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We propose an experimentally realizable nonreciprocal magnonic device at the single-magnon
level by exploiting magnon blockade in a magnon-based hybrid system. The coherent qubit-magnon
coupling, mediated by virtual photons in a microwave cavity, leads to the energy-level anharmonicity
of the composite modes. In contrast, the corresponding dissipative counterpart, induced by traveling
microwaves in a waveguide, yields inhomogeneous broadenings of the energy levels. As a result, the
cooperative effects of these two kinds of interactions give rise to the emergence of the direction-
dependent magnon blockade. We show that this can be demonstrated by studying the equal-time
second-order correlation function of the magnon mode. Our study opens an avenue to engineer
nonreciprocal magnonic devices in the quantum regime involving only a small number of magnons.

I. INTRODUCTION

Owing to great application prospects in quantum tech-
nologies, a new class of hybrid quantum systems based
on magnons, i.e., the collective spin excitations in ferro-
and ferrimagnetic crystals such as yttrium iron garnet
(YIG), have blossomed in the past few years [1–3], where
magnons are coherently coupled to microwave potons [4–
12], phonons [13–16], optical photons [17, 18], and su-
perconducting qubits [19, 20]. Benefiting from the ad-
vantages of intrinsically good tunability as well as long
coherence time, many novel phenomena have been ex-
plored in these magnon-based hybrid systems [21–31].
For example, the nonreciprocal microwave transmission
(i.e., allowing the flow of signal to propagate from one
side but not the other side) in the linear regime has been
achieved with the assistance of the dissipative coupling
between magnons and microwave photons [32, 33]. Non-
reciprocal devices are indispensable in a wide range of
practical applications, such as optical isolators [34, 35],
metamaterials [36, 37], and circulators [38].

In addition, the magnon blockade, in analogy to pho-
ton blockade [39, 40] and phonon blockade [41, 42], was
theoretically proposed in Refs. [43, 44], where magnons in
a YIG sample are strongly coupled to a superconducting
qubit. In such a qubit-magnon hybrid system, the an-
harmonic energy-level structure of the system prevents
the resonant injection of more than one magnon into the
magnon mode (i.e., the magnon blockade occurs) [19, 20].
The magnon blockade is a pure quantum effect, which
provides the possibility to develop novel magnonic de-
vices at the single-magnon level, such as single magnon
sources. Very recently, Refs. [45] and [46] have proposed
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to engineer the nonreciprocal photon blockade in a spin-
ning Kerr cavity and the nonreciprocal phonon blockade
in a composite spin-phononic system, respectively. In
chiral quantum technologies, quantum nonreciprocal de-
vices are crucial elements and have received extensive at-
tention [47–51]. However, up to now, the nonreciprocal
magnon blockade has not yet been investigated.

In this work, we propose to engineer nonreciprocal
magnonic devices at the single-magnon level. In our ap-
proach, the magnon mode in a YIG sphere is both co-
herently and dissipatively coupled to a superconducting
qubit. Due to the interference between coherent and dis-
sipative qubit-magnon couplings, the non-classical statis-
tics of magnons depends on the direction of the drive
microwave field of the coupled hybrid system. In such
a system, for the right-propagating (or left-propagating)
drive field, the magnon statistics can be sub-Poissonian,
corresponding to the occurrence of magnon blockade.
However, when reversing the propagation direction of
the drive field, the magnon statistics becomes super-
Poissonian, indicating the disappearance of the magnon
blockade. This work opens a route to engineer nonrecip-
rocal magnonic devices in the quantum regime, which
may have important application aspects in the versa-
tile magnon-based quantum information processing plat-
forms [1–3].

II. THE MODEL

As schematically depicted in the green box in Fig. 1(a),
the hybrid quantum system consists of a YIG sphere, a
superconducting flux qubit and a coplanar transmission-
line resonator (called the cavity here), where both the
qubit and the considered magnon mode (i.e., the Kittel
mode with uniform spin precession) in the YIG sphere are
strongly coupled to the microwave cavity mode. When
the cavity has a large frequency detuning from both the
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qubit and the magnon mode, the effective strong inter-
action between the qubit and the magnon mode can be
realized via exchanging virtual microwave photons in the
cavity [19, 20]. By eliminating the degrees of freedom of
the cavity mode via the Fröhlich-Nakajima transforma-
tion [52, 53], we obtain the effective Hamiltonian of the
qubit-magnon hybrid quantum system (set ~ = 1; see
Appendix A for details)

H = ωqσ+σ− + ωbb
†b+ λ

(
b†σ− + bσ+

)
, (1)

where σ+ = |e〉 〈g| (σ− = |g〉 〈e|) is the raising (lowering)
operator of the qubit with ground state |g〉 and excited
state |e〉, and b† (b) is the creation (annihilation) operator

of the magnon mode. The bare frequency ω
(0)
q (ω

(0)
b ) of

the qubit (magnon mode) is slightly modified to ωq =

ω
(0)
q + λ2

q/δq (ωb = ω
(0)
b + λ2

b/δb), and λ = λqλb(1/2δq +

FIG. 1. (a) Schematic of the proposed hybrid quantum sys-
tem for nonreciprocal magnon blockade. A transmission-line
resonator, which supports standing cavity modes, is employed
to mediate the coherent coupling between magnons in a ferri-
magnetic YIG sphere and the superconducting flux qubit (see
the green box). In addition, both the mangon mode and the
flux qubit are also coupled to the traveling waves in an open
waveguide, resulting in the qubit-magnon dissipative coupling
with strength Γ. The microwave signals are loaded via port
1 and port 2 for drivings. (b) Energy levels of the qubit-
magnon hybrid system for illustrating the magnon blockade
in the standard Jaynes-Cummings model, where the coupling
between the magnon mode and the qubit only involves the co-
herent part, without the dissipative contribution to the cou-
pling. (c) and (d) Schematic demonstration of the nonrecip-
rocal magnon blockade with a driving loaded via either (c)
port 1 or (d) port 2 in the qubit-magnon system, where both
the coherent and dissipative couplings are included.

1/2δb) is the effective coherent coupling strength between

the qubit and the magnon mode. Here δq(b) = ω
(0)
q(b) − ωc

is the frequency difference between the qubit (magnon
mode) and the cavity field with frequency ωc, whereas
λq (λb) stands for the corresponding coupling strength.

In the Hermitian case, i.e., without the dissipation in
the qubit-magnon system, the eigenstates of the qubit-
magnon system include the ground state |0, g〉 ≡ |0〉 |g〉,
and the excited eigenstates |n,±〉:

|n,−〉 = cos θn |n〉 |g〉 − sin θn |n− 1〉 |e〉 ,
|n,+〉 = cos θn |n− 1〉 |e〉+ sin θn |n〉 |g〉 . (2)

The corresponding eigenenergies are ω0,g = 0, and

ωn,± = nωb +
1

2
δ ± 1

2

√
δ2 + 4nλ2, (3)

where |n〉 (n = 0, 1, 2, ...) are the Fock states of the
magnon mode, δ = ωq − ωb is the frequency detuning
of the qubit relative to the magnon mode, and θn =
tan−1(2λ

√
n/δ)/2. When the qubit is near-resonantly

and strongly coupled to the magnon mode (i.e., ωq ≈ ωb
and λ � {γin, κin}max, where γin is the intrinsic decay
rate of the qubit and κin is the intrinsic decay rate of the
magnon mode), the strong anharmonicity of the energy
spectrum yields the magnon blockade in the weak driving
limit [43, 44], as schematically shown in Fig. 1(b). The
transitions between the quantum states |0, g〉 and |1,±〉
are permitted as long as the drive field has the resonant
frequencies of ωd ≈ ωb ± λ, respectively. Meanwhile, the
subsequent transitions |1,±〉 → |2,±〉 are inhibited, due
to the large frequency detuning |(ω2,± − ω1,±) − ωd| ≈
(2 −

√
2)λ (> {γin, κin}max). In other words, regardless

of the driving direction, once a magnon is excited in the
system, it prevents the second magnon with the same
frequency from entering the qubit-magnon system.

To engineer the nonreciprocal magnon blockade, we
specially extend the cavity-mediated qubit-magnon sys-
tem to include an open waveguide (i.e., without the effec-
tive mirrors to form a cavity), as schematically demon-
strated in Fig. 1 (a). In the extended qubit-magnon sys-
tem, the waveguide acts as a common reservoir, and both
the qubit and the magnon mode individually interact
with the traveling microwaves in the waveguide [32, 54].
To excite the magnons in the YIG sphere, a weak mi-
crowave field with frequency ωd is loaded into the qubit-
magnon system through either port 1 or port 2, located at
the two ends of the waveguide. Mediated by the waveg-
uide, the loaded external microwave field drives both the
qubit and the magnon mode in the following form [32, 33]:

Hd = ξq(σ−e
iωdt + σ+e

−iωdt)

+ξb[be
i(ωdt+φ) + b†e−i(ωdt+φ)], (4)

where ξq =
√
γex ξ (ξb =

√
κex ξ) is the Rabi frequency

related to the qubit (magnon mode), ξ represents the
drive strength of the microwave field, γex (κex) charac-
terizes the coupling strength between the qubit (magnon
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mode) and the waveguide, and the phase φ = kL (with L
being the separation distance between the qubit and the
YIG sphere and k being the wave number) indicates the
relative phase delay of traveling photons from the qubit
to the magnon mode. Hereafter, we choose φ = 0 in our
work.

When including the external drive field and the dissi-
pations of the system, the dynamics of the total qubit-
magnon system can be described by a Lindblad master
equation [54, 55]:

ρ̇ = i [ρ,H +Hd] + γinL[σ−] ρ+ κinL[b] ρ+ τL[o] ρ, (5)

where the standard dissipative Lindblad superoperator
has the form

L[f ] ρ = 2fρf† − f†fρ− ρf†f, (6)

with f = {σ−, b, o}. On the right side of Eq. (5), the sec-
ond and third terms describe the intrinsic dissipations of
the qubit and the magnon mode, respectively, and the
fourth term represents the cooperative dissipation of the
qubit and the magnon mode into the waveguide with de-
cay rate τ . The jump operator o is generally expressed
as the superposition of both qubit’s and magnon’s oper-
ators, and more precisely, it depends on which port the
drive field is loaded into [32, 33]. In the case with the
drive field loaded into the qubit-magnon system via port
1, the jump operator can be defined as o = µb+νσ− [54],
with the coefficients µ and ν satisfying τ · ν2 = γex and
τ · µ2 = κex, which characterize the individual couplings
of the qubit and magnon to the traveling waves in the
open waveguide. However, when the drive field is loaded
via port 2, the jump operator becomes o = −µb + νσ−,
since the propagation direction of the traveling waves in
the waveguide is reversed [32, 33]. For convenience, we
introduce a phase Θ to indicate the difference in the drive
direction, i.e.,

o = eiΘµb+ νσ−, (7)

where Θ = 0 and Θ = π correspond to the microwave
drive loaded via port 1 and port 2, respectively.

Neglecting the quantum jump terms 2γinσ−ρσ+,
2κinbρb

† and 2τoρo†, we can write the master equa-
tion in Eq. (5) as the Liouvillian equation [56, 57]:
ρ̇ ≈ i[ρ(Heff +Hd)

† − (Heff +Hd)ρ], where

Heff = (ωq − iγ)σ+σ− + (ωb − iκ)b†b

+(λ− iΓeiΘ)(σ+b+ b†σ−) (8)

is the effective non-Hermitian Hamiltonian of the qubit-
magnon system, which approximatively determines the
non-classical statistics of magnons in the proposed qubit-
magnon system. Here, γ = γin + γex (κ = κin + κex) rep-
resents the total decay rate of the qubit (magnon mode),
and Γ =

√
κexγex denotes the effective dissipative cou-

pling between the qubit and the magnon mode. For the
cases with the drive field injected via port 1 and port
2, respectively, the phases of the dissipative coupling Γ
relative to the coherent coupling λ differs by π, i.e., Heff

is nonreciprocal. This drive direction-dependent nonre-
ciprocity substantially leads to the nonreciprocal magnon
blockade, which can be intuitively explained using the
complex energy spectrum of the effective Hamiltonian
Heff in Eq. (8) (cf. Sec. III).

FIG. 2. (a) For the right-propagating drive field injected via
port 1 with Θ = 0 and (b) the left-propagating drive field
imported via port 2 with Θ = π, the steady-state logarithmic
equal-time second-order correlation functions to the base of
10, i.e., log10[g(2)→ (0)] and log10[g(2)← (0)], are plotted versus the
detuning ∆/2π and the dissipative coupling strength Γ/2π.

The black dotted curves are plotted for g(2)(0) = 1, which

are the boundaries between sub-Poissonian [g(2)(0) < 1] and

super-Poissonian [g(2)(0) > 1] magnon statistics. Other pa-
rameters are chosen as ωb/2π = ωq/2π = 5 GHz, λ/2π =
10 MHz, γin/2π = κin/2π = 1 MHz, µ = ν = 1, and
τ = Γ. (c) Cross section views of the second-order corre-

lation function log10[g(2)(0)] obtained by slicing the entire
range of the detuning ∆/2π at Γ/2π = 5 MHz for different in-

put directions, i.e., g(2)→ (0) marked in red and g(2)← (0) marked
in blue. The gray dash-dotted curve shows the direction-
independent correlation functions g(2)↔ (0) with τ = 0 for com-
parison, and the green dashed line represents the reference
level of g(2)(0) = 1.
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III. NONRECIPROCAL MAGNON BLOCKADE
BASED ON THE COHERENT AND

DISSIPATIVE QUBIT-MAGNON COUPLINGS

A. Nonreciprocal magnon blockade

To quantitatively characterize the non-classical statis-
tics of magnons, we introduce the equal-time second-
order correlation function [58],

g(2)(0) ≡ 〈b
†b†bb〉
〈b†b〉2

=
Tr[ρssb

†b†bb]

Tr[ρssb†b]2
, (9)

where ρss is the density matrix of the qubit-magnon sys-
tem in the steady state. The condition of g(2)(0) < 1 or
g(2)(0) > 1 indicates the appearance of sub-Poissonian or
super-Poissonian magnon statistics. When g(2)(0) < 1,
magnon blockade occurs [43, 44], which is a pure quan-
tum phenomenon. The limit of g(2)(0) → 0 predicts the
perfect magnon blockade, i.e., only one magnon can be
excited in the qubit-magnon system.

In what follows, we focus on the typical second-order
correlation functions g(2)

→ (0) and g(2)
← (0), where the ar-

rows → and ← in the subscripts denote the right- and
left-propagating drive field injected via the port 1 and
the port 2, respectively, corresponding to Θ = 0 and
Θ = π. Without the loss of generality, identical fre-
quencies are assumed in numerical simulations for the
qubit and the magnon mode, i.e., ωq = ωb. In Figs. 2(a)
and 2(b), we demonstrate the steady-state logarithmic
(of base 10) g(2)

→ (0) and g(2)
← (0) versus the dissipative cou-

pling rate Γ and the detuning ∆ = ωb − ωd by numeri-
cally calculating Eqs. (5) and (9), where the black dotted
curves [g(2)(0) = 1] denote the boundaries between sub-
Poissonian [g(2)(0) < 1] and super-Poissonian [g(2)(0) >
1] magnon statistics. It is obvious from Figs. 2(a) and

2(b) that the correlation functions g
(2)
� (0) for bidirec-

tional microwave drives own the appealing feature of
symmetry about the line ∆ = 0, i.e., g(2)

→ (0)|∆=∆0 =
g(2)
← (0)|∆=−∆0 for any values ∆0 of the detuning ∆. In

the intersection regions of g(2)
→ (0) > 1 and g(2)

← (0) < 1,
or conversely, g(2)

→ (0) < 1 and g(2)
← (0) > 1, the extraor-

dinary nonreciprocal magnon blockade emerges [see the
light-blue regions in Fig. 2(c)], where super-Poissonian
magnons occur by loading the drive field via one port,
while sub-Poissonian magnons appear via the other port.

In order to quantitatively describe the nonreciprocal
magnon blockade, we introduce the bidirectional con-
trast ratio C (satisfying 0 ≤ C ≤ 1) in the nonreciprocal
regimes,

C =

∣∣∣∣∣g(2)
→ (0)− g(2)

← (0)

g
(2)
→ (0) + g

(2)
← (0)

∣∣∣∣∣ , (10)

where C = 1 (C = 0) corresponds to the ideal non-
reciprocal magnon blockade (the disappearance of the
nonreciprocity). The higher the contrast ratio C is, the
stronger the nonreciprocity of the magnon blockade is.

FIG. 3. (a) Dependence of the bidirectional contrast ratio C
on the dissipative coupling strength Γ/2π and the detuning
∆/2π. (b) The maximized contrast ratio Cmax versus the
dissipative coupling strength Γ/2π, with the corresponding
detuning ∆max/2π of blue triangles (red squares) indicated
by the blue (red) curve in the inset. Other parameters are
the same as in Fig. 2.

From Fig. 3(a), it is clear that the nonreciprocal magnon
blockade occurs in a remarkably broad parameter range
and the contrast ratio C is symmetric about the line
∆ = 0. For a given value of the dissipative qubit-magnon
coupling strength Γ, we define the maximal value of the
contrast ratio C as Cmax, where the corresponding de-
tuning ∆ is also denoted as ∆max. In Fig. 3(b), we dis-
play the maximal contrast ratio Cmax versus Γ, which
increases monotonically with Γ. In the region Γ/2π >
1.8 MHz, apparent nonreciprocal magnon blockade sce-
narios take place with Cmax > 0.8. Regardless of the val-
ues of Γ, the maximum Cmax is always obtained around
∆max ≈ ±λ = ±10× 2π MHz [see the inset of Fig. 3(b)].
For example, when Γ/2π = 5 MHz, the maximal con-
trast ratio Cmax reaches 0.895 at ∆/2π = −10.2 MHz,
with g(2)

→ (0) = 1.615, and g(2)
← (0) = 0.089.

B. Origin of the nonreciprocal magnon blockade

Below we proceed to investigate the physical mecha-
nism of the nonreciprocal magnon blockade in the qubit-
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magnon system. Corresponding to Eq. (3), the eigenen-
ergies of the non-Hermitian hybrid system become

ωn,± =nω̃b +
1

2
∆̃± 1

2

√
∆̃2 + 4n(λ− iΓeiΘ)

2
, (11)

with ω̃b = ωb − iκ, ω̃q = ωq − iγ and ∆̃ = ω̃q − ω̃b,
which are obtained by diagonalizing the effective non-
Hermitian Hamiltonian Heff in Eq. (8). In this non-
Hermitian qubit-magnon system, the real parts of ωn,±,
i.e., Re[ωn,±], presents the frequencies of the dressed
states; the imaginary parts, Im[ωn,±], indicate the to-
tal dissipations of the energy levels, which result in the
extended frequency broadenings of the energy levels. As
intuitively demonstrated in Figs. 1(c) and 1(d), the an-
harmonicity of the energy levels of the qubit-magnon sys-
tem, which is the origin of the magnon blockade [43, 44],
is direction-independent, i.e., Re[ωn,±] is independent of
Θ [cf. Eq.(11)]. That is to say, they are the same for
drivings from both directions when Θ = {0, π}. However,
the linewidths Im[ωn,±] of these levels become direction-
dependent [see Figs. 4(a) and 4(b)], inherently account-
ing for the nonreciprocity of the magnon blockade. More-
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FIG. 4. Imaginary parts (a) Im[ωn,−] and (b) Im[ωn,+] of the
bidirectional eigenvalues ωn,± (n = 1, 2) versus the dissipative

coupling Γ/2π. (c) Bidirectional correlation function g(2)(0)
versus Γ/2π with ∆/2π = 10 MHz. Other parameters are the
same as in Fig. 2.

over, Figs. 4(a) and 4(b) also reveal the fact that the
amounts of inhomogeneous broadening of these levels are
monotonically increasing with rising dissipative coupling
Γ. The dissipative coupling due to the traveling waves
in the waveguide causes dramatic changes to the second-
order correlation functions for drivings from different di-
rections, as presented in Fig. 4(c).

As schematically shown in Fig. 1(c), when the drive
field comes from the left side (port 1) with frequency
ωd = Re[ω1,+], the linewidth |Im[ω2,+]| of the state
|2,+〉 becomes comparable to (or larger than) the fre-
quency detuning |(Re[ω2,+] − Re[ω1,+]) − ωd| between
the drive field and the transition |1,+〉 → |2,+〉 (i.e.,
|Im[ω2,+]| ≥ |(Re[ω2,+] − Re[ω1,+]) − ωd|). Therefore,
in such a case, the state |2,+〉 may be excited, and the
absorption of the first magnon also favors that of the
second or subsequent magnons, giving rise to the super-
Poissonian magnon statistics with g(2)

→ (0) > 1; see the
region with ∆/2π ≈ −10 MHz and Γ/2π > 2 MHz in
Fig. 2(a)]. However, sub-Poissonian magnon statistics
with g(2)

→ (0) < 1 remains for the drive field with frequency
ωd = Re[ω1,−] [see the region with ∆/2π ≈ 10 MHz in
Fig. 2(a)], since the drive frequency ωd is still far de-
tuned from the transition frequency Re[ω2,−]− Re[ω1,−]
even in the linewidth-broadening case (i.e., |Im[ω2,−]| <
|(Re[ω2,−]−Re[ω1,−])−ωd|), cf. Fig. 1(c). As a contrast
and revealed in Fig. 1(d), for the drive field imported
via port 2, the signatures of magnon statistics for drives
with frequencies ωd = Re[ω1,±] get switched, namely,

g(2)
← (0) > 1 for ωd = Re[ω1,−], while g(2)

← (0) < 1 for
ωd = Re[ω1,+], cf. Fig. 2(b). As intuitively explained
above, the nonreciprocal statistical phenomena of the
magnons in the qubit-magnon system stem from both
the coherent and dissipative qubit-magnon couplings.

IV. DISCUSSIONS AND CONCLUSIONS

It is worth discussing the effect of the coupling be-
tween the cavity and the waveguide on the nonrecipro-
cal magnon blockade, which is ignored in the analysis
above. When considering the cavity-waveguide coupling,
the master equation in Eq. (5) is modified as

ρ̇ = i [ρ,H +Hd] + i
[
ρ, ωcc

†c
]

+ γinL[σ−] ρ

+κinL[b] ρ+ βinL[c] ρ+ τL[o′] ρ, (12)

where c† and c are the creation and annihilation opera-
tors of the cavity mode with the intrinsic decay rate βin.
Here the jump operator o is replaced by o′ as [54]

o′ = eiΘµb+ νσ− + ζc. (13)

The coefficient ζ, which satisfies τζ2 = βex, denotes the
coupling of the cavity mode to the traveling photons in
the waveguide. Applying the same strategy of separat-
ing the quantum jump terms, the effective non-Hermitian
Hamiltonian Heff in Eq.(8) is modified to include addi-
tional terms,

Hadd = −iΓ1(σ+c+ c†σ−)− iΓ2e
iΘ(b†c+ c†b), (14)
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FIG. 5. Comparison of the second-order correlation func-
tion g(2)(0) for the cases with and without the coupling be-
tween the cavity and the waveguide, which are calculated us-
ing Eq.(5) and Eq.(12). In (a) and (b), the drivings are loaded
via port 1 and port 2, respectively. The newly introduced pa-
rameters are chosen as βin/2π = 1 MHz and ζ = 1, while
other parameters are the same as in Fig. 2(c).

with Γ1 =
√
γexβex and Γ2 =

√
κexβex, which represent

the cavity-qubit and cavity-magnon dissipative couplings
mediated by the waveguide, respectively.

We then perform numerical comparisons of the second-

order correlation functions g
(2)
� (0) using master equations

in Eq.(5) and Eq.(12). In the case of either Θ = 0
[c.f. Fig. 5(a)] or Θ = π [c.f. Fig. 5(b)], the behaviors of
the red and blue curves are in good agreement with each
other, even when the dissipative cavity-qubit and cavity-
magnon coupling strengths are comparable to their dis-
sipative qubit-magnon counterpart. This indicates that
it is indeed reasonable to neglect the direct coupling be-
tween the cavity and the waveguide. The essential phys-
ical mechanism behind can be further described below.
First, the central conductor of the microwave cavity can
be structurally engineered to be spatially separated from
the waveguide except for the segments around the qubit
and the magnons [see Fig. 1(a)]. This can leads to negli-
gible cavity-waveguide coupling. Second, the cavity can
be much detuned from both the qubit and the magnon
mode, so the waveguide-induced cavity-qubit and cavity-
magnon dissipative couplings can be safely neglected un-
der the rotating-wave approximation [58]. Therefore, it
is sufficient to ignore the effect of the cavity-waveguide
coupling on the magnon statistics.

Before concluding, we briefly assess the feasibility
of the physical implementation of the present scheme.
Strong coherent interaction (of strength g/2π ∼ 10 MHz)
between a superconducting qubit and the Kittel mode,
mediated by virtual photons in the detuned microwave
cavity, has been achieved when the frequency ωq of qubit
is approximately equal to the frequency ωb of magnon
mode (ωq/2π ≈ ωb/2π ≈ 8.4 GHz) [19, 20]. On the
other hand, modest intrinsic qubit (cavity) damping rate
of γin/2π ≈ 1 MHz (βin/2π ≈ 1 MHz) can be chosen
from Ref. [59, 60], and an intrinsic magnon damping rate
of κin/2π ≈ 1 MHz can be fitted from the transmission

spectra in Ref. [32]. Moreover, an external relaxation
rate of γex/2π = 11 MHz for the superconducting qubit,
solely caused by the open transmission line, was reported
by demonstrating an 94% extinction of the light in the
resonance fluorescence experiment [61]. In Ref. [33], the
external decay rate κex/2π = 0.33 MHz of the magnon
mode due to the waveguide was engineered, where the
small external decay rate is specially designed by placing
the YIG sphere 1 mm distance away from the waveguide
to obtain a high isolation ratio for the nonreciprocal mi-
crowave propagation. In fact, if the distance between the
YIG sphere and waveguide is decreased to, e.g., 0.1 mm,
the external decay rate κex of the magnon mode can be
significantly increased.

To summarize, we have theoretically studied the non-
reciprocal magnon blockade in a magnon-based hybrid
system. Mediated by virtual photons in a microwave cav-
ity (traveling microwaves in a waveguide), the magnon
mode in a YIG sphere can be coherently (dissipatively)
coupled to a superconducting qubit. By investigating the
equal-time second-order correlation function of magnons
and analysing the energy level structure of the hybrid
quantum system, we demonstrate that the interference
between the coherent and dissipative qubit-magnon cou-
plings can yield the nonreciprocal magnon blockade.
Moreover, our approach is experimentally implementable
with the state-of-the-art technologies. It offers a new way
to develop nonreciprocal quantum devices based on the
nonreciprocal magnon blockade, and may find promising
applications in chiral quantum technologies [47–51].
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Appendix A: Coherent qubit-magnon coupling via
virtual photons in the microwave cavity

For a hybrid system consisting of a qubit and a YIG
sphere both coupled to a cavity, the total Hamiltonian of
the system can be written as

Hs = H0 +HI ,

H0 = ω(0)
q σ+σ− + ω

(0)
b b†b+ ωcc

†c,

HI = λq(σ
+c+ σ−c†) + λb(b

†c+ bc†).

(A1)

In the case of |δb| � λb and |δq| � λq, with δq = ω
(0)
q −ωc,

and δb = ω
(0)
b −ωc, the effective coupling between the Kit-
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tel mode and the qubit can be obtained by applying the
Fröhlich-Nakajima transformation onto the Hamiltonian
Hs in Eq. (A1) [19, 20].

We consider a unitary transformation U = exp(V ),
where

V =
λq
δq

(σ−c† − σ+c) +
λb
δb

(bc† − b†c) (A2)

is anti-Hermitian and satisfies HI + [H0, V ] = 0. Up
to the second order, the transformed Hamiltonian, H =

U†HsU , can be approximatively written as [52, 53]

H ≈ H0 +
1

2
[HI , V ]

= ωqσ+σ− + ωbb
†b+ λ(b†σ− + bσ+)

+

(
ωc −

λ2
b

δb
+
λ2
q

δq
σz

)
c†c, (A3)

where ωq = ω
(0)
q + λ2

q/δq, ωb = ω
(0)
b + λ2

b/δb, and
λ = λqλb(1/2δq + 1/2δb). In our approach, the cavity
mode is largely detuned from the Kittel mode and the
superconducting qubit, so it is reasonable to assume that
the cavity mode always remains in the ground state, i.e.,
〈c†c〉 ≈ 0. Under this approximation of 〈c†c〉 ≈ 0, the ef-
fective Hamiltonian in Eq. (A3) can be reduced to Eq.(1)
in the main text.

[1] B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Us-
ami, D. Lachance-Quirion, Y. Nakamura, C. M. Hu, H.
X. Tang, G. E. W. Bauer, and Y. M. Blanter, Cavity
magnonics, arXiv:2106.09312.

[2] H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan,
Quantum magnonics: when magnon spintronics meets
quantum information science, arXiv:2111.14241.

[3] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami,
and Y. Nakamura, Hybrid quantum systems based on
magnonics, Appl. Phys. Express 12, 070101 (2019).

[4] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifen-
stein, A. Marx, R. Gross, and S. T. B. Goennenwein,
High Cooperativity in Coupled Microwave Resonator
Ferrimagnetic Insulator Hybrids, Phys. Rev. Lett. 111,
127003 (2013).

[5] Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G.
E. W. Bauer, Exchange magnon-polaritons in microwave
cavities, Phys. Rev. B 91, 094423 (2015).

[6] H. Y. Yuan and X. R. Wang, Magnon-Photon Coupling in
Antiferromagnets, Appl. Phys. Lett. 110, 082403 (2017).

[7] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K.
Usami, and Y. Nakamura, Hybridizing Ferromagnetic
Magnons and Microwave Photons in the Quantum Limit,
Phys. Rev. Lett. 113, 083603 (2014).

[8] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Strongly
Coupled Magnons and Cavity Microwave Photons, Phys.
Rev. Lett. 113, 156401 (2014).

[9] M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M.
Kostylev, and M. E. Tobar, High-Cooperativity Cavity
QED with Magnons at Microwave Frequencies, Phys.
Rev. Appl. 2, 054002 (2014).

[10] L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and
C. M. Hu, Spin Pumping in Electrodynamically Coupled
Magnon-Photon Systems, Phys. Rev. Lett. 114, 227201
(2015).

[11] D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu,
F. Nori, and J. Q. You, Cavity quantum electrody-
namics with ferromagnetic magnons in a small yttrium-
iron-garnet sphere, npj Quantum Information 1, 15014
(2015).

[12] Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu,

and J. Q. You, Bistability of Cavity Magnon-Polaritons,
Phys. Rev. Lett. 120, 057202 (2018).

[13] X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity
magnomechanics, Sci. Adv. 2, e1501286 (2016).

[14] Y. P. Gao, C. Cao, T. J. Wang, Y. Zhang, and C. Wang,
Cavity-mediated coupling of phonons and magnons,
Phys. Rev. A 96, 023826 (2017).

[15] T. X. Lu, H. Zhang, Q. Zhang, and H. Jing, Exceptional-
point-engineered cavity magnomechanics, Phys. Rev.
A 103, 063708 (2021).

[16] C. A. Potts, E. Varga, V. A. S. V. Bittencourt, S. Vi-
ola Kusminskiy, and J. P. Davis, Dynamical Backaction
Magnomechanics, Phys. Rev. X 11, 031053 (2021).

[17] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J.
Ferguson, Triple-Resonant Brillouin Light Scattering in
Magneto-Optical Cavities, Phys. Rev. Lett. 117, 133602
(2016).

[18] J. A. Haigh, S. Langenfeld, N. J. Lambert, J. J. Baum-
berg, A. J. Ramsay, A. Nunnenkamp, and A. J. Fer-
guson, Magneto-optical coupling in whispering-gallery-
mode resonators, Phys. Rev. A 92, 063845 (2015).

[19] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Ya-
mazaki, K. Usami, and Y. Nakamura, Coherent Coupling
between a Ferromagnetic Magnon and a Superconducting
Qubit, Science 349, 405 (2015).

[20] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono,
K. Usami, and Y. Nakamura, Entanglement-based single-
shot detection of a single magnon with a superconducting
qubit, Science 367, 425 (2020).

[21] J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, En-
hanced Sensing of Weak Anharmonicities through Coher-
ences in Dissipatively Coupled Anti-PT Symmetric Sys-
tems, Phys. Rev. Lett. 126, 180401 (2021).

[22] J. Shim, S. J. Kim, S. K. Kim, and K. J. Lee, Enhanced
Magnon-Photon Coupling at the Angular Momentum
Compensation Point of Ferrimagnets, Phys. Rev. Lett.
125, 027205 (2020).

[23] G. Q. Zhang, Y. P. Wang, and J. Q. You, Theory of the
magnon Kerr effect in cavity magnonics, Sci. China-Phys.
Mech. Astron. 62, 987511 (2019).

[24] M. X. Bi, X. H. Yan, Y. Zhang, and Y. Xiao, Tristability



8

of cavity magnon polaritons, Phys. Rev. B 103, 104411
(2021).

[25] W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Prediction of
Attractive Level Crossing via a Dissipative Mode, Phys.
Rev. Lett. 123, 227201 (2019).

[26] G. Q. Zhang and J. Q. You, Higher-order exceptional
point in a cavity magnonics system, Phys. Rev. B 99,
054404 (2019).

[27] H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, and
M. H. Yung, Steady Bell State Generation via Magnon-
Photon Coupling, Phys. Rev. Lett. 124, 053602 (2020).

[28] S.-N. Huai, Y.-L. Liu, J. Zhang, L. Yang, and Y.-X.
Liu, Enhanced Sideband Responses in a PT -symmetric-
like Cavity Magnomechanical System, Phys. Rev. A 99,
043803 (2019).

[29] G. Q. Zhang, Z. Chen, W. Xiong, C. H. Lam, and J.
Q. You, Parity-symmetry-breaking quantum phase tran-
sition via parametric drive in a cavity magnonic system,
Phys. Rev. B 104, 064423 (2021).

[30] V. L. Grigoryan, K. Shen, and K. Xia, Synchronized spin-
photon coupling in a microwave cavity, Phys. Rev. B 98,
024406 (2018).

[31] J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-Photon-
Phonon Entanglement in Cavity Magnomechanics, Phys.
Rev. Lett. 121, 203601 (2018).

[32] Y. P. Wang, J. W. Rao, Y. Yang, P. C. Xu, Y. S. Gui, B.
M. Yao, J. Q. You, and C.-M. Hu, Nonreciprocity and
Unidirectional Invisibility in Cavity Magnonics, Phys.
Rev. Lett. 123, 127202 (2019).

[33] J. Qian, J. W. Rao, Y. S. Gui, Y. P. Wang, Z. H. An, and
C. M. Hu, Manipulation of the zero-damping conditions
and unidirectional invisibility in cavity magnonics, Appl.
Phys. Lett. 116, 192401 (2020).

[34] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G.
Schmidt, A. Waag, and L. Molenkamp, Injection and
detection of a spin-polarized current in a light-emitting
diode, Nature 402, 787 (1999).

[35] S. Borlenghi, W. Wang, H. Fangohr, L. Bergqvist, and A.
Delin, Designing a spin-seebeck diode, Phys. Rev. Lett.
112, 047203 (2014).

[36] A. M. Mahmoud, A. R. Davoyan, and N. Engheta, All-
passive nonreciprocal metastructure, Nat. Commun. 6,
8359 (2015).

[37] A. R. Hamann, C. Müller, M. Jerger, M. Zanner, J.
Combes, M. Pletyukhov, M. Weides, T. M. Stace, and
A. Fedorov, Nonreciprocity realized with quantum non-
linearity, Phys. Rev. Lett. 121, 123601 (2018).

[38] M. Scheucher, A. Hilico, E. Will, J. Volz, and A.
Rauschenbeutel, Quantum optical circulator controlled
by a single chirally coupled atom, Science 354, 1577
(2016).
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[52] H. Fröhlich, Theory of the superconducting state. I. The
ground state at the absolute zero of temperature, Phys.
Rev. 79, 845 (1950).

[53] S. Nakajima, Perturbation theory in statistical mechan-
ics, Adv. Phys. 4, 363 (1955).

[54] A. Metelmann and A. A. Clerk, Nonreciprocal Photon
Transmission and Amplification via Reservoir Engineer-
ing, Phys. Rev. X 5, 021025 (2015).

[55] H. P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, USA, 2007).

[56] F. Minganti, A. Miranowicz, R. W. Chhajlany, and
F. Nori, Quantum exceptional points of non-Hermitian
Hamiltonians and Liouvillians: The effects of quantum
jumps, Phys. Rev. A 100, 062131 (2019).

[57] G. Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T.
F. Li, L. Tong, S. Y. Zhu, F. Nori, and J. Q. You, Ex-
ceptional Point and Cross-Relaxation Effect in a Hybrid
Quantum System, PRX Quantum 2, 020307 (2021).

[58] M. O. Scully and M. S. Zubairy, Quantum Optics (Cam-
bridge University Press, Cambridge, England, 1997).

[59] P. Forn-Dı́az, L. Lamata, E. Rico, J. Kono, and E.
Solano, Ultrastrong coupling regimes of light-matter in-
teraction, Rev. Mod. Phys. 91, 025005 (2019).

[60] T. Niemczyk, From Strong to Ultrastrong Coupling in
Circuit QED Architectures, Technical University of Mu-
nich, 2011.

[61] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A.
Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and
J. S. Tsai, Resonance Fluorescence of a Single Artificial
Atom, Science 327, 840 (2010).


	Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system
	Abstract
	I Introduction
	II The model
	III Nonreciprocal magnon blockade based on the coherent and dissipative qubit-magnon couplings
	A Nonreciprocal magnon blockade
	B Origin of the nonreciprocal magnon blockade

	IV Discussions and conclusions
	 Acknowledgments
	A Coherent qubit-magnon coupling via virtual photons in the microwave cavity
	 References


