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Piotr Sierant1,2, Giuliano Chiriacò1,3, Federica M. Surace1,3, Shraddha Sharma1, Xhek Turkeshi1,3,
Marcello Dalmonte1,3, Rosario Fazio1,4, and Guido Pagano5

1The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
2Institute of Theoretical Physics, Jagiellonian University in Krakow,  Lojasiewicza 11, 30-348 Kraków, Poland
3SISSA — International School of Advanced Studies, via Bonomea 265, 34136 Trieste, Italy
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Quantum systems evolving unitarily and
subject to quantum measurements exhibit var-
ious types of non-equilibrium phase transi-
tions, arising from the competition between
unitary evolution and measurements. Dissipa-
tive phase transitions in steady states of time-
independent Liouvillians and measurement in-
duced phase transitions at the level of quan-
tum trajectories are two primary examples of
such transitions. Investigating a many-body
spin system subject to periodic resetting mea-
surements, we argue that many-body dissi-
pative Floquet dynamics provides a natural
framework to analyze both types of transi-
tions. We show that a dissipative phase tran-
sition between a ferromagnetic ordered phase
and a paramagnetic disordered phase emerges
for long-range systems as a function of mea-
surement probabilities. A measurement in-
duced transition of the entanglement entropy
between volume law scaling and sub-volume
law scaling is also present, and is distinct from
the ordering transition. The two phases corre-
spond to an error-correcting and a quantum-
Zeno regimes, respectively. The ferromagnetic
phase is lost for short range interactions, while
the volume law phase of the entanglement is
enhanced. An analysis of multifractal proper-
ties of wave function in Hilbert space provides
a common perspective on both types of transi-
tions in the system. Our findings are immedi-
ately relevant to trapped ion experiments, for
which we detail a blueprint proposal based on
currently available platforms.

1 Introduction
The interplay of coherent and incoherent dynamics
has a rich and long history in the context of quantum
physics. At the basic quantum mechanical level, it is
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responsible for a plethora of few body effects, of par-
ticular relevance to quantum optical systems. Over
the last two decades, boosted by impressive progress
in both solid state and atomic experiments, this in-
terplay has found vast application in the context of
many-body phenomena as well.

A particularly successful framework in this respect
has been the identification of new phases of matter
associated with the non-equilibrium steady states of
local Liouville dynamics. Such phases, understood as
steady states of time-independent Liouvillians, have
highly non-thermal properties and have been shown
to often lack an equilibrium counterpart [1–13, 13–24].
The boundary between these phases hosts a rich spec-
trum of dissipative phase transitions (DPT), that cap-
ture how the properties of the ‘average’ state change
as a function of a given external parameter. The
phases emerging at the onset of a DPT are part of
a larger class of out of equilibrium phenomena which
can be accessed by suitable non-equilibrium drives,
such as those recently reported in various solid state
systems [25–34].

In parallel to these developments, a series of recent
works has introduced a new perspective that, instead
of focusing on the properties of the average steady
state, studies the many-body properties at the level
of single quantum trajectories. In this context, it has
been shown how the competition between quantum
measurements and coherent dynamics (either analog
or digitally generated) can give rise to transitions that
manifest themselves in specific observables that are
not properties of the averaged state - such as von Neu-
mann entropies, negativities, or two-time correlation
functions. This second class of transitions is often
referred to as “measurement induced” phase transi-
tion (MIPT) [35–79]. While both types of transitions
are clear footprints of the competition between coher-
ent and incoherent dynamics, the interplay between
them has so far received little attention, in part due to
the fact that the two are typically formulated within
rather different frameworks.

In this work, we show that many-body dissipa-
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tive (Liouville) Floquet dynamics provides a natural,
generic framework to simultaneously investigate these
types of non-equilibrium phase transitions within the
same setting. This framework, that has remained
largely unexplored so far, enables us to identify both
common and distinct features for DPT and MIPT.
In particular, while both are typically equally driven
by measurement (as both entanglement and quantum
order are generally suppressed by off-axis measure-
ments), they do have very distinctive sensitivity to
changes in the coherent dynamics: the unitary evolu-
tion can in some cases drive an entanglement transi-
tion with no ordered phase, as well as the entire op-
posite scenario, where a DPT is present while there is
no entanglement transition (see Fig. 1a-b).

We illustrate this new framework and our find-
ings utilizing as a concrete model a one dimensional
spin system subject to a long-range interacting Hamil-
tonian evolution interspersed with random quantum
measurements 1. The periodic dynamics consists of
cycles with a unitary evolution followed by quantum
measurements, providing the competition needed to
observe the transitions. The unitary evolution is gov-
erned by a long-range many-body Hamiltonian with
an interaction that decays as a power-law with the
distance between particles, and by a transverse exter-
nal field; the measurement layer consists of random
generalized measurement operations which indepen-
dently reset the spins to the down state with a certain
probability.

This setup is very advantageous for the following
reasons. Firstly, it allows us to tune both the range
of interactions and the strength of measurements at
the same time, enabling us to study an interplay of
different phenomena which has not been adequately
explored in the literature so far. Secondly, this type
of transition can be experimentally investigated in a
realistic trapped-ion setting; so far experimental real-
izations of MIPTs have been elusive because a high
degree of control on the quantum system is required
for both unitary and non-unitary operations on indi-
vidual qubits. The model we consider is readily realiz-
able in large system sizes [80] using trapped ions (see
Fig. 1c), where the unitary evolution of the long-range
1D spin model can be simulated [81–83], and local re-
setting and measurement operations on the spins can
be naturally implemented with optical pumping [84]
and state dependent fluorescence [85, 86], respectively.

Within our model, we investigate: (i) an order-
disorder DPT, observed when the average state of the
system develops a spontaneous magnetization or spin
correlations; (ii) a MIPT, where the scaling of the en-
tanglement entropy for the conditional state exhibits a
change between volume and sub-volume law, observed
also in free theories, random circuits [36–39, 43, 49–

1Note that dissipative Floquet dynamics has already been
used to discuss MITP in Ref. [38]; however, in those models,
no DPT is expected nor has been observed

52] and, more recently, in long-range systems [53–57].
We show that these transitions do not generally co-

incide, and that depending on the range of the interac-
tions one type of transition may appear while another
one is suppressed. More specifically we find that for
long-range interactions the ordering transition differs
from the entanglement transition. As the range of the
interactions decreases, the ordered phase disappears
and only the entanglement transition survives.

Our findings help shed light on the connection be-
tween DPT and MIPT, which have been mostly stud-
ied in disjoint settings in the literature so far (we note,
however, that changes of order across MIPTs has been
discussed in Refs. [87, 88]). Moreover, our results em-
phasize the usefulness of dissipative Floquet theory,
a so-far little employed theoretical framework even in
the context of DPT, which are typically framed within
the context of time-independent Liouvillians.

In fact, from the methodological side, we observe
that such models lend themselves to accurate analyti-
cal computations within (cluster-)mean-field approxi-
mations, often recovering even quantitative agreement
with numerical simulations [3, 7]. The various phases
arising from a dissipative Liouvillian dynamics have
been studied in several many-body systems, includ-
ing spin systems [2, 3, 7, 8, 21] and systems of bosons
[14–16]. In particular, spin systems [2, 3, 7] can dis-
play the emergence of an ordered ferromagnetic phase
depending on the strength of dissipation, in which cor-
relations between spins may play an important role in
determining the phase diagram [3].

This paper is organized as follows, in section 2,
we present a detailed description of the model under
consideration. The analytical and numerical meth-
ods employed to probe the transitions are detailed in
section 3. In section 4, we discuss the order-disorder
DPT, followed by an analysis on the purity of the av-
erage state; we provide a comparison between the re-
sults obtained using mean field and exact diagonaliza-
tion. The results for the entanglement MIPT are pre-
sented in section 5. In section 6, the behavior of the
participation entropies is discussed as a supporting
probe to the different transitions under consideration.
Section 7 provides an experimental overview regard-
ing the observation of DPTs and MIPTs, while section
8 presents the concluding remarks of the manuscript.

2 The model
We consider a one dimensional system of L spin-1/2
interacting between them via a long-range Ising inter-
action and subject to a transverse external field. The
unitary evolution and the measurement processes are
periodic in time with period T .

The dynamics of systems subject to measurements
continuous in time can be effectively described by a
quantum master equation for the average density ma-
trix ρ [2, 19, 48, 89]. However we consider discrete
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FIG. 1: Schematic phase diagram and experimental realization. Panel (a) shows the behavior of ordering transition (blue
dashed curves) and entanglement transition (black dashed dotted curve) for long-range interactions as a function of resetting
probability p and external field h. A region of coexistence of the ordered phase and the sub-volume law phase appears for
intermediate values of p. The dashed blue curve shows the phase boundary calculated according to single site mean field theory.
Panel (b) presents a qualitative diagram of the interplay between ordering and entanglement transition as a function of the
range of interactions α and the resetting probability p. Four types of phases appear: phase I is characterized by paramagnetic
disorder (PM) and a sub-volume law scaling of the entanglement; phase II exhibits ferromagnetic order (FM) and sub-volume
scaling; phase III shows ferromagnetism and volume scaling, while phase IV is characterized by disorder and volume law. We
note that for long-range interactions present in the considered model, our analysis is able to exclude the presence of a volume
law, but cannot access system sizes large enough to distinguish between an area law and a sub-volume law; hence we use the
latter term to describe the quantum Zeno phase in our model. Panel (c) outlines a possible experimental configuration for the
observation of DPTs and MIPTs with trapped ions. Global off-resonant beams (purple) induce the unitary evolution governed
by long-range interactions across the one-dimensional ion chain (as described in Eq. (1)), while individual resonant beams
(blue) implement the non-unitary operations Ki,µi on a randomly selected subset of qubits (see Eq. (3)).

measurements occurring on a very short timescale at
times t = nT , so that the unitary dynamics and the
measurements occur sequentially rather than simul-
taneously. Within this setting, a description of the
dissipative dynamics through Lindblad operators is
not very practical; instead we will be using a Kraus
map to describe the measurement process (see Fig. 2).

2.1 Hamiltonian evolution
We first define the Hamiltonian governing the unitary
dynamics. For practical reasons that will be explained
in detail in Section 3, we assume that the unitary
evolution occurs in a “kicked” fashion: the system is
subject only to the Hamiltonian HI of the long-range
interaction for times 0 < t − nT < T/2 and then
only to the external field Hamiltonian HT for times
T/2 < t− nT < T .

Similarly to any Floquet dynamics, we can write
the evolution operator U over one cycle [90]

U = e−iHTT/2e−iHIT/2;

HI ≡ −
∑
i 6=j

Jijσ
x
i σ

x
j ; HT ≡ h

∑
i

σzi , (1)

where σai are the Pauli matrices on site i and h is
the external field. The long range interaction in HI

assumes periodic boundary conditions and includes a
Kac normalization

Jij = J

N

(
1

|i− j|α
+ 1

(L− |i− j|)α

)
,

N ≡
L−1∑
r=1

(
1
rα

+ 1
(L− r)α

)
.

(2)

The quantity α parameterizes the range of the in-
teraction. In equilibrium, interactions with 0 < α < 1
are typically considered to be long range, while values
α & 2 yield short range interactions [91].The long-
range interactions lead to a sub-linear growth of en-
tanglement entropy after a quench [92–96].

For all numerical calculations from now on we set
J = 1 and T = 1.

2.2 Quantum measurements
As already mentioned, the measurement process can
be described by a set of Kraus operators {Kµ}
which can be related to the Lindblad jump opera-
tors. The Kraus operators preserve the global Z2
symmetry of the Ising model, i.e. Kµ(UZρU†Z)K†µ =
UZ(KµρK

†
µ)U†Z with UZ =

∏
i σ

z
i , for every µ and

every ρ, and satisfy the normalization condition∑
µK

†
µKµ = 1.

We consider a resetting measurement process,
where spins are independently reset to the down state
with probability p. The Kraus operators associated
with these generalized measurements Eµ ≡ K†µKµ

are labeled by a multi-index µ = (µ1, . . . , µL), with
µi = 0, 1, 2 and are defined as 2

Kµ =
∏
i

Ki,µi

Ki,0 = √p |↓〉 〈↓|i , Ki,1 = √p |↓〉 〈↑|i ,
Ki,2 =

√
1− p 1i.

(3)

2Notice that this is one choice of Kraus operators for the
resetting process; other choices are possible and have the same
action on the average state of the system.
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FIG. 2: Scheme of the evolution protocol of the system. The
red layer represents the evolution step with the long-range
interaction Hamiltonian HI , which couples all the spins me-
diated by motional modes of the ion crystal [81, 100] (dashed
black lines). The blue layer represents the evolution with the
transverse field Hamiltonian HT coherently coupling the two
spin states with a two photon process (see section 7.1). Fi-
nally, the yellow circles layer corresponds to the measurement
process, implemented with resonant photon scattering.

Depending on the observable we want to investi-
gate, we can limit ourselves to the study of the aver-
age state, given by the density matrix ρ = |ψ〉 〈ψ|, or
we may have to consider single quantum trajectories
[97–99].

At the level of a quantum trajectory, each measure-
ment on a single spin corresponds to a sudden change
in the state of the system |ψ〉 → |ψ′〉 with

|ψ′〉 = Kµ|ψ〉√
〈ψ|K†µKµ|ψ〉

. (4)

The choice of which Kraus operator is applied for each
site is given by the Born rule via the probability dis-
tribution P(µ) = 〈ψ|Eµ|ψ〉 =

∏
i〈ψ|K

†
i,µi

Ki,µi
|ψ〉.

The action of the dissipative map on the average
state can be found by summing over the outcomes of
the measurement

ρ′ =
∑
µ

KµρK
†
µ; (5)

ρ′ = p |↓〉 〈↓|i ⊗ Triρ+ (1− p)ρ. (6)

where ρ (ρ′) is the density matrix of the system before
(after) the measurement, and Tri denotes the partial
trace over the degrees of freedom associated to the
spin i.

Combining Eqs. (5)-(6) with the unitary evolution
(1) it is possible to write a quantum master equation
for the average state

∂tρ = L(t)[ρ], (7)

where the Lindblad superoperator L(t) is a function
of the Hamiltonian and of the Kraus operators and is

periodic in time. Master equations of the form (7) are
routinely used to investigate DPTs, but are not very
suited to analyze a single trajectory.

Crucially, such analysis of the quantum trajectories
is needed when studying observables that are non-
linear in the state of the system. Examples relevant
for this paper are the entanglement entropy or the
purity. As we shall see, for these quantities the con-
ditional average over the trajectories is different from
the analog one computed on the average state 3, and
for this reason they provide a sensible quantity for the
MIPT.

After a certain number of cycles (depending on the
value of p) of unitary evolution plus measurement, the
system reaches a steady state, in the sense that all the
properties of the state (expectation values of observ-
ables, entanglement entropy, etc.) averaged over tra-
jectories reach stationary values. We note that these
quantities are not necessarily stationary during one
cycle since the unitary dynamics and the measure-
ment may still change them, but they are constant
when considering two equivalent times in different cy-
cles. For example, the steady state average density
matrix is ρss(t) = limn→∞ |ψ(t+ nT )〉 〈ψ(t+ nT )|
and satisfies ρss(t+ T ) = ρss(t).

3 Methods
We aim to characterize the properties of the steady
state by studying the magnetization (and the spin
correlators), entanglement properties, and purity. To
that end, we combine analytical methods with numer-
ical simulations.

In this section we give an overview of the meth-
ods we employ to investigate the relevant observables,
which are reported in Table 1.

3.1 Mean field approximation
The analytical methods we utilize are based on single
site mean field and cluster mean field approximations.
While those methods cannot be informative about bi-
partite entanglement properties, they have access to
both local order parameters and the purity of the sys-
tem. Moreover, their simplicity offers several simple
insights on the dynamics of the system in a regime
where the approximation is very well controlled, as
discussed below. This is expected, given the impres-
sive predictive power of similar methods in the context
of quantum quench dynamics for spin models with
α < 1 [101–104].

Single site mean field approximation - We can study
the evolution of the system in a single site mean field
approximation. Within such approximation, each

3Here by conditional average we mean computing first the
expectation value of the observable over the state and then
taking the average over the trajectories.
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spin is decoupled from the others, i.e. the density
matrix factorizes ρ =

⊗
i ρi.

We can write down the evolution equations that
determine the unitary dynamics of the average value
of the spin vector ~si ≡ 〈~σi〉 = Tr(~σiρi); · indicates
the average over trajectories, while 〈·〉 is the quan-
tum expectation value. Note that the trace over ρ
automatically takes into account the average over all
quantum trajectories. The equations of motion are

d

dt
~si = − ~BMF × ~si; (8)

~BMF ≡

{
4
∑
k 6=i Jiks

x
kx̂, 0 < t < T/2

−2hẑ, T/2 < t < T
(9)

where î is the versor in the direction i = x, y, z. Equa-
tions (8)-(9) are to be solved self consistently since the

effective field ~BMF depends non linearly on ~si during
the first half of the unitary evolution cycle.

From Eq. (6) we find the action of the dissipative
map on the spins:

sx,yi → (1− p)sx,yi ; szi → (1− p)szi − p. (10)

Cluster mean field approximation - The single site
mean field approximation completely neglects any
correlation between spins. A simple way to include
some degrees of correlations is to consider a cluster
mean field approximation, in which the density ma-
trix factorizes as the product of the density matrices
of neighboring spins ρ =

⊗
i ρ2i−1,2i. We consider the

density matrix of the first two sites ρ12.
The mean field Hamiltonian reads

HMF
I = −2J

(
1− 1
N

)
sx(σx1 + σx2 )− 2J

N
σx1σ

x
2 ;

(11)
HMF
T = h(σz1 + σz2); (12)

sx = 1
2 〈σ

x
1 + σx2 〉 = 1

2Tr[ρ12(σx1 + σx2 )]. (13)

The action of the dissipative map on the density
matrix can be obtained from Eq. (5)

ρ12 →(1− p)2ρ12 + p(1− p) |↓〉 〈↓|1 Tr1ρ12+
+p(1− p) |↓〉 〈↓|2 Tr2ρ12 + p2 |↓〉 〈↓|1 |↓〉 〈↓|2 .

(14)

Notice that the terms proportional to p(1 − p) in-
volve resetting of only one of the spins, and that eval-
uating the partial trace over one of the spins creates a
mixed state if the density matrix does not correspond
to a pure state with both spins in the down state.

The unitary evolution is determined by

dρ12

dt
= −i

{
[HMF

I , ρ12] for 0 < t < T/2,
[HMF

T , ρ12] for T/2 < t < T.
(15)

Note that for α ≤ 1, the two spins of the clus-
ter — whose interaction is contained in Eq. (11) —

Observable Transition Definition
X(t) Ordering Eq. (22)
X2(t) Ordering Eq. (23)
B Ordering Eq. (28)

QMI Entanglement Eq. (33)
SR Entanglement Eq. (41)

Table 1: Table of the observable used to study the different transitions.

are completely decoupled in the thermodynamic limit
because 1/N → 0. Therefore, cluster mean field co-
incides with single site mean field for α ≤ 1 (and we
will generically refer to it as “mean field”), while for
α > 1 it gives more accurate predictions because it
includes nearest-neighbor correlations.

3.2 Exact numerical simulations

We also utilize extensive exact simulations that are
best suited to tackle entanglement dynamics and pro-
vide quantitative predictions for the transition prop-
erties. Within our dissipative Floquet setting, it is of
pivotal importance to access as large system sizes as
possible with full numerical control. For this purpose,
we utilize the following numerical procedure.

To start, we note that U is a product of operators
that are diagonal respectively in the eigenbases of σxi
and σzi . The multiplication of a vector by a diagonal
matrix requires only N = 2L operations as opposed
to N2 operations for a multiplication by a full matrix.
To utilize this fact, we also note that the transforma-
tion between the eigenbases of the σxi and σzi opera-

tors is given by R =
⊗L

i=1 Ri, where Ri = 1√
2

( 1 1
1 −1

)
.

The product structure of this transformation allows us
to use an approach analogous to fast Fourier trans-
formation, known as the fast Hadamard transform
[105, 106] which requires only N logN ∼ L2L op-
erations to transform between eigenbases of σxi and
σzi operators. Hence, the multiplication of a vector
|ψ〉 by the matrix U reduces to two fast Hadamard
transforms and two multiplications by the diagonal
matrices e−iHTT/2 and e−iHIT/2, resulting in a to-
tal time complexity L2L. Indeed, similar approaches
have been employed in studies of the ergodicity of
many-body systems [107–109]. Finally, the measure-
ment (4) can be represented by the action of sparse
operators in the σzi basis. This allows us to simulate
exactly the time evolution of systems consisting of up
to L = 24 spins within reasonable computing times.

This procedure shows why it is advantageous to
consider a kicked Ising Hamiltonian in comparison to
a traditional Ising Hamiltonian that contains both the
interaction term and the transverse field term at the
same time.
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3.3 Exact numerics for α = 0
The limit α = 0 for the average evolution Eq. (5) can
be effectively simulated due to an emerging permu-
tation symmetry. In fact, in this limit the interac-
tions in the Hamiltonian have infinite range: we can
use this property to perform our numerical simula-
tions in permutational symmetric subspaces, allowing
to study larger system sizes.

To explain how this is done, it is convenient to work
in the superoperator formalism, transforming the den-
sity matrix to a vector with the following mapping

ρ =
∑
i,j

ρi,j |i〉 〈j| =⇒ |ρ〉〉 =
∑
i,j

ρi,j |i〉 |j〉 . (16)

The vector |ρ〉〉 is hence defined on a “doubled” sys-
tem, with L sites associated with the left part (the
state |i〉 in Eq. (16)) and L sites for the right part
(the state |j〉).

The time evolution of the vector |ρ〉〉 induced by
the unitary dynamics with an Hamiltonian H(t) and
by the measurement of Eq. (6) is

˙|ρ〉〉 = −i
(
H(t)⊗ 1− 1⊗H(t)∗

)
|ρ〉〉; (17)

|ρ〉〉′ =
∑
µ

Kµ ⊗K∗µ|ρ〉〉. (18)

By using the explicit form of the Kraus operators
in Eq. (5) we get

∑
µ

Kµ⊗K∗µ =
∏
i

2∑
µi=0

Ki,µi
⊗K∗i,µi

= exp
(∑

i

Mi

)
,

(19)
where the operator Mi acts on the left and right spins
at position i and has the form

Mi = − ln(1−p)
(
|↓↓〉 〈↓↓|+ |↓↓〉 〈↑↑|−1⊗1

)
i
. (20)

Note that, while for α = 0 the Hamiltonian part is
invariant under both the permutations of the L sites
on the left and the permutations of the L sites on the

right (the symmetry is given by the group S(l)
L ×S

(r)
L ),

the measurement is only invariant under permutations
of the left and right part simultaneously (the symme-

try group is S(l,r)
L ). We define a basis for the invari-

ant subspace under these simultaneous permutations:
each state of the basis is labeled by a sequence of four
integers {ni}i=1,...,4 with 0 ≤ ni ≤ L and

∑
i ni = L,

and is defined as

|{ni}〉 = 1
N{ni}

∑
τ∈SL

Sτ |↑↑〉⊗n1 |↑↓〉⊗n2 |↓↑〉⊗n3 |↓↓〉⊗n4

(21)
whereN{ni} is a normalization constant, the sum runs
over all the permutations τ of L elements and Sτ is
the operator that applies the permutation τ to the L
(doubled) sites of the system. The dimension of this

subspace is
(
L+3

3
)
: the slow polynomial scaling in L,

compared with the exponential scaling 22L of the full
Hilbert space of the density matrix, allows us to sim-
ulate the exact dynamics of systems comprised of few
hundreds spins. In Appendix A we report the calcula-
tion of the matrix elements of the operators associated
with HT , HI and of the operator M =

∑
iMi in this

basis, and the procedure for computing expectation
values. We note that similar approaches have been
used for various open quantum systems with collec-
tive incoherent processes [110–121].

4 Order-disorder transition
In this section we demonstrate that the steady state
of the kicked Ising model with random measurement
hosts a symmetry breaking transition, similar to or-
dering transitions in ground states of quantum mag-
nets [122]. The ordering transition is best revealed
by order parameters such as the spontaneous mag-
netization of the spins in the x direction or suitable
correlation functions. We study the average magne-
tization X (averaged over trajectories and spins) and
the two point correlation function X2(t):

X(t) = 1
L

L∑
i=1
〈ψ(t)|σxi |ψ(t)〉; (22)

X2(t) = 1
L(L− 1)

L∑
i 6=j
〈ψ(t)|σxi σxj |ψ(t)〉, (23)

where A is the average of the quantity A over the
many quantum trajectories that arise when the vari-
ous measurements (4) at random positions and times
yield different outcomes.

The ordered phase of our model is characterized
by a non-vanishing magnetization and two-point cor-
relation function, whereas in the disordered phase
X = 0 = X2. The two phases arise from the com-
petition between the unitary time evolution (1) and
the resetting process. The unitary time evolution en-
hances the ferromagnetic correlations in the steady
state for J > 0 and sufficiently small h > 0. In
contrast, the resetting process favors a paramagnetic
state [123]. Indeed, in the limit p → 1, all spins
are always reset, so that the steady state is trivially
|↓ ↓ ... ↓〉. Notice that all correlations in this state are
destroyed by the measurement process, and that the
value of each spin is solely determined by the mea-
surement on that spin 4.

We observe that the average over trajectories and
the expectation value in Eqs. (22)-(23) commute be-
cause we are dealing with quantities that are linear
in the average steady state of the system ρss(t). In-
deed, the magnetization averaged over quantum tra-
jectories (22) and the magnetization of the average

4For example if the first spin were subject to a resetting to
the up state, the system steady state would be | ↑ ↓ ... ↓〉.
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state coincide X = 1
LTr(ρss

∑
i σ

x
i ), and similarly for

X2(t). Therefore, an analysis based on the evolution
of the density matrix and an analysis studying the
single trajectories yields the same results.

To study the symmetry breaking transition we first
investigate the kicked Ising model with resetting in
the mean field approximation and then demonstrate
that the findings of mean field analysis are consistent
with the properties of the steady state derived from
numerical simulations. We also highlight the crucial
role played by the range of interaction in stabilizing
the long-range order in the considered system.

4.1 Mean field analysis
We start our investigation of the symmetry breaking
transition using the single site mean field approxima-
tion of Section 3.1 – which is expected to work well
in the infinite range α→ 0 regime [104].

From Eq. (10) we note that the spin component in
the x−y plane is exponentially suppressed by the mea-
surements, while it may increase during the unitary
evolution. This means that when the probability of
measurement is very high, the steady state is a disor-
dered phase characterized by the fixed point ~si = −ẑ
of the evolution map. On the other hand for smaller
p the system reaches an ordered phase characterized
by the non zero “order parameter” sxi 6= 0.

Equations (8)-(10) can be solved numerically in
general. However, we can perform an analytical treat-
ment close to the boundary between ordered and dis-
ordered phase, where the order parameter is very
small, i.e. 0 < |sx,yi | � 1. We also assume that
there is no site dependence of the spin and write
sxi (t) = εx(t), syi (t) = εy(t), szi (t) = −1 + εz(t); we
can then linearize Eq. (8) and find

ε̇x = εy

{
0, 0 < t < T/2
−2h, T/2 < t < T

; (24)

ε̇y = εx

{
−4J, 0 < t < T/2
2h, T/2 < t < T

; ε̇z = 0; (25)

Equations (24)-(25) can easily be solved given the
initial conditions (εx, εy, εz) = (A,B,C). The fixed
point conditions (1 − p)εx,y(t = T−) = εx,y(t = 0+),
(1−p)(−1+εz(t = T−))−p = (−1+εz(t = 0+)) then
read

p

(
cos(hT ) + 2JT sin(hT ) − sin(hT )
sin(hT )− 2JT cos(hT ) cos(hT )

)(
A

B

)
=
(
A

B

)
,

where p ≡ 1− p and C = 0.
A non-trivial solution exists when

(1− p)2 − 2(1− p) [cos(hT ) + JT sin(hT )] + 1 = 0.
(26)

The solution of Eq. (26) gives the critical probabil-
ity pc(h, J) as function of the transverse field h and

FIG. 3: Order-disorder transition in the mean field approach.
The color map shows the behavior of the absolute value of
the average magnetization 〈σx〉 in the x direction computed
in a mean field approximation as function of h and p. The
white dashed line reports the contour for which |〈σx〉| = 0.01
which matches the solution of Eq. (26).

the interaction strength J : for p > pc there is a single
stable fixed point ~si = −ẑ and the system is in the
disordered phase; at p = pc there is bifurcation and
the fixed point ~si = −ẑ becomes unstable, while two
new stable fixed points appear; the new stable fixed
points are characterized by 〈σxi 〉 6= 0, hence for p < pc
the steady state is ordered.

The phase boundary given by pc for J = 1, T = 1
has a lobe shape in the h − p space and matches the
results obtained by solving numerically the mean field
equations (24)-(25), as reported in Fig. 3.

4.2 Numerical simulations of the steady state
To verify the conclusions of the mean field analysis, we
perform exact numerical simulations using the tech-
niques outlined in 3.2 and 3.3.

We take a ferromagnetic state |ψ0〉 = |→→ ...→〉
polarized in the x direction as the initial state (we
checked explicitly that the results reported here do
not depend on the choice of the initial state), and cal-
culate the time evolved state |ψ(t)〉 by repeated appli-
cations of the unitary operator U in Eq. (1) followed
by the resetting operation specified in Eq. (4). We
then calculate the values of the correlation functions
X(t) and X2(t).

We observe that the system reaches a steady state
for times t > tsteady = max{2L, 10/p}, after which
the two-point correlation function X2(t) does not
change between subsequent intervals of time T , i.e.
X2(t+ T ) = X2(t). Examples of time dependence of
X2(t) within a few cycles of evolution of the system
are shown in Fig. 4 a), b). During the first stage of the
unitary evolution, t ∈ [nT, nT + T/2] (where n is an
integer), the system evolves with the Hamiltonian HI

which does not change the value of X2(t). The value
of X2(t) changes in the interval t ∈ [nT+T/2, nT+T ]
when the system evolves with the Hamiltonian HT .
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Finally, upon the resetting process at time t = nT+T ,
the value of X2(t) jumps discontinuously. This behav-
ior is visible both for the value of X2(t) calculated for
an infinite system size in the mean field approxima-
tion as well as from the value yielded by the exact
numerical simulations of a system of finite size L.

The behavior of the magnetization X(t) is slightly
different. While X(t) acquires a steady-state value
in mean field approximation, it decays approximately
exponentially in time X(t) ∝ e−γ(p,L)t in a finite sys-
tem of size L. The constant of decay γ(p, L) decreases
with increasing system size L with rate that depends
on the resetting probability p. This means that both
in the exact numerical simulations of system of size L,
as well as in a real experimental situation, the steady
state value of the two point-correlation function X2

is a more convenient probe of the symmetry breaking
transition in our model.

To probe the symmetry breaking transition, we
consider the value of the two-point correlation func-
tion X2(tn) at times tn = nT + 0+ (i.e. just after
the resetting), and perform the average over n for
1000T > tn > tsteady to smooth out the small cycle to
cycle residual fluctuation of X2(tn). For each system
size L we consider, we find a non-zero value of the
two-point correlation function X2. For the system
with interactions of infinite range, α = 0, we utilize

the S(l,r)
L symmetry to calculate the average steady

state ρss(t) by exact numerical simulation of Eqs. (17)
and (18) in the symmetric subspace. This allows us
to investigate systems of size of up to L = 384 sites.
The resulting values of X2, shown in Fig. 4c), reveal
that the average two-point correlation function is a
non-monotonous function of the system size L: when
p < pSBc , where pSBc is the critical resetting probabil-
ity, X2 increases with system size beyond a certain
system size L0. The length scale L0 is enlarged when
the resetting probability p gets closer to the critical
value p → pSB−c . In contrast, for p > pSBc , the two-
point correlation function X2 decreases monotonously
with L, which suggests that it vanishes in the ther-
modynamic limit.

The results for α = 0 indicate the presence of
a symmetry breaking transition in the kicked Ising
model. When α > 0, the average steady state ρss(t)
is no longer S(l,r)

L invariant, and to probe the sym-
metry breaking transition we calculate the average
two-point correlator performing the average (23) over
quantum trajectories which allows us to investigate
systems consisting of up to L = 24 spins. Results
for α = 2 are shown in Fig. 4 d). We immediately
note that the decay of X2 with the system size is
much more abrupt for the system with interactions of
shorter range (α = 2) as compared to the α = 0 case.
To investigate this quantitatively, we fit X2 with a
second order polynomial

X2 = X2
∞ + a/L+ b/L2. (27)

FIG. 4: The two-point correlation function X2 in the kicked
Ising model with resetting. Panels a), b) show the time de-
pendence of the two-point correlation function X2(t) in the
steady state of the system. The steady state value of X2 at
t = nT + 0+ is indicated by the dashed lines. Panels c), d)
show the average value of the correlation function X2 (mea-
sured just after the resetting) in the steady state for various
resetting probabilities p and system sizes L respectively for
α = 0 and α = 2. Panels e) and f) show the value of cor-
relation function X2

∞ extrapolated to thermodynamic limit
L→∞ compared with the mean field (red line) as functions
of p and h, respectively.

The resulting values of X2
∞, shown in Fig.4 e), f) are

the main results of this section. They indicate a tran-
sition between an ordered phase in which X2

∞ > 0,
and disordered phase with vanishing value of the ex-
trapolated two-point correlation function. This tran-
sition is observed both as a function of the resetting
probability p and of the field h.

The extrapolated values X2
∞ of two-point correla-

tion functions can be compared with the predictions
of mean field approximations, denoted by red lines
in Fig.4 e), f). Despite the crude form of the ansatz
(27), the agreement of X2

∞ for α = 0.5 with the value
of the correlation function obtained in the mean field
approximations is very good. The discrepancies at
the values of p and h around the transition (at which
the order parameter vanishes) are in part due to the
non-zero value of α (the mean field approaches are
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expected to be most accurate for α→ 0) and in part
to finite size effects which are more severe close to
the transition. The presence of the finite size effects
that cannot be captured within the ansatz (27) is il-
lustrated by the exact results for α = 0 in Fig. 4 c) -
beyond the length scale L0 the averaged correlator X2

either ceases to be monotonous (for p < pSBc ) or de-
cays more quickly than the polynomial ansatz would
predict (for p > pSBc ). In consequence, the values
of X2

∞ are smoothed in the vicinity of the transition
point.

Moreover, we observe that the value of the extrap-
olated correlation function X2

∞ is reduced when the
range of interactions is decreased (i.e. when α in-
creases), as shown in Fig.4 e). At the same time the
deviations with respect to the mean field results are
enhanced. Finally, for sufficiently short-range inter-
actions (e.g. α = 2) we no longer observe the ordered
phase and the system always remains in the disor-
dered, paramagnetic phase. This illustrates the cru-
cial impact of the range of interactions α on the sym-
metry breaking transition. At α = 2 our model be-
haves similarly to the short-range model investigated
in [123] in which there is no stable long-range order.

Our results so far indicate that our system hosts
the long-range order for sufficiently small values of
p and h. This is intuitively clear: a large resetting
probability leads to a significant decrease of X2 within
a single cycle of the time evolution; on the other hand,
for large fields (h & 1.5) the value of X2 increases and
decreases back to a small value during the unitary
evolution – see Fig.4 b).

4.3 Locating the symmetry breaking transition

In this section we investigate the critical properties of
the order-disorder transition in the kicked Ising model
with resetting. In principle, the averaged two-point
correlation function X2 could be used as an order pa-
rameter for the symmetry breaking transition since it
is larger than 0 in the ordered phase and vanishes in
the disordered phase. However, our results for large
system sizes for the α = 0 case illustrate that X2

is subject to strong finite-size effects: the asymptotic
behavior starts only once the system size exceeds the
length scale L0 ≈ 50. Such system sizes are not ac-
cessible in our exact numerical simulations for α > 0.
Hence, we consider the Binder cumulant [124, 125]

B = 1− x4

3(x2)2 (28)

where xa = 〈ψ(t)|(
∑L
i=1 σ

x
i )a|ψ(t)〉 for a = 2, 4 and

the overline denotes the average over quantum tra-
jectories. The Binder cumulant is a function of the
two-point and four-point correlation functions. For

FIG. 5: The Binder cumulant B across the symmetry breaking
phase transition. Panel a) shows the Binder cumulant B as
function of the resetting probability p for various system sizes
L in the model with interactions of infinite range (α = 0).
Panel b) shows the collapse of the Binder cumulant data
with the scaling form (30). Panel c) shows Binder cumulant
for system with α = 0.5, the inset shows the collapse of
the data using (30). Panel d) shows the dependence of the
critical resetting probability pSBc on the range of interactions
α.

α = 0 we calculate the Binder cumulant as

B = 1−
Tr
(
ρss(

∑L
i=1 σ

x
i )4
)

3
(

Tr(ρss(
∑L
i=1 σ

x
i )2)

)2 , (29)

where ρss is the average steady state just after the
resetting process.

The Binder cumulant in the large system size limit
vanishes in the paramagnetic phase and tends to 2/3
in the ordered phase [124]. This trend is indeed fol-
lowed by our results for the kicked Ising model with
resetting at α = 0, as shown in Fig. 5 a). The tran-
sition between the two phases sharpens up with in-
creasing system size. We perform a finite size scaling
analysis assuming a scaling form

B = f [(p− pSBc )L1/νSB ] (30)

where f is a certain universal function, pSBc is the
critical resetting probability and νSB is a critical ex-
ponent. The obtained data collapse for α = 0 is
shown in Fig. 5 b). Its quality is very good in the
−0.5 < (p − pSBc )L1/νSB < 1.5 interval. The devia-
tions for (p− pSBc )L1/νSB < −0.5 are visible only for
smaller system sizes (L ≤ 128) and could be taken
into account by subleading corrections to the scaling
form (30). The large interval of available system sizes
allows for an accurate determination of the critical

Accepted in Quantum 2022-01-27, click title to verify. Published under CC-BY 4.0. 9



FIG. 6: Transition in the purity of the average state in the
mean field approximation. The plot shows a color map of
1−P0 as function of h and p. The white dashed line shows
the contour line 1− P0 = 0.01, while the dotted line shows
the contour of the magnetization |〈σx〉| = 0.01 calculated
from mean field.

parameters: pSBc = 0.598(5) and νSB = 2.20(9). We
note that the discrepancy between resetting proba-
bility pSBc (as determined by a finite size scaling of
the results for α = 0) and the value obtained in
the mean field approximation pSBMF ≈ 0.5819, (ob-
tained from the solution of Eq. (26)) is small. Impor-
tantly, when we restrict data for α = 0 to system sizes
L = 12, ..., 24, we observe that the scaling form (30)
can be used to obtain a data collapse in the restricted
interval of system sizes yielding p̃SBc = 0.590(15) and
ν̃SB = 1.8(2) which agree (within 2 standard devia-
tions in the case of νSB) with the critical parameters
obtained for much larger system sizes.

The last observation suggests that data for sys-
tems of size L ≤ 24, available for α > 0, can be
analyzed with the scaling form (30) yielding reason-
able estimates of critical parameters. The results for
α = 0.5, along with the obtained collapse, are shown
in Fig. 5 c). The curves B(p) cross around p ≈ 0.58
which is consistent with the value pSBc = 0.58(1) ob-
tained in the finite size scaling according to (30).

We repeat the scaling analysis of the Binder cumu-
lant for other values of α > 0. The resulting values
of the critical resetting probability pSBc are shown in
Fig. 5 d). The crucial impact of the range of interac-
tions α on the symmetry breaking transition is clearly
visible: the critical resetting probability diminishes
with increasing α. The values of the critical exponent
are, within error bars equal to νSB ≈ 2 for each con-
sidered value of α. Finally, for sufficiently short-range
interactions, α > αc, the critical resetting probability
tends to 0 and the system shows no symmetry break-
ing, always remaining in the disordered phase. Our
numerical simulations suggest that this happens at
αc ≈ 1.3. However, this value of αc may be underes-
timated due to large error bars on the values of pSBc
around α = 1.25.

FIG. 7: Purity and entropy of the steady state ρss. Panels a)
and b) show the von Neumann entropy of the steady state
density matrix SρvN as a function of system size for various
resetting probabilities p, the red dashed line in panel a) sep-
arates the data for p > pSBc and p < pSBc . Panels c) and d)
show the extrapolated coefficient governing the system size
scaling of SρvN together with 1 − P0, where P0 is the pu-
rity (per site) of the steady-state obtained in the mean field
approximation.

4.4 Purity of the average state
In this Section we analyze the purity of the average
state, i.e. we calculate the purity of the system after
performing the average over the quantum measure-
ments outcomes. To that end, we analytically study

Pavg ≡ Trρ2
ss = Tr(|ψ〉 〈ψ| · |ψ〉 〈ψ|), (31)

within mean field approximation and then compare
the results with exact numerical simulations of the full
density matrix of the system. The system is initialized
in a fully mixed state and we investigate whether the
steady-state is mixed or pure.

Mean field – In order to study Pavg we employ a
mean field analysis (see Section 3.1).

Solving the mean field equations for the dynamics of
the system, we compute the steady state value of Pavg
as Pavg = (P0)L, where P0 = (1+ |~s|2)/2 is the purity
per site and ~s = Tr(~σiρ) is the local magnetization.
Our results are presented in Fig. 6. At the level
of mean field approximation the symmetry breaking
transition and the transition between mixed and pure
steady state coincide.

Exact time evolution of the density matrix – We
now turn to exact numerical simulations of the evo-
lution of the full density matrix ρ. We initialize the
system in the completely mixed state ρ = I/2L and
calculate ρ(t). To that end, we perform the full exact
diagonalization of the evolution operator (1), which
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allows us to calculate ρ(t+ T ) = Uρ(t)U†. Each step
of the unitary time evolution is followed by the reset-
ting ρ′(t) =

∏L
i=1
∑2
µi=0 Ki,µi

ρ(t)K†i,µi
. Calculations

with full density matrices are computationally much
more demanding than keeping track of individual tra-
jectories of the system, therefore results presented in
this section are for system sizes L ≤ 14.

We calculate the von Neumann entropy of the den-
sity matrix

SρvN (t) ≡ −Tr [ρ(t) ln(ρ(t))] (32)

at time t = 5L. The results are shown in Fig. 7 a), b)
as function of system size L. We observe two different
scaling regimes of the entropy density SρvN/L: it is
constant in the ’mixed’ regime and vanishes in the
’pure’ regime. Indeed, at small resetting probabilities
SρvN grows linearly with system size L and this growth
is much slower at large values of p.

We take the following steps to quantitatively ex-
amine the two scaling regimes of the entropy of the
average state. First, we locally (at system sizes L −
1, L, L+ 1) fit SρvN with a linear function: SρvN (L) =
aL+ b. Performing the fitting at various L we obtain
the coefficient a(L) which we then fit with a second
order polynomial in 1/L: a(L) = a∞vN + b1/L+ b2/L

2.
The value of a∞vN is our estimate of the asymptotic
value of coefficient a(L) determining the growth of
SρvN with system size. The mixed regime is character-
ized by a∞vN > 0 and hence by a constant entropy den-
sity SρvN/L, whereas the pure regime is found when
a∞vN = 0.

The results of this analysis, along with 1 − P0 are
shown in Fig. 7 c), d). The regime in which a∞vN is
non-zero, obtained from the numerical simulations of
our model at α = 0.5, agrees well with the interval
of parameters for which mean field predicts a non-
zero value of 1 − P0. This applies to data for fixed
h = 0.9 as a function of the resetting probability p,
as well to results for fixed p = 0.1 as a function of the
field h. Comparison of the results of the mean field
approach with the behavior of a∞vN suggests that the
latter might be smoothed out around the transition
point due to residual finite size effects that are present
in the numerical data. Our numerical results do not
allow us to distinguish whether the change in scaling
of the entropy of the steady state becomes a transition
in the thermodynamic limit or is a smooth crossover.
However, we clearly observe that when the range of
interactions is decreased (α is increasing), the regime
in which the state of the system remains mixed ex-
tends to larger values of the resetting probability p.
Finally, for α = 2, there is no pure regime of the aver-
age state and the system remains always in the mixed
state. The asymptotic rate of increase of entropy of
the steady state a∞vN stays positive for all values of p
for α = 2 (see Fig. 7 c) even though it is a decreasing
function of p which shows that more frequent resetting
diminishes the number of states available to dynamics

of the system.
Investigations of symmetry breaking transition and

of the (putative) transition in the purity of the av-
erage state are two complementary ways of charac-
terizing the steady state of the system ρss. The two
transitions share the same dependence on the reset-
ting probability p and on the field h for sufficiently
long-range interactions (α . 0.5) and coincide at the
level of mean field approximations. However, the two
transitions are affected by the decrease of the range
of interactions in an opposite manner. At α = 0.5,
the regime of parameters in which the steady state
is mixed corresponds to the ordered phase. With a
decrease in the range of interactions (increase of α)
the ordered phase shrinks to smaller values of the re-
setting probability p whereas the regime of the mixed
steady state extends to larger and larger values of p.
Finally, for sufficiently short-range interactions (e.g.
α = 2), the system hosts no long-range order and the
steady state always remains mixed.

5 Entanglement transition
The crucial feature of the ordering transition is an
abrupt change in the properties of the average state of
the system ρ. In contrast, the entanglement transition
occurs at the level of individual quantum trajectories:
it separates phases with volume-law and area-law (or
sub-volume law for systems with power-law interac-
tions, see [54]) scaling of the entanglement entropy
of the state propagated along the quantum trajec-
tory. The entanglement transitions were firstly de-
scribed in quantum circuits with projective measure-
ments [37, 38, 43] and arise due to the competition
between unitary dynamics, that tends to increase the
entanglement, and local measurements, which sup-
press the long-range entanglement in the system. En-
tanglement transitions were found also in many-body
systems undergoing Hamiltonian evolution with ran-
dom measurements [123, 126–128]. From the perspec-
tive of protection of quantum information against the
non-unitary evolution of the system, the volume-law
phase can be identified as a quantum error-correcting
phase in which initially mixed state gets purified at
time scale exponential in system size, whereas in the
area-law phase the purification time is system size in-
dependent [46]. Importantly, this distinction between
the error correcting and the quantum Zeno phases
generalizes to systems with long-range interactions for
which the notion of area-law phase may be ill-defined.

Entanglement phase transitions may be probed via
suitable unconventional correlation functions [52, 129]
or via a non-linear functional of the density matrix,
such as the entanglement entropy or the negativity.
The entanglement entropy is perhaps the most nat-
ural probe, since in 1D systems with local interac-
tions it scales linearly with size in the volume-law
phase and is system size independent in the area-law
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phase. However, the logarithmic scaling of the entan-
glement entropy at the transition between volume-law
and area-law phases impedes a precise characteriza-
tion of the transition even in the numerically tractable
case of stabilizer circuits.

Instead, bipartite quantum mutual information
(QMI) [38, 130] and tripartite QMI [131] were pro-
posed as more reliable tools to pinpoint the transition.
To investigate measurement induced phase transition
in the Kicked Ising model with resetting we proceed
as follows. In the next subsection we investigate the
entanglement phase transition using the QMI and, in
the following subsection, we look at the transition di-
rectly through the lens of entanglement entropy. In
the subsequent subsection, we show that the volume-
law and sub-volume law phases determined by this
approach correspond respectively to quantum error
correcting and quantum Zeno phases.

5.1 Quantum mutual information
To investigate the properties of the entanglement
transition in our model we employ the quantum mu-
tual information, defined as

IA,B = S(A) + S(B)− S(A ∪B), (33)

where A and B are subsystems of size |A| = |B| = L/4
located adjacently on the chain with periodic bound-
ary conditions, and S(A) = −Tr [ρA ln(ρA)], with ρA
being the reduced density matrix of subsystem A in
state |ψ〉.

The QMI measures the total amount of correlations
between the subsystems A and B [132]. In the area-
law phase, the state is ’close’ to a product state, hence
one may expect weak correlations between the two
subsystems and, consequently, a small value of QMI.
Well into the volume-law phase, the subsystems A
and B are strongly entangled with their exterior but
the amount of information shared between A and B is
small. Thus, one may expect S(A) +S(B) to be close
to S(A ∪B), and the QMI to be small in the volume
law phase as well. On the other hand, at the en-
tanglement phase transition the correlations between
subsystems A and B are enhanced and the QMI is
maximal [43]. While the above description applies di-
rectly to systems with local couplings, we show below
that the the behavior of our system with power-law
interactions is fully analogous.

Fig. 8 a) shows the behavior of the QMI as a
function of resetting probability p, for a system with
α = 0.5. For a given system size L, the curve IA,B(p)
has a well defined maximum p0(L). Since the max-
imum sharpens up with increasing system size, it is
plausible to assume that p0(L) approaches the value
of the critical resetting probability pc in the thermo-
dynamic limit L → ∞, similarly to stabilizer circuits
[43]. More in detail, p0(L) is extracted from the QMI
measured just before (after) the resetting of the spins.

FIG. 8: The entanglement phase transition. Panel a) shows
the quantum mutual information IA,B where A,B are sub-
systems of size L/4 located adjacently in the system of size
L with periodic boundary conditions, calculated after the re-
setting. Panel b) shows the critical measurement probability
pc as a function of the range of interactions α. Panels c)
and d) show the measurement probability p0 corresponding
to the maximum of IA,B for various system sizes respectively
for models with α = 0.5 and α = 2, the curves denoted by
’After’ (’Before’) correspond to measurement of IA,B before
(after) the resetting. Panels e) and f) show the collapse of
IA,B data onto universal curves for α = 0.5 and α = 2
respectively.

The difference between p0 obtained from the QMI
measured before and after the resetting is quite large
for small system size L ≈ 10, as Fig. 8 c), d) illus-
trates, but this difference diminishes with increasing
system size and the two curves seem to converge to a
single critical resetting probability pc.

The resulting values of pc versus α are shown in
Fig. 8 b). We observe that in the limit of all-to-all cou-
pling, α→ 0, the transition point approaches pc → 0,
implying that for α = 0 the system is always in a
sub-volume law phase. As the range of interactions is
decreased, the entanglement phase transition shifts to
a finite value of resetting probability. While close to
α = 0 pc is sharply increasing with α, this is no longer
the case beyond α = 2. Nevertheless, in the limit of
strictly local interactions (α→∞), we expect a non-
zero value of pc [38]. Remarkably, the critical resetting
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probability at all considered interaction ranges obeys
the bound pc < 0.1893 of [133] derived under the as-
sumption that the volume-law state is an encoding of
a Page state in a quantum error-correcting code.

To quantitatively characterize the transition, we
perform a finite-size scaling analysis of QMI using the
scaling form

IA,B(p) = Lηf [(p− pc)L1/ν ], (34)

where f(x) is assumed to be a certain universal func-
tion, pc is the critical probability of resetting, η and
ν are critical exponents. For stabilizer circuits with
short-range interactions [38] the exponent η = 0, i.e.
the maximum of QMI saturates to a constant that is
independent of the system size L. This is a mani-
festation of an emergent conformal symmetry at the
transition, that arises also in 1D quantum critical sys-
tems at equilibrium [134]. The conformal symmetry
is broken when long-range interactions are introduced
to the stabilizer circuits [54, 55]. Then, the maximum
of QMI increases with system size and η > 0.

The obtained collapses of QMI data are shown in
Fig. 8 e), f) respectively for models with α = 0.5 and
α = 2. In the finite size scaling analysis we considered
only the QMI measured after the resetting process
because it is characterized by a weaker system-size
dependence compared to the QMI measured before
the resetting. Hence, we assume that the former re-
flects the asymptotic properties of the system more
reliably. For both α = 0.5 and α = 2, the maximum
of IA,B(p) increases nearly linearly with system size
L, and the obtained values η = 0.84(3) (η = 0.82(2))
are close to unity. Moreover, we observe a decrease
of the critical resetting probability (from pc = 0.14(1)
to pc = 0.035(7)) and of the value of the exponent
ν (from ν = 2.7(1) to ν = 0.93(8)) as the range of
interactions is increased from α = 2 to α = 0.5.

The behavior of the critical resetting probability
pc and of the critical exponent ν as function of the
interaction range is different from what has been ob-
served for long-range stabilizer circuits [54, 55] and for
systems of spinless fermions with long-range interac-
tions [53]. A direct comparison between our results
is impossible because of the fundamental qualitative
differences in our models. However, we can point out
some of the possible reasons behind the different ob-
servations. For example, we adopt a Kac prescription
specified in Eq. (2), while the work [53] does not
take into account such terms making the interactions
they consider more effective at enhancing entangle-
ment growth. Moreover, in [54] the authors consider
Clifford gates with range drawn from a power-law dis-
tribution. The number of pairs of interacting sites
is always of order L, while our model may exhibit a
larger number of interaction pairs (up to ∼ L2 in the
α→ 0 limit because of the all-to-all interactions) but
weaker compared to [54] because of the Kac renormal-
ization. This significant difference is likely the pri-

mary source of the different entanglement behavior.

The behavior of the system across the entangle-
ment transition is similar when the QMI (33) is cal-
culated using the Renyi entropy S(A) → Sn(A) =
[ln TrρnA] /(1 − n) with n ≥ 2 instead of the von
Neumann entanglement entropy. Performing a scal-
ing procedure analogous to the one presented in
Fig. 8 e), f), we find pn=2

c = 0.051(5), ν = 0.91(5), η =
0.75(1) for α = 0.5 and pn=2

c = 0.19(2), ν = 2.70(5),
η = 0.72(1) for α = 2. The discrepancies between
the results for von Neumann and Renyi entanglement
entropies likely stem from finite size effects which are
expected to be stronger for Renyi entropy.

We note that the subsystems A and B of size
|A| = |B| = L/4 considered in the calculation of QMI
(33) are located adjacently. In contrast, the subsys-
tems A′ and B′ located on antipodes of the ring with
periodic boundary conditions were used to pin-point
the MIPT in [38]. We have checked that the latter
configuration gives rise to quantitatively the same re-
sults as the former provided that α . 1. This is in-
tuitively expected: for sufficiently small α, the notion
of locality in the system is lost and the spatial con-
figuration of the of subsystems is not relevant. For
shorter range interactions, e.g. at α = 2, the configu-
ration with subsystems on the antipodes yields incon-
clusive results about MIPT in our system: in partic-
ular, it seems to be strongly affected by finite volume
effects. This suggests that the choice of neighboring
subsystems allows for a better location of MIPT in
the systems with non-local interactions. The insights
into MIPT in the Kicked Ising model with resetting
obtained from QMI are further confirmed by system
size scaling of bipartite entanglement entropy.

5.2 Entanglement entropy at the entangle-
ment phase transition
In this subsection we consider the von Neu-
mann bipartite entanglement entropy S(A) =
−Tr [ρA ln(ρA)] ≡ SvN (where the subsystem A con-
stitutes a half of the chain), and investigate the behav-
ior of SvN across the entanglement phase transition.
The entropy SvN is plotted as a function of system
size L for various resetting probabilities in Fig. 9 a). A
clear difference is visible between the regime of small
resetting probabilities p where SvN is increasing lin-
early with L and large p where SvN is independent of
the system size.

To analyze the scaling of SvN more quantitatively,
we follow a route similar to Sec. 4.4: we fit SvN with
a linear function: SvN (L) = aL + b using points at
system sizes L,L+ 2, L+ 4. Changing the value of L,
we obtain the coefficient a(L) which we then fit with a
first order polynomial in 1/L: a(L) = a∞ + b1/L, us-
ing a(L) for three largest system sizes available. The
values of the coefficient a together with the fits are
shown in Fig. 9 b), c).
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FIG. 9: The bipartite entanglement entropy SvN at the en-
tanglement phase transition. Panel a) shows SvN in steady
state of system of size L, for α = 0.5 and h = 0.9. Panels
b) and c) show the slope a of the SvN (L) curve as a func-
tion of system size L for various resetting probabilities and
α = 0.5, 2. Panel d) shows the coefficient a∞ obtained from
extrapolation of the slope a to thermodynamic limit L→∞.
Unphysical negative values are replaced with a∞ = 0.

For α = 0.5, a positive value of a∞ is obtained only
for p < 0.04, as shown in Fig. 9 d). For larger reset-
ting probability, the coefficient a decreases abruptly
with system size which could suggest a negative value
of a∞. Such a solution is unphysical since it implies a
decrease of SvN with increasing system size. A plau-
sible explanation is that a fit up to the linear order in
1/L could be a good approximation for a(L) only for
system sizes larger than the ones we have access to,
and that it is not sufficient to fully capture the behav-
ior of SvN for the smaller values of L that we consider.
Using a crude approximation, whose consequences we
will scrutinize below, whenever the fit yields a nega-
tive value of a∞, we assume that the actual value is
a∞ = 0, consistent with an area-law phase.

The problems with the extrapolation of our results
to the thermodynamic limit for α = 0.5 illustrate that
our method gradually looses its accuracy as the range
of interactions becomes sufficiently large. Hence, even
though the maximum of the QMI p0 → 0 for α→ 0, as
shown in Fig. 8 b), we cannot exclude the emergence
of a sub-volume law phase extending for p > 0 at
sufficiently small α. In such a phase, the entanglement
entropy could scale sub-linearly with system size, for
instance as SvN ∼ Lβ with 0 < β < 1. The existence
of such a phase is appealing due to the extremely long-
range of interactions at small α, but to demonstrate
or exclude such a possibility one would have to repeat
our analysis at much larger system sizes. We note that

the method exploiting the permutation symmetry on
the system at α = 0 from Sec. 3.3 can only be used
to calculate the average state ρss(t), which does not
contain information about entanglement properties of
states at individual quantum trajectories, and cannot
be used to shed light on the existence of a sub-volume
law phase at α = 0.

For systems with shorter range interactions (α =
2), we do not encounter problems with the extrapo-
lation of the behavior of von Neumann entanglement
entropy and find that a∞ is a monotonous function of
p decreasing to 0 at sufficiently large p. The resulting
values of a∞ are shown in Fig. 9 d). The critical reset-
ting probabilities pc obtained from the finite-size anal-
ysis of the QMI, correspond to regions where the value
of a∞ quickly decreases with p, showing a high de-
gree of consistency between the two approaches. The
residual, non-zero value of a∞ at p > pc shows that
there are finite-size effects in the system that cannot
be fully grasped by our scaling analysis.

5.3 Purification transition
So far, measurement induced criticality has been pri-
marily characterized as an entanglement transition: a
pure state is evolved under measurements and uni-
tary dynamics and its bipartite entanglement entropy
is monitored. Another facet of measurement induced
criticality has been proposed in Ref. [46] and cor-
responds to purification transitions. In this context,
the system – which again is subject to a combination
of measurements and unitary dynamics – is instead
initialized in a mixed state. By monitoring outcomes
of measurements, one continually gains information
about the system [135], so that the number of states
consistent with the measurement record is steadily de-
creasing. This reduces the entropy of the state ρ(c) of
the system, and may lead to its purification. However,
the chaotic unitary evolution of the quantum many-
body system counteracts this process by scrambling
the quantum information and protecting it against lo-
cal measurements [136]. This competition leads to a
dynamical phase transition between a ”mixed” phase
in which the system purifies at time scale exponential
in system size, and a ”pure” phase in which the state
purifies at a constant system-size-independent rate.

To investigate the presence of a purification tran-
sition in the spin chain of our interest, we consider
the conditioned density matrix ρ(c) along a trajectory,
initialize it in a fully mixed state ρ(c) = I/2L and cal-
culate its time evolution. To observe the purification
phase transition, after each step of the unitary time
evolution, we transform the density matrix according
to

ρ(c) →
Kµρ

(c)K†µ

Tr[Kµρ(c)K†µ]
(35)

at each resetting step, with probability Tr[Kµρ
(c)K†µ]

[40].
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FIG. 10: Purification phase transition. The average von Neu-
man entropy of the density matrix S(ρ) is plotted as function
of time t rescaled by Lz, where L is the system size and z
is the dynamical critical exponent. Panels a) and b) show
results for systems with α = 0.5 and α = 2. For p < pc,
the value of S(ρ) at (sufficiently large) fixed t/Lz increases
as data for p = 0.01 (p = 0.07) demonstrate for α = 0.5
(α = 2), the opposite trend is visible for p > pc – as visible
from data for p = 0.08 at α = 0.5 and for p = 0.28 at α = 2
At the transition, p ≈ pc, S(ρ) is approximately constant at
fixed value of t/Lz.

The entanglement transition manifests itself in a
purification of the density matrix ρ(c)(t). Note that
in section 4.4 we were interested in properties of the

average steady state ρ = ρ(c), for which the unitary
evolution ρ(t + T ) = Uρ(t)U† was followed by the
resetting ρ(t) →

∑
µKµρ(t)K†µ. Such a time evolu-

tion results after sufficiently long time in the steady
state ρss. In this section, we are instead interested
in following the evolution of single trajectories, in a
similar way as for the detection of the entanglement
transition.

The results of our numerical simulations are shown
in Fig. 10. For each trajectory of matrix ρ(c), we
calculate its von Neumann entropy and then average
the results over hundreds of trajectories, obtaining

S(ρ) = −Tr[ρ(c) ln ρ(c)] (36)

Due to the average over trajectories, the calcula-

tions are very time consuming, therefore we are lim-
ited to system sizes L ≤ 12.

In the first step we determine the values of dynam-
ical critical exponent z. The exponent z is not equal
to unity as is in the stabilizer circuits [47], due to lack
of conformal invariance in our system. To calculate
z we use the values of pc for the entanglement phase
transition estimated in Sections 5.1 and 5.2, and de-
termine z from the requirement that S(ρ) for various
system sizes L collapse on universal curves at p = pc.
This yields z = 1.8 ± 0.2 (z = 2.0 ± 0.2) for α = 0.5
(α = 2). Those values of the dynamical critical ex-
ponent are close to the values found in Section 7.2.2,
although their values are less certain due to the small
interval of system sizes used in their determination.

Inspecting the behavior of S(ρ) as function of t/Lz

for different system sizes in Fig. 10 we note that for
p < pc the value of S(ρ) slowly increases with L for
a fixed value of t/Lz. The opposite trend is visible
for p > pc, when S(ρ) decreases with system size L
for a fixed value of t/Lz. Hence, for p > pc the state
of the system is dynamically purified, exactly in the
same manner as it was observed in the area-law phase
of stabilizer circuits in [47].

6 Multifractality in the steady state
regime
In this section we investigate the extent to which the
wave function spreads over the Hilbert space corre-
sponding to the ensemble of individual quantum tra-
jectories. This allows us to provide a connection to the
well-understood phenomenology of localization. The
figure of merit we consider are participation entropies
[137]

Sq = 1
1− q ln

 2L∑
β=1
|ψβ |2q

 , (37)

where |ψβ |2q is the q-th moment of the wave function
expressed in a given basis of the Hilbert space. The
asymptotic behavior of the participation entropies
Sq with the system size L distinguishes wave func-
tions that are delocalized, multifractal and localized.
Hence, Sq are of natural interest in studies of local-
ization, both in single particle systems – for instance
in the 3D Anderson model [138] – and in many-body
systems [137, 139, 140]. For delocalized wave func-
tions, Sq = L ln 2; oppositely, localized wave func-
tions are characterized by a system size independent
value of Sq, whereas for the multifractal wave func-
tions Sq = DqL where Dq < ln 2 is a q-dependent
multifractal dimension. Before discussing the rele-
vance of participation entropies for the physics we are
interested in, it is worth noting that those may be of
experimental relevance since the stochastic sampling
of wave functions has become available in atomic as
well as in solid state platforms [141–148].
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FIG. 11: Participation entropy Sq=1 in the steady state of the
system calculated in eigenbasis of σzi operators. Panels a)
and b) contain the raw data for Sq=1 as a function of system
size L for the model with α = 0.5 and α = 2, respectively.
Panels c) and d) show the coefficient a∞

q=1 in the system-size
dependence of the participation entropy Sq=1 ∼ a∞

q=1L; the
dashed blue lines correspond to extrapolations based on sys-
tem sizes L = 8, ..., 14, whereas the solid lines correspond
to extrapolations based on L = 16, ..., 24. Data denoted as
’Before’ (’After’) correspond to measurement of Sq just be-
fore (after) the resetting. The vertical dashed lines show the
position of the entanglement phase transition and symme-
try breaking transition for α = 0.5 and the position of the
entanglement phase transition for α = 2.

6.1 Participation entropy in the Z basis

One of the features of the participation entropy Sq
(37) is that it depends on the choice of basis in the
Hilbert space. The eigenbasis of σzi operators (which
we refer to as the ’Z basis’) is a natural choice for the
kicked Ising model with resetting. We expect that
at large resetting probability the steady state will be
close to the paramagnetic state |↓↓ ... ↓〉 and hence
localized in the Z basis. Conversely, a decrease of
the resetting probability may result in the gradual
delocalization of the steady state.

Fig. 11 a), b) show the participation entropy Sq=1
as function of the system size L for models with long-
range (α = 0.5) and short range (α = 2) interactions.
The participation entropy is calculated from the wave
function before the resetting. For both α = 0.5 and
α = 2, an increase in p inhibits the growth of partici-
pation entropy with system size.

In order to investigate the system size dependence
of Sq more quantitatively, we follow a strategy similar
to the one employed for the bipartite entanglement
entropy. We perform a linear fit Sq(L) = aqL+b using
points at system sizes L− 2L,L,L+ 2. This yields a
coefficient aq(L). Subsequently, we extrapolate aq(L)

to the L → ∞ limit by fitting it with a second order
polynomial a∞q + b1/L+ b2/L

2. The free coefficient of
the polynomial a∞q is an estimate of the multifractal
dimension Dq that governs the scaling Sq = DqL of
the participation entropy in the limit of large system
size.

The obtained values of a∞q (for q = 1) are shown
in Fig. 11 c), d). There are apparent differences
in the coefficient a∞q=1 obtained from the participa-
tion entropy measured before and after the resetting.
Those differences are less pronounced in the volume-
law phase at small resetting probability p. This res-
onates well with the point of view of quantum error
correction: in the volume-law phase the local mea-
surements are insufficient to alter the scaling of the
participation entropy. Once the resetting probabil-
ity surpasses the critical value for the entanglement
phase transition, p > pc, we observe a decrease in
a∞q=1. Moreover, we note that there are apparent dif-
ferences in the scaling of the participation entropy
calculated before and after the resetting in the sub-
volume law phase (p > pc) reflected by differences in
the respective a∞q=1 coefficients.

Interestingly, the process of decrease of a∞q=1 with
p does not occur in the same way for α = 0.5 and
for α = 2. For the latter case, the difference be-
tween a∞q=1 before and after the resetting is increasing
with p. Finally, deeply in the sub-volume law phase
for participation entropy after the resetting one ob-
tains a∞q=1 ≈ 0 implying that the state is localized in
the Z basis. However, a single cycle of the unitary
time evolution noticeably delocalizes the state even
at large p resulting in a∞q=1 to be significantly above
0. In contrast, for the longer-range of interactions
(α = 0.5) the difference between scaling of participa-
tion entropy before and after the resetting starts to
diminish around p ≈ 0.5, and, in the regime of large
p, a∞q=1 ≈ 0 both for the wave function before and af-
ter the resetting. The differences between the α = 0.5
and α = 2 cases trace back to the differences in system
size scaling of the entropy of the steady state ρss. If
the system is in the purifying regime then the steady
state remains localized in the Z basis throughout the
whole cycle of time evolution. In contrast, the mixed
dynamics of the system at α = 2 is able to delocalize
the state in the Z basis during a single cycle of time
evolution even though the resetting localizes the state
entirely.

This subsection shows that the system size scaling
of entanglement entropies distinguishes between vari-
ous dynamical phases of the kicked Ising model with
resetting. One of the questions that remain open is
whether the wave function becomes fully delocalized
in the volume-law phase (and then Dq = ln 2 for all
q). While this seems plausible, the values of the multi-
fractal dimension are smaller than ln 2, and the trend
between data for smaller/larger system sizes (dashed
vs solid lines in Fig. 11 c), d) ) appears to suggest
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FIG. 12: Scaling of participation entropies Sq in the steady
state of the system. Panels a) and b): the coefficient a∞

q=1
governing growth of Sq=1 in the X basis, respectively for
range of interactions α = 0.5 and α = 2; the dashed blue
lines corresponds to extrapolations based on system sizes
L = 8, ..., 14, whereas the solid lines correspond to extrapola-
tions based on L = 16, ..., 24. Panels c) and d) show a com-
parison of the coefficients a∞

q for q = 1, 2, 3 (derived from
Sq measured before the resetting), respectively for α = 0.5
and α = 2; the steady state is multifractal when a∞

q < ln 2
and a∞

q are different for different q.

that this difference shall not be due to finite volume
effects, which would be in line with the conclusions of
[40]. The long-range order present in the system at
α = 0.5 puts certain constraints on the wave function
and prevents full delocalization of the wave function
over the whole Hilbert space. Such mechanism is ex-
pected to be absent for α = 2, when there is no long-
range order in the system. A careful examination of
problems with self-averaging [149] and of finite size
effects could shed further light on the matter of de-
localization of the wave function in the volume-law
phase.

6.2 Eigenstates in the X basis and multifrac-
tality
The participation entropies (37) can be also calculated
in the eigenbasis of σxi operators (the ’X basis’). This
leads to a different picture that is complementary to
the previous choice. For instance, the fully localized
state in the Z basis |↓↓ ... ↓〉, relevant for the limit of
large p, becomes an equal superposition of all basis
states in the X basis.

The results for the a∞q=1 coefficient, calculated in
the X basis are shown in Fig. 12 a), b). The afore-
mentioned difference with respect to the Z basis is
indeed visible. However, the results in the X basis
are fully consistent with results in the Z basis: the

volume-law phase is characterized by a∞q=1 close to
(but smaller than) the ergodic value ln 2; once the re-
setting probability increases beyond the critical value
pc, the coefficient a∞q=1 drops down and a difference
between data before and after the resetting shows up.
Finally, the difference becomes small in the purify-
ing steady state regime at large p in the system with
α = 0.5, in contrast to the regime of mixed dynamics
for α = 2.

Fig. 12 c), d) show the coefficient a∞q calculated for
participation entropies with q = 1, 2, 3 in the Z basis
using data before the resetting (the results in the X
basis are analogous). The coefficients a∞q are vanish-
ing in the purifying regime at large p in the model with
α = 0.5, showing that the state is indeed localized in
the Z basis. For smaller values of p at α = 0.5, as well
as for the entire interval of resetting probabilities for
α = 2, we observe that the values of a∞q lie between
0 and ln 2 and are not-equal to each other. This sug-
gests that the steady states in the kicked Ising model
with resetting are either fully localized in the Hilbert
space or possess a multi-fractal structure for p > pc.
The situation is less clear cut in the volume-law phase.
For p < pc the coefficients a∞q are quite close to ln 2
for α = 2 and it is unclear whether the wave function
becomes fully delocalized over the Hilbert space in
the thermodynamic limit. In contrast, for p < pc the
coefficients a∞q are significantly smaller that ln 2 for
α = 0.5 which is a signature of the long-range order
in the kicked Ising model with resetting.

7 Experimental realization with
trapped ions
In the above sections we have shown how different
types of phase transitions manifest in a spin sys-
tem evolving according to a Floquet evolution based
on long-range interactions and global rotations inter-
spersed with random non-unitary local reset opera-
tions. In the following we will outline how to ob-
serve all these different types of non-equilibrium phase
transitions in a realistic experimental setting based on
laser cooled atoms confined in radiofrequency traps.

7.1 How to realize unitary and non-unitary
evolution
Hamiltonian dynamics. - Trapped-ion sys-
tems can directly realize the long-range interact-
ing spin models of the type described in Eq. (1)
by off-resonantly coupling pseudo-spin degrees of
freedom (detailed below) to the motional collective
modes stemming from ion-ion Coulomb interactions
[81, 150]. In particular, given the normal modes fre-
quencies ωm, the laser Rabi frequency Ω and the de-
tuning µ from the center of mass mode, the spin-spin
interaction Jij between ions i and j can be explicitly

Accepted in Quantum 2022-01-27, click title to verify. Published under CC-BY 4.0. 17



calculated as follows:

Jij = Ω2ωrec

L∑
m=1

bimbjm
µ2 − ω2

m

, (38)

where ωrec = ~(∆k)2/2M is the recoil frequency as-
sociated with the transfer of momentum ~(∆k) and
bim is the normal mode transformation matrix that
specifies the participation of the i-th ion on the m-
th normal mode. The spin-spin interaction can be
approximated with a tunable power law:

Jij = J0

|i− j|α
, (39)

where the power law exponent α can be set by chang-
ing the detuning µ and the trap parameters. Usu-
ally the laser detuning is µ > ωm,∀m, giving rise
to positive anti-ferromagnetic interactions. However,
changing the relative sign of the transverse field h
and the spin-spin interaction J0 gives access to dy-
namics of both ferromagnetic and anti-ferromagnetic
systems [82, 151–153]. This holds also in the case of
the driven-dissipative dynamics under study, as the
Kraus operators defined in Eq. (6) are real.

In order to implement the transverse field Hamil-
tonian HT (Eq. 1) for the kicked model, a series of
global rotations can be applied with the same laser
beams generating the Ising Hamiltonian, adding neg-
ligible experimental overhead. Another possible strat-
egy is to realize only a single unitary chapter, evolving
under the Hamiltonian HI + HT by using asymmet-
ric laser detunings µ± [81]. This approach would not
realize the kicked model, treated here for conceptual
simplicity, but all the results derived in this work are
not expected to differ qualitatively in the case of uni-
tary evolution under HI+HT . This unitary evolution
can be easily digitized and expressed in terms of single
and two-qubit gates. This makes this model accessi-
ble to both analog and digital trapped-ion quantum
simulators.

Optical pumping and measurements. - The
other ingredient necessary to experimentally observe
the non-equilibrium phase transitions is local mea-
surement and/or resetting operations. In this respect,
trapped-ion qubits offer high fidelity state detection
[85, 86] based on spin dependent fluorescence. Addi-
tionally, state preparation can be efficiently realized
with optical pumping [84], a well-known technique
based on photon scattering and atomic selection rules
that effectively implements the operators Ki0 and Ki1
leading to the Kraus map defined in Eq. (6).

As a non-unitary operation, optical pumping has a
fundamental advantage with respect to full detection:
it leads to negligible cross-talks, making the reset op-
eration truly local, as it leaves untouched neighboring
qubits. As outlined below, the symmetry-breaking

transition can be observed by averaging over quan-
tum trajectories and, therefore, does not require pro-
jective measurements to postselect the data. On the
other hand, MIPTs can be observed only by measur-
ing properties of the quantum state, therefore it is
necessary to postselect over quantum trajectories via
strong measurements on the randomly selected qubits.

In the following sections, the experimental strate-
gies and challenges to observe both the symmetry-
breaking and the entanglement transitions are out-
lined.

7.2 Measuring the transitions
7.2.1 Symmetry breaking transition

Our results from Section 4 indicate that ferromag-
netic ordering transition of the average state can be
observed in the kicked Ising model with resetting: the
measurement of the two-point correlation function X2

(see Eq. (23)) or the Binder cumulant (see Eq. 28)
allows to pin-point the transition for sufficiently large
systems. We stress that, thanks to single atom res-
olution, both two-body [82, 144, 154] and four-body
correlators [155] are routinely measured in trapped-
ion systems. In particular, since these observables are
measured averaging over different quantum trajecto-
ries, post-selection is not required and resetting via
optical pumping is sufficient to probe the transition.

In order to analyze the experimental feasibility,
let us consider the concrete example of 171Yb+

ion with the spin degree of freedom encoded in
clock states |↑〉 = 2S1/2 |F = 1,mF = 0〉 and |↓〉 =
|F = 0,mF = 0〉, respectively (see Fig. 13a). In this
case the optical pumping process is carried out by
driving the 2S1/2F = 1 → 2P 1/2F

′ = 1 transition at
369 nm.

The pumping process can be described by a Lind-
blad Master Equation. A numerical solution of the
equation is plotted in Fig. 13b which shows that
reasonable experimental parameters guarantee 99.8%
optical pumping efficiency in ∼ 500 ns. By numer-
ically integrating the total excited state population
over time, the total average number of scattered pho-
tons is predicted to be 〈N〉ph ∼ 3 leading to an aver-
age number of photons absorbed by the neighboring
ions of 〈N〉ph ∼ 1×10−3, assuming 4 µm ion-ion spac-
ing. Therefore, errors in the reset operations are likely
to be dominated by optical aberration in the produc-
tion of a beam array with radius w0 < 2µm, rather
than scattering from neighboring ions during pump-
ing. Crosstalk due to stray beam intensity on neigh-
boring ions can be reduced down to < 10−4 [156],
leading to an < 0.5% error.

Additionally, another experimental observable re-
lated to the average state can be used to detect the
onset of the symmetry breaking transition. Recent
progress in stochastic sampling of wave function [141–
148] suggests an alternative route of identification of

Accepted in Quantum 2022-01-27, click title to verify. Published under CC-BY 4.0. 18



2S1/2

2P1/2

369 nm

F=1

F=0

F’=1

F’=0
ω′�HF

ωHF

Δ′�Z

ΔZ

Ω

|1⟩
| − 1⟩

| ↑ ⟩

| ↓ ⟩ 0.0 0.2 0.4

t[µs]

0.0

0.2

0.4

0.6

0.8

1.0

⇢
↵
↵
(t

)

b)

⇢##
⇢""
⇢11

⇢�1�1

⇢ee

a)

FIG. 13: Optical pumping in 171Yb+: a) near-resonant
369 nm light pumps the electron in the dark state |↓〉, being
detuned by ∼ 750Γ from the next available transition, with
Γ being the linewidth of the excited state. ωHF = 12.6
GHz and ω′

HF = 2.105 GHz are the hyperfine splitting
of the ground 2S1/2 and excited 2P1/2 state, respectively.
b): Master equation simulation of state population evolu-
tion with Ω = 15 Γ, ground (excited) state Zeeman split-
ting ∆Z = 0.4 Γ(∆′

Z = 0.13 Γ) and laser resonant with the
|F = 1,mF = 0〉 → |F ′ = 1,mF = 0〉 transition. Natural
linewidth of the 2P1/2 state is Γ = 2π × 19.6 MHz. The
green line is the total of all four excited states of the 2P1/2
manifold. We assumed beam waist w0 = 1.5µm and power
P = 1µW.

phase transitions based on detecting changes in struc-
ture of a set of wave function snapshots [157, 158]. In
fact, the entanglement phase transition in stabilizer
circuits can be seen as a data structure transition
[159]. In that approach, the intrinsic dimension Id
[160] of the data set that encodes the wave function
of the stabilizer circuit was demonstrated to be a good
probe of the entanglement phase transition. The in-
trinsic dimension admits a minimum both at the mea-
surement induced phase transition [159] as well as at
the equilibrium phase transitions [158].

This motivates us to investigate the following pro-
cedure of probing the transitions in the kicked Ising
model with resetting. We assume the system to be
in the steady state for fixed values of parameters L,
p, h and β, and take a certain quantum trajectory

|ψ〉 =
∑2L

β=1 ψβ |β〉, where |β〉 are the states of the X
basis. We simulate the process of taking snapshots
of the wave function by drawing randomly m states
from the X basis, in such a way that the probability
of drawing state |β〉 is equal to p2

β . This results in
a sequence of m states (β1, β2, ..., βm), equivalent to
binary number of length m × L, which becomes the
first entry of our data set G. Generating an indepen-
dent state |ψ′〉 (by performing 4L cycles of the unitary
evolution and resetting, or by restarting the time evo-
lution), we repeat the procedure, obtaining another
binary number of length m × L, which becomes the
second entry of the data set G. The procedure is iter-
ated until the data set consists of n binary numbers.
In our calculations we use m = 10 and n = 5000. We
stress that a database of such dimensions can be read-

FIG. 14: Intrinsic dimension Id of the set G of wave func-
tion snapshots as a function of resetting probability p. Panel
a) shows the results for system with long-range interactions
(α = 0.5), whereas results for a model with interactions of
shorter range are shown in panel b).

ily collected in trapped-ion system, where the result
of each single measurement on L qubits is a binary
outcome of L bits that gives access to correlators of
any order, up to the bitstring probability [80, 144].

Subsequently, we employ the two nearest-neighbors
technique to estimate the intrinsic dimension of the
data set G. For each element x of G we compute the
first and second nearest-neighboring distances r1(x)
and r2(x) using the xor distance metric, that allows
us to obtain the intrinsic dimension Id of G [160].

The results for the intrinsic dimension are shown in
Fig. 14. We observe that the intrinsic dimension as a
function of p has a minimum around p ≈ 0.5 for long-
range interactions α = 0.5 (compatible with pSB

c =
0.58, see Fig. 5) and that there are no distinctive
features when α = 2. This suggests that despite the
broad minimum, the computed intrinsic dimension is
sensitive to the symmetry breaking phase transition,
at least for the system sizes we consider, for which
the pin-pointing of the transition with the correlation
function is also not straightforward.

On the other hand, the intrinsic dimension remains
agnostic to the entanglement transition in our system.
This conclusion is not inconsistent with the findings
of [159], since in that case, the set G encoded full in-
formation about the state in the stabilizer circuit. In
our case, the set G contains only a fraction of infor-
mation about the steady state of the system. Such
an amount of information is sufficient to find signa-
tures of rapid changes in the properties of the average
state of the system but is not sufficient to observe the
entanglement phase transition.

7.2.2 Entanglement transition

As explained above, the experimental observation of
the entanglement phase transition requires measuring
properties of the quantum state of the system such
as entanglement entropy. One possible scheme to de-
tect the entanglement phase transition would be to
directly measure the bipartite entanglement entropy
along individual quantum trajectories in the steady

Accepted in Quantum 2022-01-27, click title to verify. Published under CC-BY 4.0. 19



state using quantum interference [161, 162] or random
measurements [163, 164] and then to repeat the anal-
ysis of Sec.7.2.2. However, even if feasible in principle,
such approaches would require resources exponential
in system size L [165], which makes it a daunting chal-
lenge. Moreover, post-selection on the experimental
data is necessary to ensure that the average is per-
formed over the trajectories with the same measure-
ment outcomes. This causes an additional overhead in
the number of measurements that scales exponentially
as 22pL2

[44]. However, the post-selection experimen-
tal overhead is more bearable if pc is made as small as
possible by decreasing the power-law exponent α, as
shown in Fig. 8b. Hence, the tunability of the inter-
action range in the trapped-ion system offers a viable
strategy to observe experimentally MIPTs.

In order to perform post-selection, the randomly
selected qubits need to be projected in a well defined
state via strong measurement prior to resetting. This
leads to a more practical experimental challenge: pho-
ton scattering that results from spin dependent fluo-
rescence used in the measurement will heavily affect
the nearby ions which, in a typical ion chain, are only
a few µm apart. Indeed, in order to differentiate the
two spin states, it is necessary to scatter Nph ∼ 103

photons and this leads the nearby ions to absorb on
average Nph ∼ 1 photon (considering 4 µm of ion-ion
spacing), hindering the possibility to perform well-
controlled local non-unitary operations. A possible
solution is qubit hiding: in most ions there are long-
lived states connected to the ground state manifold
via narrow optical transitions (e.g. 2D3/2 and 2F7/2
in Yb+ or 2D5/2 in Ba+). The ions’ electronic wave-
function can be temporarily stored in those states and
not be subject to the measurement in order to avoid
crosstalks. The fundamental limitation of this ap-
proach is given by the probability that one ion decays
to the ground state before the measurement is over,
namely e−Ltmeas/τ , where τ is the metastable state
lifetime and tmeas is the measurement time, which can
be pushed to a few tens of µs with high resolution op-
tics [166]. Considering typical metastable state life-
times (e.g. τ ∼ 60 ms for 2D3/2 in Yb+[167], τ ∼ 26
s for 2D5/2 in Ba+ [168] or τ ∼ 3700 days for 2F7/2
in Yb+ [169, 170]), this error can be made negligible
depending on the atomic levels in use. Qubit hiding
also allows to use the ions that have been measured
for sympathetic recooling to eliminate the heating of
the shared motional modes induced by the measure-
ment. Since the hidden qubits are encoded in a dif-
ferent electronic state, they are insensitive to cooling
lasers, which is also a crucial requirement to retain
high-fidelity in quantum error correction applications
[171].

An alternative route to detect the entanglement
transition proposed in [46] gets rid of the exponential
requirement related to the quantum state observable
but still requires an exponential number of measure-

ment to average over different quantum trajectories.
In this scheme, the spin with number i = 1 is treated
as a reference qubit, whereas the spins i = 2, ..., L are
treated as the system. Initially, the reference qubit is
strongly entangled with the system, so that the initial
state reads

|ψ〉 = 1√
2

(|↑〉R |φ1〉S + |↓〉R |φ2〉S) , (40)

where |φ1,2〉S are (nearly orthogonal) states of the sys-
tem (spins i = 2, ..., L). To prepare such a state, we
perform 2L cycles of the unitary evolution (1) with
resetting of all of the spins with probability p = 0.01.
This produces a strong entanglement of the reference
qubit with the rest of the system. Alternatively one
could entangle the reference qubit with the system ap-
plying a series of L−1 consecutive XX gates [172] (see
appendix B for details). Subsequently, we set t = 0
and start the evolution of the system with the the
unitary evolution (1) restricted only to spins of the
system (i = 2, ..., L) and performing the resetting of
the spins of the system with probability p. The idea is
that in a volume-law phase the measurements do not
collapse the state of the system and hence the refer-
ence qubit remains strongly entangled with the sys-
tem. In contrast, when resetting collapses the state
of the system, the state of the reference qubit is pu-
rified. This can be diagnosed by looking at the von
Neumann entropy SR of the reduced density matrix
ρR of the reference qubit

SR = −TrR(ρR ln ρR); ρR = TrS(|ψ〉 〈ψ|), (41)

where R denotes the reference qubit and S denotes the
system (spins i = 2, ..., L). The data requirements in
this case are more lenient as the entanglement entropy
of a single qubit requires only measurements in three
orthogonal basis.

The results are shown in Fig. 15 a), b) for values
of resetting probability close to the estimated entan-
glement transition. We observe that the decay of SR
in time becomes gradually slower with increasing sys-
tem size, both for α = 0.5 and α = 2. The emergent
conformal symmetry at the entanglement phase tran-
sition in stabilizer circuits implies that for p = pc, SR
becomes a universal function of t/L. We find a col-
lapse of SR at p ≈ pc (with pc found in Sec. 5) as a
function of t/Lz, see Fig. 15 c), d) with z 6= 1. This
is another manifestation of the lack of conformal in-
variance at the entanglement transition in our model.
The dynamical exponent z is larger than the value
consistent with conformal field theory zCFT = 1. In
contrast, the dynamical exponents found for stabilizer
circuits with long-range interactions are smaller than
unity [54].

The entanglement entropy of the reference qubit
follows similar scaling laws as the QMI discussed in
Sec. 5. To demonstrate this, we introduce a time
τ such that SR(τ) = s0 = 0.15 (other values of
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FIG. 15: Probing the entanglement phase transition with
a single reference qubit. Panels a) and b) show the time
evolution of entanglement entropy SR of the reference qubit
(measured before the resetting) respectively for α = 0.5 and
α = 2, values of the resetting probability are close to the
estimated position of entanglement phase transition. The
same is shown in Panels c) and d) but the time is now rescaled
by a factor Lz which leads to a collapse of the data. Panels
e) and f): time τ such that SR(τ) = s0 = 0.15, rescaled by
Lz is shown as a function of (p− pc)L1/nu.

s0 ∈ [0.1, 0.4] yield similar results) and perform a fi-
nite size scaling analysis of the time τ using the fol-
lowing ansatz

τ = Lzg[(p− pc)L1/ν ], (42)

where g(y) is an universal function, the value of z is
fixed from the collapse of SR at the transition point
and pc, ν are treated as free parameters. The collapses
are shown in Fig. 15 e), f). The obtained values of the
critical resetting probability pc and of the exponents
ν are consistent with the results obtained for QMI in
Sec. 5, showing that the entanglement entropy SR of
the reference qubit indeed probes the critical behavior
at the entanglement phase transition in the system.
However, the predictive power of the method investi-
gated in this section is limited. To extract the value
of the dynamical critical exponent z we had to know
the value of the critical resetting probability, pc, in
advance. Finding the collapse of the entanglement

entropy SR of the reference qubit as function of t/Lz

for p ≈ pc, we determined the value of z. However,
collapses of similar quality can be obtained for a re-
setting probability p̃ that differs from pc by a factor
of 50%, leading to a spurious value of the dynamical
critical exponent z̃ that is significantly different than
the value z obtained in the collapse for p ≈ pc. Per-
forming the collapse of τ/Lz leads to a spurious value
of the critical resetting probability, self-consistently
close to the value p̃ for which z̃ was determined.

Summing up, the entanglement entropy of the ref-
erence qubit can be used to find the value of the dy-
namical critical exponent z for a generic entanglement
phase transition if the position of the transition is
known in advance. If there is an emergent conformal
symmetry at the transition, as for instance in stabi-
lizer circuits, the value of z is fixed to 1, which can
be used to pin-point the position of the transition.
This is no longer the case in the absence of confor-
mal symmetry, as we have shown for the kicked Ising
model with resetting. In such case, the investigation
of the entanglement entropy of the reference qubit al-
lows for a measurement of the dynamical exponent
z given the information about pc that can be either
extracted from numerical analysis of the QMI or mea-
sured.

7.2.3 Effect of noise

Here we briefly discuss the effects that the presence
of noise (interaction with the environment, errors in
the experimental protocol, etc.) has on both the DPT
and the MIPT.

For what concerns the symmetry breaking transi-
tion, the average steady state is already mixed, so that
coupling to some additional small noise will simply
shift the critical probability pc in favor of the para-
magnetic region. For example, this behavior can be
observed more quantitatively by introducing a small
random noise in the magnetic field h + hξ and then
average over the distribution P(hξ) of the noise. This
type of noise is one of the main sources of decoher-
ence in a trapped-ion system. In the simple case of a
Gaussian probability distribution we find

〈pc〉ξ =
∫
dξP(hξ)pc(h+ hξ) ≈ pc + p′′c (h)〈h2

ξ〉ξ/2
(43)

The small corrections to the critical probability are
proportional to the second derivative of pc(h) and thus
always negative, see Eq. (26) and Fig. 3 and 16.

On the other hand the effect of environment noise
on the entanglement transition is more severe. In
particular, the sub-volume phase of the entanglement
entropy is metastable and disappears at long times,
when the environment dynamics becomes predom-
inant. In this regime, the entropy stops being a
good measure of the entanglement since the system
builds up classical correlations due to the coupling
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FIG. 16: Sketch of the effect of noise on DPT (left) and
MIPT (right). Additional noise results in larger mixedness of
the system and shift the critical probability in favor of the
paramagnetic region (red arrows). For what concerns the
MIPT, coupling to the environment leads to the build up of
classical correlations over a timescale τnoise; if the satura-
tion timescale τsat for the entanglement entropy is smaller
than τnoise, the MIPT is still visible as a metastable phase
transition.

to the environment. Nonetheless, the measurement
induced transition in the entanglement may still be
detected in the transient dynamics of the system if
the crossover time to the volume phase is long enough.
This crossover time τnoise depends on the details of the
model and on the strength of the noise, but if τsat is
the typical saturation time needed to achieve a steady
state of the unitary and measurement dynamics, then
the metastable non-volume phase is still observable
when τsat � τnoise. In particular our numerical sim-
ulations show that τsat ∼ L. Since in trapped-ion
systems the time durations of detection, resetting and
single qubit rotations (1-100 µs) are usually one order
of magnitude faster than interaction timescales (∼ 1
ms), we can infer that the coherence time needed to
observe MIPTs is τsat ∼ L/J0, with J0 being the NN
spin-spin interactions.

8 Conclusions
In this work we proposed a new framework to simul-
taneously investigate dissipative and measurement-
induced phase transitions in experimentally realizable
quantum-many body systems, whose dynamics is cap-
tured by a dissipative Floquet theory. We considered
a kicked Ising model with resetting, and found that
both a DPT and a MIPT emerge as a result of the
interplay between the unitary dynamics and the ran-
dom quantum measurements.

The DPT occurs between a ferromagnetic ordered
phase and a disordered phase. It can be studied
through several observables, such as the magnetiza-
tion, spin correlation functions or the Binder cumu-
lant, that act as order parameters for the transition
and that are linear functions of the average state of
the system ρss(t).

The MIPT in the entanglement entropy has a
similar phenomenology to those occurring in hybrid
quantum circuits: the bipartite entanglement entropy
scales linearly with system size on one side of the tran-
sition or saturates on the other side, and the quantum

mutual information has a peak at the transition. The
MIPT in our model exhibits no conformal symmetry,
in contrast to the case of Clifford and Haar circuits
[131], but analogous to the MIPT observed in Clifford
circuits with sufficiently long-range power-law inter-
actions [54]. The observables employed to study the
MIPT are non-linear functions of the quantum state
along a particular trajectory, marking a crucial differ-
ence with the DPT observables.

In fact, even though the observables used to iden-
tify the DPT can be measured on individual quan-
tum trajectories, other information about the mea-
surement induced dynamics is lost in the process of
the state average. As a consequence, the average state
of the system ρss(t), remains agnostic to the under-
lying transitions at the level of quantum trajectories.
Indeed, our findings indicate that the MIPT and the
DPT exhibit a different dependence on the range of
interactions and occur at significantly different mea-
surement probabilities.

Nonetheless, the quantum measurements play a
qualitatively similar role both for the DPT and the
MIPT: they suppress the ferromagnetic long-range or-
der in the system by locally projecting onto a param-
agnetic disordered state, and also reduce the amount
of entanglement in the state, so that for large reset-
ting probabilities only a disordered sub-volume law
phase survives.

The symmetry breaking transition crucially relies
on the presence of long-range interactions and ceases
to exist once the range of interactions becomes suf-
ficiently short, i.e. α > αc ∼ 1.3. This behavior is
consistent with equilibrium quantum magnets at fi-
nite temperature, where sufficiently long-range inter-
actions provide a way around the Mermin-Wagner-
Hohenberg theorem [173, 174] and enable ferromag-
netic order at non-zero temperature even in 1D [175].
For α < αc, the system develops a long-range order in
the steady state if the resetting probability p is smaller
than a critical value pSBc . The value of pSBc vanishes
for α > αc and increases when the range of interac-
tions is increased, reaching its maximum for infinite
range interactions, i.e. for α = 0. The permutation
symmetry of our system at the level of super-operators
for α = 0 enabled us to numerically investigate sys-
tems of up to few hundred sites: we firmly established
the existence and the critical properties of the sym-
metry breaking transition in our model, showing that
they connect smoothly to α > 0, as indicated by our
numerical results.

On the other hand, the range of interactions plays
an opposite role for MIPT. The critical resetting prob-
ability pc for MIPT increases with α, making the vol-
ume law phase more robust for short range interac-
tions. We have analyzed this trend up to α = 4,
but it is known that MIPTs occur [38] even in spin
chains with local interactions (α → ∞). Conversely,
for α → 0, our analysis indicates that the critical re-
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setting probability for MIPT pc → 0 and there is no
volume-law phase in our system; due to the limited
system sizes accessible to our calculations, we cannot
determine whether this a genuine area law phase or
simply a phase with sub-volume scaling of entangle-
ment entropy.

Within the model we investigate, ferromagnetic
long-range order arises both in the volume law and
sub-volume law phases, i.e. there are values of α for
which both pc and pSBc are non-zero: for sufficiently
long-range interactions (α < αc ≈ 1.3) the system is
in a volume-law phase that supports long-range fer-
romagnetic order, whereas for α > αc the volume-
law phase is disordered. The disordered phase may
also coexist with either one of volume law or sub-
volume law phase, so that the phase diagram in the
α-p space is roughly divided into four regions. This
observation proves that ferromagnetic order and vol-
ume law scaling of the entanglement are not strictly
correlated, and highlights the potential of dissipative
Floquet theories in investigating the generic features
of open quantum systems dynamics.

To further characterize the properties of the average
steady state ρss(t), we investigated its purity. Within
a mean field approximation, the ordered phase corre-
sponds to a phase in which the state of the system
remains mixed, whereas the steady state of the disor-
dered phase is purified. However, our numerical sim-
ulations of the average state of the system indicate
that for α > 0, the purity and the ferromagnetic state
behave differently: for the DPT the critical resetting
probability pc decreases with α, while the extension of
the mixed state increases when the range of interac-
tions decreases. The changes in the purity of the av-
erage state are a distinct phenomenon from the mea-
surement induced purification transitions [46, 136] as
discussed in Appendix 5.3.

In order to provide an alternative perspective on
MIPTs we considered the participation entropies of
the wave function on quantum trajectories, which
allow to quantify what portion of the many-body
Hilbert space is covered by the wave function in the
volume and sub-volume law phases. Our results in-
dicate that the wave function is nearly fully delocal-
ized over the Hilbert space in the volume-law phase,
but its extension decreases when ferromagnetic order
is also present. This is intuitively clear: the order
parameter may be non-zero only if the wave func-
tion has larger coefficients on the basis states corre-
sponding to the ferromagnetic order. In addition, the
participation entropies display a multifractal behav-
ior in a wide regime of resetting probabilities beyond
the MIPT, and a study of their scaling with system
size calculated before and after the resetting process
allows to pinpoint the regimes in which the average
state is pure.

One key advantage of the new platform we pro-
pose is that it is readily realizable in a trapped ions

experiments using hardware and techniques that are
currently available. We have shown that the consid-
ered Hamiltonian dynamics of spin systems subject
to power-law interactions can be implemented by off-
resonantly coupling pseudo-spin degrees of freedom to
the motional collective modes stemming from ion-ion
Coulomb interactions, while the non-unitary resetting
operations can be implemented by utilizing a scheme
based on optical pumping that we analyze in detail for
171Yb+ ions. While the resources needed to experi-
mentally observe the MIPT scale exponentially with
the system size, making it a difficult task, we argued
that the DPT can be experimentally observed by di-
rect measurements of the two-point correlation func-
tions or of the Binder cumulants, and have also shown
that its position can be located by an analysis of the
intrinsic dimension of a set of wave function snap-
shots. These findings open up many concrete possi-
bilities for the experimental observation of DPTs and
MIPTs, which has been lagging behind compared to
the theoretical work done on this subject.

Our results prove that the framework of a dissi-
pative Floquet dynamics is a powerful tool to study
both DPTs and MIPTs at the same time. It provides
a simple yet effective platform to investigate the inter-
play of these related phenomena and to bridge a gap
in our understanding of the consequences of a compe-
tition between unitary and dissipative dynamics. Our
findings also imply that the phenomenon of measure-
ment induced phase transition may be observed in a
much broader class of systems than what has been
considered so far in the literature.

The framework of dissipative Floquet evolution can
find further applications in the context of both steady
state and trajectory transitions and phases. In terms
of classes of dynamics, one immediate extensions is to
consider models in which only one between dissipation
and coherent dynamics is periodic in time, while the
other is constant: these situations are also compati-
ble with the dissipative Floquet framework, and only
partly explored [89]. Moreover, the Floquet formal-
ism easily allows to address external periodic drives
(such as for example radiation acting on the system)
and may help in drawing a connection to solid state
systems, where experiments utilizing periodic driving
or pump-probe schemes are increasingly common and
easy to realize [25, 27, 29, 176, 177]. Finally, it would
be interesting to frame topological effects in this con-
text [178, 179]. This may allow to find possible con-
tact points between the pure and mixed state descrip-
tion of topological states, and to understand the role
of quantum correlations in the unexplored case of den-
sity matrices, leveraging on the broad understanding
in the context of pure states.

Note added: While finalizing this manuscript we
became aware of related works [180, 181].
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A Exact numerics in the permutation-
ally symmetric subspace
In this section we report additional details on the
method used to simulate the dynamics for α = 0 in
the permutationally symmetric subspace.

The key steps are: i) choosing an appropriate basis
for the subspace, ii) computing the matrix elements of
the observable in the basis, iii) writing the initial state
as a vector in this basis, iv) finding a prescription for
computing observables.

Step i) was illustrated in the main text, with the
definition of the states |{ni}〉 in Eq. (21). The nor-
malization constant is N{ni} =

√
L! n1! n2! n3! n4!.

For step ii), we define the following superoperators:

Xl =
∑
i

(σxi ⊗ 1i) Xr =
∑
i

(1i ⊗ σxi ) (44)

Zl =
∑
i

(σzi ⊗ 1i) Zr =
∑
i

(1i ⊗ σzi ) (45)

O =
∑
i

(
|↓↓〉 〈↓↓|+ |↓↓〉 〈↑↑| − 1⊗ 1

)
i

(46)

The Hamiltonian part of the evolution of |ρ〉〉 can
then be written as

e−iHTT/2ρeiHTT/2 =⇒ exp
[
−ih(Zl − Zr)

T

2

]
|ρ〉〉,

(47)

e−iHIT/2ρeiHIT/2 =⇒ exp
[
iJ(X2

l −X2
r )T2

]
|ρ〉〉,

(48)
while the measurement process is∑

µ

KµρK
†
µ =⇒ exp [− ln(1− p)O] |ρ〉〉. (49)

The action of the superoperators can be easily writ-
ten in the basis |{ni}〉 = |n1, n2, n3, n4〉, obtaining

Zl |{ni}〉 = (n1 + n2 − n3 − n4) |{ni}〉 ,
Zr |{ni}〉 = (n1 − n2 + n3 − n4) |n1, n2, n3, n4〉 ,

(50)

Xl |{ni}〉 =
√
n1(n3 + 1) |n1 − 1, n2, n3 + 1, n4〉

+
√
n2(n4 + 1) |n1, n2 − 1, n3, n4 + 1〉

+
√
n3(n1 + 1) |n1 + 1, n2, n3 − 1, n4〉

+
√
n4(n2 + 1) |n1, n2 + 1, n3, n4 − 1〉 ,

(51)

Xr |{ni}〉 =
√
n1(n2 + 1) |n1 − 1, n2 + 1, n3, n4〉

+
√
n2(n1 + 1) |n1 + 1, n2 − 1, n3, n4〉

+
√
n3(n4 + 1) |n1, n2, n3 − 1, n4 + 1〉

+
√
n4(n3 + 1) |n1, n2, n3 + 1, n4 − 1〉 ,

(52)

O |{ni}〉 = (n4 − L) |n1, n2, n3, n4〉

+
√
n1(n4 + 1) |n1 − 1, n2, n3, n4 + 1〉 .

(53)

For step iii), we now write the initial state in the
basis |{ni}〉. We consider the case of a pure initial
state polarized along +x. We get

|ρ〉〉t=0 = 1
2L

L∏
i=1

(
|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉

)
= 1

2L
∑
{ni}

√
N !

n1!n2!n3!n4! |{ni}〉 .
(54)

Lastly, we discuss step iv). We note that the scalar
product of two vectors 〈〈ρ|σ〉〉 corresponds to the
quantity Tr[ρ†σ]. Therefore, by defining the vector
|1〉〉 associated with the identity matrix, we can com-
pute the expectation value of an observable A on the
state ρ as 〈A〉 = 〈〈1|A⊗ 1|ρ〉〉 = 〈〈1|1⊗A|ρ〉〉. The
identity vector |1〉〉 can be written in the basis |{ni}〉
as

|1〉〉 =
∏
i

(
|↑↑〉+ |↓↓〉

)
i

=
L∑

n1=0

√(
L

n1

)
|n1, 0, 0, N − n1〉 .

(55)

B Entanglement phase transition with
deterministic state preparation
Here we show that the entanglement phase transition
can be measured by entangling sequentially the refer-
ence qubit with all the remaining L−1 system qubits.
The initial state is prepared as follows: we start with
a fully polarized state |ψ〉 = |↓↓ . . . ↓〉, subsequently
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FIG. 17: Probing the entanglement phase transition with
a single reference qubit. Panels a) and b) show the time
evolution of entanglement entropy SR of the reference qubit
(measured before the resetting) respectively for α = 0.5 and
α = 2, values of the resetting probability are close to the
estimated position of entanglement phase transition. The
same is shown in Panels c) and d) but the time is now rescaled
by a factor Lz which leads to a collapse of the data. Panels
e) and f): time τ such that SR(τ) = s0 = 0.15, rescaled by
Lz is shown as a function of (p− pc)L1/ν .

we use the XX gates: XXi = exp(iπ4σ
x
1σ

x
i ), to cre-

ate the state
∏L
i=2 XXi |ψ〉 which is our initial state

(qubit i = 1 is the reference, qubits i = 2, ..., L con-
stitute the system). The results are shown in Fig.
17 and are in agreement with the probabilistic state
preparation of a volume law state shown in Fig. 15.
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R. Löw, and T. Pfau, Phys. Rev. X 11, 011036
(2021).
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