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Abstract. Superconducting qubits coupled to electric or nanomechanical
resonators display effects previously studied in quantum electrodynamics (QED)
as well as extensions thereof. Here, we consider a driven qubit coupled to
a low-frequency oscillator and study the influence of dissipation. When the
qubit is driven to perform Rabi oscillations, with Rabi frequency in resonance
with the oscillator, the latter can be driven far from equilibrium. Blue detuned
driving leads to a population inversion in the qubit and lasing behavior of the
oscillator (‘single-atom laser’). For red detuning, the qubit cools the oscillator.
This behavior persists at the symmetry point where the qubit–oscillator coupling
is quadratic and decoherence effects are minimized. Here, the system realizes a
‘single-atom-two-photon laser’.
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1. Introduction

Recent experiments on quantum state engineering with superconducting circuits realized
concepts originally introduced in the field of quantum optics, as well as extensions thereof,
e.g. to the regime of strong coupling [1]–[8]. Josephson qubits play the role of two-level atoms,
whereas electric or nanomechanical oscillators play the role of the quantized radiation field.
These ‘circuit quantum electrodynamics (QED)’ experiments prompted substantial theoretical
activities [9]–[19]. In most QED or circuit QED experiments, the atom or qubit transition
frequency is near resonance with the oscillator. In contrast, in the experiments of [1], with
setup shown in figure 1(a), the qubit is coupled to a slow LC tank circuit with frequency
(ωT/2π ∼ MHz) much lower than the qubit’s level splitting (1E/2π h̄ ∼ 10 GHz). The idea
of this experiment is to drive the qubit to perform Rabi oscillations with Rabi frequency in
resonance with the oscillator, �R ≈ ωT. In this situation, the driven qubit should excite the
oscillator, and indeed in the experiments a substantial enhancement of the amplitude of the
oscillator was observed [1].

Initial attempts to explain the effect did not resolve several issues [20, 21]. In the
experiments, in order to minimize decoherence effects, the Josephson flux qubit was biased near
the flux degeneracy point. At this symmetry point also the coupling to the oscillator is tuned to
zero, and the enhancement should vanish. Uncontrolled small deviations from the symmetry
point might lead to the observed effect [1, 20], but this explanation was not supported by
experiments. Here, we explore an alternative, namely that a quadratic coupling to the oscillator
near the resonance condition �R ≈ 2ωT is responsible for the observed enhancement. In the
following, we will consider both linear as well as quadratic coupling, which dominate away
from the symmetry point and at this point, respectively.

The second unresolved problem is the magnitude of the effect. The experiments [1] showed
an increase by a factor of 4–5 in the amplitude, i.e. 16–25 in the number of oscillator quanta.
The theory of [20], valid in the perturbative regime, predicts a much weaker effect. We obtain
a strong effect as follows [18]: for blue detuning of the qubit driving, a population inversion is
created in the qubit at the Rabi frequency, and at the resonance �R ≈ ωT the system becomes a
‘single-atom laser’, or for �R ≈ 2ωT a ‘single-atom-two-photon laser’ [22, 23]. In both cases,
the lasing instability is reached for realistic system parameters. In this state, the oscillator
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Figure 1. (a) In the setup of [1], an externally driven three-junction flux
qubit is coupled inductively to an LC oscillator. (b) A charge qubit is coupled
capacitively to a mechanical resonator.

no longer responds linearly to external perturbations (its effective friction constant becomes
negative), and the number of quanta in the oscillator increases strongly until saturation is
reached due to nonlinear effects. The analysis of the driven circuit QED system shows that
its properties depend strongly on relaxation and decoherence effects in the qubit.

A related situation, called ‘dressed-state lasing’, had been studied before in quantum
optics [24]–[26]. The present scenario differs from that one in so far as the resonator modes
are coupled to the low-frequency Rabi oscillations rather than to the high-frequency Mollow
transitions. The Rabi frequency can be readily tuned to resonance with the oscillator, which
should facilitate reaching the lasing threshold and a proper lasing state. The unusual resonance
condition has also been explored in [27] in connection with coupling of atoms.

For red detuning of the qubit driving, the qubit should cool the oscillator [18]. A similar
strategy for cooling of a nanomechanical resonator via a Cooper pair box qubit has been recently
suggested in [28].

Also in situations where the qubit, e.g. a Josephson charge qubit, is coupled to a nano-
mechanical oscillator (figure 1(b)) it either cools or amplifies the oscillator. On one hand, this
provides an important tool on the way to ground state cooling, on the other hand, it provides a
realization of what is called a SASER [29].

Lasing and cooling of the oscillator have also been observed in a slightly different setup,
when the Rabi-driven qubit is replaced by a superconducting single-electron transistor (SSET)
biased near the Josephson quasiparticle cycle [30]–[32]. Coupled to a nanomechanical or an
electric oscillator, the SSET can be used to either cool the oscillator [33]–[38] or to produce
laser-like behavior. The latter has been demonstrated recently in the experiments of Astafiev
et al [39].

The present paper is organized as follows. In the following section, the system of driven
qubit coupled to a low-frequency oscillator is introduced and analyzed theoretically using the
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appropriate rotating wave approximations (RWAs) and the Schrieffer–Wolf transformation.
We thus arrive at an effective Hamiltonian of the system, which allows us to proceed using
techniques from quantum optics. We then consider dissipation in the rotating frame and show
that it plays a crucial role for the lasing state. In particular, we formulate the master equation,
which forms the basis for a numerical analysis. Finally, we derive the Langevin equations
describing the dynamics of the oscillator in the presence of the driven qubit. In the next section,
we present the results of the numerical analysis of the Langevin equations as well as of the full
master equation and interpret them in terms of lasing with or without bistability and cooling.
The paper concludes with a discussion covering several extensions.

2. Theory

2.1. The Hamiltonian

The systems to be considered are shown in figure 1. A qubit is coupled to an oscillator and
driven to perform Rabi oscillations. To be specific, we first analyze a flux qubit coupled to an
electric oscillator (figure 1(a)) with Hamiltonian

H = −
1
2 ε

(
8dc

x

)
σz −

1
2 1σx − h̄�R0 cos(ωdt) σz + h̄ωT a†a + g σz

(
a + a†

)
. (1)

The first two terms describe the qubit, with Pauli matrices σx,z operating in the flux basis
of the qubit. The energy bias between the flux states ε(8dc

x ) is controlled by an external dc
magnetic flux 8dc

x , and 1 is the tunneling amplitude between the basis states. The resulting
level spacing 1E ≡

√
ε2 + 12 typically lies in the range of several GHz. The third term accounts

for the driving of the qubit by an applied ac magnetic flux with amplitude �R0 and frequency
ωd. The last two terms describe the oscillator with frequency ωT = 1/

√
LTCT as well as the

qubit–oscillator interaction. In the experiments of [1], ωT lies in the range of several 10 MHz,
whereas the coupling constant g ≈ M I p IT,0 is of the order of 10 MHz. Here M is the mutual
inductance, Ip the magnitude of the persistent current in the qubit, and IT,0 =

√
h̄ωT/2LT the

amplitude of the vacuum fluctuation of the current in the LC oscillator.
After transformation to the eigenbasis of the qubit, which is the natural basis for the

description of the dissipation, the Hamiltonian reads

H = −
1
21Eσz − h̄�R0 cos (ωdt) (sin ζ σz − cos ζ σx) + h̄ωT a†a

+g (sin ζ σz − cos ζ σx)
(
a + a†

)
, (2)

with tan ζ = ε/1 and 1E ≡
√

ε2 + 12.
Because of the large difference of the energy scales between the qubit and the

oscillator, 1E � h̄ωT, it is tempting, in the spirit of the usual RWA, to drop the transverse
coupling term −gcos ζ σx(a + a†) of equation (2). However, near the symmetry point (where
sin ζ = 0) the longitudinal coupling is weak. Therefore, we retain the transverse coupling, but
transform it by employing a Schrieffer–Wolff transformation, US = exp(iS), with generator
S = (g/1E)cos ζ (a + a†) σy , into a second-order longitudinal coupling. On the other
hand, since h̄ωd ∼ 1E , we can drop within RWA the longitudinal driving term
−h̄�R0 cos(ωdt) sin ζ σz. The Hamiltonian then reads

H = −
1
2 1E σz + h̄�R0 cos (ωdt) cos ζ σx + h̄ωT a†a

+g sin ζ σz

(
a + a†

)
−

g2

1E
cos2 ζ σz

(
a + a†

)2
. (3)
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A further unitary transformation with UR = exp(−iωdσzt/2) brings the Hamiltonian to the
rotating frame, H̃ ≡ UR HU †

R + ih̄U̇RU †
R, with

H̃ =
1
2 h̄δω σz + 1

2 h̄�R0 cos ζ σx + h̄ωT a†a + g sin ζ σz

(
a + a†

)
−

g2

1E cos2 ζ σz

(
a + a†

)2
. (4)

Here δω ≡ ωd − 1E/h̄ is the detuning. After diagonalization of the qubit terms, we obtain

H̃ =
1

2
h̄�R σz + h̄ωT a†a + g sin ζ

[
sin β σz − cos β σx

] (
a + a†

)
−

g2

1E
cos2 ζ

[
sin β σz − cos β σx

] (
a + a†

)2
, (5)

with �R =

√
�2

R0 cos2 ζ + δω2 and tan β = δω/(�R0 cos ζ ).
Finally, we employ a second RWA. While the first one dropped counter-rotating terms with

frequencies of order 1E/h̄, the second one drops terms oscillating with Rabi frequency �R or
the oscillator frequency ωT. This (second RWA) approximation will be justified below. In the
interaction representation with respect to the non-interacting Hamiltonian, H̃ 0 = (h̄�R/2)σz +
h̄ωTa†a, we finally arrive at

H̃ I = g1

(
a†σ−e−i(�R−ωT)t + h.c.

)
+ g2

(
a†2σ−e−i(�R−2ωT)t + h.c.

)
+ g3

(
a†a + aa†

)
σz. (6)

We kept both single-photon and two-photon interactions, with g1 = −gsin ζcos β and g2 =

(g2/1E)cos2ζcos β, although within RWA only one of them survives, i.e. the single-
photon term for �R ∼ ωT, or the two-photon term for �R ∼ 2ωT. The last term of (6) with
g3 = −(g2/1E)cos2ζ sin β is the ac-Stark effect, causing a qubit-state-dependent frequency
shift of the oscillator [40]. In what follows, we will assume that the qubit is kept near the
symmetry point, i.e. ε � 1 and cos ζ ≈ 1.

2.2. Transition rates in the rotation frame

The transformation to ‘dressed states’ in the rotating frame modifies the relaxation, excitation
and decoherence rates as compared to the standard results [41, 42]. To illustrate these effects
and justify the treatment of the dissipation in later sections, we first consider a driven qubit
(ignoring the coupling to the resonator) coupled to a bath observable X̂ ,

H = −
1
2 1E σz + h̄�R0 cos (ωdt) σx −

1
2

(
bxσx + byσy + bzσz

)
X̂ + Hbath. (7)

In the absence of driving, �R0 = 0, and for regular (i.e. smooth as a function of the
frequency) power spectra of the fluctuating bath observables, we can proceed using golden
rule-type arguments [41, 42]. The transverse noise, coupling to σx and σy , is responsible for
relaxation and excitation processes with rates

0↓ =
|b⊥|

2

4h̄2 〈X̂ 2
〉ω=1E ,

0↑ =
|b⊥|

2

4h̄2 〈X̂ 2
〉ω=−1E ,

(8)

whereas longitudinal noise, coupling to σz, produces a pure dephasing with rate

0∗

ϕ =
|bz|

2

2h̄2 SX(ω = 0). (9)
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Here b⊥ ≡ bx + iby , and we introduced the ordered correlation function 〈X̂ 2
〉ω ≡∫

dteiωt
〈X̂(t)X̂(0)〉, as well as the power spectrum, i.e. the symmetrized correlation func-

tion, SX(ω) ≡ (〈X̂ 2
〉ω + 〈X̂ 2

〉−ω)/2. The rates (8) and (9) also define the relaxation rate
1/T1 = 01 = 0↓ + 0↑ and the total dephasing rate 1/T2 = 0ϕ = 01/2 + 0∗

ϕ, which appear in the
Bloch equations for the qubit.

To account for the driving with frequency ωd, it is convenient to transform to the rotating
frame via a unitary transformation UR = exp(−iωdσzt/2). Within RWA, the transformed
Hamiltonian reduces to

H̃ =
1
2 h̄

[
�R0σx + δωσz

]
+ Hbath −

1
2

[
bzσz + b⊥eiωdtσ− + b∗

⊥
e−iωdtσ+

]
X̂ , (10)

with detuning δω ≡ ωd − 1E/h̄. The RWA cannot be used in the second line of (10), since
the fluctuations X̂ contain potentially all frequencies, including those of order ±ωd, which can
compensate fast oscillations.

Diagonalizing the first term of (10) one obtains

H̃ =
1

2
h̄�R σz + Hbath −

[
sin β

2
bz +

cos β

4
(b∗

⊥
e−iωdt + b⊥ eiωdt)

]
σz X̂

−

{[
(sin β + 1)

4
b∗

⊥
e−iωdt +

(sin β − 1)

4
b⊥ eiωdt

−
cos β

2
bz

]
σ+ X̂ + h.c.

}
, (11)

with �R =

√
�2

R0 + δω2 and tan β = δω/�R0.
From here golden rule arguments yield the relaxation and excitation rates in the rotating

frame [43]

0̃↓ ≈
b2

z

4h̄2 cos2 β 〈X̂ 2
〉�R +

|b⊥|
2

16h̄2

[
(1 − sin β)2

〈X̂ 2
〉ωd+�R + (1 + sin β)2

〈X̂ 2
〉−ωd+�R

]
,

(12)

0̃↑ ≈
b2

z

4h̄2 cos2 β 〈X̂ 2
〉−�R +

|b⊥|
2

16h̄2

[
(1 − sin β)2

〈X̂ 2
〉−ωd−�R + (1 + sin β)2

〈X̂ 2
〉ωd−�R

]
,

as well as the ‘pure’ dephasing rate [43]

0̃∗

ϕ ≈
b2

z

2h̄2 sin2 β SX(ω = 0) +
|b⊥|

2

4h̄2 cos2 β SX(ωd). (13)

We note the effect of the frequency mixing, and due to the diagonalization the effects of
longitudinal and transverse noise on relaxation and decoherence get mixed. In addition, we note
that the rates also depend on the fluctuations’ power spectrum at the Rabi frequency, 〈X̂ 2

〉±�R .
For a sufficiently regular power spectrum of the fluctuations at frequencies ω ≈ ±1E/h̄,

we can ignore the effect of detuning and the small shifts by ±�R as compared to the high
frequency ωd ≈ 1E/h̄. We further assume that �R � kT/h̄. In this case, we find the simple
relations

0̃↑ =
(1 + sin β)2

4
0↓ +

(1 − sin β)2

4
0↑ +

1

2
cos2 β 0ν,

0̃↓ =
(1 − sin β)2

4
0↓ +

(1 + sin β)2

4
0↑ +

1

2
cos2 β 0ν, (14)

0̃∗

ϕ = sin2 β 0∗

ϕ +
cos2 β

2
(0↓ + 0↑),
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where the rates in the lab frame are given by equation (8) and the new rate, 0ν ≡
1

2h̄2 b2
z SX(�R),

depends on the power spectrum at the Rabi frequency.
To proceed, we concentrate on the regime relevant for our system. At low temperatures,

kBT � 1E ≈ h̄ωd, we can neglect 0↑ as it is exponentially small. We also assume that the
system is tuned near the symmetry point of the qubit, where bz ≈ 0. More precisely, we assume
that 0ν can be neglected as compared to 0↓. Even if very strong 1/ f noise causes substantial
pure dephasing at and near the symmetry point, the rate 0ν depends on the noise power spectrum
at the frequency �R which is usually higher than the characteristic frequencies of the 1/ f noise.
Thus we can safely neglect 0ν and we are left with

0̃↓/↑ ≈
(1 ∓ sin β)2

4
00, 0̃∗

ϕ ≈
cos2 β

2
00, (15)

where

00 ≡
|b⊥|

2

4h̄2 〈X̂ 2
〉ω=1E/h̄ = 0↓. (16)

The ratio of up- and down-transitions depends on the detuning and can be expressed by
an effective temperature. Right on resonance, where β = 0, we have 0̃↑ = 0̃↓, corresponding
to infinite temperature or a classical drive. For ‘blue’ detuning, β > 0, we find 0̃↑ > 0̃↓, i.e.
negative temperature. This leads to a population inversion of the qubit, which is the basis for
the lasing behavior which will be described below.

In a more careful analysis, not making use of the ‘white noise’ approximation, we obtain
for β = 0

0̃↓

0̃↑

=
〈X̂ 2

〉ωd+�R

〈X̂ 2〉ωd−�R

. (17)

For example, for Ohmic noise and low bath temperature this reduces to 0̃↓/0̃↑ ≈ 1 + 2�R/ωd,
which corresponds to an effective temperature of order 2h̄ωd/kB ≈ 21E/kB, which by
assumption is high but finite. The infinite temperature threshold is crossed toward negative
temperatures at weak blue detuning when the condition

(1 + sin β)2

(1 − sin β)2
∼ 1 +

2�R

ωd
(18)

is satisfied. We note that all qualitative features are well reproduced by the approximation (15).
To illustrate how the population inversion is created for blue detuning we show in figure 2

the level structure, i.e. the formation of dressed states, of a near-resonantly driven qubit. For
the purpose of this explanation the driving field is quantized. This level structure was described
first by Mollow [25]. The picture also illustrates how for blue detuning a pure relaxation process,
0↓ = 00, in the laboratory frame predominantly leads to an excitation process, 0̃↑, in the rotating
frame.

2.3. The Liouville equation in the rotating frame

Within the approximation leading to the rates (14) the Liouville equation governing the
dynamics of the density matrix in the rotating frame and in the interaction representation with
respect to H̃ 0 can be presented in a simple Lindblad form,

˙̃ρ = −
i

h̄

[
H̃ I, ρ̃

]
+ L̃ Qρ̃ + LRρ̃, (19)

New Journal of Physics 10 (2008) 095018 (http://www.njp.org/)

http://www.njp.org/


8

Figure 2. Relaxation rates in the basis of the dressed states. The left staircase
denotes the eigenstates of the undriven qubit, |↑〉, |↓〉 and of the (quantized)
driving field, |m〉, before the driving is switched on, i.e. for �R0 = 0. The
Hamiltonian in this basis is obtained from (3) by replacing h̄�R0 cos ωdt with
λ(d† + d), where λ is the coupling constant between the qubit and the driving
field and d and d† are the annihilation and the creation operators of the driving
field. The right staircase stands for the dressed states of a driven qubit near
resonance. They are obtained by, e.g. diagonalization (blue dashed lines) of the
2 × 2 Hamiltonian which couples the states |m, ↑〉 and |m + 1, ↓〉. This gives
|g〉 = cos(π

4 −
β

2 )|m, ↑〉 + sin(π

4 −
β

2 )|m + 1, ↓〉 and |e〉 = − sin(π

4 −
β

2 )|m, ↑〉 +
cos(π

4 −
β

2 )|m + 1, ↓〉. The bare Rabi frequency is given by �R0 ≈ λ
√

m̄, where
m̄ is the average number of photons in the coherent (classical) driving field. The
red arrows stand for relaxation rates. All rates are directed down in energy, since
only the relaxation 0↓ is considered. However, in the dressed states basis, the
dominant rate is from the state |g〉 to the state |e〉, i.e. an inversion takes place.

where ρ̃ is the density matrix in the rotating frame in the interaction representation. The qubit
dissipation is described by

L̃ Qρ̃ =
0̃↓

2
(2σ−ρ̃σ+ − ρ̃σ+σ− − σ+σ−ρ̃)

+
0̃↑

2
(2σ+ρ̃σ− − ρ̃σ−σ+ − σ−σ+ρ̃) +

0̃∗

ϕ

2
(σzρ̃σz − ρ̃) . (20)

It has the same form as in the lab frame, except that the rates are those appropriate for the
rotating frame. Within the approximations leading to the rates (15), the master equation (19)
can be obtained from the master equation in the lab frame by performing the transformations
outlined above for the Hamiltonian. The resonator damping, with strength parametrized by κ ,
can be written as [44]

LRρ̃ =
κ

2
(Nth + 1)

(
2aρ̃a†

− a†aρ̃ − ρa†a
)

+
κ

2
Nth

(
2a†ρ̃a − aa†ρ̃ − ρ̃aa†

)
. (21)

Here Nth = 1/[exp(h̄ωT/kT ) − 1] is the thermal photon number in the resonator.
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Since we consider qubits with high degree of coherence, we are motivated to study the
regime 00, κ, g1, g2, g3 � ωT, �R, where the second RWA performed above with respect to
frequencies ωT, �R is justified (from now on we set h̄ = 1).

2.4. The single-qubit laser

In the following we will consider two resonance situations, when the Rabi frequency is in
resonance with the oscillator, �R ≈ ωT, or when �R ≈ 2ωT. In these cases either the one- or the
two-photon interactions dominate. We will study the effects of detuning of the Rabi frequency
�R relative to that of the oscillator. We will also investigate the effects of blue or red detuning
of the qubit driving frequency, δω ≡ ωd − 1E .

2.4.1. One-photon interaction. Near the resonance condition, �R ≈ ωT, the Hamiltonian (6)
in RWA reduces to

HI = g1

(
a†σ−e−i(�R−ωT)t + h.c.

)
+ g3

(
a†a + aa†

)
σz. (22)

From here we can proceed in the frame of the standard semiclassical approach [44, 45] of
laser physics with the following main steps: in the absence of fluctuations, the system is
described by Maxwell–Bloch equations for the classical variables α = 〈a〉, α∗

= 〈a†
〉, s± = 〈σ±〉

and sz = 〈σz〉, which can be derived from the Hamiltonian (22) if all correlation functions
are assumed to factorize. Next the qubit variables can be adiabatically eliminated as long as
κ, g1 � 0̃1, 0̃ϕ , which leads to a closed equation of motion for α. If we account for fluctuations,
e.g. due to thermal noise in the resonator, α becomes a stochastic variable obeying a Langevin
equation [44],

α̇ =

[
C

0̃ϕ + iδ�
sst

z − κ − 4ig3sst
z

]
α

2
+ ξ(t) . (23)

Here C ≡ 2g2
1 , and sst

z = −D0/(1 + |α2
|/ñ0) is the stationary value of the population difference

between the qubit levels, with D0 = (0̃↓ − 0̃↑)/0̃1 being the normalized difference between
the rates with 0̃1 = 0̃↑ + 0̃↓. Furthermore, 0̃ϕ = 0̃1/2 + 0̃∗

ϕ is the total dephasing rate.
The detuning of the Rabi frequency enters in combination with a frequency renormalization,
δ� ≡ �R − ωT + g3|α|

2. We further introduced the photon saturation numbers n0 = 0̃ϕ0̃1/4g2
1

and ñ0 ≡ n0(1 + δ�2/0̃2
ϕ).

As one can see from equation (23) the driving increases the photon number n = |α|
2. Once

it reaches ñ0 the qubit’s negative contribution to the oscillator’s effective friction coefficient
starts to diminish and, finally, causes the saturation of n. The saturation number is easiest to
understand in the framework of the Jaynes–Cummings spectrum, i.e. the spectrum of a coupled
system consisting of a two-level system and an oscillator at resonance with each other. The
coupling lifts the degeneracy between the states |↑, n〉 and |↓, n + 1〉 and creates an energy
splitting of order g1

√
n. Once the occupation number n reaches the saturation number n0 the

energy splitting g1
√

n becomes larger than the rate 01 which, in the case of population inversion,
serves also as the pumping rate. At this stage, the pumping becomes ineffective and the growth
of n slows down and for still larger photon numbers stops.

The Langevin force ξ = ξosc + ξqb arises due to the thermal noise of the oscillator’s
dissipative environment, ξosc, as well as the noise of the driven qubit, ξqb. By the fluctuation
dissipation theorem, the former satisfies 〈ξosc(t)ξ ∗

osc(t
′)〉 = κ Nthδ(t − t ′) and 〈ξosc(t)ξosc(t ′)〉 = 0.
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The noise originating from the qubit can be estimated as 〈ξqb(t)ξ ∗

qb(t
′)〉 = (g2

1/0̃ϕ)δ(t − t ′) and

〈ξqb(t)ξqb(t ′)〉 = 0. Provided the oscillator’s thermal noise is strong, i.e. if κ Nth � g2
1/0̃ϕ , the

qubit’s noise can be neglected compared to the former.

2.4.2. Two-photon interaction. The two-photon effect dominates near the resonance
�R ≈ 2ωT. In RWA, the Hamiltonian reduces to

HI = g2

(
a†2σ−e−i(�R−2ωT)t + h.c.

)
+ g3

(
a†a + aa†

)
σz. (24)

The corresponding Langevin equation for the resonator variable reads

α̇ =

[
C

0̃ϕ + iδ�
sst

z − κ − 4ig3sst
z

]
α

2
+ ξ(t), (25)

i.e. it is of the same form as equation (23) except that C ≡ 4g2
2|α|

2 and sst
z = −D0/

(1 + (|α2
|/ñ0)

2). The photon saturation number is now given by n0 = (0̃ϕ0̃1/4g2
2)

1/2 and
ñ0 ≡ n0(1 + δ�2/0̃2

ϕ)
1/2. The detuning of the Rabi frequency for two-photon interaction is given

by δ� ≡ �R − 2ωT + g3|α|
2. Again ξ(t) is mostly due to the thermal noise, while noise arising

from the qubit can be neglected if κ Nth � g2
2 n̄/0̃ϕ .

3. Results

3.1. Results obtained from the Langevin equation

If one neglects the frequency shifts of the oscillator, i.e. for g3 = 0, the Fokker–Planck equations
corresponding to the Langevin equations (23) and (25) have exact analytic solutions [45]. Also
for g3 6= 0 the equations (23) and (25) written as α̇ = − f (n)α/2 + ξ(t) can be transformed into
equations for the average number of photons 〈|α|

2
〉 = n̄ in the form ˙̄n = −〈nRe[ f (n)]〉 + κ Nth.

In the steady state, for n̄ � 1 they can be approximated by n̄Re[ f (n̄)] = κ Nth. The results of
this analysis are shown in figure 3. To demonstrate both the one-photon and the two-photon
effects, we assumed that the qubit is biased sightly off the symmetry point, ε = 0.011. The
two-photon resonance (the outer one) persists for ε = 0, whereas the one-photon resonance
(the inner one) vanishes there. We observe that the solution shows bistability bifurcations [46]
(see below). As a result, we see in figure 3 sharp drops of n̄ for both resonances as only the
lowest stable value is plotted.

In the lasing regime, we can estimate the asymptotic solutions analytically. In the
one-photon case, assuming n̄ � ñ0, we obtain from equation (23)

n̄ ∼ Nth +
(−D0)0̃1

2κ
. (26)

This result holds independent of whether the second contribution due to the qubit is larger
or smaller than the thermal number Nth as long as n̄ � ñ0. In the two-photon case, assuming
n̄ � ñ0, we obtain from equation (25)

n̄ ∼ Nth +
(−D0)0̃1

κ
. (27)
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Figure 3. Average number of photons in the resonator as a function of the driving
detuning δω and amplitude �R0. Peaks at δω > 0 correspond to lasing, while dips
at δω < 0 correspond to cooling. The inner curve corresponds to the one-photon
resonance which exists only away from the symmetry point. Here, we assumed
ε = 0.011. The outer curve describes the two-photon resonance, which persists
at ε = 0. In domains of bistability the lowest value of n̄ is plotted (leading to the
sharp drops in both curves). We chose the following parameters for the qubit:
1/2π = 1 GHz, ε = 0.011, 00/2π = 125 kHz, the resonator: ωT/2π = 6 MHz,
κ/2π = 0.34 kHz, and the coupling: g/2π = 3.3 MHz. The bath temperature is
T = 10 mK.

3.2. Solution of the master equation

We also solved the full master equation (19) numerically, which provides access not only to
the average number of photons in the oscillator, n̄, but also to the whole distribution function
P(n). Assuming a low thermal number, Nth = 5 and a relatively high relaxation constant of the
oscillator κ/2π = 1.7 kHz, we reach convergence with a limited number of photon basis states
(n 6 100). In figure 4, the solutions of the Langevin equations (23) and (25) and those of the
master equation (19) are compared. By construction, the solution of the master equation (19)
provides the uniquely defined stationary distribution function for the occupation number P(n).
Thus, the average occupation number defined as n̄ =

∑
n n P(n) is also uniquely defined and is

plotted in figure 4. In contrast, the Langevin equations (23) or (25) yield in a certain interval of
parameters two stable solutions for n̄ = |α|

2, as shown in figure 4. We observe that in regimes
of single stability the solutions of the master equation and of the Langevin equations agree
very well. In the bistability regime, the master equation produces approximately the average
between the two stable solutions of the Langevin equation. This indicates that in the bistability
regime, the system switches between the two stable states. Further indications of this ‘telegraph’
behavior are obtained from the analysis of the Fano factor.

In figure 5, the Fano factor F = (〈n2
〉 − 〈n〉

2)/〈n〉 of the photon number distribution is
presented. We observe two phenomena. First, in the regime of lasing without bistability, the
Fano factor is reduced as compared to that of the thermal state. Indeed, the Fano factor in the
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Figure 4. Average number of photons n̄ versus the detuning. The blue dashed and
the green dotted curves are obtained from the Langevin equations (23) and (25).
They show the bistability with the blue dashed curve denoting stable solutions,
whereas the green dotted curve denotes the unstable solution. The red solid
curve is obtained from a numerical solution of the master equation (19). The
driving amplitude is taken as �R0/2π = 5 MHz. The parameters of the qubit:
1/2π = 1 GHz, ε = 0.011, 00/2π = 125 kHz, the resonator: ωT/2π = 6 MHz,
κ/2π = 1.7 kHz, Nth = 5, and the coupling: g/2π = 3.3 MHz.

Figure 5. The Fano factor (dashed blue), and the average photon number n̄ (solid
red). The parameters are as in figure 4.

ideal lasing state should approach 1, down from the thermal value Nth + 1. In contrast, in the
bistable regime the Fano factor increases. We interpret this result as another indication of the
switching between the two stable solutions. In the cooling regime, the Fano factor, as expected,
follows the effective temperature of the oscillator, i.e. is reduced.
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Figure 6. The distribution function, P(n), obtained by numerically solving
the master equation (19). Blue solid curve: cooling regime of the one-photon
resonance with �R0 = 2π × 5 MHz and δω = −2π × 3.2 MHz. Red dashed
curve: lasing regime of the two-photon resonance with �R0 = 2π × 5 MHz and
δω = 2π × 11.7 MHz. We observe a peak in the P(n) distribution between
n = 20 and 30 as a result of the lasing behavior. Black dotted curve: thermal
distribution with Nth = 5. The parameters are as in figure 4.

In figure 6, the distribution function, P(n), for the number of photons in the oscillator
is plotted both for the cooling and lasing regimes. For comparison, also the thermal
(Bose–Einstein) distribution is plotted. We observe that in the lasing regime, the distribution
function combines the Poisson-like part and the thermal-like one. This is yet another indication
of the bistability. On the other hand, in the cooling regime the distribution function is thermal-
like with the reduced effective temperature.

The lasing and cooling effects described here rely crucially on the transition rates, as
described by the Liouville equations. In order to demonstrate this dependence, we plot in
figure 7 the average photon number versus the qubit’s relaxation rate at the one-photon
resonance. We note a non-monotonic dependence. This behavior is explained by the dependence
of the saturation number n0 on 00 indicated in figure 7. While n0 grows quadratically with 00

the average occupation number n̄ grows only linearly, cf equations (26) and (27). This regime
holds as long as n̄ > n0. Indeed, in this regime the pumping rate is limited by 00, leading to
a roughly linear growth of the photon number with increasing 00, consistent with equations
(26) and (27). Once the saturation threshold is reached, n̄ ∼ n0, the effective coupling ∼g1

√
n̄

becomes comparable to 00 and the photon number becomes insensitive to small variations of
00. Since the saturation number n0 continues to grow, the regime n̄ < n0 is reached. In this
case, a further increase of 00 predominantly increases the dephasing rate 0̃ϕ . As can be seen
from equation (23) this reduces the effect of the qubit on the oscillator and the photon number
decreases towards Nth. In figure 7, we plot both the results of a numerical solution of the master
equation and of the Langevin equation. We find a good agreement between the two.
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Figure 7. Average number of photons in the resonator as a function of the qubit’s
relaxation rate, 00 at the one-photon resonance, �R = ωT for g3 = 0 and Nth = 5.
The dark blue line shows the numerical solution of the master equation, the light
blue solid line represents the solution of the Langevin equation, equation (23).
The green and red dashed curves represent, respectively, the saturation number
n0 and the thermal photon number Nth. The parameters are as in figure 4 (except
for 00).

4. Discussion

We summarize our main conclusions. Our results for the number of photons n̄ are plotted
in figure 3 as a function of the detuning δω of the driving frequency and driving amplitude
�R0. It exhibits sharp structures along two curves corresponding to the one- and two-photon
resonance conditions, �R = ωT − g3n̄ and �R = 2ωT − g3n̄. Blue detuning, δω > 0, induces a
strong population inversion of the qubit levels, which in resonance leads to one-qubit lasing. In
experiments the effect can be measured as a strong increase of the number of photons in the
resonator above the thermal values. Red detuning produces a one-qubit cooler with resulting
photon numbers substantially below the thermal value.

The bistability of the solution of the Langevin description is illustrated in figure 4. In the
range of bistability, we expect a telegraph-like noise corresponding to the random switches
between the two solutions.

Potentially useful applications of the considered scheme are the lasing behavior and the
creation of a highly non-thermal population of the oscillator as well as the cooling. Within
the accuracy of our approach, we estimate that a population of order n̄ = 1 can be reached for
optimal detuning.

So far we have described an LC-oscillator coupled to a flux qubit. But our analysis equally
applies for a nanomechanical resonator coupled capacitively to a Josephson charge qubit [6]
(see figure 1(b)). In this case, σz stands for the charge of the qubit and both the coupling to
the oscillator as well as the driving are capacitive, i.e. involve σz. To produce the capacitive
coupling between the qubit and the oscillator, the latter could be metal-coated and charged by
the voltage source Vx . The dc component of the gate voltage Vg puts the system near the charge
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degeneracy point, where the dephasing due to the 1/ f charge noise is minimal. Rabi driving is
induced by an ac component of Vg. Realistic experimental parameters are expected to be very
similar to the ones used in the examples discussed above, except that a much higher quality
factor of the resonator (∼105) and a much higher number of quanta in the oscillator can be
reached. This number will easily exceed the thermal one, thus a proper lasing state with Poisson
statistics, appropriately named SASER [29], is produced. One should then observe the usual
line narrowing [44] with line width given by κNth/(4n̄) ∼ κ2 Nth/0̃1. Experimental observation
of this line-width narrowing would constitute a confirmation of the lasing/sasing.

In experiments with the same setup as shown in figure 1(a)—but in a different parameter
regime when the relaxation rate of the qubit is close to the oscillator’s frequency—the
mechanisms of Sisyphus cooling and amplification have recently been demonstrated [7]. In
these experiments, the LC tank circuit is driven near-resonantly by a low-frequency ac current,
and its response, which is influenced by the high-frequency driven qubit, is detected. For red-
detuned high-frequency driving of the qubit the low-frequency LC-circuit carries out work in
its forward and backward oscillation cycle, always increasing the energy of the qubit (similar to
Sisyphus always pushing up a rock). This produces additional damping and a reduction of the
effective quality factor, which can be associated with cooling of the oscillator. For blue-detuned
qubit driving, the same mechanism leads to Sisyphus amplification (‘lucky Sisyphus’ rolling the
rock down) and a precursor of lasing of the resonator. It is accompanied by an enhancement of
the effective quality factor. These effects were confirmed in the second series of experiments
where the power spectrum of the oscillator, i.e. the number of photons and the line-width,
were measured directly. A quantitative analysis [7] in the frame of the theory outlined in this
paper confirms this picture and allows parameter regimes to be identified where these effects
are optimized.
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