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Dissipation-Induced Instability Phenomena
in Infinite-Dimensional Systems
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Abstract

This paper develops a rigorous notion of dissipation-induced instability in
infinite dimensions as an extension of the classical concept implicitly introdu-
ced by Thomson and Tait for finite degree of freedom mechanical systems over a
century ago. Here we restrict ourselves to a particular form of infinite-dimensional
systems—partial differential equations—whose inherent function-analytic diffe-
rences from finite-dimensional systems make uncovering this notion more intricate.
In building the concept of dissipation-induced instability in infinite dimensions
we found Arnold’s and Yudovich’s nonlinear stability methods, for conservative
and dissipative systems respectively, along with some new existence theory for
solutions, to be the essential foundation. However, when proving the results for
classical solutions, as motivated by their direct physical significance, we had to
overcome a number of fundamental difficulties associated with existing stability
analysis methods, which has led to new techniques. In particular, in this work
we establish the connection of existence and general stability theories in strong
and weak topologies and provide new insights into the physics and geometry of
the dissipation-induced instability phenomena in infinite-dimensional systems. As
a paradigm and the first infinite-dimensional example to be rigorously analyzed,
we use a two-layer quasi-geostrophic beta-plane model, which describes the fun-
damental baroclinic instability in atmospheric and ocean dynamics; early formal
linear approximate studies suggested that this system can be destabilized after the
introduction of dissipation.
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1. Introduction

The phenomenon of dissipation-induced instabilities in finite-degree of freedom
mechanical systems was known at the end of the nineteenth century to Thomson and
Tait [83], who made it precise by formulating theorems which were later proved by
Chetayev [16]. The corollary of these theorems relevant to our discussion states
that if a system with an unstable potential energy has been (spectrally) stabilized
with gyroscopic forces, then this stability is lost after the addition of arbitrarily
small dissipation. As has been recently realized [48], there is another major type
of such phenomena, which together with the type studied by Thomson and Tait
exhaust all the generic possibilities, hinted at by Merkin’s work [61]: namely, a
stable purely potential system with equal frequencies becomes unstable after the
addition of arbitrarily small positional forces. The importance of these phenomena
in many physical and engineering applications should not be underestimated: the
destabilizing effect of dissipation needs to be compensated. For example, in various
gyroscopic devices this is done by applying accelerating forces. At the level of
every-day experience, the familiar instability of a penny rolling along a straight
line is one of numerous illustrations of this phenomenon: if the speed of rolling
is high enough then the motion is stabilized gyroscopically, but rolling friction
destabilizes it, as we know from experience and modeling.

1.1. The physical and geometrical picture in finite dimensions

First, we briefly review the physical significance of the classical finite-
dimensional theories of Thomson and Tait [83], Chetayev [16], and Merkin
[61]. The synthesis of these two theories suggests a general definition of dissipation-
induced instability that we give below. For an extended discussion we refer the
reader to [48].
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Fig. 1. Representative examples in finite dimensions: a Lagrange top; b Rotating shaft

To illustrate the above corollary of the Thomson–Tait–Chetayev theory and to
appeal to the reader’s intuition, we consider the following simple two degree of
freedom example1 as occurs in, for instance, the linearized dynamics of a Lagrange
top which is shown in Fig. 1a,

z̈1 + gż2 + dż1 + c1z1 = 0,
z̈2 − gż1 + dż2 + c2z2 = 0,

(1.1)

where z = (z1, z2) is a perturbation which has an unstable equilibrium at the
origin if g = 0 and ci < 0, but can be stabilized by the gyroscopic forces if
|g| > √−c1 + √−c2 as illustrated by trajectories on the graph of the potential
function V = 1

2 zCz, C = diag[c1, c2] in Fig. 2a. As one can easily see, the addition
of arbitrarily small dissipative forces, d > 0, that is, a symmetric term proportional
to the velocity ż, destabilizes the equilibrium and leads to the behavior shown in
Fig. 2b. As pointed out in [9], the fact that the second variation of the Hamiltonian
H = 1

2 żT ż+ 1
2 zCz is indefinite is crucial for the destabilizing effect of dissipation,

since the condition necessary for stability of a Hamiltonian system, namely definite
second variation δ2 H in the Lagrange–Dirichlet theorem, is not satisfied.

The system (1.1) accounts for the dynamics of the perturbation z, so that in
this approximation the stability of the equilibrium z = 0 can be ascertained. Note
that the physical system has a relative equilibrium (that is, the top is in steady
rotation about its vertical axis) due to which a gyroscopic force appears in (1.1).
Therefore, the model (1.1) accounts for an instability of the top which develops
due to dissipative forces. It is clear that dissipation in this case leads to the decay
of total energy (that is, the top slows down and eventually falls) as well as to the
decrease of the energy of the perturbation (that is, Ḣ < 0). The latter is allowed
by, in this case, an unstable potential energy, cf. Fig. 2b.

The above situation, accounted for by the Thomson–Tait–Chetayev theory, does
not exhaust all the possibilities for the dissipation-induced instability phenomena
[47]. Many studies in the earlier part of the twentieth century demonstrated that

1 Unless otherwise stated all variables and coefficients are real.
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Fig. 2. Projection of dynamics onto potential energy surface: a Gyroscopically stabilized
system with an unstable potential; b Destabilization of gyroscopically stable system; c Des-
tabilizing effect of positional forces

dissipative forces, that is, those that are proportional to velocities with the coef-
ficient matrix being symmetric, are not the only physically important ones of a
nonconservative type (in the usual sense that the work done can be path dependent).
Another physically significant and widespread class of nonconservative forces
includes so-called positional forces, which are proportional to displacements with
skew-symmetric coefficient matrix. Their theoretical basis was established by Mer-
kin [60,61], who proved a number of fundamental properties for the effects of these
forces including the corollary stated at the beginning of this introduction. The equal
frequencies can come about, for instance, because of a system symmetry. To illus-
trate Merkin’s theory, consider the following system,

z̈1 + p z2 + c z1 = 0,
z̈2 − p z1 + c z2 = 0,

(1.2)

which describes, amongst other systems, the linearized dynamics of a perturbation z
of a rotating shaft [43] shown in Fig. 1b. The corresponding characteristic equation
shows that the addition of nonzero nonconservative positional forces (that is, p �= 0)
to a system with a stable potential energy makes it unstable, as shown in Fig. 2c.
The origin of the skew-symmetric positional forces lies in the friction between a
rotating shaft and hydrodynamic media, which fills the space between shell and
shaft, and in the asymmetry of the gap when the shaft is displaced from the axis of
symmetry [43]. Analogous to example (1.1), system (1.2) accounts for the evolution
of a perturbation z measuring the departure from equilibrium, which experiences
an instability. The equilibrium corresponds to a relative equilibrium of a rotating
shaft, due to which the positional forces appear. It is notable that, in contrast to
(1.1), the second variation δ2 H of the original system is positive definite at the
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origin and thus the energy of the disturbance eventually grows.2 Despite that, the
positional forces in this case are dissipative, since the total energy of the physical
system—that of basic state plus perturbation—decays under their action, that is,
if one stops maintaining the relative equilibria by applying an external source of
energy, the shaft will stop rotating. However, it should be kept in mind that not all
positional forces are dissipative, as can be seen on the example of an instability
of an elastic bar with a follower force [65], even though the linearized dynamics
of perturbation is given by the same Equation (1.2). Concluding the discussion of
(1.2) we note that the model (1.2) accounts for an instability of the rotating shaft
regardless of whether the relative equilibrium is maintained or not.

Thus, in the finite-dimensional case, the fundamental difference in the type
of nonconservative forces, that is, dissipative versus positional (which are also
dissipative in nature), has a direct impact and goes in parallel with a drastic change
in the geometrical picture, that is, indefinite versus definite second variation of the
Hamiltonian:

unstable potential → indefinite δ2 H → dissipative forces, (1.3a)

stable potential → definite δ2 H → positional forces, (1.3b)

where we have summarized the geometric precursor which predetermines the type
of nonconservative forces that will be destabilizing.3 The common features of the
two cases in (1.3) are that the instability develops due to withdrawal of energy from
the basic state (that is, the relative equilibrium) and the total energy of the whole
physical system would decay if the relative equilibrium is not maintained, while
the energy of the perturbation might grow.

Motivated by all these physical considerations, we introduce the following defi-
nition of dissipative forces.

Definition 1. A set of nonconservative forces acting on a mechanical system with a
relative equilibrium is called dissipative if, under the action of these forces and in
the absence of the forces which work against these nonconservative forces in order
to maintain the (relative) equilibrium, the total mechanical energy of the whole
physical system decreases.

This allows us to define a generalized notion of dissipation-induced instability;
namely,

Definition 2. A conservative system with a Lyapunov stable (relative) equilibrium
is said to suffer from dissipation-induced instability if the introduction of dissi-
pative forces destabilizes this equilibrium in the Lyapunov sense.

2 This, however, does not prohibit having Ḣ < 0 on certain portions of the trajectory as
can be readily seen from the energy production rate equation: Ḣ = p (z1 ż2 − z2 ż1). These
portions of a motion correspond to the trajectories that are temporarily heading towards
equilibrium.

3 Some other possibilities might be observed in, for instance, the degenerate case when the
second variation vanishes or in the case in which a finite-amplitude instability takes place,
which we do not discuss here.
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In each concrete situation, the above definition can be made mathematically pre-
cise by defining the function space, in which a solution exists, and the norm, in
which Lyapunov (nonlinear) stability and instability hold. This will be done in due
course in Section 2.4 when formulating the main theorem, as it becomes particularly
important in infinite dimensions.

1.2. Passage to infinite dimensions and paper outline

The well-established picture and analysis in finite dimensions—where (i) one
can relate the origin of a particular type of dissipation-induced instability to the
physical type of destabilization forces, (ii) one can enjoy the robust stability analysis
methods such as Lyapunov’s indirect method, and (iii) one does not need to worry
about the dependence of the stability notion on the norm in which solutions exist—
are not readily translated to infinite dimensions. These three main complications are
discussed below (for further discussion we refer to Krechetnikov and Marsden
[48]) and overcoming them is the essential constituent of the main result of this
work formulated in Section 2.4. Here we restrict our consideration to systems
that cannot be readily approximated with or reduced to some finite-dimensional
mechanical analog, and as a paradigm we study the quasi-geostrophic two-layer
β-plane model stated in Section 2.1, which may be viewed as a toy model for the
Euler equations in the zero dissipation case, and for the Navier–Stokes equations
(NSEs) in the nonzero dissipation case; its physics is discussed in Section 2.2. This
class of problems we call essentially infinite-dimensional. Simpler cases have been
studied in the literature; for example, a physically interesting system describing
radiation-induced instability modeled by Hagerty et al. [36] can be reduced to
a low-dimensional system of linear ODEs and thus accounted for by the theory of
Section 1.1, as was shown in [47].

The first complication is due to the fact that the corresponding field equations,
such as the Euler or NSEs, are usually written not in Lagrangian but rather in
Eulerian variables, which results from symmetry reduction, that is, the removal
of the particle relabeling symmetry of the original infinite-dimensional system in
Lagrangian variables. Therefore, one cannot readily identify the type of forces in
the infinite-dimensional case and thus, as the first and natural step to overcome this
difficulty, we utilize the fact that the second variation of the Hamiltonian δ2 H goes
in parallel with classification of causes for dissipation-induced instabilities (1.3).
The Hamiltonian structure of the problem is studied in Section 3.

The second complication results from the lack of a generally applicable analog
of the infinite dimensional version of Lyapunov’s indirect method (based on the
spectrum of the linear approximation), which at least in the finite-dimensional case
allows one to conclude nonlinear (in)stability in the dissipative case based on the
linear stability picture. We overcome this difficulty using the semigroup theory and
a priori estimates in Section 5.2, where we establish nonlinear (in)stability based on
the results of the linear theory given in Section 4. Also, in Section 5.2 we establish
the result which will allow us to prove instability in a strong topology, which is
unconditional upon existence of a solution, based on conditional stability in a weak
topology and local existence in the same strong topology. In the Hamiltonian case
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though, the situation with proving stability is similar to that in finite dimensions—
one has to prove nonlinear stability without relying on linear stability results, since
linear stability need not imply nonlinear (Lyapunov) stability. The latter is because
of the well-known fact that the only way for an equilibrium of a Hamiltonian system
to be stable is to have all eigenvalues on the imaginary axis since the eigenvalues in
the Hamiltonian case come in pairs and quadruples. We will analyze Hamiltonian
stability in Section 5.1 with the help of the Arnold method [5,6].

The third complication comes from the necessity to establish the link between
existence and nonlinear stability, which is impeded by the fact that these two ana-
lyses are often done in different functional settings.4 Hence, many works written
on nonlinear stability of PDEs (for example, [53,54,62]) are conditional upon exis-
tence of solutions, with a few exceptions, for special situations (such as Wan and
Pulvirenti [85], Burton [11]). Here we restrict ourselves to the existence of
classical5 solutions where, as we shall see, stability methods and existence theory
overlap. The existence of solutions is studied separately in Section 6. Since the
purpose of our study is not to advance the existence theory for quasi-geostrophic
equations in any significant way, but rather to demonstrate rigorously (uncondi-
tionally) the presence of a dissipation-induced instability phenomenon, we prove
local existence for rather mild initial conditions in C1 for Hamiltonian and dis-
sipative cases in Sections 6.1 and 6.2 respectively. The global existence in the
Hamiltonian case is demonstrated in Section 6.3 under the additional assumption
of boundedness of the initial data in the Sobolev space6 Hs , s � 3. Global existence
in the dissipative case is trivial below the critical point and unnecessary above it,
which is discussed in Section 6.4. Connecting the existence to the stability results
in Section 7 will complete the proof of the main theorem stated precisely in Sec-
tion 2.4. All existence theorems are proved using a priori estimates and standard
techniques in PDEs. It should be mentioned that the known proofs of existence
for quasi-geostrophic equations are given for doubly periodic spatial domains [7]
and for weak solutions [10,19,24], while here we treat classical solution(s) on a
compact domain with one dimension being periodic and one with solid boundaries
(channel).

4 That natural connection might be possible to establish using a variational proof of exis-
tence, that is, considering the resulting PDEs as Euler–Poincaré equations with the appro-
priate variational structure, since nonlinear stability method based on the use of Hamiltonian
formulation is dual to the variational formulation. However, a variational proof is not avai-
lable even for the ideal fluid Euler equation.

5 That is, when all the derivatives which appear in the statement of the PDE exist and are
continuous.

6 As mentioned above, the methods used for proving nonlinear stability and solution
existence are fundamentally disjoint and, in general, are performed in different functional
setups. While we proved the existence of classical solutions, that is, when both stability and
existence theories overlap, the lack of elegance and effectiveness becomes obvious.



618 Rouslan Krechetnikov & Jerrold E. Marsden

2. Paradigm and the main theorem

2.1. Problem statement

Having set the general scene we now present the formulation of the
infinite-dimensional paradigm used in our study: the quasi-geostrophic two-layer
β-plane model introduced by Phillips [71] in 1951, namely

∂t qi + vi · ∇qi = −r∇2ψi , x = (x, y) ∈ D, i = 1, 2, (2.1)

with no summation over i (sometimes we drop indeces in the text when no confusion
arises between scalar and vector notations). This model, whose notation is explained
below, accounts for large-scale evolution in mid-latitudes with the simplified effects
of Earth’s rotation and sphericity (β-effect), stratification (modeled by using two-
layers) with internal rotational Froude number F , and Eckman layer dissipation
(r � 0). The definition of nondimensional parameters is given in Appendix A (see
also [68]). Equation (2.1) is posed on a rectangular domain, D = {−1 � x �
1 ; 0 � y � 1}, located on the surface of a rotating planet as shown in Fig. 3.
Physically, this corresponds to a standard rectangular channel of finite depth in the
direction z perpendicular to the Earth’s surface, and with finite dimensions both
in the west–east (zonal) periodic direction x and in the north–south (meridional)
direction y which is bounded by solid walls. In the formulation (2.1), we have used
the usual definition of potential vorticity, namely

qi = ∇2ψi + (−1)i F (ψ1 − ψ2)+ βy,

where the stream-functions ψi in the i th layer is related to the velocities by vi =
(ui , vi ) = ez × ∇ψi = (−∂yψi , ∂xψi

)
, and where the two-dimensional gradient

is ∇ = i∂x + j∂y . For convenience, we will also be using vector notation both for
potential vorticity, q = (q1, q2), and stream-functions, ψ = (ψ1, ψ2). The basic
state of (2.1), in our case the time-independent solution ψe

i = −Ui y shown in
Fig. 3, will be denoted by ψe or, equivalently, by qe, since the latter is expressed in
terms of ψe. Similarly, the initial conditions are denoted by q0. The left-hand side
of (2.1) is the usual material (Euler) transport of potential vorticity (for example,
Holm [40]), while the right-hand side is the Eckman layer dissipation, where r � 0.

The problem (2.1) is treated here with the boundary conditions corresponding
to the Phillips model. That is, since the channel is periodic in x , the appropriate
boundary conditions correspond to Dαψi (x, y), |α| � 0 being periodic in x with
period 2. Also, since the channel is bounded by walls at y = 0, 1, a no-penetration
condition applies,

v = ψx = 0 for y = 0, 1, (2.2)

which implies that the stream-function is only a function of time at the solid walls.
As first established by Phillips [72], there is another boundary condition at y =
0, 1, namely

∂

∂t
�i (y) = 0, �i (y) =

∫ 1

−1
ui dx, (2.3)
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Fig. 3. Physical domain and basic state Ui on the surface of a rotating planet

which formally guarantees uniqueness (otherwise the no-penetration condition is
satisfied by an arbitrary function of time t), and loosely can be interpreted as the
conservation of “circulations” �i (y) at the solid boundaries. The main problem
is then to ascertain the (in)stability of the basic state in a suitable norm. This
completes the problem statement: from now on we are working with system (2.1)
and the boundary conditions (2.2–2.3). Though we discuss only this case, the main
result of this paper remains valid for a wider class of boundary conditions, such as
doubly periodic perturbations imposed on the same basic state ψe

i as considered
here. A brief self-contained derivation of (2.1) and boundary condition (2.3) is
provided in Appendix A.

2.2. Physics of the model

The model (2.1) has been studied for a long time in view of its physical impor-
tance in ocean and atmospheric dynamics.7 In particular, (2.1) was suspected to have
a dissipation-induced instability [18] based on a classical linear stability study [75],
but the proof was absent. The main feature of (2.1) relevant to our study is its ability
to account for the so-called baroclinic instability—a large-scale instability of the
westerly winds in mid-latitudes when the basic (equilibrium) state has a latitudinal
shear,ψe

i = −Ui y, as shown in Fig. 3. In this mathematical idealization, the origin
of the basic state is unspecified and the model reflects the fact that this basic state
is maintained against dissipative effects by an external source of energy. Physi-
cally, this particular basic state results from a temperature gradient between the
subtropical and polar regions, which causes a pressure gradient aloft. The latter is
balanced by the Coriolis force to form a geostrophic flow, namely the Westerlies.
The instability of these baroclinic zonal currents has been a subject of numerous
studies starting with pioneering works by Charney and Eliassen [14] and Eady

7 It is notable that the famous Lorentz system is derivable from this model: see Gibbon
and McGuinness [33] and Wiin-Nielsen [87].
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[25], and is known to occur as a result of a release of available potential energy of
sloping density surfaces. The significance of the baroclinic instability comes from
the fact that it is responsible for the mid-latitude cyclogenesis, in particular. The
general physics of this instability was reviewed by Hart [37] and Pierrehumbert
and Swanson [74]. While the simplest Eady model explains the basic mechanism,
the Charney model is more realistic since it includes the β-effect, the importance
of which has been understood since the work of Phillips [71].

The unexpected destabilizing effect due to the introduction of dissipation was
suggested by the linear stability studies of Holopainen [42] and Romea [75].
The latter work was based on the Phillips model [72], that is, conducted on an
infinite channel domain for which one of the spatial variables is bounded and the
other is unbounded, and in a two-layer approximation. Romea demonstrated that
an introduction of dissipation leads to an O(1) destabilization effect. While the
linear stability analysis is very attractive for an infinite channel, the unbounded
geometry introduces a number of complications: (a) unbounded total energy of
the system, (b) the function space corresponding to disturbances, which decay at
infinity, is different from the one considered by Romea, who restricted the analysis
to the bounded functions. However, the fact that the baroclinic instability is a finite
wave-number instability allows one to consider the problem on a compact domain
without substantial modification of the physics. Besides the above mentioned works
concerning a linear stability analysis, the baroclinic instability has also been studied
in a finite-amplitude stability realm by Pedlosky [68,69] and Romea [75] to men-
tion a few, and a nonlinear Hamiltonian stability analysis of the quasi-geostrophic
equations has been conducted by Pierini and Vulpiani [73], Holm et al. [41], and
Swaters [82]. However, no attempt to prove the presence of a dissipation-induced
instability in a sense of Definition 2 has been made.

2.3. The function space setting

Throughout the discussion in this study, we will be working in, besides a Banach
space X for the general theory, the following specific function spaces and norms
which will be used for making the stability and existence of solutions precise.

First, a classical solution will be naturally understood with the help of Hölder
spaces8 Cs,λ, that is, spaces of functions f : D → R bounded and continuous
together with their spatial derivatives of order |α| � s ∈ Z+, where the derivatives
of order s are uniformly Hölder continuous with exponent λ ∈ (0, 1]. The corres-
ponding norm in Cs,λ(D) is chosen to be the supremum (L∞) norm on derivatives
and is given by

‖ f (x)‖Cs,λ =
∑

|α|�s

sup
x∈D

∣∣Dα f (x)
∣∣+
∑[

Ds f (x)
]
λ
, (2.4)

8 We avoid using the notation Cs+λ adopted by some authors since, for example, C1+0 is
not the same as C0+1.
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where we used the definition of a function φ(x) ∈ C0(D), which is Hölder conti-
nuous on D with coefficient λ ∈ (0, 1) and with finite semi-norm:

[φ(x)]λ = sup
x′,x′′∈D
x′ �=x′′

{ |φ(x′)− φ(x′′)|
|x′ − x′′|λ

}
. (2.5)

Lipshitz continuity corresponds to the case λ = 1, that is, C0,1 or in general Cs,1.
Note, here Dα = ∂

αx
x ∂

αy
y , |α| = αx + αy ∈ Z+ is a multi-index. Also we will be

using notation Cs for spaces of functions f : D → R with bounded and continuous
spatial derivatives of order |α| � s ∈ Z+. It is clear that Cs,λ with λ ∈ (0, 1) is
imbedded in Cs with the appropriate norm

‖ f (x)‖Cs =
∑

|α|�s

sup
x∈D

∣
∣Dα f (x)

∣
∣ � ‖ f (x)‖Cs,λ . (2.6)

Since we are working with time-dependent functions, the space Cs,λ is generalized
to Ĉ s,λ

0 (D×[0, T ]) for functions f (x, t) belonging to Cs,λ uniformly in t ∈ [0, T ],
that is, their spatial derivatives up to order s are continuous with Hölder exponent
λ, with the corresponding norm

‖ f (x, t)‖Ĉ s,λ
0

= sup
0�t�T

‖ f (x, t)‖Cs,λ . (2.7)

Note that the space Ĉ s,λ
0 does not require the continuity of temporal derivatives, but

only the function itself and its spatial derivatives, which motivates the usage of sub-
index 0, while hat̂ indicates that the function is defined on D×[0, T ]. To reflect on
the continuity of temporal derivatives too, we also use the space Ĉ s,λ(D × [0, T ])
with the norm

‖ f (x)‖Ĉ s,λ =
∑

|α|�s

sup
(x,t)∈D×[0,T ]

∣
∣Dα f (x, t)

∣
∣+
∑[

Ds f (x, t)
]
λ
,

where Dα = ∂
αx
x ∂

αy
y ∂

αt
t , |α| = αx + αy + αt ∈ Z+. Finally, these definitions are

naturally extended to vector-valued functions. The membership of a vector-valued
function f(x, t) in a function space, Cs,λ, Ĉ s,λ

0 or Ĉ s,λ, implies that every component
of the vector belongs to that space.

While the above Hölder spaces are enough for local (in time) existence, the
global estimates in Section 6.3 will be made with the use of the Hilbert spaces
Hs(D)with generalized spatial derivatives up to order s belonging to the Lebesgue
space of square-integrable functions over D: L2(D) and with the norm defined in a
standard way

‖ f ‖Hs =
∑

|α|�s

∥∥Dα f
∥∥H0 , (2.8)

where ‖ f ‖H0 is a norm in L2(D) space.
Finally, for nonlinear stability analysis purposes in Section 5.2, we will also

need the Sobolev spaces W s,q(D) of all locally summable functions f : D → R
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over D such that for each multi-index α with |α| � s, spatial derivatives Dα f exist
in the weak sense and belong to Lq(D). The norm is defined to be

‖ f ‖W s,q (D) =
⎡

⎣
∑

|α|�s

∫

D
|Dα f |q dx

⎤

⎦

1/q

, 1 � q < ∞.

Occasionally, for convenience, we will abbreviate the above norm notation to
‖ f ‖s,q .

2.4. A main result

To formulate a main result of our work and to put it in a general context, we
first appeal to an alternative point of view on the concept of dissipation-induced
instability. As will be shown, the Hamiltonian for system (2.1) is given by

H ≡ 1

2

∫∫

D

{
F (ψ1 − ψ2)

2 + ∇ψi∇ψi

}
dx, (2.9)

where a summation over i is assumed (we use this Einstein convention in the
text unless otherwise stated). One might expect that energy dissipation (that is, H
decreases) can be achieved by an increase in the amplitude of the solution ψ2 in
the second layer. This constitutes the idea of a negative-energy mode known since
the example of two coupled oscillators developed by Cherry [15] and defined in
Weiland and Wilhelmsson [86]; see also the discussion in Morrison [64]. In
our case one cannot a priori validate this point of view, because knowledge of the
Hamiltonian is not enough to deduce dynamic information and to predict the beha-
vior of the second term in the Hamiltonian (2.9). Moreover, this intuitive reasoning
turns out to be incorrect as applied to the quasi-geostrophic system (2.1), and,
because the second variation δ2 H is proved to be definite, dissipation-induced
instability develops according to scenario (1.3b) in analogy with positional forces
in the finite-dimensional case. While we are not suggesting that an infinite dimen-
sional analog of the condition on “equal frequencies” holds here, nevertheless finite
dimensional theory suggests that, in the presence of a positive definite second varia-
tion, an instability could develop only with the addition of destabilizing effects
which are analogous to positional forces in finite dimensions; this will indeed be
shown to hold.

To make the formulation of the main theorem mathematically precise we have to
take into account the discussion in Section 1.2 and to introduce the necessary func-
tional framework. First, we consider quasi-geostrophic system (2.1) as an infinite-
dimensional ODE in a Banach space X in analogy with Daleckii and Krein [22],
Yudovich [88], and Friedlander et al. [29,30]. Since we are interested in a sta-
bility analysis, the solution is decomposed as ψi = ψe

i + φi around the basic state
ψe

i = −Ui y, and the appropriate form of this ODE in an operator formulation is
obtained after substitution of the representation of qi in terms of ψi . Doing this,
Equation (2.1) takes the Orr–Sommerfeld-like form

∂t Mφi + Lφi = N (φi ), i = 1, 2, (2.10)
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with the following definitions of the operators

mass operator : Mφi = ∇2φi + (−1)i F(φ1 − φ2), (2.11a)

linear operator : Lφi = Ui∂x Mφi + β∂xφi + r∇2φi , (2.11b)

nonlinear operator : N (φi ) = ∂yφi∂x Mφi − ∂xφi∂y Mφi . (2.11c)

The problem (2.10) is posed on a compact domain 	 ⊂ R
n , where n = 2 in our

case. The difference of (2.10) from the one used by Yudovich [88] is notable
because of the presence of the operator M , which is an identity in the Yudovich
theory9: this has some implications on stability analysis in the dissipative case in
Section 5.2.

This approach allows one to use the dynamical theories of Daleckii and Krein
[22], Yudovich [88] for nonlinear stability, when one sees the PDE model (2.10)
as an infinite-dimensional ODE in operator form

dφ

dt
= Aφ + N (φ, t), (2.12)

where A is the linear operator, usually stationary, and N is the nonlinear operator.
The relation between (2.10) and (2.12) will be established in Section 5.2.1. By
the solution of system (2.12) we mean a classical solution in the usual sense,
that is, all its derivatives, which appear in the PDE statement (2.1), exist and are
continuous. The existence of these solutions in X will be proved in Section 6. The
exact specification of the Banach space X will be given later in (6.11); at this point
it is clear that X is determined by the boundary conditions discussed in Section 2.1
and the classical regularity of a solution. Given the notion of a solution, we also need
suitable versions of Lyapunov (nonlinear) stability and instability, provided by the
following definitions, which can be applied both in the context of quasi-geostrophic
vorticity in (2.1) and stream-function in (2.10).

The instability of the solutions of (2.12) will be understood in the classical
mechanics sense, as it originated historically from the 1892 doctoral dissertation of
Lyapunov [57]. Since there are variants of this notion in the literature, we recall
the definitions, beginning with stability. Let us fix some initial time instant t0.

Definition 3. Let X be a Banach space. A solution φe(t) ∈ X to (2.12) is said to
be Lyapunov, or nonlinearly, stable if for any ε > 0 there exists a δ > 0 such that
for any T � t0, and initial conditions φ0 ∈ X satisfying ‖φ0 − φe(t0)‖X < δ, the
following two conditions hold:

(i) there exists a solution φ(t, t0,φ0) for t ∈ [t0, T ] s.t. φ(t) ∈ C([t0, T ]; X);
(ii) ‖φ(t, t0,φ0)− φe(t)‖X < ε for all t ∈ [t0, T ].

9 In the case of the Euler or the NSEs, one can go back from vorticity formulation to
velocity formulation, so that using the Helmholtz decomposition [17] and applying the
Leray projector P onto the space of divergence free (solenoidal) functions, one arrives at the
operator form (2.10) with M being identity. However, as one can easily see, Equation (2.1)
does not take that standard form.
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This definition is of course not to be confused with Hadamard stability [35],
that is, continuous dependence of the solution on the initial data, when the bound
on the initial data δ would depend on the length T of the time interval.

Since our goal here is to prove a strong form of the negation of this definition,
we will need its precise formulation (cf. Demidovich [23], Adrianova [3]). If one
takes the literal negation of Definition 3, then a solution φe(t) ∈ X of (2.12) would
be called Lyapunov unstable (or simply unstable) even when condition (i) fails,
that is, when solutions fail to exist. Then one would be proving what one might call
conditional instability; that is, solutions arbitrarily close to equilibrium escape a
ball of some positive radius provided that they exist. In this work we will deal with
a stronger notion of instability, given below.

Definition 4. A solutionφe(t) ∈ X of (2.12) is called strongly Lyapunov unstable
if there exists an ε > 0 such that for any δ > 0 there exist a time t1 > t0 and a
solution φ(·, t0,φ0) ∈ C([t0, t1], X) satisfying the condition

‖φ0 − φe(t0)‖ < δ

and

‖φ(t1, t0,φ0)− φe(t1)‖X � ε.

Note that here we used only one Banach space X , to which both the initial
condition and solution belong and whose norm is used for measuring the instabi-
lity, while if one wants to demonstrate that the solution becomes smoother with
time, two Banach spaces are introduced as is usually done for dissipative problems,
cf. Yudovich [88]. With Definitions 3–4, the concept of dissipation-induced insta-
bility given by the physical Definition 2 becomes precise in the function-theoretic
context.

With this understanding, the main result of our work can be formulated as
follows; as mentioned above, the space X used for classical solutions will be made
precise later, in Equation (6.11).

Theorem 1. Within the class of classical solutions, the equilibrium

ψe
i = −Ui y (2.13)

of the Hamiltonian quasi-geostrophic two-layer β-plane system (2.1) without dis-
sipation, r = 0, experiences a dissipation-induced instability in the parameter
range

0.4551 ≈
√√

2 − 1√
2

<
|U1 − U2|F

2β
<

1

2
(2.14)

in the sense of Definition 2 when an arbitrarily small dissipation effect, r > 0, is
added.

Moreover, in the space of classical solutions of (2.1) in the parameter range
(2.14) the equilibrium (2.13) is Lyapunov stable in the sense of Definition 3 for
r = 0, but is strongly Lyapunov unstable in the sense of Definition 4 for any r > 0.

From the physical viewpoint, this result implies that if one is predicting the
appearance of a baroclinic instability by measuring the velocity difference Uc =
|U1 − U2| based on the Hamiltonian formulation, the error of predicting the
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UcF

2β

0.50

0.46

I. Dissipative

II. Hamiltonian

Fig. 4. Sketch of the gap in the criticality properties between the conservative and dissipative
systems, which leads to the dissipation-induced instability phenomenon

critical bifurcation parameter will be around 10%. Though this difference is pro-
bably within the accuracy of meteorological forecasts, it is still of physical and
mathematical importance: we believe that this phenomenon is more frequent than
rare and its prominence may vary depending upon a particular problem at hand.
Another plausible physical system which may experience this type of instability
corresponds to continuously stratified fluid with the effects of shear, buoyancy and
rotation [1].

Subsequent sections are devoted to the proof of Theorem 1. To explain the
overall strategy behind the proof, we appeal to the sketch in Fig. 4, which depicts
the criticality phenomena for the conservative and dissipative cases. Our goal is
to demonstrate in the category of classical solutions of (2.1) the presence of a
dissipation-induced instability in the sense of Definition 2. To achieve that, we
need to prove that a solution in the Hamiltonian case is Lyapunov stable in region
I below the solid curve given by Uc F/2β < 1

2 in Fig. 4, and that a solution in the
dissipative case is Lyapunov unstable in region I above the dashed curve given by

Uc F/2β >
√√

2 − 1/
√

2 in the same figure. These are the minimal requirements
for a dissipation-induced instability to take place, which are addressed in Section 5.
In the course of proving this result we will also need to establish enough existence
theory in Section 6 so that one can demonstrate the presence of dissipation-induced
instability phenomenon not conditioned on the existence of solutions. In fact, as
we will see in Section 7, Theorem 1 is a corollary of the corresponding theorems
on (in)stability and existence, which are applicable to different function spaces
but overlap for the class of classical solutions. Before proceeding to the stability
and existence analysis, we will need some knowledge of the linear spectral stability
properties, to be studied in Section 4, and the Hamiltonian structure, to be developed
in Section 3. The latter will also allow us to investigate the geometrical picture for
this particular infinite-dimensional problem as related to the underlying geometry
in the finite-dimensional case shown in Fig. 2.

3. Hamiltonian structure

In this section we are interested in understanding the energy behavior of the
system (2.1) and in determining conservation laws in the form of Casimirs (to
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be defined in due course) which are used in the nonlinear stability analysis in
Section 5.1. As a consequence, we first need to develop a Hamiltonian structure
for (2.1) starting with the Hamiltonian (2.9). In this section we assume that classi-
cal solutions exist for which all the conservations laws make mathematical sense,
though they are applicable for a wider class of solutions; their existence will be
established in Section 6.

As usual, the equation for the energy is obtained by multiplying each equation
in (2.1) with the corresponding stream-function ψi and summing up. This yields

∂t H ′ = −r∇ψi∇ψi + ∇ · (ψi∂t∇ψi + ψi qi vi + rψi∇ψi ) , (3.1)

where we have used H ′ as the integrand in the expression for the Hamiltonian (2.9),
the elementary identityψv ·∇q = ∇ · (ψqv)−v ·q∇ψ = ∇ · (ψqv), and standard
differential equalities. Before proceeding with deriving an integral counterpart of
(3.1) we make some remarks on the structure of the solution. Since the object of
our study is a stability analysis of the basic state ψe

i which represents a vertical
shear, we decompose a general solution into the basic state ψe

i and a perturbation
φi

ψi = ψe
i + φi , where ψe

i = −Ui y. (3.2)

As we will see, in view of the nature of the boundary conditions (2.2–2.3) and the
basic state, the perturbation φi vanishes at y = 0, 1. Using this fact, the Gauss
divergence theorem in the plane and the boundary conditions (2.2–2.3) yield

dH

dt
= r
∫

D

{
ψe

i ∇2φi − (∇φi )
2
}

dx, (3.3)

which is clearly not negative definite. This implies that the effect of Eckman
layers is not trivial. Depending on the solution structure and the magnitude of the
parameter r , as we shall see from the subsequent analysis, an introduction of
Eckman layers provides a mechanism for the withdrawal of energy from the basic
state (that is, the relative equilibrium) to the disturbance. Similar to the finite-
dimensional case (1.2), it makes no physical sense to judge whether nonconserva-
tive forces are dissipative or not based on the sign of (3.3) since the basic state is
maintained by an unlimited external source of energy. The dissipative effect of Eck-
man layers becomes apparent when the basic state is not maintained by an external
source of energy. While one cannot easily see this in our case, that is, when the
basic state flow goes through the open channel D, this can be observed when (2.1)
is posed on a closed simply connected domain with a solid boundary. In view of
the impermeability condition imposed at the solid boundary, Ḣ becomes negative
definite. Thus, any nontrivial initial flow, created by “stirring” for example, will
decay to a zero solution provided that r > 0. Since the effect of Eckman layers does
not depend on the boundary conditions at ∂D, one can conclude that their nature
is, in general, dissipative; see also the discussion in [70, sections 6.10 and 6.16].

Thus, the case r = 0 corresponds to the conservative dynamics with the
Hamiltonian (2.9). Since there are four more conserved quantities, namely the
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boundary circulations (2.3), the dynamics of (2.1) is restricted to the hypersurface
defined by the total energy constrained by the “circulations” �i (0, 1) (cf. 2.3):

Ĥ = H +
∑

y=0,1

λi
y�i (y), (3.4)

whereλi
y are Lagrange multipliers. The first variation of (3.4) is computed according

to δ Ĥ = d
dε

∣∣
ε=0 Ĥ(ψi + εδψi ) = 0, that is

δ Ĥ = −
∫∫

D
ψiδqi dx +

∑

y=0,1

[∫ +1

−1
ψiδui |y dx + λi

y

∫ +1

−1
δui |y dx

]
,

where periodicity in x was used. Since ψi = const at y = 0, 1, we can choose
λi

y = − ψi |y thus implying the variational derivative δ Ĥ/δqi = −ψi . Thus, the
Poisson operator in the Hamiltonian formulation of (2.1), namely

∂qi

∂t
= J

δ Ĥ

δqi
, (3.5)

is given by J = −∂(qi , ·) with ∂(α, β) = αxβy − αyβx being the usual Jacobian.
This also allows one to formulate the problem in terms of a Poisson bracket:

∂t qi = {qi , Ĥ
}
, (3.6)

with the bracket defined according to

{
F, Ĥ
} =
(
δF

δqi
, J
∂H

∂qi

)
= −
∫

D

δF

δqi
∂

(
qi ,

∂H

∂qi

)
dx. (3.7)

It is interesting to notice that the analysis shows the impossibility of reduction of
(3.7) to the standard Lie–Poisson form as opposed to the case treated by McIntyre
and Shepherd [59] in view of the specific boundary conditions.

Evidently, (3.5) is a noncanonical Hamiltonian system and the operator J is not
invertible. Therefore, the fixed point

ψi = ψe
i : ∂qi

∂t
= J

δ Ĥ

δqi
= 0, (3.8)

only implies that δ Ĥ/δqi lies in the null space of J . Hence at ψi = ψe
i we expect

that

δ Ĥ

δqi
= −δCi

δqi
, (3.9)

for some Casimir(s) Ci —the null eigenvector(s) of J :

J
δCi

δqi
= 0 ⇒ δCi

δqi
= C ′

i (qi ) ⇒ Ci =
∫

D
Ci (qi )dx, (3.10)

where Ci (qi ) is an arbitrary function. These Casimirs are a direct consequence
of the conservation of potential vorticity along fluid particle trajectories in the
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conservative case of (2.1). In particular, this implies conservation of the L p norms
of qi including p = ∞. The existence of Ci implies that the dynamics is taking
place on a hypersurface defined by all conservation laws, that is, bulk and boundary
circulations and Casimirs. It must be noted that the Casimir Ci is determined by
the sufficient condition (3.10), but there is no guarantee that there are no other
Casimirs. This has some implications for the stability analysis: the more complete
the set of Casimirs, the narrower the space of admissible dynamics, but the sharper
the stability boundary estimates.

4. Linear spectral stability analysis

Here we review the linear spectral stability of the basic state, ψe
i = −Ui y. The

linear part of the operator equation (2.10) is

∂t Mφi + Lφi := (∂t + Ui∂x )
[
∇2φi + (−1)i F(φ1 − φ2)

]

+∂xφi

[
β − (−1)i F(U1 − U2)

]
+ r∇2φi = 0. (4.1)

Our goal here is to perform a linear spectral stability analysis of this system which
amounts to its reduction to the generalized eigenvalue problem via φi → eσ t φ̂i :

σMφi + Lφi = 0. (4.2)

Clearly, the operator M is of elliptic type, as shown in the introduction to
Section 6, and invertible, while the operator L is unbounded. As will be shown
below, the spectrum of (4.2) is discrete. Let us decompose the eigensolution into
Fourier modes:

φ̂i =
∞∑

m=1

+∞∑

n=−∞
φ̃i

mneiπnx sin πmy, (4.3)

which form a complete basis for this problem. Here we take into account periodicity
in x , anti-symmetry in y and homogeneous boundary conditions for φi at y = 0, 1.
Omitting indexes m, n and using the notation a2 = π2

[
n2 + m2

]
, this produces

an algebraic system of equations:

(
σ + iπnU j

) [
(−1) j F(φ̃1 − φ̃2)− a2φ̃ j

]

+iπnφ̃ j
[
β − (−1) j F(U1 − U2)

]
= ra2φ̃ j , j = 1, 2,

which has a nontrivial solution only if determinant of the above system vanishes.
The resulting eigenvalues are computed to be

σ1,2 = −i
πn (U1 + U2)

2
+ a2 + F

a2 + 2F

(
i
βπn

a2 − r

)
(4.4)

∓
√
π2n2a4

(
4F2 − a4

)
(U1 − U2)

2 − 4F2
(
βπn + ira2

)2

2a2
(
a2 + 2F

) ;
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that is, the spectrum is discrete and consists of two disjoint sets σ+ and σ− of a coun-
table number of eigenvalues of finite multiplicity with Re σ+ > 0 and Re σ− < 0
and there are no points of accumulation. Note that the algebraic expressions (4.4)
are of the form σ1,2 = A + i B ∓ √

C + i D. The Hamiltonian case is reproduced
by taking r = 0 in this expression. The marginal (neutral) stability is defined by
Re σ = 0. While the conservative case (r = 0) is straightforward to analyze, the dis-
sipative case involves some algebra. First of all, the equation

√
C + i D = qR + iqI

has two solutions:

q1,2
R =

√
C ± √

C2 + D2

2
, q1,2

I = D

2qR
. (4.5)

Therefore, when analyzing the real part of σ , one has to consider four equations,
A ∓ q1,2

R = 0, which yield the same solution for the critical value Uc = U1 − U2:

Uc F

2β
=

√
F

a

[
1 + a2

F

]−1 [
2 − a2

F

]−1/2 [
1 +
(

a2r
βπn

)2 (
1 + a2

F

)2
]1/2

, (4.6)

marked by dots on the dashed curve in Fig. 5 in the case of vanishing dissipation. The
dashed curve itself corresponds to the continuous spectrum case when the dimension
of the channel in the x-direction is infinite. In general, the longer the channel, the
more dense the distribution of wavenumbers along the marginal stability curve. In
the case of a finite channel the actual locations of wavenumbers are also determined
by the value of the parameter F : thus, without loss we can consider the critical
bifurcation parameters corresponding to extrema of the continuous curve. The same
logic applies to the neutral stability curve in the conservative case. The last step is
to analyze stability below and above the marginal stability curve, which is easy to
compute analytically by expanding around the marginal stability curve for small
dissipation, r � 1, and small distance from Uc, that is, U1 − U2 = Uc + s:

Re σ1 = a3
(
a2 + F

)2 √
2F − a2

2F3β
s r + · · · , (4.7a)

Re σ2 = −2
a2 + F

a2 + 2F
− a3

(
a2 + F

)2 √
2F − a2

2F3β
s r + · · · , (4.7b)

so that for 2F > a2 we have linear spectral stability below the marginal stability
curve and linear spectral instability above it—the shaded region in Fig. 5.

More specifically, in the Hamiltonian case the eigenvalues are obtained by
setting r = 0 in (4.4), from which one can observe that Im σ ∼ πn. Since both πn
and −πn are legitimate wavenumbers, then we have four eigenvalues symmetrically
located around the origin of the complex plane. Thus, the only spectrally stable
configuration corresponds to Re σ = 0, which defines a region of neutral stability,

Uc F

2β
�
(

a2

F

)−1 (
4 − a4

F2

)−1/2

, Uc = |U1 − U2|, (4.8)
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Fig. 5. Neutral stability curve (solid line) in the Hamiltonian case, r = 0, and marginal
stability curve (dashed line) in the case of vanishing dissipation, r → 0. The whole shaded
region corresponds to spectral instability for r → 0

the envelope of which has an extremum for a2/F = √
2 with minimal magnitude

of the bifurcation parameter Uc F/2β = 1/2, that is, below this value the system is
spectrally stable, while above it there is a certain range of unstable wavenumbers
embraced by the neutral stability curve.

The dissipative case (r → +0) has different implications for the stability
characteristics: the marginal stability curve defined by (4.6) separates the stable
from the unstable region (shaded in Fig. 5). The value of this bifurcation parame-
ter at the extremum value of wavenumber a2/F = √

2 in the Hamiltonian case

is Uc F/2β =
[
2
(

1 + √
2
)]−1/2

, which is below the value of the critical para-

meter 1
2 in the Hamiltonian case. Since the Hamiltonian neutral curve is exactly

inside this region of instability, one can expect the phenomenon of dissipation-
induced instability. At this stage, only in the linear spectral instability sense can
one conclude that the introduction of dissipation destroys the stability of solutions

for Uc F/2β ∈
[

2−1/2
(

1 + √
2
)−1/2

, 1/2

]
. While this is the counterintuitive

consequence of the dissipation effect, an increase of the dissipation parameter r
enlarges the region of stability as can be inferred from (4.6) and which agrees with
the intuition.

Lastly, we note that the linear solutions corresponding to wavenumbers satis-
fying a2 > 2F have zero growth rate in the conservative case, while in the dissi-
pative case the real part of the leading eigenvalue is always negative in that region.

5. Nonlinear stability analysis

The main objective of this section is to demonstrate the fact of dissipation-
induced instability in (2.1) just from the positions of stability analysis; the existence
and regularity of solutions will be studied in Section 6. First, in Section 5.1, we
prove nonlinear stability in the conservative (Hamiltonian) case below the solid
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curve in Fig. 5. Next, in Section 5.2, we prove nonlinear instability above the
dashed curve in Fig. 5, that is, in the dissipative case in the shaded region of Fig. 5,

corresponding to the inequality Uc F/2β >
[
2
(

1 + √
2
)]−1/2

, which we know

from the spectral linear stability analysis in Section 4. The proof of instability in
the Hamiltonian case in Section 5.1 is based on the ideas of Arnold [5,6], while
the proof in the dissipative case in Section 5.2 is accomplished using semigroup
theory and following the ideas of Yudovich [88], Henry [39] and Friedlander
et al. [28].

5.1. The Hamiltonian case: Arnold’s method

While our goal is to study the equilibrium of the basic state ψe
i = −Ui y,

the analysis below will be performed for a more general equilibrium state and at
the end will be applied to this particular choice of ψe

i . From the preceding linear
stability analysis we know that under the conditions (4.8) the system is spectrally
stable, which is not sufficient to assert linear and nonlinear stability. The purpose
of this section is to prove nonlinear stability following ideas of Arnold [5,6]
who extended the Lyapunov direct method to infinite-dimensional systems and
fluid dynamics, in particular. For introductory discussions of Arnold’s method, the
reader may refer to Holm et al. [41], Shepherd [80] and Salmon [78].

Let us call the augmented Hamiltonian (that is, the Hamiltonian constrained by
Casimir and boundary circulations) the expression

Hc = Ĥ + C1 + C2, (5.1)

where Ĥ is given by (3.4) and Ci by (3.10). Since the equilibrium should be an
extremum point of the hypersurface restricted to Hamiltonian, boundary circula-
tions, and Casimirs, it is defined by vanishing the first variation δHc = d

dε

∣∣
ε=0

Hc(q + εδq) = 0, which is given by

δHc =
∫∫

D
F (δψ1 − δψ2)

{
(ψ1 − ψ2)+ (−1)i C ′

i (qi )
}

dx

+
∫∫

D
δ∇2ψi

(
C ′

i (qi )− ψi
)

dx +
∑

y=0,1

(
ψi (y)+ λi

y

)
δ�i (y), (5.2)

where, as usual, summation over i is assumed and primes denote derivatives with
respect to qi . In deriving (5.2) we utilized the periodicity of the solution in x .
Equation (5.2) allows one to determine the form of the equilibrium solution. First
note that the equilibrium solutions of (2.1) in the Hamiltonian case r = 0 are
vi · ∇qi = 0, that is, ∇ψe

i and ∇qi should be collinear. Sufficient condition for this
to happen is the functional relationshipψi = Fi (qi ) for some real-valued functions
Fi . Next one can observe from (5.2) that δHc = 0 only if we have functional
dependence of the potential vorticity qi and the stream-function ψi :

λi
y = −ψi (y) for y = 0, 1; C ′

i (qi ) = ψi , (5.3)
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that is Fi = C ′
i , where Ci (qi ) is an arbitrary function, as we noted in Section 3.

Compared to the conclusionψi = Fi (qi ) from (2.1), (5.3) makes it more restrictive
by demanding qi be an invertible, hence monotone, function of ψi . To evaluate the
effect of a perturbation in initial conditions we shall determine the second variation,
which will also suggest a strategy for constructing a norm in which the disturbance
remains bounded. Keeping terms of the second order and taking into account that
the first variation vanishes, we find

δ2 Hc = 1

2

∫∫

D

{
F (δψ1 − δψ2)

2 + ∇δψi · ∇δψi

}
dx + 1

2

∫∫

D
C ′′

i (qi )δq
2
i dx.

Apparently, the sufficient condition for the second variation to be (strongly) positive
definite, that is δ2 Hc > 0, for any nonzero δqi is C ′′

i (qi ) = ψ ′
i > 0, which yields

a formal stability criteria. While the latter is neither necessary nor sufficient for
nonlinear stability in an infinite-dimensional case, the proof of nonlinear stability
in the Lyapunov sense will demonstrate that, in our case, positive definiteness of the
second variation of the generalized Hamiltonian δ2 Hc > 0 together with convexity
estimates are sufficient for nonlinear stability. To prove nonlinear stability we need
to show that δ2 Hc remains bounded in the appropriate norm, which is constructed
below with the help of convexity estimates.

First, let us construct two quadratic forms Q1 and Q2 such that the following
convexity inequalities hold

Q1(δq) � H(qe + δq)− H(qe)− δH(qe), (5.4a)

Q2(δq) � C(qe + δq)− C(qe)− δC(qe), (5.4b)

and where Q1(δq)+ Q2(δq) > 0 for all nonzero δq. We can choose

Q1(δq) = 1

2

∫∫

D

{
F (δψ1 − δψ2)

2 + ∇δψi · ∇δψi

}
dx, (5.5a)

Q2(δq) = c2

2

∫∫

D
δqiδqi dx, c2 � C ′′

i (q
e
i ) = ψ ′

i (q
e
i ), (5.5b)

and then assign Q1(δq)+ Q2(δq) = ‖δq‖2 as the measure of a disturbance activity
δq. It suffices, though perhaps not necessary, to require the condition c2 > 0. While
positive definiteness and homogeneity of ‖δq‖ are easy to demonstrate, the triangle
inequality, ‖δq1 + δq2‖ � ‖δq1‖ + ‖δq2‖, follows from the use of Minkowski’s
inequality and the observation that the decomposition δqi = δq1

i +δq2
i is equivalent

to δψi = δψ1
i + δψ2

i .
It can be shown that Hc is continuous at qe in the norm ‖δq‖ since the following

sufficient conditions are satisfied: there are constants C̃1, C̃2 such that

Ĥ(qe + δq)− Ĥ(qe)− Ĥ ′(qe)δq � C̃1‖δq‖2, (5.6a)

C(qe + δq)− C(qe)− C′(qe)δq � C̃2‖δq‖2, (5.6b)

which in our case should satisfy ∞ > C̃2 � ψ ′
i (q

e
i ) � c2 > 0, i = 1, 2. The latter

follows from

1

2

∫∫

D
C ′′

i (qi )δq
2
i dx � C̃2

2

∫∫

D
δq2

i dx � C̃2‖δq‖2, C̃2 � C ′′
i (qi ), (5.7)
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The nonlinear stability results can be formulated in the following theorem, cf.
also [41]. Note that, similar to the Lyapunov direct method, this theorem would
be “conditional” without the existence of global classical solutions of (2.1). The
latter, however, is established in Section 6.3, and hence makes this stability result
unconditional.

Theorem 2. Global classical solutions of the problem (2.1) exist. If the convexity
estimates (5.4) hold, which define the norm ‖ · ‖, and if Hc is continuous in this
norm, as guaranteed by (5.6), then the stability estimate

‖δq(t)‖2 = Q1(δq)+ Q2(δq) �
(
C̃1 + C̃2

) ‖δq(0)‖2, (5.8)

holds for all nonzero δq; that is, the equilibrium solution qe is Lyapunov stable.

Proof. In Section 6.3, Theorem 6, we construct a space X in which global classical
solutions are shown to exist.

To establish (5.8), first note that Hc is a constant of motion. Indeed, since
Hc = Ĥ + C1 + C2 from Equation (5.1) and Ĥ = H + ∑

y=0,1
λi

y�i (y) from

Equation (3.4), then

dĤ

dt
= dH

dt
+
∑

y=0,1

λi
y

d�i (y)

dt
= 0,

where dH/dt = 0 by (3.3), since r = 0 when there is no dissipation, and
d�i (y)/dt = 0 by (2.3), and finally by (3.10):

dCi

dt
=
∫

D

dCi (qi )

dt
dx =

∫

D
C ′

i
dqi

dt
dx =

∫

D
C ′

i

(
∂qi

∂t
+ vi · ∇qi

)
dx = 0,

since, as we mentioned in Section 3, the Casimirs are a direct consequence of the
conservation of potential vorticity along fluid particle trajectories in the conservative
case of (2.1).

Based on the fact that Hc is a constant of motion and from inequalities (5.4) we
observe that

Q1(δq)+ Q2(δq) � Hc(qe + δq)− Hc(qe)− δHc(qe)

= Hc(qe + δq)− Hc(qe) = Hc(q(0))− Hc(qe).

Thus,

‖δq(t)‖2 = Q1(δq)+ Q2(δq) � Hc(q(0))− Hc(qe). (5.9)

Now, we can prove the Lyapunov stability, that is, given ε > 0, there is a δ > 0
such that q(t) never leaves the ε-ball about qe if it starts in the δ-ball. Since the
continuity of Hc implies that if ‖q(0)− qe‖ < δ then ‖Hc(q(0))− Hc(qe)‖ < ε,
from (5.9) it follows

‖δq(t)‖2 � ‖Hc(q(0))− Hc(qe)‖ < ε if ‖δq(0)‖ < δ. (5.10)

Using (5.6),

Hc(qe + δq(0))− Hc(qe) = Hc(qe + δq)− Hc(qe) �
(
C̃1 + C̃2

) ‖δq(0)‖2,

which proves (5.8). ��
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Note that if one could establish the existence of solutions in a larger space than X
in which Q1 and Q2 are still well-defined, then the same argument as in the proof
of Theorem 2 would apply. Hence, the above theorem probably applies to a wider
class of solutions.

Now, we are in a position to apply the above results to our particular basic state
ψe

i = −Ui y, which is an equilibrium solution. In order to computeψ ′
i (q

e
i ), observe

that

∇ψe
i = ψ ′

i (q
e
i ) ∇qe

i (no summation over i), (5.11)

that is, ∇ψe
i and ∇qe

i are collinear. This, together with the definitions of ψe
i and

qe
i , furnishes

ψ ′
i (q

e
i ) = Ui

(−1)i F(U1 − U2)− β
. (5.12)

Note that while we require ∞ > C̃2 � ψ ′
i (q

e
i ) � c2 > 0, we are free to choose c2

as small as we want, and C̃2 as large as we wish (as in Arnold [6]), and therefore
the solution is Lyapunov stable in the limiting situation:

∞ > ψ ′
i (q

e
i ) > 0 ⇒ −1

2
<

Uc F

2β
<

1

2
, Uc = |U1 − U2| . (5.13)

This proves that the solution is nonlinearly stable in the Hamiltonian case for
Uc F/2β < 1/2, that is, below the solid curve in Fig. 5.

5.2. The dissipative case

It is tempting to draw the conclusion that the solution in the dissipative case
is unstable above the marginal stability curve defined by (4.6) and stable below it.
However, there is no general analog of the Lyapunov theorem on deducing linear
and nonlinear instability based on spectral information for infinite-dimensional
systems, cf. Luo et al. [56]. When one studies stability of a solution φ of an
infinite-dimensional system, the problem often reduces to the question of stability
of a solution in the Banach space X of the nonlinear evolution equation (2.12)
with stationary principal part Aφ, that is, when the linear operator A : X → X is
time-independent.

In this context, the main idea of the proof of the instability in the dissipative
case reduces to considering the original PDE problem as an infinite-dimensional
evolutionary ODE (2.12) in some suitable Banach space X . Then, one approach to
proving instability is to use semigroup theory together with the geometric theory
of semi-linear parabolic equations following the original ideas of Krein [22],
Yudovich [88], and Henry [39]. Using this method we shall obtain the main
result of this section, namely

Theorem 3. Let s � 2/q with 2 < q < ∞. If10 Uc F/2β > 2−1/2(1 + √
2)−1/2,

then the equilibrium solution of (2.1) is Lyapunov unstable in W s,q .

10 This choice of the bifurcation parameter in (2.1) implies that the spectrum of the linear
operator A over Sobolev space contains points in the right half of the complex plane.
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The choice of function spaces in Theorem 3 (for the definitions of spaces refer
back to Section 2.3) is dictated by the fact that we have a local existence result for
classical solutions in Hölder spaces Ck,λ, while the nature of the problem allows us
to perform the stability analysis only in a weaker topology, namely in the Sobolev
spaces W s,p. The latter, however, suffices since the natural inclusion Ck,λ → W s,p

defines a bounded operator and thus the norms of functions obey

‖u‖W s,p � C‖u‖Ck,λ , (5.14)

for example for k � s and 0 < λ < 1. In fact, one has the compactness of the
embedding Ck,λ ↪→ W s,p. The above relation between the norms implies that
an instability in W s,p guarantees an instability in Ck,λ. Note, that the proof of
stability in W s,p would only give stability in Ck,λ for s > n

p +k +λ by the Sobolev
embedding theorem. In the analysis below, as usual, constant C stands for a generic
constant that may change from line to line.

5.2.1. Problem statement and a few definitions. The evolution system (2.1)
for the perturbation φ in the Orr–Sommerfeld-like form (2.10) can be recast in
the standard form (2.12) using the fact that the “mass” operator M is invertible,
which renders it suitable for the application of the infinite-dimensional dynamical
systems theory. The invertibility of the operator M in (2.10) can be seen using
Green’s function methods (see also the discussion in the introduction of Section 6,
where we demonstrate that M is an elliptic operator): namely, consider

MG =
(−∇2 − F F

F −∇2 − F

)
G = δ(x − ξ),

where x = (x, y) and ξ = (ξ, η). Writing G = ∑m,n

(
a1

mn
a2

mn

)
eiπnx sin πmy, we

find that

G(x, ξ, y, η) = −
∞∑

m=1

+∞∑

n=−∞

(
1
1

)
a−2eiπn(x−ξ) sin πmy sin πmη, (5.15)

where a2 = π2(n2 + m2) �= 0 for all integers n,m, which guarantees the invertibi-
lity of M . Thus, the operator M−1 applied to a vector-function f is the smoothing
operation given by M−1f = ∫ 1

−1

∫ 1
0 G(x, ξ, y, η)f(ξ, η) dξdη.

Now we take advantage of the fact that operator M in (2.10) is invertible to
rewrite (2.10) in the standard form (2.12) for φ = (φ1, φ2):

∂φ

∂t
= Aφ + N (φ,φ), with A = −M−1L , N = M−1 N , (5.16)

where notation N (φ,φ) signifies that the nonlinearity is “quadratic” in φ. Mild
solutions, as introduced by Kato and Fujita [45], of this equation can be written
and determined via Duhamel’s formula:

φ(t) = φ(0)eAt +
∫ t

0
eA(t−τ)N (φ(τ ),φ(τ )) dτ , (5.17)



636 Rouslan Krechetnikov & Jerrold E. Marsden

where the last integral will be denoted by B(t) = ∫ t
0 eA(t−τ)N (φ(τ ),φ(τ )) dτ , for

convenience in the subsequent analysis. However, our goal here is not to construct
mild solutions, say via fixed point iteration, but to prove Lyapunov instability of the
equilibrium solution (2.13) in the weak topology of W s,p using (5.17). The latter
formula also highlights the importance of both the linear and the nonlinear terms for
stability analysis in infinite dimensions: indeed, the nonlinear term N is unbounded
in W s,p in view of the presence of unbounded operations of differentiation in it, cf.
(2.11c), which can be compensated only by the smoothing effect of the semigroup
eA(t−τ). Thus, naturally, for the stability analysis we will need to study not only the
properties of the linear operator (cf. Section 5.2.2), but also to determine bounds on
the nonlinear terms (cf. Section 5.2.3), which is done with the help of the fractional
powers of the linear operator A—an idea which goes back to Krein [50] (see also
Yudovich [88]).

For the purpose of both immediate and further discussions, let us introduce the
basic definitions characterizing the linear operator A. The resolvent set ρ(A) is the
set of all points λ in the complex plane C where the resolvent Rλ = (A − λI )−1

is defined. Then, the complement of ρ(A), the spectrum of A, is denoted σ(A).
With Definition 4 of instability, in the following lemma we demonstrate that the

local existence result in the stronger topology of Ck,λ is enough in order to prove
Lyapunov instability of a solution in that space and its existence until instability
happens, that is, strong Lyapunov instability, given the proof of Lyapunov instability
in the weaker topology of W s,p . In fact, the following instability lemma is of general
interest, but we state it for the case of the Ck,λ and W s,p topologies to be concrete.

Lemma 1. Suppose φe is an equilibrium solution and a local existence theory11

applies to solutions in Ck,λ, 0 < λ < 1, in some neighborhood of φe. Then, if φe

is Lyapunov unstable in W s,p with s � k, then it is strongly Lyapunov unstable in
Ck,λ.

Proof. Let us first make two easy preparatory statements:

(A) Let B be a ball of radius µ in Ck,λ. If a solution φ exists locally and a priori
stays in B; that is, ‖φ‖Ck,λ � µ, then it exists for all time by our assumption
of local continuation in time. This also means that a solution would exist for
all time in W s,p in a ball of radius µC , where C is the constant from (5.14).

(B) If instability takes place in W s,p according to Definition 4, then there exists a
ball of radius ε C and a moment t1 such that ‖φ(t1)‖W s,p � ε C and therefore
the solution escapes not only from the ball of radius ε C in W s,p, but also
from the ball of radius ε in Ck,λ. Hence, the solution is unstable in Ck,λ too.

Therefore, if a solution exists in Ck,λ long enough so that (B) holds, then clearly
strong Lyapunov instability in Ck,λ is proved; that is what was demonstrated in the
proof of Theorem 3. Next, let us fix the size ε of the ball B in Ck,λ. If a solution
exists long enough to escape from the ball B, then this implies strong Lyapunov

11 We take it for granted, which holds in our case, that the local existence theory contains
the result that solutions with an a priori bound in Ck,λ can be continued in time.
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instability in Ck,λ. If, however, a solution stays in the ball, then according to (A), it
continues to exist, and one can apply (B) to prove instability. The above arguments
indicate that even if the local existence result given in Theorem 5 gives the time
of existence, which is less than the critical time of instability t1, with the above
argument one can see that the solution exists at least up to t1. ��

5.2.2. Properties of the linear operator A. Since the operator A is unbounded,
we need to understand some of its properties in order to proceed with the stability
analysis. The relevant properties of the operator A are given by the following
lemma.

Lemma 2. The operator A is elliptic and in W s,p is the infinitesimal generator of
an analytic semigroup.

From the solution of the linear eigenvalue problem, that is, the linear Orr–
Sommerfeld equation (4.1), we know that the spectrum of the operator A is discrete
and its eigenvalues σmn given by (4.4), enumerated with m ∈ Z and n ∈ N

+, have
asymptotics σmn → (x ± iy)n in the complex plane C, for |m|, n � 1 and constant
x, y. If we consider the case when the spectrum σ(A) lies in the left half-plane,
then it is clear that the asymptotes (x ± iy)n belong to the left half-plane. Also,
we observe that for finite m, n the imaginary part of each eigenvalue is finite.
Therefore, regardless of the actual behavior of the eigenvalues for m, n = O(1),
a sector Sδ = {σmn ∈ C : |arg σmn| < π

2 + δ}\{0}, 0 < δ � π
2 is contained

in the resolvent set ρ(A), that is, the spectrum σ(A) lies within C\Sδ in the left
half-plane, as in Fig. 6. While the derivation of the spectrum of A in Section 4 is
purely formal, since the operator A is elliptic, the spectrum is exactly the same
in W s,p and its eigenfunctions are in C∞ [31]. Next, since the spectrum of A is
discrete, then for the resolvent and λ ∈ ρ(A) we have

Rλ(A, λ)x = (A − λ)−1x =
∑

m,n

(σmn − λ)−1ξmnφmn

� max
m,n

(σmn − λ)−1
∑

m,n

ξmnφmn = max
m,n

(σmn − λ)−1 x,

hence there exists C such that

‖(A − λ)−1‖ � C/|λ− a|.
This proves that the operator A is sectorial, and therefore (a) it is the infinitesi-

mal generator of an analytic semigroup eAt , cf. Theorem 1.3.4 of Henry [39], (b)
it possesses the spectral mapping property, and (c) moreover:

eAt = 1

2π i

∫

�

(λ− A)−1eλt dλ, (5.18)

where � is a contour in ρ(A), as shown in Fig. 6. From the latter property it follows
[27,39,67] that if Re σ(A) < a < 0, then

‖AαeAt‖W s,q→W s,q � C

tα
eat . (5.19)
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Fig. 6. On the definition of a sectorial operator

Again, because A is elliptic, as shown below, and its eigenfunctions and eigenvalues
are the same in W s,p, as say in L p, the above statement can be made with regard to
any Sobolev space. Also, because A generates an analytic semigroup, the spectral
mapping theorem applies [27], that is σ(eAt ) = etσ(A).

Finally, it is required to establish that the operator A is elliptic, so that one can
use the following Schauder-type inequality [66] for the elliptic operator A of order
m:

‖A−α f ‖k,p � C‖ f ‖k−mα,p. (5.20)

The proof that A = −M−1L is elliptic can be achieved by demonstrating that M
and L are each elliptic. While the operator M is clearly elliptic of the second order
(see also the introduction to Section 6), the ellipticity of the operator L can be
obtained from the analysis of its principal part

L ′φ =
(

U1∂x∇2 0
0 U2∂x∇2

)
φ.

Hence, its symbol is

L ′ξ =
(

U1ξ(ξ
2 + η2) 0
0 U2ξ(ξ

2 + η2)

)
ξ ,

that is, the characteristic equation gives |L ′ξ | = U1U2ξ
2(ξ2 + η2)2 �= 0 for

ξ, η �= 0, which implies that there are no real characteristics, and so the operator
L is elliptic of the order 3. Therefore, the operator A = −M−1L is a first order
elliptic operator.

5.2.3. Properties of the nonlinear operator N . Before proving the instability
in the dissipative case, that is, Theorem 3, let us establish a useful relation between
the Sobolev norms of vector functions and their tensor product.
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Lemma 3. Suppose that f⊗f ∈ W s,q(	)with	 ⊆ R
n. Then there exists a constant

C(n, dim(f), s) such that

‖f ⊗ f‖W s,q � C‖f‖2
W s,2q . (5.21)

Proof. The proof is simple but lengthy, so we will just outline the main idea and
demonstrate the result for a few simple cases. First, consider the case in which f
is a scalar. In the Sobolev space of order s = 0, we have

‖ f 2‖2
0,q =

[∫

	

| f 2|q dx

]1/q

=
[∫

	

| f |2q dx

]2/2q

= ‖ f ‖2
0,2q .

For the Sobolev space of higher order one can use the Cauchy inequality,
ab � a2/2 + b2/2; in particular, for s = 1:

‖ f 2‖2
1,q =

[∫

	

| f 2|q dx +
∫

	

|2 f f ′|q dx

]1/q

�
[∫

	

| f |2q dx +
∫

	

| f |2q dx +
∫

	

| f ′|2q dx

]2/2q

� C‖ f ‖2
1,2q ,

where one can choose C = 21/q . Continuing the same reasoning, one will find
that constant C is a function of the order s of the Sobolev space and the spatial
dimension n, that is, C = C(s, n).

Analogously, one can get a similar result when f is vector valued. For example,
in the case of s = 0, again using the Cauchy inequality,

‖f ⊗ f‖0,q =
⎡

⎣
∑

i, j

∫
| fi f j |q dx

⎤

⎦

1
q

�
[
∑

i

∫
dimq(f)| fi |2q dx

] 2
2q

=C‖f‖2
0,2q ,

where C = dim(f). The general case of arbitrary s is proved similarly, which yields
in general C = C(n, dim(f), s). ��

As we will see in the next lemma, the above result is useful when establishing
bounds and estimates on the nonlinear terms.

Lemma 4. The bilinear form B(t) in (5.17) grows at most like the square of the
norm of φ: if ‖φ(t)‖W s,q � δeλt for all t � T , then there exists a constant C such
that

‖B(t)‖W s,q � C
[
δeλt ]2 , t � T . (5.22)

Proof. Conceptually, the basic idea of the proof goes back to Yudovich [88],
which is still the most efficient technique of proving the nonlinear estimates for
stability analysis purposes, see, for example [28]. First, for convenience, we intro-
duce the following operator Aν = A − λ − ν with 0 < ν < λ chosen so that
the spectrum of this new operator lies entirely in the left half-plane. Then we can
use the semigroup bounds (5.19), that is, ‖Aα

ν eAν t‖W s,q→W s,q � Ct−α , and the
Schauder-type inequalities (5.20), that is ‖A−α

ν f ‖k,p � C‖ f ‖k−mα,p, as applied
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to the operator Aν , which are valid for all α > 0 [27,39,67]. With this understan-
ding, we can get a bound on the nonlinear terms B(t), namely that the bilinear form
B(t) grows at most like the square of the norm of φ. First, note that for any α > 0,
Aα
ν eAν t = eAν tAα

ν on D(Aα
ν ), and thus we can write

B(t) =
∫ t

0
eA(t−τ)N (φ(τ ),φ(τ )) dτ

=
∫ t

0
e(λ+ν)(t−τ)Aα

ν eAν (t−τ)A−α
ν N (φ(τ ),φ(τ )) dτ ,

and its norm in W s,q with the use of the semigroup bound can be estimated as

‖B(t)‖W s,q �
∫ t

0
e(λ+ν)(t−τ) 1

(t − τ)α
‖A−α

ν N (φ(τ ),φ(τ ))‖W s,q dτ . (5.23)

Next, the estimate of ‖A−α
ν N (φ(τ ),φ(τ ))‖W s,q can be determined as follows.

Because there is no coupling between φ1 and φ2 through nonlinearity in (2.11c), the
nonlinear terms can be majorized with N (φ, φ) ∼ ∇φ∇3φ for φ-scalar. Then using
the equality ∇φ∇3φ = 1

2∇2 (∇φ∇φ)−(∇2φ
)2

we can show that the “dominating”
term of N = M−1 N � ∇−2 N is 1

2∇2 (∇φ∇φ), because the W s,q -norm of this

term is larger than that of
(∇2φ

)2
:

‖N‖W s,q � ‖∇−2
(
∇φ∇3φ

)
‖W s,q � 1

2
‖∇φ∇φ‖W s,q + ‖∇−2

(
∇2φ
)2 ‖W s,q

� C1‖∇φ‖2
W s,2q + C2‖∇2φ‖2

W s−2,2q � C1‖φ‖2
W s+1,2q + C2‖φ‖2

W s,2q

� C‖φ‖2
W s+1,2q .

In the above derivations we have used Lemma 3, the Schauder estimate, and
the usual definitions of norms in Sobolev spaces. Hence, when estimating
‖A−α

ν N‖W s,q we will take into account only the dominating term, ‖A−α
ν N‖W s,q �

C1‖∇φ∇φ‖W s−α,q . Now, using the embedding of Sobolev spaces12 [2]: W s,q/2 ↪→
W s−α,q , which is true for s � α and α = 2/q, using Lemma 3 we finally conclude
that there exists a constant C such that

‖A−α
ν N (φ,φ)‖W s,q � C‖φ‖2

W s,q . (5.24)

Combining bounds (5.23) and (5.24), and considering the solution on its maximal
time of existence (5.27), we find

‖B(t)‖W s,q � C Q2δ2
∫ t

0
e(λ+ν)(t−τ) 1

(t − τ)α
e2λτ dτ , (5.25)

12 The relevant part of Theorem 7.58 in Adams [2] states that W t,p(	n ⊆ R
n) ↪→

Wχ,r (	k ⊆ R
k) for χ = t − n

p + k
r where 1 < p � r < ∞, 1 � k � n, t > 0 if χ � 0

and p < r .
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which is bounded for α < 1, that is, when q > 2, and behaves asymptotically as
e2λt since the integral in this expression is bounded for α < 1:
∫ t

0
e(λ+ν)(t−τ) 1

(t − τ)α
e2λτ dτ = e2λt

∫ t

0

e(ν−λ)(t−τ)

(t − τ)α
dτ � e2λt

∫ t

0

dτ

(t − τ)α
.

Hence, the bilinear form B(t) grows at most like the square of the norm of φ for as
long as the latter is bounded by a constant multiple of eλt , λ > 0:

‖B(t)‖W s,q � C
[
Qδeλt ]2 . (5.26)

��

5.2.4. Proof of instability. Given the above properties of the linear operator A
by Lemma 2 and the nonlinear one N by Lemma 4, now we turn to the proof of
Theorem 3 with the help of the Duhamel formula.

Proof. In proving Lyapunov instability we will assume existence of a solution
(conditional instability) and simply follow the negation of Definition 3. First, let
us choose the initial condition φ(0) = δ · ϕ with the eigenfunction ϕ ∈ W s,q

of A corresponding to the eigenvalue with the maximal real part λ normalized as
‖ϕ‖W s,q = 1; since we consider the case of an instability, then λ > 0. Next, let
us choose a constant Q > 1; then, by the continuity, there exists a maximal time
T (Q) such that

‖φ(t)‖W s,q � Qδeλt for all t � T . (5.27)

With estimate (5.22) on B(t), one can immediately demonstrate that the maxi-
mal time T , that is, when ‖φ(T )‖W s,q = Qδeλt , is nonzero. Indeed, using the
Duhamel formula (5.17):

‖φ(T )‖W s,q = Qδeλt � ‖φ(0)eAT ‖W s,q + ‖B(T )‖W s,q

� δeλT + C
[

QδeλT
]2
.

From here,

δeλT � Q − 1

C Q2 , (5.28)

where the right-hand side will be denoted byχ∗ = δeλt∗ , for convenience. Obviously,
t∗ � T .

The goal is to show, in accordance with the definition of Lyapunov instability,
that there exists ε and at least one time instant t1 when ‖φ(t1)‖W s,q � ε. In fact,
we will demonstrate that t1 = t∗. Indeed, using (5.17), we find

‖φ(t)‖W s,q � δeλt − C
[
Qδeλt ]2 ,

which at t = t∗ can be rewritten as

‖φ(t∗)‖W s,q � χ∗ − Cχ2∗ ,
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and one can choose Q = Q0 > 1 such that χ∗ < 1/(2C) and therefore
‖φ(t∗)‖W s,q � χ∗/2. That is, we have proved that there exists ε = χ∗/2 and
an instant of time t∗(δ, ε) given by ε = (δ/2)eλt∗ , so that Lyapunov instability
takes place. ��
In Section 7, the Lyapunov instability will be proved unconditionally upon existence
of solutions in the stronger topology of Ck,λ, that is, strong Lyapunov instability
in the sense of Definition 4, with the help of Lemma 1 and the existence results of
Section 6.

5.2.5. Discussion: center-manifold theory. On the physical side these stability
conclusions can be understood on the basis of center manifold reduction theory,
which allows one to construct “small” solutions in the neighborhood of the critical
point. The formal justification for this reduction of infinite-dimensional dynamics
to its low dimensional counterpart is the center manifold theorem. For the basic
discussion on the center manifold theory we refer the reader to Carr [12], Carr
and Muncaster [13] and Gallay [32]. The latter two works both contain center
manifold theorems for infinite-dimensional systems, but Gallay’s version imposes
weaker restrictions on nonlinearity. The key requirements of the center manifold
theorem are (1) the linear operator restricted to the stable and unstable manifolds
defines strongly continuous semigroups (C0 semigroups) with a spectral gap bet-
ween them, and (2) the nonlinear operator is of class Ck , k > 1, and vanishes at
the origin together with its first Fréchet derivatives. While the requirements of cen-
ter manifold theory on the linear operator are usually met (in our case, it follows
because of compactness of the domain D), the nonlinearity is not usually of class
Ck , k > 1, unless one has a priori a global existence theorem for a sufficiently
smooth solution.

From experience (for example, [21]) it is known that this reduction usually
“works” even when the theorems of the center manifold theory are not directly appli-
cable, so that one can use center manifold theory to reduce the infinite-dimensional
dynamics near a critical point to a low-dimensional manifold and then make conclu-
sions on nonlinear stability. To sketch the derivation of such a formal theory, we
transform problem (2.1) into spectral space using the basis functions (4.3) and the
amplitude expansion:

φi (x, t) =
∞∑

m=1

+∞∑

n=−∞
Ai

mn(t)e
iπnx sin πmy, (5.29)

which, after substitution into the full nonlinear problem and projection onto the
adjoint spectral space, produces an autonomous infinite countable system of ordi-
nary differential equations:

dA
dt

= �A + F(A), (5.30)

where A is the infinite vector of amplitudes Ai
mn defined in a suitable Banach

space, � is a linear operator (usually a matrix of eigenvalues) and Fj (A) =
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∑
n1,n2

α
( j)
n1,n2 An1 An2 . As we saw from the linear stability analysis the restrictions

of the linear operator � to the stable (eigenvalues with Re σ < 0) and unstable
(eigenvalues with Re σ > 0) subspaces generate strongly continuous semigroups,
and there exists a spectral gap. According to the center manifold theorem [32] the
nonlinear map Fj should be at least C1,ε-continuous, ε > 0. This is not true in
general since the global existence of a sufficiently smooth solution of (2.1) in the
dissipative case and thus the convergence of these quadratic infinite sums are not
known.

Once the stable and unstable manifolds are identified, system (5.30) is reduced
to the equation just for the master mode A, which is, in our case, of Landau type
and after rescaling takes the normal form

dA

dt
= σ(ε)A − |A|2 A + h.o.t., (5.31)

where ε is the deviation of the bifurcation parameter from its critical value

Uc F/2β >
[
2
(

1 + √
2
)]−1/2

, such that σ(ε) = 0 if ε = 0, σ(ε) < 0 if ε < 0

(stable region), and σ(ε) > 0 if ε > 0 (unstable region).
An equation similar to (5.31) has been formally derived using perturbative

analysis, for example, for an infinite strip by Romea [75]. The Landau equation
(5.31) tells us that below the marginal stability curve in the dissipative case in Fig. 5
the equilibrium solution is asymptotically stable in the Lyapunov sense, while above
that curve it is unstable.

5.3. Discussion: geometrical and physical interpretations

In this section we provided the proof of the minimal requirements for a
dissipation-induced instability to occur and all these stability results are conditional
upon existence of the corresponding solutions, which will be studied in Section 6.
We have not explored other regions in Fig. 5. For example, it should be noted that
while in the infinite-dimensional Hamiltonian case the spectral instability above
the solid curve in Fig. 5 does not imply nonlinear instability in general, it is not
required here to prove this connection in order to demonstrate the dissipation-
induced instability effect. However, the reader can infer nonlinear instability in the
Hamiltonian case from general theorem of Friedlander et al. [29] proved for
evolution equations in Banach spaces. Their “gap” condition [29] follows from
the spectral properties of the linear operator, while the properties of the nonlinear
operator are discussed above.

The geometrical picture of the dissipation-induced instability can be inferred
from the nonlinear Hamiltonian stability analysis in Section 5.1. Since, as we obser-
ved, the second variation of the Hamiltonian δ2 H2 is definite and, since the system
gets destabilized as follows from the analysis in Section 5.2, then the dissipation-
induced instability corresponds to type (1.3b) and Fig. 2c of the general picture of
these phenomena in finite dimensions [48].

We conclude this section with a discussion of the physical implication of the
dissipation-induced instability demonstrated here. If the baroclinic instability is
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predicted by measuring the velocity difference of two layers (cf. Fig. 3) and using
stability analysis of the Hamiltonian formulation, then the error of this forecast
would be around 10%, as follows from a comparison of the critical bifurcation

parameters, 1/2 and
[
2
(

1 + √
2
)]−1/2

(cf. Figs. 4, 5), for conservative and dissi-

pative formulations respectively.

6. Existence of classical solutions

In order to make the results obtained in Section 5 on nonlinear stability and
instability unconditional, we still need to demonstrate that the solution exists,
which would complete the proof of the main Theorem 1. Formally speaking, local
existence suffices, but extending existence to any finite time interval turns out to
be relatively straightforward with some additional assumptions on the initial data.
We work out the existence proof for classical solutions, as motivated by their direct
physical significance; this will automatically make the nonlinear stability estimates
in the Hamiltonian case applicable, cf. Section 5.1, though such strong smoothness
requirements may be a bit conservative. The existence study is performed here
using standard PDE analysis and a priori estimates technique, that is the philo-
sophy going back to Bernstein [8]. In Section 6.1 we prove the local existence
theorem in the Hamiltonian case and in Section 6.2 we extend it to the dissipa-
tive case. The proof is basically patterned after Kato’s work [44] on the Euler
equation. That is, we also appeal to the fixed point theorem (second Schauder
theorem), and construct the solution iterates directly from the fluid particle paths
instead of using the conventional Galerkin method. This approach also allows us
to highlight some solution properties. Section 6.3 is devoted to the globalization of
the existence result, which is achieved by obtaining a global in time estimate and
successive application of the local existence theorem. As mentioned in the intro-
duction, our goal here is not to advance the existence theory for quasi-geostrophic
equations in a significant way, but rather to make the stability results unconditional.
Hence, in Sections 6.1 and 6.3 we largely follow the early existence studies of the
conservative quasi-geostrophic equations on doubly periodic domains in the case
of continuous stratification by Dutton [24] (who showed the local existence of
weak solutions), Bennett and Kloeden [7] (who obtained the local existence
of classical solutions) and by Bourgeois and Beale [10] (who proved the global
existence of weak solutions). However, here we extend these results to the channel-
type boundary conditions, cf. Section 2.1, and the dissipative quasi-geostrophic
equation (2.1), and prove the existence results for classical solutions.

For the purpose of the proof, the original system (2.1) in the conservative case,
r = 0, is decomposed into a boundary value problem—the following system of
elliptic equations:

∇2ψ̃1 − F
(
ψ̃1 − ψ̃2

) = ζ1, (6.1a)

∇2ψ̃2 + F
(
ψ̃1 − ψ2

) = ζ2, (6.1b)
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Fig. 7. On the discretized elliptic operator

or Mψ̃ = ζ with M defined by (2.11a), that are periodic in x and have boundary
conditions (2.2–2.3), and into the initial value problem for vorticity ζ̃i :

(
∂t + ũi∂x + ṽi∂y

)
ζ̃i = −βṽi , i = 1, 2, (6.2a)

ζ̃i
∣∣
t=0 = ζ̃i0. (6.2b)

Note the placement of tildas: first one solves the elliptic problem (6.1) and gets ψ̃
for given ζ and then from (6.2) one determines ζ̃ . This defines a map

T : ζ �→ ζ̃ , (6.3)

which, as we will show, satisfies the hypothesis of the second Schauder fixed point
theorem and thus proves the existence of a solution in the function space to be
specified later, in Section 6.1.

Before proceeding, we need to demonstrate the uniqueness of the solution for
(6.1). For this it is enough to explore the operator G, which is an algebraic part of
the operator on left-hand side of (6.1),

G = F

(−1 1
1 −1

)
⇒ (Gξ , ξ) = −F (ξ1 − ξ2)

2 , (6.4)

which is obviously negative semi-definite, and thus analogous to a discrete elliptic
operator. If F > 0, then there are two eigenvalues, (−2F, 0), which are simple.
Therefore, one can conclude that the operator ∇2 + G comes from discretizing
the continuous stratification operator Gc(z) = ∂z (ρ(z)∂zψ), as shown in Fig. 7.
The latter was probably not obvious from the derivation in Appendix A where
two superimposed layers of different density were considered to interact through
interfacial conditions. Indeed, if the coordinates and stream-functions at the center
of each of two layers are (z1, ψ1) (upper) and (z2, ψ2) (lower) with the coordinates
z1/2, z2+1/2 and z1+1/2 at the top of the upper, bottom of the lower and in between
the layers respectively, then discretizing the continuous operator gives

Gd = 2

h1 + h2

[
ρ

(
z + h1

2

)
ψ(z + h1)− ψ(z)

h1

− ρ

(
z − h2

2

)
ψ(z)− ψ(z − h2)

h2

]
,



646 Rouslan Krechetnikov & Jerrold E. Marsden

where h1 and h2 stand for the distance between the points of one-sided derivatives.
Next we use the fact that at the top and at the bottom:

∂ψ

∂z

∣∣
∣∣
z1/2

� ψ(z1/2)− ψ(z1)

�z/2
= 0,

∂ψ

∂z

∣∣
∣∣
z2+1/2

= ψ(z2+1/2)− ψ(z2)

�z/2
= 0,

where �z = z2 − z1 is the thickness of identical layers and thus the distance
between their centers. Applying Gd(z) to the centers of each layer, z1 and z2, we
find

Gd(z1) = 4ρ(z1+1/2)

3�z

ψ(z2)− ψ(z1)

�z
, h1 = �z, h2 = �z/2,

Gd(z2) = −4ρ(z1+1/2)

3�z

ψ(z2)− ψ(z1)

�z
, h1 = �z/2, h2 = �z,

and thus arrive at system (6.1) with F = 4ρ(z1+1/2)/3�z2.
The ellipticity of (6.1) implies that vorticity is related to stream-function by a

three-dimensional elliptic operator and thus the properties of the quasi-geostrophic
model are very much like those of the three-dimensional Euler equation. It is
because of the quite simplified vertical structure (only two layers) and the absence
of pressure that one can get global existence, as opposed to the three-dimensional
Euler equation where this issue is still unresolved. Finally, we note that the duality
of interpretation of the zero order elliptic operator G, as coming from the poten-
tial energy (shown in the original derivation, Appendix A) and as following from
the discretization of elliptic operator (shown above), that is, kinetic energy, has an
interesting consequence—the Langrangian and the Hamiltonian are identical in the
case of zero β-effect (similar to the Euler equation for an incompressible fluid).

Finally, before proceeding with the proofs we need to provide the functional
set-up: the principal flow domain, D, is a convex subset of R

2. Using the structure
of the solution, that is, anti-symmetry in y and periodicity of φi , this domain can
be extended to square D̂ = {−1 � x, y � 1}. In view of double-periodicity of
the solution, its lateral boundaries can be considered as virtual boundaries, because
the boundary points are interior points of D̂ with the appropriate shift. Therefore
we can identify the flow domain D̂ with torus T2 with the appropriate equivalence
relation. This duality of interpretation of the domain D̂ will facilitate the use of
elliptic estimates necessary for the existence analysis, once it is considered as torus
T2, and of imbedding theorems, once it is considered as a convex domain in R

2.
With this understanding, we will uniformly use the notation T2, even though the
torus is not a convex set. In choosing the spaces we follow the observation of
Schauder [79] that appropriate estimates in the quasi-linear case can be Hölder
C2,λ estimates, where Cs,λ is defined Section 2.3. For the definitions of other spaces
used throughout this section refer to Section 2.3.

In the following local existence analysis, Sections 6.1 and 6.2, we make all
estimates for s = 0. All the results can be extended onto general case of Cs,λ in
a straightforward manner: larger s corresponds to smoother initial data and thus
to smoother solutions. This fact will be used in the proof of a global solution in
Section 6.3.
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6.1. Local existence in the Hamiltonian case

First consider the elliptic problem (6.1) and treat time as a parameter. As men-
tioned above, we provide all estimates only for s = 0 in Cs,λ which is enough for
establishing the existence of the classical solution. If ζ ∈ C0,λ, then there exists a
unique solution ψ̃ ∈ C2,λ of the elliptic problem (6.1) satisfying the condition of
periodicity in x and boundary conditions (2.2–2.3), such that the following global
Schauder estimate is valid

‖ψ̃‖C2,λ � K1‖ζ‖C0,λ , (6.5)

where the constant K1 is independent of ζ and ψ̃ , but depends on λ and T2. For
an introductory discussion on Schauder estimates we refer the reader to Courant
and Hilbert [20], and for the derivation to Krylov [51], Ladyzhenskaya and
Ural’tseva [52], and Miranda [63].

Since T2 is a compact set that is the quotient of a convex set, the space C1 is
compactly imbedded in C0,λ [2], so that

‖ζ‖C0,λ � ‖ζ‖C1

(
diam T2

)1−λ
, (6.6)

and the Schauder estimate (6.5) can be replaced with

‖ψ̃‖C2,λ � K2‖ζ‖C1 , K2 = K1

(
diam T2

)1−λ
. (6.7)

Next, in order to resolve the initial value problem (6.2) with initial condition
ζ ∈ C1 (since we need ζ to be differentiable at least once), we need to introduce
a convex subspace M(T ) of Ĉ1

0 (note that we switch to time-dependent spaces)
defined through

M(T ) =
{
ζ ∈ Ĉ1

0 with ‖ζ‖Ĉ1
0

� L1(1 + ε)
}
, (6.8)

where ε > 0 is an arbitrary, but fixed number, and L1 is determined in the course of
making estimates on vorticity (see Appendix C). We will also need a subset K(T )
of M(T ) defined by

K(T ) =
{
ζ ∈ M(T ), ∂tζ ∈ Ĉ0

0 , ‖∂tζ‖Ĉ0
0

� K3L1(1 + ε)e2K3(1+ε)T } . (6.9)

Finally, we shall demonstrate that the time of existence T ∗ of the solution is inversely
proportional to the norm of initial vorticity:

T ∗ = L−1
1 ln (1 + ε) [K2(1 + ε)]−1 , (6.10)

and that the mapping T (6.3), the fixed point of which is a solution of (2.1), is
well-defined from M(T ∗) into its subset K(T ∗). This all together will give the
local existence in the Hamiltonian case:
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Theorem 4. Suppose that the initial vorticity ζ I ∈ C1 and T ∗ is defined by (6.10).
Then there exists a unique solution to the quasi-geostrophic equation (2.1), when
r = 0, for the time interval [0, T ∗] in the space

X =
{
ζ ∈ Ĉ1, and ψ ∈ Ĉ 2,λ

0

}
, (6.11)

where the norm on X is a Hölder norm, defined as in Section 2.3.

This result will be proved in the following subsections.

6.1.1. Elliptic problem. For any ζ ∈ M(T ) and each t ∈ [0, T ], the periodic
boundary-value problem (6.1) has a unique solution ψ̃ ∈ C2,λ which satisfies the
Schauder estimate (6.7), where K2 is independent of t and T . Therefore, and in
view of the linearity of this boundary-value problem, we have

‖ψ̃(t ′)− ψ̃(t ′′)‖C2,λ � K2‖ζ (t ′)− ζ (t ′′)‖C1 , (6.12)

for any t ′, t ′′ ∈ [0, T ]. Thus the stream-function ψ̃ is uniformly continuous on
[0, T ] in the C2,λ norm as long as ζ ∈ M(T ). Taking suprema over 0 � t � T in
the Schauder estimate (6.7) yields

‖ψ̃‖Ĉ 2,λ
0

� K2‖ζ‖Ĉ1
0
, (6.13)

and, recalling definition (6.8),

‖ψ̃‖Ĉ 2,λ
0

� K2L1(1 + ε) = K3(1 + ε), that is, ψ̃ ∈ Ĉ 2,λ
0 . (6.14)

Once the stream-function is defined, one can calculate the velocity field which in
each layer is obviously defined (omitting indices) as

v = (u, v) = (−∂yψ, ∂xψ
) ∈ Ĉ 1,λ

0 , (6.15)

with bound

‖v‖Ĉ 1,λ
0

� K3(1 + ε). (6.16)

These velocity components allow one to formulate a two-dimensional system of
ordinary-differential equations which define the quasi-geostrophic fluid particle
paths in each layer

dτ ξ = u(ξ, η, τ ), (6.17a)

dτ η = v(ξ, η, τ ), (6.17b)

so that at the final time τ = t : ξ = x, η = y. The transition to Lagrangian
variables ξ = (ξ, η) will allow us to construct the solution of initial-value problem
(6.2) explicitly [4]. System (6.17) is the classical example of a system of ODEs on
a torus (cf. Hartman [38]), which has a unique solution for all (x, y) ∈ T2 and
0 � τ � t � T ∗

ξ=ξ(τ ; x, y, t), η=η(τ ; x, y, t) ⇔ x = x(t; ξ, η, τ ), y = y(t; ξ, η, τ ), (6.18)
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which is differentiable with respect to all parameters (cf. Hartman [38], Theorem
V3.1): ξ ∈ C1(T2 × [0, T ] × [0, T ]). Restricting this to τ = 0, we get ξ ∈ Ĉ1.
This however, as will follow from the bounds below (see also Ebin and Marsden
[26]), can be strengthened to

(ξ, η) ∈ Ĉ 1,λ
0 , (∂tξ, ∂tη) ∈ Ĉ 0,λ

0 , (6.19)

that is smoother than Ĉ 1
0 and Ĉ 0

0 respectively, as follows from estimates (6.20b–
6.20c). For τ = 0 the solution satisfies the following bounds derived in Appendix B,

‖ξ‖Ĉ 0
0

� K3(1 + ε)T + 1, (6.20a)

‖∇ξ‖Ĉ 0
0

� e2K3(1+ε)T , (6.20b)

[∇ξ]Ĉ 0,λ
0

� e(3+2λ)K3(1+ε)T , (6.20c)

‖∂tξ‖Ĉ 0
0

� K3(1 + ε)e2K3(1+ε)T , (6.20d)

[
∂tξ
]
Ĉ 0,λ

0
� 2K3(1 + ε)e(3+2λ)K3(1+ε)T , (6.20e)

where, obviously, the semi-norm [ · ]Ĉ 0,λ
0

= ‖ · ‖Ĉ 0,λ
0

. From the properties of the

solution for (6.17) it follows that the change of the final time condition (x, y, t) →
(x ′, y′, t ′) does not change ξ and η, that is,

dtξ = ξt + dx

dt
ξx + dy

dt
ξy = (∂t + u(x, y, t)∂x + v(x, y, t)∂y

)
ξ(τ ; x, y, t) = 0,

and same for η. In particular, this remains valid for τ = 0:

dtξ |τ=0 = 0, (6.21a)

dtη|τ=0 = 0. (6.21b)

This property will be used in constructing a solution for the initial value problem
(6.2).

6.1.2. Initial value problem. The initial value problem (6.2) is solved using fluid
particle paths at τ = 0:

ζ̃ (x, y, t) = ζ I (ξ(0; x, y, t), η(0; x, y, t))+ β [η(0; x, y, t)− y] , (6.22)

which is a unique solution of (6.2) in view of the assumption ζ I ∈ C1 and Equation
(6.21); (6.22) at t = 0 is obviously ζ̃ (x, y, 0) = ζ I (x, y). The function ζ̃ (x, y, t)
is the first iterate of the solution ζ(x, y, t). In Appendix C it is shown that ζ̃ (x, y, t)
satisfies the bounds

‖̃ζ‖Ĉ 1
0

� L1e2K3(1+ε)T , (6.23a)
∥∥∂t ζ̃
∥∥Ĉ 0

0
� K3L1(1 + ε)e2K3(1+ε)T , (6.23b)

where T needs to be defined to be consistent with (6.8). From estimate (6.23b) we
are led to the definition of K(T ) introduced in (6.9). From (6.23a) and (6.8) we get
the definition for the length of the time interval T ∗ (6.10).
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6.1.3. Proof of Theorem 4. As follows from bounds (6.23), if ζ I ∈ M(T ∗) then
ζ̃ ∈ K(T ∗), which is a subset of M(T ∗) by definition. Therefore, the mapping (6.3)
is well-defined from M(T ∗) into its subset K(T ∗). From the definition of K(T ) it is
a nonempty, closed and bounded subset of Ĉ 1 and Ĉ 1

0 . Since both space T2 and the
time domains [0, T ∗] are bounded and convex sets, it follows, cf. Adams [2], that
the intersection of Ĉ 1 and Ĉ 1

0 is compactly imbedded in Ĉ 0,ν
0 for any 0 < ν < λ,

that is, K(T ∗) is a nonempty compact subset of Ĉ 0,ν
0 .

Now we need to make sure that the mapping (6.3), T : ζ �→ ζ̃ , is continuous
in the normed space Ĉ 0,ν

0 with ν fixed. Let

ζ n → ζ ∗ : convergence, (6.24a)

ζ̃ n = T
(
ζ n

) : iterations, (6.24b)

ζ̃
∗ = T

(
ζ ∗) : limit. (6.24c)

Since a Ĉ 0,ν norm can be estimated by the product of the Ĉ 0 and Ĉ 0,λ norms (cf.
Adams [2]), the convergence in a Ĉ 0,ν norm of a sequence belonging to a set which
is bounded in Ĉ 0,λ norm can be proved by demonstrating the convergence in the
Ĉ 0 norm. In our case, the sequence (6.24b) and the proposed limit (6.24c) belong
to K(T ∗) which is bounded in the norm of Ĉ 1

0 . Thus the convergence

ζ̃ n → ζ̃
∗
, (6.25)

in the norm Ĉ 0,ν
0 will follow from the convergence in the norm of Ĉ 0. Let ψn and

ψ∗ be the stream-functions corresponding to ζn and ζ ∗. Using linearity of (6.1) and
the Schauder estimate (6.5):

∥∥ψn − ψ∗∥∥Ĉ 2,ν
0

� K1(ν)
∥∥ζn − ζ ∗∥∥Ĉ 0,ν

0
, (6.26)

we get

ψn → ψ∗ in Ĉ 2,ν
0 and vn → v∗ in Ĉ 1,ν

0 . (6.27)

Therefore (see Hartman [38]), in view of existence and uniqueness for (6.17):

ξn → ξ∗ in Ĉ 1
0 . (6.28)

Since
∥∥ζ n − ζ ∗∥∥Ĉ 0

0
�
∥∥∥∇ζ I

∥∥∥C0

∥∥ξn − ξ∗∥∥Ĉ 0
0
, (6.29)

the convergence (6.25) follows from (6.28) and the preceding bound. Consequently
the mapping T is continuous in the norm Ĉ 0,ν

0 .
Based on the second fixed point theorem of Schauder (cf. Smart [81]), which

states that if M(T ∗) is a nonempty convex subset of a normed space Ĉ 0,ν
0 and if

T is a continuous mapping of M(T ∗) into a compact subset K(T ∗), then T has a
fixed point:

T (ζ ∗) = ζ ∗, (6.30)

we prove that the periodic quasi-geostrophic problem for 0 � t � T ∗ has a solution
(and the corresponding stream-function ψ∗), which satisfies the conclusions of
Theorem 4.
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6.2. Local existence in the dissipative case

To prove local existence in the dissipative case we need either to show that
the estimates on vorticity (6.23) remain valid for r > 0, which one would expect
to hold for small enough dissipation, or to get modified estimates and change the
spaces (6.8–6.9). Since small dissipation suffices for our purposes, we will try to
show the validity of (6.23).

The previous iteration scheme consisting of the elliptic problem (6.1) and the
initial value problem (6.2) remains the same with the exception that (6.2) is modified
to

(
∂t + ũi∂x + ṽi∂y

)
ζ̃i + r ζ̃i = −βṽi + r(−1)i F

(
ψ̃1 − ψ̃2

)
, (6.31a)

ζ̃i
∣∣
t=0 = ζ̃i0, (6.31b)

where i = 1, 2, which can be transformed with ζ̃i = e−r t ζ̂i to
(
∂t + ũi∂x + ṽi∂y

)
ζ̂i = er t

[−βṽi + r(−1)i F
(
ψ̃1 − ψ̃2

)]
. (6.32)

The solution for this problem is given by

ζ̂ (x, y, t) = ζ̂ I (ξ(0; x, y, t), η(0; x, y, t))+ β
[
η(0; x, y, t)− er t y

]

+r
∫ t

0

{
βη(τ ; x, y, t)+F(−1)i

[
ψ̃1−ψ̃2

]
(ξ(τ ; x, y, t), τ )

}
erτdτ .

(6.33)

As shown in Appendix D, estimates (6.23) with dissipation become

‖̃ζ‖Ĉ1
0

� L̃1e2K3(1+ε)T + rT erT A, (6.34a)
∥∥∂t ζ̃
∥∥Ĉ0

0
� K3 L̃1(1 + ε)e2K3(1+ε)T + rT erT B, (6.34b)

where the first terms are the original estimates (6.23) in the conservative case with
L̃1 being explained below and where

A = 2 {β + F K3(1 + ε)}
(

1 + e2K3(1+ε)T ) ,

B = e−rT

T
‖̂ζ‖Ĉ0

0
+ 2

T
{β + F K3(1 + ε)}

(
1 + K3(1 + ε)T e2K3(1+ε)T ) .

The vorticity norm ‖̂ζ‖Ĉ0
0

in the above expression can be estimated from (6.33),

‖̂ζ‖Ĉ0
0

� ‖ζ I ‖C1 + 2β + 2rT erT {β + F K3(1 + ε)} . (6.36)

Now we are prepared to demonstrate that the original estimates (6.23) remain
essentially the same after the addition of small dissipation. To show this we use the
fact that estimates (6.23) are too conservative; let us look at Equations (C.1–C.2),
and their combination (C.3):
∥
∥̃ζ
∥
∥Ĉ1

0
�
∥
∥̃ζ
∥
∥Ĉ0

0
+ ∥∥∇xζ̃

∥
∥Ĉ0

0
=
∥∥
∥ζ I
∥∥
∥C1

+ 3β +
[∥∥
∥ζ I
∥∥
∥C1

+ β
]

e2K3(1+ε)T

=
[
2
∥∥∥ζ I
∥∥∥C1

+ 4β
]

e2K3(1+ε)T +
[∥∥∥ζ I
∥∥∥C1

+ 3β
] (

1 − e2K3(1+ε)T ) ,
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that is ‖̃ζ‖Ĉ1
0

� L̃1e2K3(1+ε)T with the obvious definition of L̃1 < L1, since 1 −
e2K3(1+ε)T < 0 and L1 = 2

∥∥ζ I
∥∥C1 + 4β as in (6.23a). Now, choosing dissipation

r such that

max rT erT (A, B) �
[∥∥∥ζ I
∥∥∥C1

+ 3β
] (

e2K3(1+ε)T − 1
)
, (6.37)

we get exactly the same estimates (6.23) with the original definition of L1, and thus
the local existence proof remains valid in the dissipative case:

Theorem 5. Suppose that the initial vorticity ζ I ∈ C1 and T ∗ is defined by (6.10).
Then there exists a unique classical solution in the space X, defined by (6.11), to
the quasi-geostrophic equation (2.1), when r > 0, for the time interval [0, T ∗] with

ζ ∈ Ĉ 1, and ψ ∈ Ĉ 2,λ
0 . (6.38)

While now we have the proof of local existence in the dissipative case, influence
of dissipation on the dynamics of (2.1) is not trivial. As mentioned in Appendix A,
the Eckman layer dissipation acts like a sink of potential vorticity [70], but this is
true only in the L2-sense and only for special structure of the solution and boundary
conditions as we learned from the energy balance Equation (3.3). What dissipation
does pointwise is not really transparent as opposed to the trivialized version of
(2.1), namely

∂tω + u∂xω = −rω,
t = 0 : ω = f (x).

(6.39)

Consider, for a moment, the linear version as the iterative approximation (6.2).
Then the general solution of (6.39) obtained by the method of characteristics is
ω(t, x) = f (x − ut)e−r t . Therefore the problem (6.39) admits the transformation:

ω(t, x) = ω̃(t, x)e−r t ⇒ ∂t ω̃ + u∂x ω̃ = 0. (6.40)

Thus the problem of demonstrating existence in that trivialized situation (6.39)
reduces to the conservative case and the solutions decay in time according to the
above transformation. However, the two-layer structure (2.1) with theβ-plane effect
has an interaction which destroys this simple pointwise sinkage of vorticity.

6.3. Global existence in the Hamiltonian case

The basic idea to get global existence of classical solutions is first to obtain
a global L2 bound on weak solutions in a Sobolev space Hs with sufficiently
high enough index s,13 so that one can exploit the Sobolev inequality in the two-
dimensional case | f |Ck � C‖ f ‖Hk+s to get a pointwise bound on a lower derivative,
cf. Adams [2]. The latter guarantees the existence of the classical solution if s � 1.
Thus, for global existence we need to add to the assumptions in the local existence
Theorem 4 an assumption that the initial data lies in Hs , s � 3.

13 Note that this index is different from the one used in spaces Cs,λ, Ĉ s,λ
0 or Ĉ s,λ previously.
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Lemma 5. The solution of (2.1), when r = 0, for initial data in Hs , s � 3, remains
bounded in Hs on any finite time interval 0 � t � T < ∞.

Proof. We will prove this by showing that there exists a continuous function Z(t)
such that

‖ζ‖Hs � Z(t), 0 � t � T < ∞. (6.41)

Elliptic theory in Sobolev spaces [34] gives

‖v‖Hs+1 � C1‖ζ‖Hs . (6.42)

Applying the operator Dα , |α| � s to (2.1), that is, (∂t + v∇)ζ = −βv, where
indexes are omitted, we get

(∂t + v∇)ζα = −Fα, (6.43)

where ζα = Dαζ , Fα = βvα + Dα∇ (vζ ) − vDα∇ζ . Now we can get a bound
on Fα in H0 using the calculus inequality (derived from Gagliardo–Nirenberg
inequalities; cf. [46]):

∥∥Dα( f g)− f Dαg
∥∥H0 � C

(‖ f ‖Hs |g|L∞ + |∇ f |L∞‖g‖Hs−1
)
, (6.44)

with the result that

‖Fα‖H0 � C2
(‖v‖Hs+1 |ζ |L∞ + |∇v|L∞‖ζ‖Hs

)
. (6.45)

Since |ζ |L∞ � |∇v|L∞ + F |ψ |L∞ , the bound on ‖Fα‖H0 is simplified to

‖Fα‖H0 � C3‖ζ‖Hs (β + |∇v|L∞ + F |ψ |L∞) . (6.46)

Multiplying Equation (6.43) by ζα and integrating over the domain T2, we get
d
dt ‖ζ‖Hs � ‖Fα‖H0 , which implies

‖ζ‖Hs � C4‖ζ I ‖Hs exp

{
C4

∫ t

0
|∇v|L∞dτ

}
, (6.47)

where C4 depends on β and T , and the exponent contains |∇v|L∞ which needs
to be estimated independently of time. The latter can be achieved with the help of
an estimate analogous to the potential theory estimate for the Euler equation [58],
which was derived for the quasi-geostrophic model by Bourgeouis and Beale
[10], namely

|∇v|L∞ � C5|ζ |L∞
(

1 + ln+ ‖ζ‖Hs

|ζ |L∞

)
, ln+ f =

{
ln f, f � 1,

0, f < 1.
(6.48)

Taking into account that |ζ |L∞ � C6|ζ I |L∞ � C6‖ζ I ‖Hs , we get

|∇v|L∞ � C7‖ζ I ‖Hs

(
1 + ln+ ‖ζ‖Hs

‖ζ I ‖Hs

)
, (6.49)
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substitution of which into (6.47) produces

|∇v|L∞ � C8‖ζ I ‖Hs

{
1 +
∫ t

0
|∇v|L∞dτ

}
. (6.50)

Application of the integral Gronwall inequality yields

|∇v|L∞ � C8‖ζ I ‖Hs

(
1 + t C8‖ζ I ‖Hs et C8‖ζ I ‖Hs

)
,

and therefore the function Z(t) we sought is

‖ζ‖Hs � C4‖ζ I ‖Hs exp

{
C4

∫ t

0
|∇v|L∞dτ

}
≡ Z(t), (6.51)

where
∫ t

0
|∇v|L∞dτ � C8‖ζ I ‖Hs

{
(t + 1)+ (t − 1)et C8‖ζ I ‖Hs

}
.

��
Based on this result and the local existence Theorem 4 we can prove the main global
existence result.

Theorem 6. If initial data ζ I ∈ Hs , s � 3, then there exists a classical solution ζ ∈
Ĉ1 andψ ∈ Ĉ 2,λ

0 , that is, in the space X defined by (6.11), to the quasi-geostrophic
equation (2.1), when r = 0, on any finite time interval, 0 � t � T < ∞.

Proof. From the local existence Theorem 4, it follows that there is a T1 = T ∗(ζ 0) >

0 and a solution ζ ∈ Ĉ1
[[0, T ∗] × T2

]
. If T1 � T , then we have the desired

solution. If T1 < T , then define

ZT = max
0�t�T

Z(t).

Then ‖ζ (T1)‖Hs is bounded by ZT and thus ‖ζ (T1)‖C1 is bounded, too, since
Hs ↪→ C1 for s � 3. Thus we can again invoke the local existence Theorem 4 to
continue the solution to time T1 + T2. If T1 + T2 � T , then the proof is completed.
Otherwise, we continue this to T1 + n T2 since ‖ζ (T1 + T2)‖Hs � ZT .

To prove that ψ ∈ Ĉ 2,λ
0 , note that by (6.1): ζ = Mψ , where M is an elliptic

operator of the second order. Hence, one can apply the Schauder type estimate
(5.20) to conclude that

‖ψ‖Ĉ3
0

� C‖ζ‖Ĉ1
0
,

and thus triviallyψ ∈ Ĉ 2,λ
0 , as required. In the above argument we used the natural

fact that ζ ∈ Ĉ 1 implies ζ ∈ Ĉ 1
0 . ��
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6.4. Global existence in the dissipative case

The direct translation of the global estimates in the Hamiltonian case to the
dissipative case is not available since, as discussed at the end of Section 6.2, the
pointwise effect of dissipation remains unclear. Therefore, the global existence
question is of separate interest; if a solution ceases to exist, this would imply that
the model (2.1) is not adequate anymore and some new interesting physics takes
place. However, for the purpose of proving dissipation-induced instability we do
not actually need to demonstrate global existence in the dissipative case. The local
existence result of Theorem 5 is enough to prove the strong Lyapunov instability
as follows from Lemma 1 and Section 7. In the stable dissipative regime (below

the critical point Uc F/2β = 2−1/2
(

1 + √
2
)−1/2

on the dashed curve in Fig. 5),

we actually do not need any information on the existence or stability of a solution
in order to demonstrate the fact of dissipation-induced instability in the parameter
range (2.14).

7. Proof of Theorem 1 and discussion

Proof. Based on Theorems 2–6, the main result—Theorem 1 on dissipation-induced
instability in the quasi-geostrophic problem (2.1)—follows as a corollary, when all
these theorems are applied in the class of classical solutions in the space X , given
by (6.11):

– From Theorem 6 we know the existence of a classical solution of (2.1) in the
Hamiltonian case, r = 0, for all values of all parameters, that is, everywhere in
Fig. 5.

– From Theorem 2 it follows that the equilibrium ψe in the Hamiltonian case is
Lyapunov stable for Uc F/2β < 1/2, that is, below the solid curve in Fig. 5.

– From Theorem 3 and Lemma 1 and invoking the local existence result of Theo-
rem 5 it follows that the equilibrium solutionψe in the dissipative case is strongly

Lyapunov unstable in X for 2−1/2
(

1 + √
2
)−1/2

< Uc F/2β < 1/2, that is, in

the region between the dashed and solid curves in Fig. 5.

It should be noted that the dissipation-induced instability is proved in its strongest
form; in particular, strong Lyapunov instability, that is when an unstable classical
solution exists, is demonstrated. ��

In this paper we have presented a general approach for establishing dissipation-
induced instabilities in infinite-dimensional systems and applied it in the case
of the quasi-geostrophic system. In a nonlinear PDE context, the presence of a
dissipation-induced instability phenomenon is proved rigorously for the first time.
That is, the development is based on a nonlinear stability/instability proof, which
is not conditional upon existence of a solution since the latter is demonstrated
as well in a function space in which the nonlinear stability estimates are valid.
The study demonstrates that a rigorous proof necessitates consideration of various
interrelations between linear and nonlinear (in)stabilities and existence. It also
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reveals that current stability and existence methods are disjoint and suggests further
developments of more efficient versions of these methods.

The observed phenomena were connected here to the geometrical picture known
in the finite-dimensional case. Since the classification of forces is a nontrivial
task in the infinite-dimensional case, especially in Eulerian variables and after
various asymptotic approximations, used to derive (2.1), are applied, a conside-
ration of the second variation δ2 H , as in finite dimensions (1.3), seems to be the
natural way of classifying the dissipation-induced instabilities in PDEs. As we
established in this work, the dissipation-induced instability of quasi-geostrophic
system (2.1) belongs to type (1.3b). We believe that the phenomenon proved for a
two-layer model (2.1) in this work holds in various generalizations to the continuous
stratification case and various boundary conditions, for example, an unbounded
atmosphere in Jovian planets. Since our goal here is to demonstrate certain mathe-
matical properties of the instability, but not to be utterly realistically close to actual
atmosphere or ocean dynamics, we consider just the two-layer approximation of the
quasi-geostrophic equations on a compact domain, which of course places a limit
on the complexity of the vertical structure of the motion field, filtering out modes
generally related to weaker instabilities [70]. In addition, the quasi-geostrophic
equations themselves represent a parabolic approximation, which prohibits mixing
across the tropopause (in the z-direction), while in reality the true dynamics is
elliptic (cf. Pierrehumbert and Swanson [74]).

While we discussed only one particular example, namely that of the baroclinic
instability, one would expect that this phenomenon has wide appeal in various phy-
sical systems in analogy with finite-dimensional mechanical systems [48]. Indeed,
infinite-dimensional dissipation-induced instabilities occur not only in fluid dyna-
mics, but seem to be inherent in other field theories, for example general relativity
[77] since the Einstein equations can be written in a form analogous to that of the
NSEs, so that the dissipative effects become apparent [84].

In conclusion, this work is the first step in developing understanding of the
dissipation-induced instability phenomena in infinite-dimensional systems. In gene-
ral, the addition of dissipation may introduce higher order derivatives, as in the case
of the NSEs, which modify both the equilibrium solution and the function space (in
particular, boundary conditions: for example, slip versus no-slip) it belongs to. This
is the major complication in the infinite-dimensional case with which we do not
have to deal here in view of the particularity of our model: the form of dissipation
does not increase the order of Equation (2.1) and leaves the equilibrium solution
and the function space unaltered. In the fluid dynamics context, the destabilizing
effect of viscosity, which is obviously responsible for dissipation, has been noticed
a long time ago, cf. Lin [55]. Namely, base state velocity profiles without inflection
points are known to be stable in the inviscid case according to Rayleigh’s theo-
rem, while in the viscous case the same velocity profiles may become unstable, for
example in the case of the Poiseuille flow. Hence, explaining the destabilizing effect
of viscosity, when the equilibrium solution (the basic state in fluid mechanics ter-
minology) is modified, is not a trivial problem alone: even transition to turbulence
in a simple geometry such as a channel or a pipe (Couette, Poiseuille, Hagen–
Poiseuille flows) is still an unresolved challenge [49]. The general phenomena we
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studied here embrace those long-standing questions as well. However, in order to
attack those problems one would need to extend the function-analytic framework
of dissipation-induced instabilities to the situation when dissipation modifies the
equilibrium solution, as it happens in the NSEs, for example by either relaxing the
requirement that the equilibrium solutions should be the same in the conservative
and dissipative cases or by considering the conservative base state as a weakly
convergent limit of the dissipative one when dissipation vanishes.
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Shkoller, and Edriss Titi for helpful discussions. The authors were partially supported
by NSF-ITR Grant ACI-0204932. R.K. also acknowledges partial support from NSERC
341849-2007.

Appendix A: The origin of the quasi-geostrophic model

In this Appendix we provide a brief self-contained derivation of the model (2.1)
to highlight the physical importance and the origin of various effects, and discuss
the properties relevant to our study. The reader interested in an alternative derivation
(namely, as a limit from compressible case) and the general context of this problem,
is referred to Pedlosky [70].

The physical setup is given in Fig. 3 showing a working domain, located on the
surface of a rotating planet. This domain is a rectangular channel of finite depth D in
the direction z perpendicular to the Earth’s surface, and with finite dimensions both
in the west–east (zonal) periodic direction x and in the north–south (meridional)
bounded by solid walls direction y. Without any influence on the stability results
we regard it as a channel of dimension L in the x-direction and of dimension L/2
in the y-direction.

The quasi-geostrophic model in the two-layer viscous beta-plane approximation
is derived from the general momentum equations for viscous incompressible fluid
(the NSEs) written for an observer in a uniformly rotating coordinate frame,

ρ [dt v + 2�× v] = −∇ p + ρ∇�+ µ∇2v, (A.1)

where dt stands for the total three-dimensional (material) derivative, v is the velocity
as seen in a rotating frame of reference, and� = φ+φc is the geopotential, where
φc = |� × r|2/2 is a potential of centripetal acceleration. The stratification is
modeled by two superimposed layers with interface h(t, x, y), located halfway
between the horizontal planes with index 1 referring to the upper layer and 2 to the
lower one (cf. Fig. 3), at which the kinematic boundary condition is given by

z = h(t, x, y) : ht + uhx + vhy = w, (A.2)

where w is the z-component of velocity. The effect of the Earth’s sphericity is
modeled by β-plane approximation, 2	 = f0 + β ′y (the y-dependence models



658 Rouslan Krechetnikov & Jerrold E. Marsden

the variation of the Earth’s Coriolis effect with latitude: see Rossby [76]). If the
characteristic velocity scale in the (x, y)-plane is U , then the scaling

(x, y) → L(x, y), z → Dz, (u, v) → U (u, v), w → U (D/L) w,

t → L

U
t, h → D

2
+ ρ1U L f0

g(ρ2 − ρ1)
h,

with pressure redefined to eliminate the hydrostatic component according to

p1 → (D−z)ρ1g + ρ1U f0 L p1, p2 → 1
2 Dρ1g+ ( 1

2 D − z
)
ρ2g + ρ2U f0 L p2,

reduces the problem to a set of momentum equations posed on the domain
D = {−1 � x � 1; 0 � y � 1} in each layer (we omit layer indexes for
brevity)

εdt u − (1 + εβy)v = −px + 1
2 E�δu, (A.3a)

εdtv + (1 + εβy)u = −py + 1
2 E�δv, (A.3b)

εδ2dtw = −pz + 1
2 Eδ2�δw, (A.3c)

ux + vy + wz = 0, (A.3d)

along with the kinematic boundary condition

z = 1
2 + 1

2εFh(t, x, y) : 1
2εF
[
ht + uhx + vhy

] = w. (A.4)

Here the nondimensional parameters, namely the aspect ratio δ, the Rossby number
ε, Eckman number E , internal rotational Froude number F , planetary vorticity
factor β are defined as

δ= D

L
, ε= U

f0 L
, E = 2ν

f0 D2 , F = f 2
0 L2
[

g
�ρ

ρ1

D

2

]−1

, β=β ′ L2

U
. (A.5)

The scaled Laplacian is defined by�δ = δ2(∂2
x + ∂2

y )+ ∂2
z . The quasi-geostrophic

approximation results from the following assumptions on the above parameters:

(ε, E,�ρ/ρ, δ) � 1, (β, F) ∼ O(1), ε � e1/2 (A.6)

which suggests the low Rossby number expansion for the solution vector U =
(u, v, w, h, p): U = U(0) + εU(1) + O(ε2), where w(0) = 0. This yields the
zero-order approximation,

v(0) = p(0)x , u(0) = −p(0)y , 0 = −p(0)z , u(0)x + v(0)y = 0, (A.7)

where the first two equations are a geostrophic approximation (balance of Coriolis
and pressure forces) independent of z, while the third equation is a hydrostatic
approximation. The order one approximation is given by

d0
t u(0) − v(1) − βyv(0) = −p(1)x , (A.8a)

d0
t v
(0) + u(1) + βyu(0) = −p(1)y , (A.8b)

0 = −p(1)z , (A.8c)

u(1)x + v(1)y + w(1)z = 0, (A.8d)
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with kinematic boundary condition at z = 1
2 given by 1

2 Fd0
t h(0) = w(1), where

the material derivative is now two-dimensional: d0
t = ∂t + u(0)∂x + v(0)∂y .

Eliminating pressure from the x- and y-momentum equations, we arrive at

d0
t ζ
(0) = w(1)z + βv(0), ζ (0) = v(0)x − u(0)y = �p(0), � = ∂2

x + ∂2
y . (A.9)

Since the left-hand side of the equation for d0
t ζ
(0) is independent of z, we can

integrate across each layer and obtain, with the use of the kinematic conditions for
layer 1 and 2, respectively,

d0
t ζ
(0) + Fd0h(0) = 2 w(1)

∣∣∣
z=1

− βv(0), (A.10a)

d0
t ζ
(0) − Fd0h(0) = −2 w(1)

∣∣∣
z=0

− βv(0). (A.10b)

Next, the dynamic condition at the interface, z = h, reads in dimensional variables
as p1 = p2, or, after simplifications,

p(0)2 − p(0)1 = h(0) + O (�ρ/ρ) , (A.11)

where viscous stresses are neglected. It is convenient to introduce the stream-
function ψ(0) = p(0), which in this case coincides with the pressure; the velocity
components are defined respectively as v(0) = ψ

(0)
x and u(0) = −ψ(0)y . Thus the

intermediate form of the quasi-geostrophic equations is

d0
t

[
ζ (0) + F

(
ψ
(0)
2 − ψ

(0)
1

)
+ βy

]
= 2 w(1)

∣∣
∣
z=1

, (A.12a)

d0
t

[
ζ (0) − F

(
ψ
(0)
2 − ψ

(0)
1

)
+ βy

]
= −2 w(1)

∣∣∣
z=0

, (A.12b)

where the meaning of the right-hand side needs to be explained. The form of the
right-hand side of Equations (A.12) suggests that the fluid is pumped through the
boundaries and thus makes the equations nonconservative—this origin of the dissi-
pation was uncovered by Charney and Eliassen [14]. Physically this corresponds
to a fine structure of the boundary layers—Eckman layers—which can be derived
from (A.3) by the simple re-scaling z → lz′ and w → lw′, while keeping the
leading order approximation

− v = −px + 1
2 uz′z′ , u = −py + 1

2vz′z′ , 0 = −pz′ , (A.13)

with l = e1/2. Next, using the fact that outside the boundary layer v = px and
u = −py , and utilizing the no-slip boundary condition, z′ = 0 : u = v = w′ = 0,
we can integrate these equations to find the general expression for w′:

w′ = 1
2

(
vx − uy

) [
1 − e−z′ (

cos z′ + sin z′)] . (A.14)

Taking the limit z′ → +∞, which corresponds to z → 0 in an asymptotic sense,
we find that w(1)

∣∣
z=0 = e1/2

2ε ζ
(0), and similarly w(1)

∣∣
z=1 = − e1/2

2ε ζ
(0) (the latter
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is obtained from the boundary layer near z = 1 by transforming z → (1 − z′)/ l).
Therefore, the final quasi-geostrophic equations are

d0
t

[
ζ (0) + F

(
ψ
(0)
2 − ψ

(0)
1

)
+ βy

]
= −r�ψ1, (A.15a)

d0
t

[
ζ (0) − F

(
ψ
(0)
2 − ψ

(0)
1

)
+ βy

]
= −r�ψ2, (A.15b)

which after the introduction of the potential vorticity defined by

qi = ∇2ψi + (−1)i F (ψ1 − ψ2)+ βy, (A.16)

and dropping off indexes yields the differential formulation (2.1). Thus, in addi-
tion to the nondimensional parameters (A.5) there is one more responsible for
dissipations effects, r = e1/2/ε. As discussed in Pedlosky [70], this particular
dissipation acts like a sink of potential vorticity. The distinctive feature of the dissi-
pation term, −r�ψi , is that it does not increase the order of the PDEs as opposed to
the Navier–Stokes type of dissipation—this allows one to study the stability of the
same equilibrium solution in both the conservative and dissipative formulations.
We make use of this interpretation in Section 5.

Since the channel is periodic in x , the appropriate boundary conditions corres-
pond to Dαψi (x, y), |α| � 0 being periodic with period 2, and since the channel
is bounded by walls at y = 0, 1, a no-penetration condition applies,

y = 0, 1 : v = ψx = 0, (A.17)

which implies that the stream-function is only a function of time at solid walls.
Applying the first order x-momentum equation to the boundaries y = 0, 1 we find:
u(0)t + u(0)u(0)x = −p(1)x , which after integration with respect to x yields another
boundary condition, first established by Phillips [72]:

y = 0, 1 : ∂

∂t
�i (y) = 0, �i (y) =

∫ 1

−1
u(0)i dx, (A.18)

where we have exploited the periodic boundary conditions. The latter boundary
conditions guarantee the uniqueness of the solution (otherwise the no-penetration
condition is satisfied by an arbitrary function of time t), and can be loosely inter-
preted as the conservation of circulations �i (y) at the solid boundaries.

Appendix B: Particle path estimates (6.20)

To justify (6.20a) take Equation (6.17) and utilize the velocity bound (6.16):
∣
∣dτ ‖ξ‖C1,λ

∣
∣ = ‖u‖C1,λ � K3(1 + ε) �⇒ ‖ξ‖C1,λ

∣
∣τ=t
τ=0 � K3(1 + ε)t,

so that with the use of the obvious inequality (cf. Adams [2])

‖ξ‖C0 (t) � ‖ξ‖C1,λ (t) � K3(1 + ε)t + ∥∥ξ |τ=0

∥∥C1,λ .
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Now taking the supremum over 0 � t � T and taking into account the size of the
domain T2 which results in max

∥∥ξ |τ=0

∥∥C1,λ = 1, we finally get estimate (6.20a):

‖ξ‖Ĉ0
0

� K3 (1 + ε) T + 1.

In order to get estimate (6.20b) let us apply the gradient ∇x to Equations (6.17),

d

dτ
∇ξ = d

dτ

(∇ξ
∇η
)

=
(∇u

∇v
)

=
(

ux uy

vx vy

)
=
(

uξ uη
vξ vη

)(
ξx ξy

ηx ηy

)
,

which yields
∥∥∥∥

d

dτ

(
ξx ξy

ηx ηy

)∥∥∥∥C0
=
∥∥∥∥

(
uξ uη
vξ vη

)(
ξx ξy

ηx ηy

)∥∥∥∥C0

� 2

∥
∥∥∥

(
uξ uη
vξ vη

)∥∥∥∥C0

∥
∥∥∥

(
ξx ξy

ηx ηy

)∥∥∥∥C0
,

so that using the inequality
∥∥∇ξv

∥∥C0 �
∥∥∇ξv

∥∥C0,λ together with the obvious impli-
cation

‖v‖C1,λ � K3 (1 + ε) ⇒ ∥∥∇ξv
∥∥C0,λ � K3 (1 + ε),

and going back to vector notation, we get
∣∣dτ ‖∇xξ‖C0

∣∣ � 2
∥∥∇ξv

∥∥C0,λ ‖∇xξ‖C0 ⇒ ‖∇xξ‖C0 (t) � e2K3(1+ε)t ,

where (6.16) was used. Taking the supremum over 0 � t � T furnishes (6.20b),

‖∇xξ‖Ĉ0
0
(t) � e2K3(1+ε)T .

Next, to get bound (6.20c), again apply gradient ∇x to (6.17) and formulate a
difference,

dτ
{∇x′ξ ′ − ∇x′′ξ ′′} = ∇ξ ′v∇x′ξ ′ − ∇ξ ′′v∇x′′ξ ′′

= (∇ξ ′v − ∇ξ ′′v
)∇x′ξ ′ + ∇ξ ′′v

(∇x′ξ ′ − ∇x′′ξ ′′) .

Dividing this expression by
∣∣x′ − x′′∣∣λ and recalling definition (2.5) and that

‖∇v‖C0 � ‖v‖C1,λ , we find

∣∣∣∣
d

dτ

[∇ξ]C0,λ

∣∣∣∣ � ‖v‖C1
[∇ξ]C0,λ +

∣∣∣∣∣
sup
x′,x′′

∇ξ ′v − ∇ξ ′′v
∣∣ξ ′ − ξ ′′∣∣λ

∣∣ξ ′ − ξ ′′∣∣λ

|x′ − x′′|λ ∇x′ξ ′
∣∣∣∣∣

� ‖v‖C1
[∇ξ]C0,λ + ‖v‖C1,λ

(‖∇ξ‖C0
)1+λ

� K3 (1 + ε) e2K3(1+ε)(1+λ)T + K3 (1 + ε)
[∇ξ]C0,λ .

Since ∇ξ = I at τ = t and thus
[∇ξ]C0,λ = 0 for τ = t , then integration of the

previous expression yields

[∇ξ]C0,λ

∣∣
τ=0

� e2K3(1+λ)(1+ε)T (eK3(1+ε)t − 1
)
,
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and taking the supremum over 0 � t � T produces (6.20c)

[∇ξ]Ĉ 0,λ
0

� e2K3(1+λ)(1+ε)T (eK3(1+ε)T − 1
)

� eK3(3+2λ)(1+ε)T .

To validate estimate (6.20d) we appeal to Equations (6.21) and use estimates (6.16,
6.20b):

‖∂tξ‖Ĉ0
0

� ‖v · ∇xξ‖Ĉ0
0

� ‖v‖Ĉ0
0
‖∇xξ‖Ĉ0

0

� ‖v‖Ĉ 1,λ
0

‖∇xξ‖Ĉ0
0

� K3 (1 + ε) e2K3(1+ε)T ,

which is (6.20d). The same procedure is applicable to get bound (6.20e), that is,
using (6.20b–6.20c) we arrive at

[
∂ξ

∂t

]

Ĉ 0,λ
0

�
[
v · ∇xξ

]
Ĉ 0,λ

0
= sup

x′,x′′

v(ξ ′)∇x′ξ ′ − v(ξ ′′)∇x′′ξ ′′
∣∣ξ ′ − ξ ′′∣∣λ

= sup
x′,x′′

(
v(ξ ′)− v(ξ ′′)

)∇x′ + v(ξ ′′)
(∇x′ξ ′ − ∇x′′ξ ′′)

∣∣ξ ′ − ξ ′′∣∣λ

� 2 ‖v‖Ĉ 1,λ
0

[∇xξ
]
Ĉ 0,λ

0
� 2K3 (1 + ε) eK3(3+2λ)(1+ε)T ,

which is correct but quite conservative.

Appendix C: Vorticity estimates (6.23)

Now we turn our attention to the solution (6.22) of the initial value problem
(6.2). As we know, ξ ∈ Ĉ 1,λ

0 and ζ I ∈ C1. Therefore, it follows that ζ ∈ C1. To
establish bound (6.23a), we use Equation (6.22),

∥∥̃ζ
∥∥C0 =

∥
∥∥ζ I + β (η − y)

∥
∥∥C0

�
∥
∥∥ζ I
∥
∥∥C0

+ ‖β (η − y)‖C0

�
∥∥∥ζ I
∥∥∥C1

+
∣∣∣∣
∣
sup
x∈T2

β (η − y)

∣∣∣∣
∣
�
∥∥∥ζ I
∥∥∥C1

+ 2β.

Now, taking the supremum over 0 � t � T we get

∥∥̃ζ
∥∥Ĉ0

0
�
∥∥∥ζ I
∥∥∥C1

+ 2β. (C.1)

Applying the gradient to (6.22) gives

∇xζ̃ = ∇xζ
I + β [∇η − (0, 1)] =

[
∇ξ ζ I + β(0, 1)

](
ξx ξy

ηx ηy

)
− β(0, 1),

so that
∥∥∇xζ̃

∥∥Ĉ0
0

�
{∥∥∥ζ I
∥∥∥C1

+ β
}

e2K3(1+ε)T + β, (C.2)
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where we used (6.20b). Combining expressions (C.1–C.2), we find

∥
∥̃ζ
∥
∥Ĉ1

0
�
∥
∥̃ζ
∥
∥Ĉ0

0
+ ∥∥∇xζ̃

∥
∥Ĉ0

0
� L1e2K3(1+ε)T , L1 = 2

∥
∥∥ζ I
∥
∥∥C1

+ 4β, (C.3)

that is, (6.23a). Finally, differentiating (6.22) with respect to time t :

∂t ζ̃ = ∇ξ ζ̃ I · ∂tξ + β∂tη,

so that

∥∥∂t ζ̃
∥∥C0 �

∥∥∥̃ζ I
∥∥∥C1

‖∂tξ‖C0 + β ‖∂tη‖C0 ,

and taking the supremum over 0 � t � T we recover (6.23b):

∥
∥∂t ζ̃
∥
∥Ĉ0

0
�
{∥∥
∥̃ζ I
∥∥
∥C1

+ β
}

K3(1 + ε)e2K3(1+ε)T � L1 K3(1 + ε)e2K3(1+ε)T ,

where L1 is the same as above and the resulting estimate is more conservative than
it needs to be.

Appendix D: Vorticity estimates with dissipation (6.34)

The solution of the problem with dissipation, that is, (6.31), is given by
ζ̃i = e−r t ζ̂i , where

ζ̂ (x, y, t) = ζ̂ I (ξ(0; x, y, t), η(0; x, y, t))+ β
[
η(0; x, y, t)− er t y

]

+r
∫ t

0

{
βη(τ ; x, y, t)+ F(−1)i

[
ψ̃1−ψ̃2

]
(ξ(τ ; x, y, t), τ )

}
erτdτ .

Let {. . .} = ∫ t
0

{
βη(τ ; x, y, t)+ F(−1)i

[
ψ̃1 − ψ̃2

]
(ξ(τ ; x, y, t), τ )

}
erτdτ . First,

note that

∥∥̃ζ
∥∥Cs =

∥∥∥̂ζ
I
e−r t + β

(
ηe−r t − y

)+ r e−r t {. . .}
∥∥∥Cs

�
∥
∥∥̂ζ

I
e−r t
∥
∥∥Cs

+ ∥∥β (ηe−r t − y
)∥∥Cs + ∥∥r e−r t {. . .}∥∥Cs

�
∥∥∥̂ζ

I
e−r t
∥∥∥Cs+1

+
∣∣∣∣∣
sup
x∈T2

β
(
ηe−r t − y

)
∣∣∣∣∣
+ r
∥∥e−r t {. . .}∥∥Cs .

Applying sup
0�t�T

to both sides we get

∥∥̃ζ
∥∥Ĉs �

∥∥∥̂ζ
I
∥∥∥Ĉs+1

+ 2β + sup
0�t�T

r e−r t ‖{. . .}‖Cs

=
∥∥∥̂ζ

I
∥∥∥Ĉs+1

+ 2β + rT erT {β + 2F K3(1 + ε)} .
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Now,

‖{. . .}‖Cs � β

∥∥∥∥

∫ t

0
η(τ ; x, y, t)dτ

∥∥∥∥Cs
+ F

∥∥∥∥

∫ t

0

(
ψ̃1 − ψ̃2

)
erτdτ

∥∥∥∥Cs

� βerT T + 2F K3(1 + ε)erT T,

as follows from (6.14) and the embedding theorem [2]. Next, applying the gradient
∇x to (6.33) gives

∇xζ̃ = ∇xe−r t
{
̂ζ

I + β
(
η − er t y

)}+ re−r tβ

∫ t

0
(0, 1)

(
ξx ξy

ηx ηy

)
erτdτ

+re−r t (−1)i F
∫ t

0
erτ∇ξ (ψ1 − ψ2)

(
ξx ξy

ηx ηy

)
dτ ,

and thus, using (6.16) for ∇ξ (ψ1 − ψ2), we get

∥∥∇xζ̃
∥∥Ĉs �

{∥∥∥ζ I
∥
∥∥Cs+1

+ β
}

e2K3(1+ε)T + β

+re−r t T
{
βe2K3(1+ε)T + 2F K3(1 + ε)e2K3(1+ε)T } ,

where the underlined terms are the same as in the nondissipative case (C.2). Sum-
ming up

∥∥∇xζ̃
∥∥Ĉs and

∥∥̃ζ
∥∥Ĉs results in (6.34a), where the constant β in the formula

for A is multiplied by 2 for convenience (that is the estimate is more conservative
than required).

To derive (6.34b), let ζ̃ = e−r t ζ̂ = e−r t
{
ζ̂ 1 + r ζ̂ 2

}
, where

ζ̂ 1 = ζ̂ I (ξ(0; x, y, t), η(0; x, y, t))+ β
[
η(0; x, y, t)− er t y

]

ζ̂ 2 =
∫ t

0

{
βη(τ ; x, y, t)+ F(−1)i

[
ψ̃1 − ψ̃2

]
(ξ(τ ; x, y, t), τ )

}
erτdτ .

Next, ∂t ζ̃ = −re−r t ζ̂ + e−r t∂t ζ̂ , where

∂t ζ̂1 = ∇ξ ζ̃ I · ∂tξ + β
(
∂tη − rer t y

)
,

∂t ζ̂2 = βηer t + β

∫ t

0

∂η

∂t
(τ ; x, y, t)erτdτ

+F(−1)i
{(
ψ̃1 − ψ̃2

)
er t +

∫ t

0
∇ξ
(
ψ̃1 − ψ̃2

)
(ξt , ηt )e

rτdτ

}
.

This yields

∥
∥∂t ζ̃
∥
∥Ĉs � L1 K3(1 + ε)e2K3(1+ε)T + r

∥
∥̂ζ
∥
∥Ĉs + rβerT

+r
[
βerT + 2βK3(1 + ε)e2K3(1+ε)T erT T + 2F K3(1 + ε)erT

+ 2F K3(1 + ε) · K3(1 + ε)e2K3(1+ε)T erT T
]
,
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where the first term comes from e−r t∂t ζ̂1, that is, the nondissipative case, the second
from −re−r t ζ̂ , the third from −βrer t y, and the terms in square brackets originate
from ∂t ζ̂2. Note, that

∥∥̂ζ
∥∥Ĉs =

∥∥∥̂ζ
I
∥∥∥Ĉs+1

+ 2β + rT erT {β + 2F K3(1 + ε)} ,
as derived above. This altogether gives (6.34b).
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