissipative dynamics. At this point, a brief comparison with the

results that can be achieved with cavities may be useful again.

In cavity QED, there is mainly coherent coupling between

the qubits, but no cross decay, and a coherently pumped

cavity is unable to generate any significant concurrence. It

would be possible to work with an incoherent pumping with

cross terms53,54 but, as mentioned previously, this scheme is

experimentally more difficult than our proposal.

Once the tomography of the density matrix is known,

the calculation of concurrence (or any other equivalent
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FIG. 10. (Color online) Tomography of the absolute value of the

elements of the steady state density matrix for asymmetric pumping

(�1 = 0.15γ, �2 = 0). (a) d = λpl/2, and (b) d = λpl.

entanglement quantifier) is straightforward. However, tomo-

graphic procedures are experimentally cumbersome and, for

this reason, it is of interest to establish connections between

entanglement and other more easily measurable magnitudes.

In our two-qubit system, entanglement is associated with the

probability that the state of the system is |+〉 or |−〉. In

other words, entanglement is related with having a strong

correlation between the states |1〉 = |e1g2〉 and |2〉 = |g1e2〉.
This must manifest in the correlation between one photon

emitted from qubit 1 and another photon emitted from qubit 2.

Hanbury Brown-Twiss-like experiments are able of measuring

photon-photon correlations and, in particular, the cross term

of the second-order coherence function, which, for zero delay,

takes the form58,59

g
(2)
12 =

〈σ †
1 σ

†
2 σ2σ1〉

〈σ †
1 σ1〉〈σ †

2 σ2〉
. (18)

Figure 9 displays together the concurrence C∞ (black contin-

uous lines) and the second-order correlation function at zero

delay g
(2)
12 (red dashed lines). In all three panels, it is observed

that when C∞ is large, a clear antibunching [g
(2)
12 → 0] takes

place, which is consistent with the system predominantly being

in a state |+〉 or |−〉. On the other hand, when C∞ → 0,

g
(2)
12 grows and the antibunching is reduced, which is again

FIG. 11. (Color online) Steady-state concurrence as a function

of the driving laser power for asymmetric pumping (�1 �= 0, �2 =
0) and qubits separation d = λpl/2. Ideal case β = 1 (black line),

cylinder β = 0.6 (black circles), and channel β = 0.9 (red triangles).

consistent with a decreased correlation between |1〉 and |2〉.
The main result to be drawn is the distinct relationship between

C∞ and g
(2)
12 . Lacking an analytical expression relating C∞

and g
(2)
12 , our results clearly support the idea of measuring

cross terms of the second-order coherence, at zero delay, as a

manifestation of entanglement.

Up to now we have considered a weak pumping rate.

For an experimental implementation of our proposal, it is

important to determine the pumping rate range for which

the described phenomena may happen. The influence of the

pumping intensity is analyzed in Fig. 11, which renders C∞
versus �1/γ . Here, asymmetric pumping is considered and

a qubit separation d = λpl/2. The results are computed for

three waveguides: a cylinder (β = 0.6, black circles), a channel

(β = 0.9, red triangles), and an ideal waveguide (β = 1 and

no absorption, black line). Each structure presents an optimum

pumping power to achieve maximum concurrence. In order to

obtain a non-negligible concurrence, the subradiant state has

to be populated at a rate faster than its lifetime, which explains

both why concurrence is small at low pumping rates and why

the structures with lower β require a higher pumping to reach

their optimum entanglement. In addition, we observe that the

maximum attainable concurrence improves for higher β factor,

which again justifies the use of channel instead of cylindrical

PWs.

Finally, we pay attention to how the generation of entangle-

ment is affected by the presence of dephasing. For this purpose,

we have recomputed the dynamics of the system including now

in the master equation (3) an additional term representing pure

dephasing. This term is given by54

Ldeph[ρ̂] =
γ φ

2

∑

i

[[σ̂
†
i σ̂i,ρ̂],σ̂

†
i σ̂i]. (19)

The value of the dephasing rate γ φ is difficult to estimate

in general because it is very dependent on the particular

realization of the qubit and it is strongly influenced by the

presence of the metallic part of the system. For nitrogen-

vacancy centers in diamond under resonant pumping, pure

dephasing times up to 100 ns have been measured.71,72 For the

typically considered situation in our system, where the Purcell

factor is about 10, this corresponds to γ φ about one hundredth

of the emission rate γ . In our calculations, we will consider

larger dephasing values, both as a conservative measure and
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FIG. 12. (Color online) Steady-state concurrence as a function of

the normalized separation d/λpl for different pumping conditions and

dephasing rates. (a) γ φ/γ = 0.0, (b) γ φ/γ = 0.2, and (c) γ φ/γ =
0.4. In all panels, the blue dotted lines correspond to symmetric

pumping (�1 = �2 = 0.1γ ), the red dashed lines correspond to

antisymmetric pumping (�1 = −�2 = 0.1γ ), and the black continu-

ous lines correspond to asymmetric pumping (�1 = 0.15γ, �2 = 0).

Notice that the vertical scale is not the same in the three panels.

because they may be more relevant for other emitter types.

Figure 12 shows the steady-state concurrence as a function of

the qubit-qubit separation d for different values of the pure

dephasing rate and various pumping conditions. Dephasing

grows from zero in panel (a) to γ φ/γ = 0.4 in panel (c). The

qualitative behavior is the same in all panels but the value

of C∞ decreases as the dephasing rate grows (notice that the

vertical scale is not the same in all panels). Nevertheless, the

value of the concurrence maxima are non-negligible even in

the worst case of panel (c). Moreover, this decrease could

possibly be partially compensated by increasing the intensity

of the pumping laser. Therefore our results show that pure

dephasing reduces qubit-qubit entanglement but not as much

as to preclude its formation by the mediation of the surface

modes supported by 1D plasmonic waveguides.

VI. CONCLUSIONS

We have presented a detailed analysis of how plasmonic

waveguides can be used to achieve a high degree of entan-

glement between two distant qubits. A full account of the

theoretical framework has been also described. Importantly,

the degrees of freedom associated with the surface plasmons

can be traced out, leading to a master equation formalism for

the two qubits in which the two contributions to the effective

interaction between them (coherent and dissipative terms)

are then obtained by means of the classical electromagnetic

Green’s function. We have shown that the main ingredients to

obtain a high value for the concurrence are a large β factor and

the one-dimensional character of the surface modes supported

by the plasmonic waveguide. By studying how steady-state

entanglement can be generated, we have demonstrated that

the dissipative part of the qubit-qubit interaction mediated

by plasmons is the main driving force in order to achieve

entanglement. We have also analyzed the sensitivity of this

plasmon-mediated entanglement to different parameters, such

as the dipole orientations of the qubits, the pumping rate,

and the inherent presence of dephasing mechanisms in the

system. In all cases, we have found that the dissipation-

driven generation of entanglement is robust enough to be

observed experimentally by using plasmonic waveguides that

are currently available. Finally, we have proposed a feasible

way to measure the emergence of entanglement in these

structures by establishing a direct link between the concurrence

and the cross-term second-order coherence functions that can

be extracted from the experiments. We would like to emphasize

that the scheme presented in this paper could be also operative

for other types of photonic waveguides provided that the two

main ingredients described above (large β factor and quasi-1D

character) are present. Our results demonstrate that plasmonic

waveguides can be used as a reliable toolbox for studying and

devising quantum optics phenomena without the necessity of

a cavity.
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