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Nonstationary longtime dynamics was recently observed in a driven two-component Bose-Einstein

condensate coupled to an optical cavity [N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, and T.

Esslinger, arXiv:1901.05974] and analyzed in mean-field theory. We solve the underlying model in the

thermodynamic limit and show that this system is always dynamically unstable—even when mean-field

theory predicts stability. Instabilities always occur in higher-order correlation functions leading to

squeezing and entanglement induced by cavity dissipation. The dynamics may be understood as the

formation of a dissipative time crystal. We use perturbation theory for finite system sizes to confirm the

nonstationary behavior.

DOI: 10.1103/PhysRevLett.123.260401

Introduction.—Quantum systems composed of many
degrees of freedom are expected to relax to stationarity
in the longtime limit. This basic principle has been the
subject of intense theoretical and experimental research in
recent years, in both equilibrium and nonequilibrium
settings and for both open and closed systems; see, e.g.,
Refs. [1,2]. Moreover, relaxation to stationarity was shown
to happen on relatively short timescales [3]. In closed
systems it is mathematically understood by arguing that
every observable evolves as hOðtÞi ¼

P

n;m eiωnmtcnm,
where ωnm ¼ En − Em. The coefficients cnm are deter-
mined by the initial state, and En is the eigenvalue of the
Hamiltonian H and eigenstate jEni. For generic observ-
ables and initial states the eigenfrequencies ωnm entering
into the time evolution will be dense and incommensurate.
This will lead to mutual dephasing (destructive interfer-
ence) and relaxation to a time-independent (stationary)
value of hOðtÞi in the longtime limit [4,5].
In contrast, nonstationary dynamics of macroscopic

systems is ubiquitous in nature. The emergence of such
behavior from the underlying laws of quantum mechanics
is an important open question that has far-reaching impli-
cations. A possible way for achieving this is for dissipation
to dampen all but select equidistantly spaced frequencies
nω0 with n ¼ 1; 2; 3;…, thus preventing eigenstate ther-
malization as discussed in Ref. [6] This is to be contrasted
with the emergent stationarity due to the dense incom-
mensurate spectrum described above. This mechanism
underlies quantum synchronization [7] and dissipative time
crystals [8], and it may induce more complex longtime
dynamics [6] and long-range off-diagonal order [9]. This
type of time crystalline behavior is qualitatively different
from the standard discrete (or Floquet) time crystal, which
is a phase of matter with external time-dependent driving
that shows persistent oscillations with a period that differs

from the one of the external driving field and that may exist
both without [10,11] and with [12–15] dissipation. The
phenomenon we will be interested in is emergent non-
stationarity in model systems without explicit time-depen-
dent external driving (i.e., in a corotating frame where the
dynamical equations are not explicitly time dependent),
similar to nonstationarity from certain initial states due to
many-body scars [16], or the formation of time crystals in
the isolated Heisenberg spin chain [17].
Long-term nonstationary dynamics was observed in a

recent experiment studying a two-component Bose-
Einstein condensate (BEC) coherently coupled to two
different spatial atomic configurations [18], referred to as
the density mode and the spin mode. The coherent
couplings are mediated by photons scattered by the atomic
system from a transverse pump field into an optical cavity
[19]. The experiment showed a rich phase diagram with a
dissipation induced region of instability characterized by
persistent oscillations. The system was analyzed in mean-
field theory, and excellent agreement with the experiment
was obtained [19].
In this Letter we provide a solution to the longtime

dynamics of the underlying model in the thermodynamic
limit by employing the approach pioneered by Emary and
Brandes for studying the quantum fluctuations around the
mean-field solution [20]. Our main result is that this system
displays nonstationary dynamics for all choices of external
parameters. In regions where mean-field theory predicts
stability, nonstationarity is confined to higher-order corre-
lation functions and counterintuitively leads to dissipation
induced squeezing and entanglement which is not present
in the corresponding closed system. We confirm our
findings using perturbation theory for a finite system.
Two-component BEC coupled to a cavity.—We model

the experimental setup studied in Ref. [19] in the Lindblad
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master equation framework [21,22]. By moving to a
corotating frame, we eliminate the (simple) time depend-
ence coming from the external high-frequency driving, and
our starting point is a time-independent master equation,

d

dt
ρðtÞ ¼ L̂ρðtÞ

≔ −i½H; ρðtÞ� þ κ½2LρðtÞL† − fL†L; ρðtÞg�; ð1Þ

taking

H ¼ ℏωa†aþ ℏω0ðJz;þ þ Jz;−Þ

þ ℏ
ffiffiffiffi

N
p ½λDða† þ aÞðJx;þ þ Jx;−Þ

þ iλSða† − aÞðJx;þ − Jx;−Þ�; ð2Þ

where a (a†) is the annihilation (creation) operator of the
cavity mode, ω is the detuning between the cavity reso-
nance and the transverse pump field, Jα;þ (Jα;−) are the

collective spin operators of the þ (−) Zeeman state
separated by angular frequency ω0, and λD;S are the

coupling strengths of the atomic spins to the cavity mode.
The cavity loss is modeled by a single Lindblad operator
L ¼ a with rate κ.
We extend the approach of Refs. [23,24] to study this

system in the thermodynamic limit with the number of
particles in the BECs N → ∞. More specifically, the
approach will allow us to study the quantum fluctuations
in the leading order of large N around the mean-field
solutions. We begin by performing a Holstein-Primakoff
transformation,

Jþ;� ¼ b†
1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N − b†
1;2b1;2

q

; J−;� ¼ J†þ;�; ð3Þ

Jz;� ¼ b†
1;2b1;2 − N=2; ð4Þ

where b1 (b2) is the bosonic annihilation operator for the
þ (−) BEC. Anticipating instabilities of the ground state
with hJz;�i ¼ −N=2 and hJþ;�i ¼ 0 as already obtained in

a mean-field treatment [19], we also perform a shift

a → aþ α
ffiffiffiffi

N
p

; b1;2 → b1;2 −
ffiffiffiffiffiffiffi

β1;2
p ffiffiffiffi

N
p

: ð5Þ

We expand the Liouvillian in orders of N keeping only
powers higher than 0. The values of α, β1;2 are then

determined by demanding that the resulting Liouvillian
is quadratic. We call α ¼ β1;2 ¼ 0 the normal case and use

superradiant otherwise. Finite values of α, β1;2 physically

correspond to hJþ;�i acquiring a nonzero macroscopic

mean-field value. Our Letter does not capture the transient
build up of the mean-field values α, β1;2 and thus describes

the longtime dynamics. Note that unphysical solutions to α,
β1;2 must be discarded by hand.

In the normal case we obtain for the Hamiltonian (up to
an irrelevant constant shift)

H ¼ ωa†aþ ω0ðb†1b1 þ b†
2
b2Þ

þ λDðaþ a†Þðb1 þ b†
1
þ b2 þ b†

2
Þ

þ iλSða − a†Þðb1 þ b†
1
− b2 − b†

2
Þ: ð6Þ

In the superradiant case the Hamiltonian also contains
squeezing terms like b2

1;2 and ðb†
1;2Þ2, and it is given in the

Supplemental Material [25]. The Lindblad operators remain

the same following a shift that removes the linear terms in L̂.
Since the resulting Liouvillian is quadratic, we solve it

exactly using themethod of “third quantization” [26,27]. The
details are in the Supplemental Material [25]. Expanding the
eigenvalues for large κ, we get in the first two leading orders

λn1;n2 ¼ in1ω0 þ
2n2

κ
Γ
2 þO

�

1

κ2

�

; ð7Þ

where now n1;2 ¼ 0;�1;�2;…. In the normal case

Γ
2 ¼ V2

≡ ðλ2D þ λ2SÞ, and it can be found numerically in

the superradiant case.
Eigenvalues with a positive real part are an unphysical

consequence of the unbounded bosonic Liouvillian super-
operator. The eigenmodes corresponding to these eigenval-
ues “blowup” and signal an instability. This instability arises
from the coupling of the lossy cavity to the BECs. We
emphasize that the leading imaginary parts of the eigenval-
ues are equally spaced, and thus dephasing of the dynamics
is prevented [4,5]. This is in contrast to the related closed
Dicke model, which possesses a dense spectrum and is
known to exhibit chaos and thermalization [20] (see the
Supplemental Material [25] for more details). It demon-
strates how dissipative engineering of the spectrum by
coupling to the lossy cavity prevents thermalization.
Our results are consistent with those obtained in mean-

field theory in Ref. [19]. Fluctuations around the initial
BEC state will be amplified on a timescale given by κ=Γ2.
The system will dynamically evolve away from the initial
state and may show persistent oscillations with frequency
≈ω0. In order to analyze how this instability manifests itself
in the dynamics of observables, we now move on to the
Heisenberg picture.
Equations of motions.—The quadratic Liouvillian admits

a finite closed set of Heisenberg equations of motion for

a⃗ ¼ ða; b1; b2; a†; b†1; b†2Þ of the form _a⃗ ¼ L̂
†a⃗. It preserves

the Gaussian nature of quantum states, and hence the
system dynamics is fully determined by the one- and two-
point observables. For the one-point functions in the
normal case, the expectation values evolve according to

h _aðtÞi ¼ −
iλD½q�1ðtÞ þ q1ðtÞ�

ffiffiffiffi

N
p þ λS½q2ðtÞ� þ q2ðtÞ�

ffiffiffiffi

N
p

− κhaðtÞi − iωhaðtÞi; ð8Þ

h _bjðtÞi ¼ −
iλDq0ðtÞ

ffiffiffiffi

N
p þ ð−1Þj−1 λSq

0
0
ðtÞ
ffiffiffiffi

N
p − iω0hbjðtÞi; ð9Þ
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where q0ðtÞ ¼ ha†ðtÞi þ haðtÞi, q0
0
ðtÞ ¼ ha†ðtÞi − haðtÞi,

q1ðtÞ ¼ hb1ðtÞi þ hb2ðtÞi, q2ðtÞ ¼ hb1ðtÞi − hb2ðtÞi. After
adiabatic elimination of the cavity mode, we obtain agree-
ment with the mean-field treatment in Ref. [19]. The
superradiant case is treated analogously [25].
We perform a stability analysis of one- and two-point

correlators in Fig. 1 showing the maximum rate at which a
fluctuation around the stationary solutions determined by α
and β1;2 can be exponentially amplified. The normal case

shown in Fig. 1(a) exhibits only a small region around ϕ ¼
arctanðλS=λDÞ where the one-point correlators are stable.
This region increases with decreasing strength of the cavity
coupling V. The instability of the one-point function is
accompanied by oscillations with a frequency around ω0

shown in Fig. 1(b) almost everywhere. In contrast, the
superradiant case shown in Fig. 1(c) is stable for most values
ofϕ andω for the chosen parameters. In Fig. 1(d) we see that
there is a small part of the phase diagram where neither the
normal nor any of the superradiant solutions are stable in the
one-point functions. We find that the region of instability
around ϕ ¼ 90° and ϕ ¼ 0 increases with decreasing V.
The stability analysis for the two-point correlators gives a

different picture. They are also unstable for all of the
superradiant solutions except in the points where the model
reduces to the Dicke model (λD ¼ 0 or λS ¼ 0). This is
consistent with some of the eigenvalues of the Liouvillian
obtained from the rapidities having a positive real part,
which implies that some of the observablesmust be unstable.

The instabilities are observable in connected two-
point correlation functions of the form hX1X2ic ≔
hX1X2i − hX1ihX2i, where X1;2 are BEC observables,

and we show examples in Fig. 2. These are related to spin
squeezing [28,29] (see the Supplemental Material [25]). We
find that the spin squeezing parameter in the y direction is
oscillatory and can be made arbitrarily small with a suitable

initial choice of ha2ð0Þi [25], indicating entanglement. The
nontrivial behavior of the connected correlation function is
a clear indication of beyond mean-field behavior which is
of purely quantum origin. The system thus exhibits
entanglement induced by dissipation, which could also
have ramifications on quantum information processing
applications.
We see in Fig. 3 that even in the phase where the one-

point functions relax to stationarity, the cross-correlation
hJx;þJx;−ic and hJx;þJy;−ic functions are nonstationary.

Thus the apparent contradiction between mean-field
theory showing a phase transition from stable to unstable
normal solutions and a full quantum treatment always giving
nondecaying eigenvalues with a finite imaginary part is
resolved: the phase transition takes place for one-point
correlators only, while higher-order correlations are
always unstable. Since there exist eigenmodes of the quan-
tum Liouvillian with eigenvalues that have ReðλÞ ≥ 0,
ImðλÞ ≠ 0, there will always be some observables for some
initial condition that will persistently oscillate.
Perturbation theory for finite system size.—The positive

real eigenvalues of the Liouvillian in the thermodynamic
limit are unphysical and an artifact of the unboundedness of
the Liouvillian. Furthermore, since we kept only the
linearized quantum fluctuations in the Holstein-Primakoff
expansion, it is possible that higher-order correlators quali-
tatively modify the main results above. To address these
issues, we study the system using perturbation theory. We
find that the short-time dynamics of a system of any size are

FIG. 1. Stability analysis of the Holstein-Primakoff solutions
giving the maximum real part of the eigenvalues’ time evolution
generator for (a) the one-point functions in the normal case, and
(c) the most stable of the superradiant solutions. (d) A nontrivial
part of the phase diagram enlargement indicating themaximum real
part of the most stable of either the normal or the superradiant case.
The imaginary part (giving the frequencies of the oscillations)
corresponding to (a) is shown in (b). We use the parametrization
λD ¼ V cosϕ, λS ¼ V sinϕ with V ¼ 121.65 kHz and ω0 ¼
7.4 kHz, κ ¼ 1.25 MHz.

FIG. 2. Exemplary maximum values of two-point functions
calculated by time evolving the equations of motions for up to
t ¼ 1 ms from the ground state of the two BECs. We plot the
amplitude of the oscillations (for the cross-correlators jhJx;þJx;−icj
and jhJx;þJy;−icj). We use the parametrization λD ¼ V cosϕ, λS ¼
V sinϕ with V ¼ 92.5 kHz and ω0 ¼ 7.4 kHz, κ ¼ 1.25 MHz.
We see clear deviation from the mean-field results. Importantly,
even deep inside the phase diagramwhere there are no oscillations
of the mean fields [19], the cross-correlators jhJx;þJx;−icj and
jhJx;þJy;−icj do show oscillating behavior.
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well described by the results of the Holstein-Primakoff
approach [25]. More specifically, we obtain eigenfrequen-
cies that are integer multiples of ω0 at leading order for the
longest lived oscillations. The corresponding eigenmodes
are given in the Supplemental Material [25] and are
perturbatively close to the vacuum state of the cavity.
Using simple large deviation arguments [30], it is trivial to

argue that the number of photons leaving the cavity should
also be low. This is consistent with experimental results in
the dynamical instability region [Fig. 2(a) of Ref. [19] ].
Thus we recover the eigenfrequencies of the persistent
oscillations, but without the unphysical unbounded increase
in the expectation values.
Conclusion.—By taking the thermodynamic limit, we

exactly solved a model of a driven two-component Bose-
Einstein condensate coupled to an optical cavity under-
going dissipation [19]. We identified that the system has
both normal and superradiant behavior (in which the modes
acquire macroscopic mean values) [20,23]. We find long-
time oscillations in the model due to the existence of
eigenvalues with non-negative real and imaginary parts
which are close to integer multiples of iω0. The imaginary
part corresponds to the frequencies of the persistent

oscillations of observables. The fact that these frequencies
are almost equidistant means that eigenstate dephasing
[4,5] of the dynamics is impossible. In contrast, if the cavity

were closed, we would have densely spaced and incom-
mensurate frequencies in the Hamiltonian that could
mutually dephase and lead to equilibration like in the
related Dicke model [31,32]. (See also Refs. [33,34] for a
related semiclassical treatment of equilibration.)
We thus conclude that we have an example of dissipation

induced dynamics in a system that would otherwise
equilibrate, akin to a dissipative time crystal [8]. The
system in the laboratory frame is time dependent due to
the (simple) high-frequency driving [19]. Moving to the
corotating frame leaves us with a time-independent master
equation (1). The persistent oscillations arise in the rotating
frame from the interplay between the external drive input-
ing energy into the system and the cooling from the cavity
loss. Without the driving the cavity would simply be empty,
and without the dissipation the system would heat and
thermalize. A sketch of such a mechanism as a possibility
for realizing discrete time crystals was proposed in
Ref. [35], but here we have identified an actual physical
system with this property. The system we study is better
understood in the corotating frame as an example of
continuous time symmetry breaking induced by dissipation
as the period of the oscillatory response in the laboratory
frame bears no fixed relation to the driving period. In other
words, the system does not realize a discrete-time crystal-
line structure in the laboratory frame.
We discuss evidence of spin squeezing in the

Supplemental Material [25] which should imply entangle-
ment [29]. We validate the thermodynamic results by taking
the large cavity limit and performing perturbation theory
for finite systems. We find in the leading order of this
perturbation the dark Hamiltonian criteria of Ref. [6] are
trivially satisfied. The persistent oscillations may thus also
be understood as an example of quantum Zeno dynamics
(see, e.g., Refs. [36–38]).
In addition to the persistent oscillations at frequencies

close to ω0, the dynamics also entangles the condensates,
leading to strong squeezing through the dissipative cou-
pling. These features are not captured by mean-field theory,
which instead assumes the condensates to be decoupled.
In the future we plan to investigate the implications of

dissipation induced nonstationary squeezing and entangle-
ment, e.g., for quantum enhanced metrology [39].

We thank N. Dogra and T. Esslinger both for sharing their
preliminary results with us and for the useful discussion.We
also thank A. Dietrich and C. Sanchez Munoz for the useful
discussions. The work here was supported by EPSRC
Programme Grant No. EP/P009565/1 and the European
Research Council under the European Unions Seventh
Framework Programme (FP7/2007-2013)/ERC Grant
Agreement No. 319286 Q-MAC.

Note added.—Recently, Ref. [40] appeared, which dis-
cusses extensions of the mean-field results of Ref. [19]. We
go beyond both and study the quantum model.

(a)

(b)

FIG. 3. The cross-correlation functions hJx;þJx;−ic ¼
hJx;þJx;−i − hJx;þihJx;−i (a) inside the phase where the one-

point functions hJx;�i oscillate, λD ¼ 6.3 kHz, λS ¼ 7.25 kHz,

ω ¼ 46 kHz, (b) and in the phase where they are stationary,
λD ¼ 9.6 kHz, λS ¼ 0.17 kHz, ω ¼ 246 kHz. The frequency,
atom number, and cavity loss are ω0 ¼ 7.4 kHz, N ¼ 2000,
and κ ¼ 1.25 MHz in both cases. The insets show that
hJz;�i ≈ −N=2, thus validating the assumptions of Ref. [19].
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