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Abstract. We consider the propagation of magnetoelastic waves within a homoge-
neous and isotropic elastic medium exhibiting finite electric conductivity. An appropriate
physical analysis leads to a decoupling of the governing system of equations which in turn
effects an irreducible factorization of the ninth-degree characteristic polynomial into a
product of first, third, and fifth-degree polynomials. Regular and singular perturba-
tion methods are then used to deduce asymptotic expansions of the characteristic roots
which reflect the low and the high frequency dependence of the frequency on the wave
number. Dyadic analysis of the spacial spectral equations brings the general solution
into its canonical dyadic form. Extensive asymptotic analysis of the quadratic forms
that define the kinetic, the strain, the magnetic and the dissipation energy provides the
rate of dissipation of these energies as the time variable approaches infinity. The rate
of dissipation obtained coincides with the corresponding rate for thermoelastic waves.
Therefore, a similarity between the dissipative effects of thermal coupling and that of
finite conductivity upon the propagation of elastic waves is established.

1. Introduction. Elastic wave propagation in a medium exhibiting electric conduc-
tivity is by now an extended branch of continuum mechanics and the reader can consult
the fundamental two-volume book by Eringen and Maugin [12] for an almost complete
account of the subject. References [16, 20, 21, 22] are also very helpful. Knopoff [18]
and Chadwick [6] stated the equations governing the propagation of elastic waves in a
solid conductive medium where a homogeneous external magnetic field has been applied
and they studied the propagation of plane waves within such a medium. See also the
relative work of Banos [1]. The discussion of magnetoelastic waves for parameters that
correspond to real earth data can be found in the work of Keilis-Borok and Munin [17].
Dunkin and Eringen [11] published an extensive investigation of the propagation of elas-
tic waves under the influence of a magnetic field and under the influence of an electric
field. If thermal effects are also taken into consideration then a much more complicated
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system is generated and some first useful steps in this direction can be found in the work
of Willson [23] and Chander [7]. Lilley and Smylie [19] investigated the extra dissipative
effect that is due to the nonuniformity of the external magnetic field, while Boulanger [4]
studied the propagation of nonhomogeneous plane waves in a magnetoelastic medium.
The geometrical theory of magnetoelastic waves in an inhomogeneous elastic medium
that exhibits infinite electric conductivity is given by Bazer [2]. The second author of
the present work has discussed some energy theorems connected to partition of energy for
magnetoelastic waves in a perfectly conducting medium [9]. Finally, a complete account
of the existing literature up to 1968 in magnetoelasticity as well as in magnetothermoe-
lasticity is presented by Paria [22].

In the present work we study the general Cauchy problem, with smooth initial data,
within a homogeneous and isotropic elastic medium that has finite electric conductiv-
ity. An external homogeneous magnetic field is responsible for the coupling between
the elastic and the electromagnetic waves that can propagate within the magnetoelastic
medium. Section 2 states the basic equations and incorporates a spacial spectral de-
composition into plane wave components. Then the system of equations that governs
the time evolution of the disturbances is studied. Its characteristic equation is a ninth-
degree polynomial. Section 3 involves a physical analysis of the phenomenon that dictates
a corresponding (spherical) decomposition. This leads to a decoupling of the system of
equations into three particular systems of the first, the third, and the fifth order. Their
characteristic polynomials effect a factorization of the general ninth-degree polynomial
into polynomials of degree one, three, and five. This is an important part of our work
since, as physical arguments indicate, it is the best possible decoupling. Hence, as is
easily observed, the three factors are irreducible real polynomials. In order to study the
time evolution of the energies the asymptotic behavior of all nine characteristic roots for
small and for large values of the dual spacial variable is needed. This task is easy for the
roots of the first and the third-degree polynomials, but it is much harder for the roots of
the fifth-degree polynomial. Therefore, a perturbation analysis, regular near the origin
and singular near infinity, had to be performed. The results are contained in Sec. 4. In
Sec. 5 the reduction of the problem to its standard form [15] is used in order to obtain
a contour integral representation of the solution that solves the spectral equation and
satisfies the corresponding spectral Cauchy data. The integral is then evaluated using
complex residue theory and the solution is transformed into its canonical dyadic form
[5], which reveals the physical coupling of the system. In the final Sec. 6 the general
energy identity is established and the results of the previous sections are used to obtain
the dissipation rates for each one of the kinetic energy, the strain energy, the magnetic
energy, and the dissipation function. This is a very laborious program and only the
results are provided, since the methods used imitate those for the thermoelastic coupling
problem [10]. The rates of dissipation obtained are the same as the corresponding rates
for thermoelastic waves [10]. The three energies dissipate at £-(m+3/2); where m is a
measure of the symmetry of the initial data, while the dissipation function assumes an
asymptotic form proportional to t~(m+5/2). At each step, the results of this paper recover
the corresponding results for perfect conductors [9] as the conductivity of the medium
tends to infinity.



MAGNETOELASTIC WAVES IN A CONDUCTIVE MEDIUM 25

2. Equations of magnetoelastic waves. The linearized equations that describe
the coupling between the displacement and the electromagnetic field in a homogeneous
and isotropic medium characterized by the Lame constants A, fi, the mass density p,
the magnetic permeability fj,Q, and a parameter (3 which is proportional to the electric
conductivity are given by [6, 12, 16, 18, 21]

liAu(x,t) + (A + /i}VV • u(x,t) + X h(x,f)] x H = p- '' (1)

AhW)-^=-^x aufefixH
at (2)

where u denotes the displacement field, h stands for the generated magnetic field, and
H is the imposed constant magnetic field taken along the x3-axis. Following Nowacki
[21], besides linearization of the fundamental equations we have also eliminated the dis-
placement current which is proportional to the time derivative of the elastic field since its
influence of electromagnetic quantities is very small. We consider the Cauchy problem,
where x varies in R3 and t > 0 with the Cauchy data

u(x, 0) = u0(x), (3)

du(x,f)ST =UlW< (4)

h(x,0) = h0(x). (5)

The degree of regularity of the data u0, uj, h0 will be specified later, where the effects it
has on the behaviour of the corresponding energy norms will be demonstrated.

Introducing the spacial Fourier transforms

u(£,i) = (2tt)~3/2 [ etx"*u(x,t)dv{x), (6)
J R3

h(£, t) = (27I-)-3/2 f eIX'£h(x, t) ofe(x) (7)
J R3

into the Cauchy problem (l)-(5) we arrive at the following initial-value problem for the
spectral magnetoelastic equations:

/ir2u(£, t) + (A + /j)r2a <g> a ■ u(£, t)

• Mo^r r,j. m xt d2u(£,t) (8)+ «^r[a x h(£>0] x H + P—— = 0,

r2h(£, t) + ^ + irf3a x = 0, (9)
dt

u(£,0) = uo(£), (10)
rfu(g,t)

dt
h(£,0) = ho(£), (12)

= «i(0. (n)
t=o
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where Uo,Ui,ho denote the Fourier transforms of the Cauchy data and

£ = ra, r = |£|, a = (aa, a2, a3). (13)

For each £ £ K3, the initial-value problem (8)-(12) describes the propagation of a coupled
magnetoelastic plane wave propagating in the direction a.

If we introduce the phase velocities for the longitudinal and transverse waves

*, = # (14)

respectively, the Alfven velocity

ua = H\l T^"' (15)

the exterior magnetic field H = Hi3, and eliminate the magnetic field h among (8)-(12)
we arrive at

d-i r2 d2 9. „ d r .4

,s + ?I^+r2(E+M)s + ?E u(£,0 = 0, (16)

u«,0) = uo(O, (17)
du(£,t.)

dt = u i(0, (18)

d2u(£,t)
t=0

r
= —r E • Uo(£) — i—-M • h0, (19)

t=0 Q3Hdt2

where I is the identity dyadic,

E = i/^a <g> a + i/g(I - a <g> a) (20)

is the elastic dyadic [8], and

M = v2[a. ® a + ap — a3(a <g> x3 + X3 <g) a)] (21)

is the magnetic dyadic [9].
The elastic dyadic E involves only elastic parameters and decomposes any vector into

a component along a and a component perpendicular to a. On the other hand, the
magnetic dyadic M involves only electromagnetic parameters and acts as a projection
operator on the (xi,a;2)-plane. In fact, M has the nonionic form

r a2 + a2 a\a2 0
a\a2 a% + aj 0

0 0 0
(21')

In (19) we have used the fact that since h(x, t) is the solenoidal field, h(£, t) is transverse
to a.
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As p —> +00, Eq. (16) recovers the corresponding equation for the perfectly conducting
case [9], while as /? —> 0+ Eq. (16) reduces to classical elasticity [8]. Any solution
of (16)-(19) describes a plane displacement wave propagating along a while the general
disturbance is obtained by inverting (6). The coupled magnetic wave is derived by solving
either (8) or (9) and, by inversion of (7), the general magnetic disturbance is obtained.
Finally, the corresponding electric field is evaluated from the magnetic field with the use
of Maxwell's equations.

The vector equation (16) can be written as a 9 x 9 first-order system and the charac-
teristic equation of this system is given by the determinant

rl —I O
O rl -I

^E r2(E + M) (t+£) I
(22)

where every entry is a 3 x 3 matrix representing the nonionic form [5] of the I, O, E, and
M. Equation (22) has the following expansion as a 9th-degree polynomial:

Pq{t) = r1 + + Av + UJ
2\2'r

T7

r2+ P a,+ii P T + + p ^5

2
T5

r2+ P A4 + ( — I B4 T4- + P ^
(23)

r3

r2+ P A2 + ( — ) B2
2 ,* + (£)V+£,*-o

where

A7 =.7 = r2[z,p2 + 2 vl + vl + vlall (24)
A6 = r2 [3v2 + 6i/2 + 2v2a + 2 v2aa% (25)

A5 = r4[2 vys + ^ + 2vys + 2 vyaa\ + u4a4], (26)

B5=r2[3^+6,2 + ^ + *,2a2], (27)

m = Ae>vys + 3^ + 4 „y + 4 u2yaai + „y3 j, (2s)
B4=r2[vl + 2v2], (29)

>13 = A»ys + »ya + 2 u2yyaa2 + uyy - syy - vyyA + ^yy, (3o)

b3 = r^y + 3vt + 2 »ya + 2 uyy3], (si)

A2 = r6[3»y + 2»y + 4^»2a2 + ^4a4 - 2^>2a2 - ^>4a4 + ^4a§],

(32)
B2=r^y + ut], (33)

B, = r°[2Vya + 2I»2a| - ^2a2], (34)

Bo = r6vy. (35)
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The 9 roots of (23) are needed in order to form the solution of Eq. (16). We will show
in the following section that an appropriate physical interpretation of the coupling will
lead itself to a factorization of (23) into three polynomials of degree one, three, and five.
For a perfect conductor, Eq. (23) is reduced to

t3(t1' + A7t4 + A5t2 + A3) = 0 (36)

which is readily solvable [9].

3. Geometrical decomposition and physical coupling. In the classical theory
of dynamic elasticity, for a homogeneous and isotropic medium, the irrotational (longitu-
dinal) waves propagate independently of the solenoidal (transverse) waves as long as the
waves do not meet a boundary, in which case a mode conversion takes place [12, 16, 21].
As we explain in the sequel, this is not true when the waves propagate in the presence of
an externally imposed magnetic field. In order to explain the coupling, on the basis of
physical arguments, we consider the external constant magnetic field along the x3-axis
and an elastic plane wave propagating in the direction a. If the elastic plane wave is of
the longitudinal type then the motion occurs along the direction of propagation a. The
Lorentz force is directed along a x H, i.e., along a vector perpendicular to the meridian
plane through a, which generates a transverse wave. Therefore, the existence of the mag-
netic field H forces the longitudinal wave to couple with a component of the transverse
wave. Only plane longitudinal waves that propagate along the direction of H will avoid
coupling with the transverse wave, since then no Lorentz force is generated. On the
other hand, a plane transverse wave, propagating along a and polarized along P gives
rise to a Lorentz force in the direction P x H, which, in general, has a component along
a. This longitudinal component is responsible for the coupling of the transverse with
the longitudinal wave. The only waves that do not suffer of this coupling are transverse
waves that are propagating in directions perpendicular to H and are polarized along H.

Therefore, the magnetoelastic coupling is a generic property of the set of plane waves
which is established as follows. Any elastic disturbance is decomposed into a longitudinal
and a transverse part. Each one of these parts is decomposed into plane waves. A
longitudinal plane wave generates, through the Lorentz force, a transverse component
and vice versa, a transverse plane wave generates, for the same reason, a longitudinal
component. These two kings of components establish the coupling forced by the external
magnetic field.

In order to further analyze this coupling we introduce a spherical coordinate system
based on the direction of propagation

a = f = (sin 0 cos ip, sin 6 sin </?, cos 6). (37)

Then, for a longitudinal wave, as a sweeps the meridian plane = constant, the Lorentz
force a x H preserves its direction while its magnitude varies proportional to the nonlinear
function sin#. On the other hand, as a rotates around H, generating the cone 6 =
constant, the magnitude of the Lorentz force remains invariant and its direction rotates
around H on the (xi, X2)-plane.
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For a transverse wave, a similar nonlinear coupling holds. Decomposing the system
(8), (9) into the spherical directions r = a, 9, tp with

u = urr + ue9 + uv(p, (38)

h = hr f + he0 + (39)

we arrive at the following three partially decoupled systems: the radial equation

dhr r2 ~1F + Ih^0 <40>

for the radial component of h; the azimuthal system

d2u<r, 99. v2a^ ? , .
-jpT+r vsuv = -tr—hip, (41)

dh^ r2 r du,r, , ,
~4f + <42»

that couples the azimuthal components of u and h; and the meridian system

d ur v2 /  
dt2 + = -ir-± sj 1 - a2 ho, (43)

d2ug 9 9 r , „
-^2" + r vsuo = -ir-jj-he, (44)

]dur dugdh6 r ? . „
-df + Jh" = -,rH

r ~dur
v/i_fl3__ + a3 ^ (45)

which connects the meridian components of u with the 9 component of h.
Equation (40) describes the attenuation of the radial component of h. As the con-

ductivity increases, the attenuation decreases, and in the limit as (3 —> +oo (perfect
conductor), the radial components of h remain constant.

The coupling established by the system (41), (42) concerns the transverse wave and
the magnetic field, while the highest-order coupling is present in the system (43), (44),
(45), where both longitudinal and transverse waves are coupled with the magnetic field.

Eliminating hw between (41) and (42) we obtain

d3w„ , r2 d2uv 2/ 2 , 2 2r4v2 „ ^+ r+r <"•+ v'al)~i + 0 (46)

for the azimuthal component of u. Similarly, for the system (43)-(45), elimination of h#
yields the two equations

d Ur 9 9
-dp+r"'u' a3 =

d2ue 2 2"
~d*+r (47)

and

d3ur r2 d2ur 2r o 2 2mdur r4zyp . 9 9 r. ^dug ,
+ r>*+ "«<1 - a')]~dF + if"- = "rV1 - <48>
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or Eq. (47) and the equivalent equation

d3ug r'2 (file 2r 2 2 2l dug rAv2 2 2 r 9 diir
r>-+«-sr + JT"' = "r "«0av1 -<49)

which can be obtained from (48) if we perform the interchanges

Ur <-> Ug,

up^us, ^

«3 ^ y 1 -a|-

A further elimination of w# between (47) and (48) yields the fifth-order equation

d5ur r2 d4ur 9r 9 9 0,d3ur r4, 9 9,d2ur

1F + J^+ + "• + + +
+ r4|fj(i-,2 + ^03) + »M(1 - + r-pvl"'li' = 0 (51)

for the radial component of u. Both equations (46) and (51) can easily reduce their order
by one if the medium exhibits perfect conductivity [9].

If Eqs. (40), (46), and (51) are solved, the fields hr,uand ur are obtained. Then
Eqs. (41), (43) provide hv,hg, respectively, and Eq. (45) provides ug. Consequently, Eq.
(40), the system (41), (42), and the system (43), (44), (45), or equivalently (40), (46),
(51), form an equivalent decomposition of Eq. (16). Equations (40), (46), and (51) have
the characteristic polynomials

Pi(t) = t+Tj, (52)

Ps(r) =r3 + ~r2 + r2(v2 + ^a2)r + (53)

and

Ps(r) = t5 + -r4 + r2(v2 + v2s + v2ay + ^ t2

t^v2v24 r 2 2 , 22, 222 2 2 2i , p s ,rAs
+ r \vpvs + v„va + i/pj/0o3 - vs vaa3\T + * ■ (54)

It is easily checked that the characteristic polynomial (23) of Eq. (16) accepts the fac-
torization

P9(t) = P1(t)P3(t)^(t), (55)

which establishes the spherical decomposition discussed above.
The fact that the Lorentz force does not allow any further decoupling of the systems

(41), (42) and (43), (44), (45) is reflected upon the irreducibility of the polynomials P3
and P5 respectively, within the real number field.



MAGNETOELASTIC WAVES IN A CONDUCTIVE MEDIUM 31

4. Asymptotic behaviour of the characteristic roots. The characteristic poly-
nomial Pq represents the dispersion relation for the propagation of magnetoelastic waves,
connecting the wave number r (dual spacial variable) with the frequency r (dual tempo-
ral variable). In order to determine the roots of the characteristic equation we need to
solve the three polynomial equations

Pi(t) = 0, i= 1,3,5. (56)

For i equal to 1 and 3 the roots are easily obtained, but since P5 is irreducible, Eq. (56),
for i equal to 5, cannot be solved in a finite number of steps. Note that, as Hermite [13]
has shown, the five roots of the reduced quintic form, introduced by Jerrard [14], can
be expressed in terms of elliptic integrals. Nevertheless, we do not need to go through
this extremely complicated algorithm since, for our purpose, we only need to derive the
asymptotic behaviour of the 9 roots for r in a neighborhood of the origin (low-frequency
regime) and in a neighborhood of infinity (high-frequency regime).

We introduce the dimensionless nonnegative parameters

cp = ~~|(i ~~ a!)>

(")
cs = a\,

and the scaling
t = r\ = r/3\. (58)

Then the cubic and the quintic equations are written as

A3 + f\2 + i/g(l + cs)\ + fv2s = 0 (59)

and
A5 + rA4 + {v'i + u"i + A3 + riui + 1/?) A2

(60)
Aa + f A4 + (^ + vj + + r(Vp + fg)A

+ fas (1 + Cp + cs)A + rv2vvl = 0
where all dimensional variables have the same dimensions.

In order to obtain the asymptotic forms of the roots at the origin we use regular
perturbation theory [3, chapter 7] considering the asymptotic series

OO

m = Y.^rn (61)
71=0

and evaluating a few first coefficients. After some long and tedious calculations we obtain
the following forms, as f —> 0+,

Mr) = ~ r + 0(r2), (62)
-I- 1 Cs

A3(r) - A|(r) + ivsy/1 + cs - *2—rf + 0(F2) (63)
Z[ 1 + Cs)
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for the roots of the cubic, and

As(r-) =-——— r + 0(r2), (64)
1 + Cp + cs

w_, x„,_, . , vys(cP+cs) -vhi .,
= Ml = n+ + 2W + ^ + ̂ .4^j(i + c + c.)r + 0(r >•

(65)
 fasjcp + cs) - vlyL 
2(fp + ^ + ^a)7- - 4i/|i/f (1 + Cp + cs) 'As(r) = Ag(r) + i7- + 0/„2 , „2 p, ,%\P2 ^ + °^2) (66)

for the roots of the quintic equation, where

27± = (rf + vI + vl) ± [(^p - vI + vlf - 4(z/2 - i/?)i/®aij]1/2. (67)
The expressions 7I and 7^ coincide with the roots A2 and A3 in the case of perfect
conductivity [9].

Therefore, in a neighborhood of the origin, the nine roots of Pg(r) behave as follows:

(r) = ~Tj, (68)

T"2(r) = -7^— ^ +°{r4), (69)
1 + cs (1

2
t3(r) = r4*(r) = ii/sV/l +csr - 2^c ^ + C(r3), (70)

^ = (71)

Tfi(r) = r*(r) = il+r + ^s2(Cp + Cs)-^ 0( 3)
7( ) ,T+r+2(v2 + I/2 + I/2)72 _4l/2I/2(1+Cp + Cs) p + ( )'

(72)
^p^(cp + cs) 3^7- r2

- -1- (_^r ).

(73)

TJr) = T*(r) = iy r+  ^s^pT^s) "_aj- l_+0(r3)
8( 9() 7" 2(^ + ^ + ^2)72 -iu2 2{l + Cp + Cs)f}+ ( )•

For the asymptotic behavior as r —» +00 we use singular perturbation theory and domi-
nant balance arguments [3, chapter 7] to derive the forms

A2(f) = —r + 0(l), (74)

h{r) = A^r) = ivs + O fr^ (75)

for the roots of the cubic equation (59), and

A5(r) = -r + 0(l), (76)

A6(r) = Ay(r) = ivs + O , (77)

As(r) = Ag(r) = ivp + O (78)

for the roots of the quintic equation (60).
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Consequently, in a neighborhood of infinity the following asymptotic behavior is es-
tablished:

Ti(r) = -^-, (79)

T2(r) = -r—+0{\), (80)

r3{r) = t4* (r) = iuar + 0{l), (81)

r5(T-) = "^+0(1)' ^

Te{r) = Tj{r) = ivBr + O(l), (83)

T8{r) = Tg{r) = iupr + 0{l). (84)

Note that the real roots r1; r2, 15 provide a higher, than the other roots, dissipation in a
medium that has finite conductivity. The above asymptotic forms will be used later to
evaluate the asymptotic behavior of the energy integrals.

5. The canonical form of the solution. In this section we are going to use the
standard form [15] of the Cauchy problems and the theory of invariants for dyadics [5]
in order to obtain the solution of (16)—(19) in its canonical form. Following John [15,
chapter 5] the solution u of (16)—(19), with the £ variable suppressed, is expressed in the
form

u(i) =
, d2 „r2 d n. „

's+IW(E+M) Ui (t)
21d r

dt~^~ (3 u2(i)+u3(i) (85)

where the vector fields Ui, u2, u3 solve Eq. (16) and satisfy the following standard Cauchy
data:

ui(0) = 0,
ciui (t)

dt
d2 Uj (t)

t=0 °' (86)

= uo(£)>
t=0dt2

u2(0) = 0,

du2(t)
dt

d2u2(t)
dt2

t=o °' (87)

= "i(0,
t=0

and
u3(0) = 0,

du3(t)
dt

d2u3(t)
dt2

= 0,
t=0

v2
= -r2E • u0(£) - ir-±[a31 - a® x3] • h0(£)-

t=o



34 ELIAS ANDREOU and GEORGE DASSIOS

The elastic dyadic E is given by (20) and the magnetic dyadic M is given by (21). The
above standard problems can be solved with the help of the Laplace transform and,
substituting everything back into (85), we arrive at the representation

(89)

r, r) = Ir3 + I-5-T2 + r2(E + M)r + — E (90)

u(i) = J eTtF 1 (r, r) • G(r, r) dr

where
2 2

jT2 + r2{E + M)r+ r-

is the characteristic dyadic of Eq. (16), T is a closed contour in C, depending on r, that
encloses all 9 roots of the characteristic polynomial and

P9(r) = detP(r,r), (91)

G(r,r) = (t +7jSj (ru0(£) + ui(€)) + (r2U(>(£) - *^#**0(0) ^

is a vector quadratic polynomial in r that incorporates the Cauchy data. We next
evaluate the canonical form of the characteristic dyadic P using the theory of invariants
[5]. In the dextral orthonormal system a, b, c where

a = propagation vector,

\A -alb = a x x3, (93)

1 — a2c = a x (a x x3)

for any wave that does not propagate along the polar directions, we express P in the form

P = a <g> (Aa + Cc) + b ® (5b) + c <g> (Ca + Be) (94)

where

A = A(r) = I t + —j (t + r vp) + rr i/a(l - a3), (95)

B = B(t) = (r2 + r2v2) + Tr2v2aa\, (96)

C = C(t) = rr2^2a3yjl -a2. (97)

The third scalar invariant of P yields the relation

P9(r) = B(AB - C2) = Pi(t)P3(t)P5(t) (98)

where Pi, P3, P5 are given in (52), (53), (54) respectively. Calculations lead to the second
dyadic invariant

P2 = B2a (8) a + (AB - C2)b <g> b + ABc ® c — BC(a <g> c + c ® a) (99)
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and by symmetry we arrive at
B 1 A. C

P"1 = -^g_c,2a®a + -b0b+ AB _ C2c®c~ AB _ C2^®c +c®a^ (10°)

The dyadic P (and therefore P-1) is symmetric. Therefore, it can be expressed in a
diagonal canonical form.

The characteristic values of P are given by

A4i(r) = \(A-\- B + D),
M2 (t) = B, (101)

/i3 (t) = ^(A + B + D),
where

D2 = (A- B)2 + AC2 (102)

and the corresponding normalized invariant directions are given by

2Ca - {A - B - D)c
71 (T)

72 (r)

73(t) =

||2Ca - (A - B - D)c\\'
72 (t) = b, (103)

2Ca -(A-B + D) c
||2Ca — (A — B + Z?)c||'

We see that the invariant direction 72 coincides with the direction of the Lorentz force for
longitudinal waves and the other two directions are obtained through a rotation around
this direction 72. The direction 72(1") is perpendicular to 7i(t') and to 73(r") for any
t' and t", while 7i(r') and 73(r") are perpendicular only when r' = r". Consequently,
72 is "strongly" orthogonal to 71 and 73. By virtue of (98), (102), and

M1M2/U3 = P1P3P5, (104)

the canonical forms
P pr p p

P = 1 ° 71 ® 7i + P372 ® 72 H ~ ~73 <S> 73 (105)
M3 Mi

and
= ^75-71 ®7i + ^"72 ® 72 + ^75-73 ®73 (106)

' 1 "5 -T3 1\ t r,

are deduced. The diagonal forms (105), (106) establish the coupling between the longi-
tudinal and the transverse waves imposed by the exterior magnetic field as it is discussed
in Sec. 3.

If the form (106) is introduced in the general expression (89) for the solution and
if Cauchy's residue theory is used to evaluate the integrals, we arrive at the following
expression for the solution of (16)—(19):

u(ra,t) = Ai(rj)er-'tG(Tj,r)-7i <8)71
.7=1,5,6,7,8,9

+ A2(T7-)e^tG(Tj-,r)-72®72 (107)
j=2,3,4

+ A3(r7)eT'J'G(TJ,r) • 73 (8)73
.7=1,5,6,7,8,9
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where

-r-Tj

Ai (tj) = lim ■' h-a(t), j = 1,5,6,7,8,9, (108)
" (t)P5(t)

T - Tj
A2(Tj) = lim —-i, j = 2,3,4, (109)

T~^T] "3 (7")

A3(tj) = lim p] , Mi (r), j = 1,5,6,7,8,9. (110)
r~>*".* -^i(t)^5(t)

We can easily see that the root Hi as well as the expression 71 -M vanish when we replace
r by — Consequently, the first and the last sum in the right-hand side of (107) have a
removable singularity at the root of P\(t). In view of this observation, the j = 1 terms
in (107) can be omitted and we obtain

u(ra,t) = (ai(T7')7i ® 7i + A3(tj)73 (8173) • G(rj,r)er-''t

j=5,6,7,8,9 (nl)
^2 A2(tj)72 <8)72 • G(rj,r)eT-)t.

j=2,3,4

From (8) and Maxwell's equation V • h = 0, which implies the orthogonality relation
a • h = 0, we reduce, after some dyadic calculations, the expression

k(ra>*) = (^2 +u2sr2^j K1 - a ® a) ■ u(ra, t)] (112)

which furnishes h in terms of the transverse component of u.

6. The energies. Multiplying Eq. (1) by the time derivative of u and using appro-
priate dyadic identities as well as Eq. (2) we arrive at the local energy law

d_
dt

<9u Li„   A + LL . .9 ll(j . ,9
at + |vu:vu+^r|v'u| +k|h|"

, du _ , 9u uq, ( du\ u0 ,/,(Vu).s + (A + rt(V.u)- + -hx(Hx-J + —h.VhV

Mo

(113)

Vh : Vh
4n/3

where the double contraction is defined as

3 / Q \ 2OUi
(114)

i,j = 1 ^ J 7

If the initial data are regular and compactly supported, then Gauss' theorem turns
identity (115) into the global energy law

jt[K(t) + W(t) + M(t)} = -Xm(t) (115)
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where
du(x, £) 2

dt dv(x) (H6)m = f /Z JR3

denotes the kinetic energy,

= ^ [ [/'(Vu(x, £)) : (Vu(x, £)) + (A + /x)|V • u(x, £)|2] dv{x) (117)
1 JR3

denotes the strain energy,

M(t) = 7T-[ |h(x,£)|2<iv(x) (118)
O71" ./R3

denotes the magnetic energy of the disturbance and, finally,

>(*) = JR3(Vh(x'f)) : (Vh(x,£))cfo(x) (119)

specifies the magnetic dissipation function. The energy balance law (115) implies that
the total (kinetic, plus strain, plus magnetic) energy, is dissipated in time at a rate
proportional to the L2 norm of the gradient of the magnetic field.

By virtue of Parseval's theorem the energy integrals can be expressed via the Fourier
spectral densities of the displacement and the magnetic fields as follows:

du(£,£) I2
Km = *<«• <120>

W{t) = ^ [ [is*\u(£,t)\2+ (rf-v2)\a-u{£,t)\2]r2dv(£), (121)
JR3

= |h(C,t)|2dV(0, (122)
OTT JR3

and

/ |h(£,i)|2^2 dv(£). (123)
J R3

We next substitute the canonical forms (107) and (112) into the expressions (122)-(125)
for the energies obtaining a large number of integrals of the form

[ /(0c(T<K)+7a(<))td«(0 (124)
J R3

for i,j = 1,... ,9. With the use of the results in Sec. 4 all these integrals are asymp-
totically analyzed in exactly the same way as the corresponding energy integrals in the
thermoelastic case [10] and the asymptotic forms of the energy are obtained. These
form an extremely long and tedious task which we avoid repeating here. Taking into
consideration symmetries as well as complex conjugation, which does not alter the time
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behaviour of the energy integrals, we still need to find the asymptotic form of 13 integrals
for each one of the four energy forms, K, W, M, and Xrn.

The final results show that, for smooth enough Cauchy data, the energies satisfy the
relations

K(t) = 0(*-(m+D),

W(t) =0(f~(m+5)), (125)

M(t) = 0(i-(m+D)

(see [10], relations (8.62)-(8.64)) as t —» oo, while the dissipation function decays as
t~(vn+5/2) ^gee reiation (8.79)). The nonnegative integer nn is defined as

m = min{v0 + l,v\,vh } (126)

where Vq , V\, and Vh stand for the order of the lowest nonvanishing moment of the initial
displacement, the initial velocity, and the initial magnetic field, respectively.
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