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1 Introduction

The study of fluid mechanics dates back to ancient Greece and the works of Archimedes.

Since then, hydrodynamics has undergone countless transformations and modifications

before settling into its modern form. Yet, while the dynamics of fluids are prevalent and

common, a full understanding of fluid dynamics is still lacking in many respects.

From a field theoretic viewpoint, relativistic fluid dynamics is a low-energy effective

description in terms of constitutive relations for the stress tensor and other conserved

currents. The constitutive relations allow one to solve the associated conservation equations
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and obtain the universal behavior of fully retarded, thermal correlation functions. Up until

the works of [1–3], see also [4, 5], there was no theory from which one could consistently

evaluate symmetric, advanced and other correlation functions associated with the dynamics

of the fluid. More simply, fluid dynamics did not follow from an action principle. It was in

this sense that hydrodynamics was incomplete. The current treatise merges the somewhat

orthogonal constructions of [2] and [1, 3]. We will elaborate on the differences between our

formalism and that in the literature when appropriate.

The current work and that of [1–3] do not stand by themselves. A variational principle

for dissipationless fluid dynamics was formulated during the last century in the context of

general relativity, see e.g., [6] or also [7, 8]. This variational principle was recently revisited

and recast in modern language in [9–11]. Contemporaneously with these developments,

the authors of [12, 13] argued that hydrodynamics simplifies dramatically in hydrostatic

equilibrium. Moreover, in that limit, the constitutive relations can be obtained from a

local generating function. While these approaches shed light on the structure of a possi-

ble effective action for hydrodynamics and offer an alternative to some phenomenological

approaches [14, 15], they are lacking in several aspects. Apart from failing to capture dis-

sipation, they do not account for all possible non-dissipative transport phenomena. (For

instance, they fail to account for Hall viscosity [16–18].) Yet another modern approach

to obtain an action for hydrodynamics involves adding the effects of stochastic noise [19].

Other attempts include [20–23]. Most recently, the authors of [17, 18, 22, 24] have ad-

vocated that the Schwinger-Keldysh formalism is the natural setting to write an effective

action for dissipative fluid dynamics.

The Schwinger-Keldysh formalism [25, 26] was developed around the middle of the

past century in order to obtain a generating function for connected correlators in a state

described by a density matrix ρ−∞ in the far past. Recall that vacuum correlation func-

tions can be computed by an appropriate variation of the vacuum generating functional

with respect to sources, with one such source for each operator. The Schwinger-Keldysh

generating functional naturally has two sources associated with each operator. This feature

allows one to not only compute the retarded correlation functions in the state ρ−∞, but

also partially symmetric and advanced ones.

Let us review the definition and attributes of the Schwinger-Keldysh partition function.

We begin with a generic quantum field theory which, in the infinite past, is in a mixed

state characterized by a density matrix ρ−∞ (which is not necessarily normalized). The

Schwinger-Keldysh partition function is given by

Z[A1, A2] ≡ Tr
(
U1[A1]ρ−∞U

†
2 [A2]

)
. (1.1)

Here U1[A1] is the time-evolution operator, evolving states from the infinite past to the

infinite future. It is a functional of external sources which we schematically denote as A1.

The time evolution operator U2[A2] is similarly defined, and is distinct from U1 via its

dependence on A2.

For a quantum field theory with a Lagrangian description, the Schwinger-Keldysh

partition function may be written as a functional integral. If we denote the fundamental
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fields of the theory by φ and the action by S[φ] then,

Z[A1, A2] =

∫
[dφ1][dφ2] exp

[
i

(
S[φ1]− S[φ2] +

∫
ddx (O1[φ1]A1 −O2[φ2]A2)

)]
. (1.2)

Here O is the operator conjugate to A, and the fields φ1 and φ2 satisfy boundary conditions

in the infinite past and future. In the past, the boundary conditions depend on ρ−∞. In the

future, they are identified, limt→∞ φ1(t) = limt→∞ φ2(t). We also require that the sources

asymptote to the same values in the past and future, limt→∞A1(t) = limt→∞A2(t) and

limt→−∞A1(t) = limt→−∞A2(t). See e.g. [2, 27] for a modern discussion.

Equation (1.2) gives an ultraviolet description of the Schwinger-Keldysh partition func-

tion for theories with a Lagrangian description. Due to the universality of hydrodynamics

it is expected that when the initial state is thermal, i.e. ρ−∞ = e−bH (or its variants with

a chemical potential), the infrared behavior of Z will also be universal. More precisely,

following the usual logic of Wilsonian effective field theory, we may write

Z[A1, A2] =

∫
[dξ1][dξ2]eiSeff [ξ1,ξ2;A1,A2] , (1.3)

when the sources A1 and A2 vary over arbitrarily long scales. Here Seff [ξ1, ξ2;A1, A2] is a

low-energy Schwinger-Keldysh effective action with (doubled) infrared degrees of freedom

ξ1 and ξ2. We expect that Seff is universal, and further that it may be viewed as an effective

action for hydrodynamics.

In order to obtain an expression for Seff in terms of the infrared degrees of freedom ξ1

and ξ2 one follows the standard path taken when constructing effective actions. Namely,

one identifies the infrared degrees of freedom of the theory, the fundamental symmetries

associated with their dynamics, and then constructs the most general action compatible

with those symmetries. In the context of Schwinger-Keldysh actions for thermal states,

this line of research was pioneered in [1–3].

Both [2] and [1, 3] have established that Seff possesses a nilpotent symmetry trans-

formation reminiscent of supersymmetry. This is not the first time that such a nilpotent

symmetry appears in the context of dissipative dynamics, the canonical example being the

Langevin equation, cf., [28] or [29] and references therein. The authors of [1, 3] have pro-

posed an a’ priori superspace construction which is naturally associated with the formalism

developed in [17, 18] in order to capture the symmetries of Seff . The authors of [2] have

implemented the symmetries associated with Seff in a more direct manner and observed

an “emergent” superalgebra reminiscent of supersymmetry. In this work we offer a hybrid

construction where we build an effective action Seff using a super-Lagrangian from the

ground up.

In section 2 we provide a comprehensive discussion of the symmetries of the Schwinger-

Keldysh generating function, the resulting supersymmetry algebra, and how to implement

this symmetry in an effective action. In section 3.5 we elaborate on the low-energy degrees

of freedom of the infrared theory. In section 4 we consider a configuration with fixed tem-

perature and velocity, such that the only dynamical field is the chemical potential. In this

probe limit we demonstrate that the action principle developed is compatible with known
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constitutive relations and with the fluctuation-dissipation theorem. While our formalism

is similar to that of [1, 3], the physical reasoning is comparable to that of [2]. Our resulting

action differs from that of both groups. We discuss the differences and similarities of the

different approaches in section 5 where we also provide an outlook.

While this work was being completed we became aware of [30] by Gao and Liu, which

has overlap with this work, and of [4, 5] which has overlap with some parts of section 2.

2 Symmetries

The main challenge in constructing any effective theory is to identify its degrees of freedom

and it symmetries. In what follows we will study exact symmetries associated with the

Schwinger-Keldysh partition function (1.1) and an initial thermal state. Our exposition

largely draws on results obtained in the recent work of Crossley, Glorioso and Liu [2],

henceforth CGL, and Haehl, Loganayagam and Rangamani [1, 3] (see also [4, 5]), henceforth

HLR. These two approaches to construct the Schwinger-Keldysh effective action are similar

but not quite the same. In a sense, our work provides a distillation of the superspace

formulation of HLR [1, 3] with the approach of CGL [2]. In section 5 we discuss similarities

and differences between the two approaches and ours.

Recall that the Schwinger-Keldysh generating function for a generic initial state ρ−∞
is given by (1.1) or by (1.2) when a Lagrangian description of the ultraviolet theory is

available. In this work we primarily study the case when the initial state is thermal, e.g.,

ρ−∞ = exp(−bH). In this instance the boundary conditions in the past are implemented

by an additional segment in the integration contour along imaginary time,

Z[A1, A2] =

∫
[dφ1][dφ2][dφE ] exp

[
i
(
S[φ1, A1]− S[φ2, A2]

)]
exp

[
− SE [φE , AE ]

]
, (2.1)

where SE is the Euclideanized action, and the AE are the time-independent sources that

characterize the initial state. For example, the initial state may be a thermal state on

R × Sd−1, and the radius of the Sd−1 would be just such a source. The AE are related to

the sources A1 and A2 in the far past by limt→−∞A1(t) = limt→−∞A2(t) = AE .

Recalling the definition of the partition function Z[A1, A2] = Tr(U1[A1]ρ−∞U
†
2 [A2]),

we see that variations of the Schwinger-Keldysh generating functional, W = −i lnZ, lead

to connected correlation functions of the form

Tr

(
ρ−∞

Tr (ρ−∞)
T̃
(
O(τ1) . . . O(τm)

)
T
(
O(tn) . . . O(t1)

))
, (2.2)

where T and T̃ denote the time-ordering and anti-time-ordering operators respectively,

and O is the operator conjugate to A. The first string of operators on the right-hand side

of (2.2) comes from the variation of U †2 and the second from the variation of U1.

The chief virtue of the Schwinger-Keldysh formalism is that it computes correlation

functions with a wide family of operator orderings. For instance, the symmetric, retarded,
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and advanced two-point functions of O all follow from variations of W ,

Gsym(t1, t2) =
1

2
Tr

(
ρ−∞

Tr (ρ−∞)
{O(t1), O(t2)}

)
=

δ2W

δAa(t1)δAa(t2)

∣∣∣
Aa=Ar=0

,

Gret(t1, t2) = iθ(t1 − t2)Tr

(
ρ−∞

Tr (ρ−∞)
[O(t1), O(t2)]

)
= i

δ2W

δAa(t1)δAr(t2)

∣∣∣
Aa=Ar=0

,

Gadv(t1, t2) = −iθ(t2 − t1)Tr

(
ρ−∞

Tr (ρ−∞)
[O(t1), O(t2)]

)
= i

δ2W

δAr(t1)δAa(t2)

∣∣∣
Aa=Ar=0

,

(2.3)

where we have gone to the so-called r/a basis and defined the average and difference

quantities

Ar =
1

2
(A1 +A2) , Aa = A1−A2 , Or =

1

2
(O1 +O2) , Oa = O1−O2 . (2.4)

In the r/a basis, r-type operators are conjugate to a-type sources and vice versa,∫
ddx (O1A1 −O2A2) =

∫
ddx (OrAa +OaAr) . (2.5)

For these reasons we will use, e.g.,

Graa =
δ3W

δAaδArδAr

∣∣∣
Aa=Ar=0

. (2.6)

In this notation,

Gret = iGra , Gadv = iGar , Gsym = Grr . (2.7)

We refer the reader to [2] for a modern discussion.

We note in passing that equation (2.2) makes it clear that not all operator orderings

can be obtained from the Schwinger-Keldysh partition function, including the out-of-time-

ordered four-point functions which diagnose the onset of chaos [31, 32].

After gaining some familiarity with the Schwinger-Keldysh partition function (1.1) we

will, in the remainder of this section, discuss some of its symmetries and the expected

infrared degrees of freedom required to describe hydrodynamic behavior. We will focus on

four symmetries of the partition function which are independent of the dynamics of the

microscopic theory and are generated as a result of the special structure of the Schwinger-

Keldysh partition function or, in one instance, are a marked feature of thermal states [2, 3].

These four symmetries are:

1. Doubled symmetries. The functional integral representation (1.2) makes it clear that,

in the absence of gravitational anomalies, Z has a doubled reparameterization invari-

ance. The first weight in the Schwinger-Keldysh functional integral, involving the 1

fields, can be written with any choice of coordinates, and so can the second. This is

true for any initial state. Similarly, if the microscopic theory has a flavor symmetry

group G, then Z is invariant under a doubled flavor gauge invariance, whereby the

1 and 2 weights in the Schwinger-Keldysh functional integral may be expressed in

different flavor gauges.

– 5 –
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2. Topological Schwinger-Keldysh symmetry. Consider the Schwinger-Keldysh parition

function (1.1). If we align the sources of the partition function such that A1 = A2

then unitarity and cyclicity of the trace imply that

Z[A1 = A2 = A] = Tr
(
U [A]ρ−∞U

†[A]
)

= Tr(ρ−∞) . (2.8)

A normalized Z[A1 = A2 = A] is independent of the sources A. Otherwise, it may

depend on the values of the sources in the initial state AE through ρ−∞. Going to

the r/a basis (2.4), equation (2.8) implies that when a-type sources are set to zero,

all variations with respect to the r-type sources at times t > −∞ must vanish. Thus,

in particular,

Gaa...a = 0 . (2.9)

We conclude that the Schwinger-Keldysh partition function becomes topological when

A1 = A2.

3. Reality and positivity. As emphasized by [2–4], the complex conjugate of Z is given by

Z[A1, A2]∗ = Tr
(
U2[A∗2]ρ−∞U

†
1 [A∗1]

)
= Z[A∗2, A

∗
1] (2.10)

for any Hermitian initial state and complexified sources. In terms of the generating

functional W = −i lnZ the condition (2.10) amounts to

W [A1, A2]∗ = −W [A∗2, A
∗
1] . (2.11)

Equation (2.11) is the Schwinger-Keldysh analogue of the usual statement that uni-

tarity implies that the Wilsonian effective action is real, and for this reason we call

this a reality condition. However, as (2.11) allows for the effective action Seff to have

an imaginary part, we will also restrict the imaginary part of Seff for the functional

integral to converge.

4. KMS symmetry. The partition function possesses an additional symmetry when the

initial state is thermal. In the absence of conserved charges, an initial thermal state

has the form ρ−∞ = e−bH . This is the time evolution operator in imaginary time,

translating t→ t− ib. Thus,

Z[A1(t1), A2(t2)] = Tr
(
U †2 [A2(t2)]e−bHU1[A1(t1 − ib)]

)
, (2.12)

which may also be generalized to initial states at nonzero chemical potential. Equa-

tion (2.12) leads to the usual statement of the Kubo-Martin-Schwinger (KMS) con-

dition for thermal correlation functions [33–35]. Following [2], (2.12) together with

CPT invariance leads to a non-local Z2 symmetry of the partition function given

by (2.55).

The topological Schwinger-Keldysh symmetry and the reality condition (points 2 and 3)

are a direct result of the definition of the Schwinger-Keldysh partition function (1.1). The

existence of doubled symmetries (point 1) and the KMS symmetry (point 4) require a more

detailed explanation. In what follows we present an elaborate discussion of the latter.

– 6 –
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2.1 Doubled symmetries

In writing the r and a-type sources as in (2.4) we have glanced over a subtle point, which

we have not seen discussed elsewhere in the literature. In order to construct the r and

a-type combinations, we need to compare the 1 and 2-type operators and sources at the

same point. But, in principle, we could use different coordinates x1 and x2 when giving

a functional integral description of the time-evolution operators U1 and U2. Or, to make

the issue more severe, suppose that the source we turn on is an external metric, viz.

Z[g1µν(x1), g2 ρλ(x2)]. In this case, U1 is the time-evolution operator on a spacetime M1

which differs from the spacetime M2 on which U2 evolves time. In order to construct the

r and a-type operators one needs a method by which a point x1 on M1 can be compared

with a point x2 on M2.

In order to resolve the issue raised in the previous paragraph, we require that M1 and

M2 are diffeomorphic to each other; a diffeomorphism from M1 to M2 associates a point

x2 inM2 with a point x1 inM1. This is a global restriction on the sources appearing in the

Schwinger-Keldysh partition function. Equivalently, there exists an “auxiliary spacetime”

M, which is diffeomorphic to M1 and M2, and we can use any diffeomorphism from M to

M1 andM2 to form average and difference combinations on M. At first sight, it might seem

ill-advised to introduce yet another spacetime, especially if we do not have to. However,

doing so has the advantage that it allows us to treat the 1 and 2 fields on an equal footing,

which will prove useful soon. In what follows we will call M a “worldvolume” andM1 and

M2 the “target spaces,” in analogy with a sigma model.

Let σi denote worldvolume coordinates. Then the diffeomorphisms from M toM1 and

M2 are locally represented by maps xµ1 (σi) and xµ2 (σi), which we can use to pull back the

metrics on M1 and M2 as

g1 ij(σ) = g1µν(x1(σ))∂ix
µ
1∂jx

ν
1 , g2 ij(σ) = g2µν(x2(σ))∂ix

µ
2∂jx

ν
2 . (2.13)

This allows us to properly define the average and difference metrics

gr ij(σ) =
1

2
(g1 ij(σ) + g2 ij(σ)) , ga ij(σ) = g1 ij(σ)− g2 ij(σ) . (2.14)

The Schwinger-Keldysh partition function can then be rewritten in terms of ga ij , gr ij , and

x1(σ) and x2(σ),

Z[g1µν(x1), g2 ρλ(x2)] = Z[gr ij(σ), ga kl(σ);x1(σ), x2(σ)] . (2.15)

The functional variations of Z with respect to ga ij and gr kl yield correlation functions of

operators which could be called the “average” and “difference” stress-energy tensors T ijr
and T kla respectively.

There is a similar story when the microscopic theory has a flavor symmetry group G,

in which case we can turn on external gauge fields which couple to the flavor symmetry

current. The gauge field B1µ(x1) on M1 will generally differ from B2 ν(x2) on M2. Since

the external gauge fields B1 and B2 are connections on principal G bundles over M1 and

M2, then the analogue of the requirement that M1 and M2 are diffeomorphic is that

– 7 –
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these bundles are isomorphic. Equivalently, the worldvolume M too has a principal G

bundle which is isomorphic to those over M1 and M2.

In this paper we consider theories with U(1) flavor symmetries, in which case the bundle

isomorphism is locally represented by maps c1(σ) and c2(σ). The maps are “bifundamental”

under target space gauge transformations Λ1 and Λ2, as well as under worldvolume gauge

transformations Λ, in the sense that

c1 → c1 − Λ1 + Λ , c2 → c2 − Λ2 + Λ . (2.16)

The worldvolume transformation law is a consequence of the isomorphisms between the

target space and worldvolume bundles. The target space gauge fields pull back to

B1 i(σ) = ∂ix
µ
1B1µ(x1(σ)) + ∂ic1 , B2 i(σ) = ∂ix

µ
2B2µ(x2(σ)) + ∂ic2 . (2.17)

Both Bi’s are inert under target space diffeomorphisms and gauge transformations (B1µ →
B1µ + ∂µΛ1 and B2µ → B2µ + ∂µΛ2) and transform as connections under worldvolume

gauge transformations, B1 i → B1 i + ∂iΛ and B2 i → B2 i + ∂iΛ. From the two Bi’s we

define average and difference gauge fields Br i and Ba j , such that the partition function

can be formally written as

Z[B1µ(x1), B2 ν(x2)] = Z[Br i(σ), Ba j(σ); c1(σ), c2(σ)] . (2.18)

As before, the variation of Z with respect to Ba i and Br j define “average” and “difference”

symmetry currents J ir and J ja respectively.

Equations (2.15) and (2.18) immediately imply that the partition function does not

depend on the embeddings,

δZ

δxµ1 (σ)
= 0 ,

δZ

δxν2(σ)
= 0 ,

δZ

δc1(σ)
= 0 ,

δZ

δc2(σ)
= 0 . (2.19)

It is instructive (and will become useful later) to see how this independence manifests itself

in terms of the Ward identities for target space operators.

For simplicity, suppose that the only sources we turn on are external metrics and

external U(1) fields. The variation of the Schwinger-Keldysh generating functional W =

−i lnZ may be written as

δW =

∫
ddx1
√
−g1

(
1

2
Tµν1 δg1µν + Jµ1 δB1µ

)
−
∫
ddx2
√
−g2

(
1

2
Tµν2 δg2µν + Jµ2 δB2µ

)
,

(2.20)

where Tµν1 and Tµν2 are the target space stress tensors, and Jµ1 and Jµ2 are the target space

U(1) currents.

The reparameterization and U(1) symmetries imply that W is invariant under the com-

bination of infinitesimal target space reparameterizations ξµ1 and ξµ2 , as well as infinitesimal

– 8 –
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target space U(1) transformations Λ1 and Λ2. Notating the combined variation as δχ, the

variation of the external fields under these infinitesimal transformations is

δχg1µν = £ξ1g1µν = D1µξ1 ν +D1 νξ1µ ,

δχB1µ = £ξ1B1µ + ∂µΛ1 = −ξν1G1µν + ∂µ(ξν1B1 ν + Λ1) ,
(2.21)

and similarly for the 2 fields. Here £X is the Lie derivative along Xµ, D1µ is the covariant

derivative using the Levi-Civita connection constructed from the metric g1µν , and G1µν =

∂µB1 ν − ∂νB1µ is the field strength of B1µ. Plugging these variations into δW (2.20), we

see that the invariance of W is equivalent to the Ward identities,

δχW = 0⇔

D1 νT
µν
1 = Gµ1 νJ

ν
1 −B

µ
1D1 νJ

ν
1 , D1µJ

µ
1 = 0 ,

D2 νT
µν
2 = Gµ2 νJ

ν
2 −B

µ
2D2 νJ

ν
2 , D2µJ

µ
2 = 0 ,

(2.22)

where in the first line we used gµν1 to raise indices and in the second line we used gµν2 to

do the same.

Now consider expressing the generating functional as a functional of sources pulled

back to the worldvolume M. As the partition function does not explicitly depend on the

maps xµ1 , xµ2 , etc., the variation of W may be expressed as

δW =

∫
ddσ

{√
−g1

(
1

2
T ij1 δg1 ij + J i1δB1 i

)
−
√
−g2

(
1

2
T ij2 δg2 ij + J i2δB2 i

)}
, (2.23)

where
√
−g1 and

√
−g2 are understood to be the measure factors associated with g1 ij and

g2 ij respectively. We decompose the variations of the worldvolume sources into variations

of the target space sources and maps, e.g.

δg1 ij(σ) = ∂ix
µ
1∂jx

ν
1 (δg1µν + £δx1g1µν) ,

δB1 i(σ) = ∂ix
µ
1 (δB1µ + £δx1B1µ + ∂µδc1) ,

(2.24)

where the Lie derivative is taken with respect to the vector field δxµ1 (σ(x1)) on M1.

Given (2.24) we can match the variation of worldvolume quantities to target space ones.

When δxµ1 = 0, δxµ2 = 0 etc. comparing (2.23) with (2.20), we see that the worldvolume

stress tensors and currents are related to the target space ones by pushforward, e.g.

Tµν1 = T ij1 ∂ix
µ
1∂jx

ν
1 , Jµ1 = J i1∂ix

µ
1 . (2.25)

Allowing for nonzero δx and following the same procedure, we find, after integration

by parts,

δW =

∫
ddσ

{√
−g1

(
1

2
Tµν1 δg1µν + Jµ1 δB1µ − E1µδx

µ
1 − E1δc1

)
−
√
−g2

(
1

2
Tµν2 δg2µν + Jµ2 δB2µ − E2µδx

µ
2 − E2δc2

)}
+ (boundary term) ,

(2.26)
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where E1µ, E2 ν , E1, and E2 are the stress tensor and U(1) Ward identities (2.22), e.g.

E1µ = Dν
1T1µν −G1µνJ

ν
1 +B1µD1 νJ

ν
1 , E1 = D1µJ

µ
1 . (2.27)

Of course, the Ward identities are satisfied, and so we see that Z does not depend on the

maps at all. In equations,

1√
−g1

δW

δxµ1
= −E1µ = 0 ,

1√
−g1

δW

δc1
= −E1 = 0 , (2.28)

where here the variations are taken when the target space sources are fixed, and there are

similar equations for the 2 fields.

With an eye towards section 3.5 (and following earlier works [2, 3]) we are unable to

resist mentioning that in describing an effective field theory for hydrodynamics the maps

xµ1 , xµ2 , c1 and c2 will be promoted to dynamical fields Xµ
1 , Xµ

2 , C1 and C2. Doing so pro-

motes (2.28) (and the corresponding equations for 2 fields) to field equations, for example

1√
−g1

δSeff

δXµ
1

= −E1µ = 0 ,
1√
−g1

δSeff

δC1
= −E1 = 0 . (2.29)

This guarantees that the effective action is then invariant under the doubled target space

symmetries, thereby accounting for the first of the four symmetries of the partition function

listed on page 5.

2.2 Kubo-Martin-Schwinger symmetry

Of the four symmetries listed on pages 5-6 the KMS symmetry is special in that it is tied to

initial states which are in thermal equilibrium and not to generic initial states. Therefore,

in order to better understand the KMS symmetry let us take a step back and briefly review

some basics of thermal states from a field theoretic standpoint. We refer the reader to [36]

for an extensive discussion. (See also [37] where related techniques were put to work in

order to compute the high-temperature free energy of QCD.)

2.2.1 Thermal states

Suppose that ρ−∞ is a thermal state characterized by some Boltzmann weight. In order to

define this ensemble, we require the existence of a conserved operator H which generates

some notion of time translation so that ρ−∞ = exp(−bH). In order for H to be conserved,

the sources (e.g., the metric or the flavor field) must be time-translation invariant. Letting

t denote time, this means that we can pick a choice of coordinates and flavor gauge so

that the background metric and flavor gauge field do not depend on time explicitly and

the most general parametrization is

gµνdx
µdxν = −e2s(~x)(dt+ aα(~x)dxα)2 + Pαβ(~x)dxαdxβ ,

Bµdx
µ = Bt(~x)(dt+ aα(~x)dxα) +Bα(~x)dxα ,

(2.30)

where the parametric length of the Euclidean time circle is b. We refer to the choice of

coordinates in (2.30) as the “static gauge.”
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The expression for the time translation operator H is given by [36]

H =

∫
dd−1x

√
detPαβ e

s
(
e2s(T tt + T tαaα)− J tBt

)
. (2.31)

Thus exp(−bH) is the translation operator in imaginary time, i.e.,

ebHO(t, ~x)e−bH = O(t− ib, ~x) , (2.32)

for any operator O(t, ~x). The operator H is a generalization of what is often called the

“grand canonical potential,” which for a theory in flat space with constant chemical po-

tential µ is given by H − µQ.

We can now identify an effective, position-dependent temperature T as the inverse

length of the thermal circle, a velocity uµ as the unit norm, future pointing vector with

uα = 0, and a chemical potential µ proportional to the Polyakov loop,

T =
e−s

b
, uµ∂µ = e−s∂t , µ = e−sBt . (2.33)

All of these statements above may be phrased covariantly. The time-translation in-

variance of the metric and flavor gauge field may be captured by a Killing vector field βµ

and a gauge parameter Λβ . We denote their combined action on the metric and gauge field

by δβ :

δβgµν = £βgµν = βρ∂ρgµν + gµρ∂νβ
ρ + gνρ∂µβ

ρ = 0 ,

δβBµ = £βBµ + ∂µΛβ = βν∂νBµ +Bν∂µβ
ν + ∂µΛβ = 0 ,

(2.34)

where £β is the Lie derivative along βµ. The time-translation operator H is now given by

bH = −
∫
dVµ

(
Tµνβν + Jµ(βνBν + Λβ)

)
, (2.35)

where dVµ is the volume form on a constant-time slice. The covariant version of the

statement that exp(−bH) is a translation operator in imaginary time is that it acts on

fields as

exp(bH)O(xµ) exp(−bH) = e−iδβO(xµ) . (2.36)

The temperature, velocity, and chemical potential are given by

T =
1√
−β2

, uµ =
βµ√
−β2

,
µ

T
= βµBµ + Λβ . (2.37)

One can go from the covariant gauge to the static gauge by setting βµ∂µ = b∂t and Λβ = 0.

Let us now turn back to the Schwinger-Keldysh partition function. In what follows,

we posit that β and Λβ are thermodynamic parameters of the initial thermal state retained

in the Schwinger-Keldysh effective action as fixed, non-dynamical data and that they live

on the worldvolume M. Moreover, we will implement worldvolume reparametrization and

U(1) symmetries in the effective action. In what follows we will equip Λβ with a transfor-

mation law

δΛΛβ = −βi∂iΛ , (2.38)
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and also let Λβ and βi transform as a scalar and vector respectively under worldvolume

diffeomorphisms. With these transformation laws the action we construct will be invariant

under worldvolume reparameterizations and U(1) symmetries. It should now be clear that,

for example, the chemical potential µ/T = βiBi + Λβ defined on M is invariant under

worldvolume gauge transformations. Note that in static gauge, time-independent gauge

transformations are residual symmetries under which Bi varies as δΛBi = ∂iΛ(~σ), which is

compatible with the findings of [2].

In the far past there is only one β and one Λβ characterizing both target spaces M1

and M2 and the worldvolume manifold M, which all coincide. Once A1 and A2 are not

aligned, we make the convenient choice that βi(σ) and Λβ(σ) lie in M and their action on

fields and sources is denoted by δβ . The pushforward of βi and Λβ to the target spaces is

given by

βµ1 (x1) = βi(σ(x1))∂ix
µ
1 , βµ2 (x2) = βi(σ(x2))∂ix

µ
2 ,

Λβ 1(x1) = Λβ(σ(x1)) + βµ1 ∂µc1(σ(x1)) , Λβ 2(x2) = Λβ(σ(x2)) + βµ2 ∂µc2(σ(x2)) .

(2.39)

With β and Λβ naturally residing on the worldvolume, it is also convenient to choose

the time evolution operators U1 and U2 to act on the worldvolume. We construct U1 and

U2 on M from the operators H1 and H2 as in (2.35), using the fixed initial state data

(βi(σ),Λβ(σ)) and the target space stress tensors and currents pulled back to M.

2.2.2 CPT invariance and KMS symmetry

With a covariant formulation of thermal equilibrium at hand, we now carefully go over the

steps leading to (2.12) allowing for non zero chemical potential. We begin by reprising the

definition of the Schwinger-Keldysh partition function,

Z[A1, A2;β,Λβ ] = Tr
(
U1[A1]e−bHU †2 [A2]

)
. (2.40)

In (2.40) we have added the dependence of Z on the initial state parameters β and Λβ .

We will often use such notation when there is an ambiguity regarding the parameters of

the initial state. Otherwise we will omit the dependence on the initial thermodynamic

parameters for brevity as we have done until now.

The KMS transformation we advertised on page 6 follows from the fact that exp(−bH)

is the time-evolution operator in imaginary time. In what follows we denote the worldvol-

ume time coordinate by σ0 = τ . To wit, in static gauge we find

ebH
(
T ei

∫
ddσH[A(σ), O(σ)]

)
e−bH = T ei

∫
ddσH[A(σ), O(τ−ib,~σ)] = T ei

∫
ddσH[A(τ+ib,~σ), O(σ)] ,

(2.41)

where H is the Hamiltonian density, i.e.

U [A(τ)] exp(−bH) = exp(−bH)U [A(τ + ib)] = e−bHU [eiδβA(τ)] . (2.42)

Covariantly,

Z[A1, A2; β, Λβ ] = Tr
(
U1[A1]e−bHU †2 [A2]

)
= Tr

(
U †2 [A2]e−bHU1[eiδβA1]

)
= Tr

(
U †2 [e−iδβA2]e−bHU1[A1]

)
,

(2.43)
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and we have used the cyclicity of the trace. As emphasized by CGL [2] the right-hand

side of (2.43) does not correspond to a Schwinger-Keldysh partition function. Rather,

using CPT one can relate the right-hand side of (2.43) to the CPT-transformed partition

function, as we now review.

In what follows we define a(n antilinear) CPT transformation on general spacetimes,

which we denote by CPT , such that CPT 2 = 1. It is defined as a suitable action on fields

as well as a geometric part which acts on spacetime. If we consider the time direction on

our manifold M as being fibered over some base manifold Ms then CPT acts by inverting

time τ → −τ as well as by an orientation-reversing transformation on Ms. If CPT acts on

coordinates σ, we denote the resulting combined coordinate transformation by ϑσ.

It is an old result in axiomatic perturbative quantum field theory that Lorentz invari-

ance and locality imply invariance under CPT for a broad class of theories. We are not

aware of a general proof for quantum field theory on more general spacetimes, in particular

those on which we may define thermal states. In this work we assume that any “healthy”

quantum field theory on a spacetime of the sort we considered above is invariant under

CPT . This implies that under CPT a bosonic operator O(σ) is transformed as

(CPT )O(σ)(CPT ) = ηOO
∗(ϑσ) ≡ ΘO(σ) , (2.44)

where ηO = ±1 is the CPT -eigenvalue of O. Note that in hydrodynamics one usually

considers only bosonic operators (see however e.g. [38] for discussions of hydrodynamics of

supersymmetric material). This will somewhat simplify future expressions.

Using that CPT is anti-unitary it then follows that

(CPT )T ei
∫
ddσH[A(σ), O(σ)](CPT ) = T̃ e−i

∫
ddσH[A(σ) , ηOO(ϑσ)]

= T̃ e−i
∫
ddσH[ηOA(ϑσ), O(σ)]

= T̃ e−i
∫
ddσH[ΘA(σ)), O(σ)] ,

(2.45)

where T̃ is the anti-time-ordering operator and in the last equality we have defined the

action of Θ on a (real) source A conjugate to an operator O,

ΘA(σ) = ηAA(ϑσ) , (2.46)

where ηA = ηO. Thus,

(CPT )U [A](CPT ) = U †[ΘA] . (2.47)

In obtaining (2.45) we have assumed a CPT invariant theory so that H is invariant under

a CPT transformation of O combined with a spurionic transformation of A. We emphasize

that CPT acts only on operators. The source A does not transform under it. Instead, the

effect of CPT on the time-evolution operator is equivalent to the combination of Hermitian

conjugation and replacing the source A(σ) with ΘA(σ).

Apart from the operators in the theory, the initial state ρ−∞ also transforms under

CPT . With a slight abuse of notation we define

(CPT )βi(σ)(CPT ) = ηβiβ
i(ϑσ) = Θβi(σ) , no sum over i,

(CPT )Λβ(σ)(CPT ) = −Λβ(ϑσ) = ΘΛβ(σ) ,
(2.48)
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where ηβi is the eigenvalue of the i’th component of βi under CPT . Recall that βi(σ)

specifies integral curves along the local time direction,

∂σi(λ)

∂λ
= βi(σ(λ)) . (2.49)

Time reversal flips both λ and σ0 = τ , and parity flips one of the spatial coordinates, say

σ1. With these conventions, ηβ0 = 1, ηβ1 = 1 and ηβi = −1 for i ≥ 2. In even spacetime

dimensions one often refers to parity as a combination of an inversion of one of the space

coordinates and a rotation of the others. In those conventions we would have ηβi = 1 for

all i. The gauge parameter Λβ has eigenvalue −1 under CPT because it changes sign under

charge conjugation.

Focusing our attention on a thermal initial state, ρ−∞ = e−bH, we define

CPT ρ−∞CPT = e−bH
CPT

and δCPT
β via

Θ
(
e−iδβO(σ)

)
= eiδ

CPT
β ΘO(σ) , (2.50)

where we remind the reader that Θ is antilinear. The equivalent of (2.36) is

exp(bHCPT)O(σ) exp(−bHCPT) = eiδ
CPT
β O(σ) . (2.51)

Let us use the above definitions to bring the KMS-transformed partition function (2.43)

to canonical form. A microscopic CPT symmetry takes the Schwinger-Keldysh partition

function to one in which a future state is evolved backwards in time,

Z[A1, A2; β, Λβ ] = Tr
(
U1[A1]e−bHU †2 [A2]

)
= Tr

(
U †1 [ΘA1]e−bH

CPT
U2[ΘA2]

)∗
, (2.52)

where in the last equality we have used the anti-cyclicity property of the trace of a product

of antilinear operators. Using

exp (bHCPT)U [A] exp (−bHCPT) = U [e−iδ
CPT
β A] , (2.53)

as in (2.42), and following the same logic that led us to (2.43), we find that (2.52) implies

Z[A1, A2;β,Λβ ] = Tr
(
U2[eiδ

CPT
β ΘA2]e−bH

CPT
U †1 [ΘA1]

)∗
= Z[eiδ

CPT
β ΘA2, ΘA1; Θβ,ΘΛβ ]∗ .

(2.54)

A functional integral proof of (2.54) can be found in [39].

We find it useful to implement the reality condition (2.10)

Z[A1, A2]∗ = Z[A∗2, A
∗
1] ,

to reexpress (2.54) as

Z[A1, A2; β, Λβ ] = Z
[

(ΘA1)∗ ,
(
eiδ

CPT
β ΘA2

)∗
; Θβ, ΘΛβ

]
= Z

[
Θ∗A1,Θ

∗
(
e−iδβA2

)
; Θβ, ΘΛβ

]
,

(2.55)
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were in the last line we have defined Θ∗ as a CPT transformation followed by complex

conjugation. We refer to (2.55) as the KMS symmetry and it will be crucial in what

follows. In static gauge, equation (2.55) becomes

Z[A1(τ1), A2(τ2)] = Z[ηAA1(−τ1), ηAA2(−τ2 − ib)] ,

which is identical to the KMS condition discussed in CGL [2].1

In (2.55) it is clear that the KMS symmetry is a Z2 transformation: acting with it

twice brings us back to the original Schwinger-Keldysh partition function,

Z[A1, A2;β,Λβ ] = Z
[
A1,Θ

∗
(
eiδ

CPT
β Θ∗

(
e−iδβA2

))
;β,Λβ

]
= Z[A1, A2;β,Λβ ] .

(2.56)

This Z2 transformation is both unitary and non-local. It is unitary because it involves both

a CPT flip and complex conjugation. It is non-local in that it shifts the insertion point of

operators by a finite distance in imaginary time.

As a sanity check we note that the microscopic Schwinger-Keldysh action,

SSK = S[φ1, A1]− S[φ2, A2] ,

is consistent with the KMS symmetry. Because the full KMS transformation is unitary,

the action must be invariant upon replacing A1 with its CPT -conjugate and A2 with its

CPT -conjugate as well as a translation in imaginary time. The microscopic action is clearly

invariant under this transformation provided we equip the dynamical fields φ with the same

transformations as the sources A and the action S is CPT -invariant.

Before ending this section we note that the KMS symmetry leads to an additional

topological sector of the theory. This observation will become important once we attempt

to implement the symmetries in an effective action in section 3.

Recall that the topological Schwinger-Keldysh symmetry followed from the observation

that when the sources are aligned, A1 = A2 = A, the Schwinger-Keldysh partition function

reduces to

Z[A,A] = Tr
(
U [A]ρ0U

†[A]
)

= Tr(ρ−∞) ,

which is independent of the common source A. Consequently correlation functions of the

conjugate operators vanish. Using that the variation of W = −i lnZ in terms of 1 and 2

fields is given by

δW =

∫
ddσ (O1δA1 −O2δA2) , (2.57)

and plugging in δA1 = δA2 = δA, we found that A was conjugate to the difference operator,

Oa = O1 −O2. More simply, Z has a topological limit for any initial state ρ−∞.

The KMS symmetry (2.55) implies the existence of a different topological limit when

the initial state is thermal, ρ−∞ = e−bH. When A1 = A and A2 = eiδβA, (2.55) implies

Z[A, eiδβA;β,Λβ ] = Z[Θ∗A,Θ∗A; Θβ,ΘΛβ ] = Tr
(
U [Θ∗A]e−bH

CPT
U †[Θ∗A]

)
= Tr

(
e−bH

CPT
)
,

(2.58)

1CGL derived a similar condition in [2], using PT rather than CPT .
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which is independent of A. As above, correlation functions of the conjugate operators

vanish. Plugging in δA1 = δA and δA2 = eiδβδA into the variation of W in (2.57),

we see that the operator conjugate to A is what we term the ã-type operator, given by

Õa = O1 − e−iδβO2. The ã-type operators comprise an additional topological sector and

their correlation functions with each other must vanish. We refer to this property as the

topological KMS symmetry.

There is an analogue of the r/a basis which will be useful in what follows. We define

the r̃/ã basis as

Õr =
O1 + e−iδβO2

2
, Õa = O1 − e−iδβO2 , (2.59)

and similarly define r̃ and ã-type sources. In static gauge we have

Õr(σ) =
O1(σ) +O2(τ − ib, ~σ)

2
, Õa(σ) = O1(σ)−O2(τ − ib, ~σ) . (2.60)

In terms of the tilde’d combinations, (2.57) may be rewritten as

δW =

∫
ddσ

(
ÕrδÃa + ÕaδÃr

)
. (2.61)

In particular, the Ãr = (A1 + e−iδβA2)/2 sources are conjugate to the Õa’s. This is consis-

tent with our discussion above: setting A1 = A and A2 = eiδβA sets Ãa = 0 and Ãr = A.

3 Dynamical degrees of freedom and an implementation of the symme-

tries

In order to construct a Schwinger-Keldysh effective action we need to identify its symme-

tries and degrees of freedom. In the previous section we have discussed the symmetries

required by the Schwinger-Keldysh generating function. In what follows we will discuss

how these symmetries may be implemented on the dynamical degrees of freedom which

enter into the effective action.

3.1 Dynamical degrees of freedom and doubled symmetries

Following [2, 3], we make the ansatz that at low energies the maps xµ1 , c1, etc. are promoted

to dynamical fields, which we denote as Xµ
1 (σ), C1(σ), and so on. We consider systems

for which these are the only light degrees of freedom. We write down effective actions

Seff on the worldvolume, and impose that the fields Xµ
1 (σ), C1(σ), etc., only appear in

the action through the pullbacks of the target space sources to the worldvolume. We also

demand that the effective action is invariant under worldvolume reparameterizations and

U(1) transformations.

More precisely, we define

B1 i = ∂iX
µ
1B1µ(X1) + ∂iC1 , B2 i = ∂iX

µ
2B2µ(X2) + ∂iC2 ,

g1 ij = ∂iX
µ
1 ∂jX

ν
1 g1µν(X1) , g2 ij = ∂iX

µ
2 ∂jX

ν
2 g1µν(X2) ,

(3.1)
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so that the action depends on the X’s and C’s via

Seff =

∫
ddσ Leff(g1 ij , g2 ij , B1 i, B2 i, Di; β

i, Λβ) (3.2)

where βi and Λβ are parameters of the initial thermal state as discussed in section 2.2.1.

The reason for this ansatz is the following. In hydrodynamics, one enforces the con-

servation of the stress tensor Tµν and U(1) current Jµ as equations of motion. In the

Schwinger-Keldysh setting, the Ward identities are doubled, as we found in (2.22). As we

will see shortly, choosing to promote the maps to dynamical fields has the desirable prop-

erty that the equations of motion for the dynamical fields (which are promoted to operator

identities in the quantum theory) are precisely the doubled Ward identities. The Ward

identities for the r-type stress tensor and U(1) current (with aligned sources) lead to the

hydrodynamic equations. In this way effective actions for hydrodynamics are (doubled)

sigma models.

To obtain the desired Ward identities consider, as an example, the target space U(1)

current Jµ1 , which is obtained by varying the generating functional with respect to the U(1)

source B1µ,

Jµ1 =
δSeff

δB1µ
. (3.3)

Using that the effective action only depends on B1µ through the pullback B1i, we write a

more general variation of Seff as

δSeff =

∫
ddσ J i1δB1i =

∫
ddσ J i1 (∂iX

µ
1 δB1µ + ∂iδC1)

=

∫
ddσ

(
(J i1∂iX

µ
1 )δB1µ − (∂iJ

i
1)δC1

)
. (3.4)

Comparing with (3.3), we see that

Jµ1 = J i1∂iX
µ
1 , (3.5)

and then the C1 equation of motion is simply that this current is conserved,

δSeff

δC1
= −∂µJµ1 . (3.6)

An analysis similar to the one derived above shows that the dynamical equations

for the X’s are identical to conservation of the energy momentum tensor in each of the

target spaces. However, as we will see shortly, it is difficult to reconcile the doubled

diffeomorphism invariance of the generating function together with the Schwinger-Keldysh

topological symmetry. Thus, in most of what follows, we will work in a probe limit, where

the target space metrics are identical and are given by the Minkowski metric, and the

mappings Xµ
1 and Xµ

2 are non-dynamical and reduce to the trivial map,

g1µν = g2µν = ηµν Xµ
1 = Xµ

2 = δµi σ
i . (3.7)

We will discuss this some more in subsection 3.5 and in the Discussion when comparing

our work to others, and extend it in a future publication.
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3.2 Topological Schwinger-Keldysh symmetry

In the second entry of our list of symmetries on page 6 we noted that every Schwinger-

Keldysh partition function has a topological limit when the sources are aligned,

A1 = A2, viz.,

Gaa...a = 0. (3.8)

Another way of stating this result is that in any Schwinger-Keldysh theory the a-type

operators O1 −O2 form a topological sector.

In what follows we would like to provide a construction which will ensure that this

topological sector remains intact in the Wilsonian effective theory. We will start our dis-

cussion in section 3.2.1 with a lightning review of Witten-type topological theories and their

manifestation in superspace. In section 3.2.2 we will discuss how to deform such topologi-

cal theories in order to capture the non-topological nature of the Schwinger-Keldysh path

integral whenever A1 6= A2. Finally, in section 3.2.3 we will see how to implement the

topological symmetry using a superspace formalism. Our description leans on HLR [1, 3]

and textbook material [27, 29]. See also the very recent [4] which has some overlap with

the current section.

3.2.1 Cohomological quantum field theories

Recall that topological quantum field theories are often defined as quantum field theories

in which expectation values of physical operators are independent of the metric,

δ

δgµν
〈Oi1 . . . Oin〉 = 0 . (3.9)

It is common to classify such theories into one of two categories. The first are referred

to as Witten (or cohomological)-type quantum field theories [40, 41]. The other category

includes Schwarz (or quantum) topological field theories [42]. An example of Schwarz-type

theories is Chern-Simons theory. The Witten-type theories have the following properties.

1. There exists a Grassmannian operator Q with Q2 = 0 whose action we represent

as δQ.

2. Physical operators and the action itself are Q-closed, i.e., δQS = 0. (So Q can be

thought of as a scalar supercharge.)

3. The stress tensor is Q-exact,

Tµν = δQV
µν . (3.10)

Note that V µν is a ghost: it has odd Grassman-parity while carrying integer spin.

The properties described above ensure that the partition function is independent of the

metric. When a theory has a functional integral description with action S[φ], the variation
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of the partition function with respect to the metric is

δgZ =

∫
[dφ]δge

−S[φ]

=

∫
[dφ]

∫
ddx
√
−g
(

1

2
δgµνδQV

µν

)
e−S[φ]

=

∫
[dφ]δQ

(∫
ddx
√
−g 1

2
δgµνV

µνe−S[φ]

)
= 0 ,

(3.11)

where the last equality follows from integration by parts in field space and assuming a

Q-invariant measure. Note that, being an external source and not a dynamical field, gµν is

inert under δQ. A similar argument shows that the correlation functions of any Q-closed

operator do not depend on the metric, and that correlation functions of Q-exact operators

must vanish. In particular

〈Tµν(x1) . . . T ρλ(xn)〉 = 0 . (3.12)

Our exposition is admittedly brief. We refer the reader to e.g., [43–45] for a thorough

account of topological quantum field theories. Obviously, one may replace the metric and

stress tensor in the derivation above with any other source and conjugate operator. For

example, an external flavor field and its associated globally conserved current.

One means of generating the requirements of a Witten-type topological theory is to

use superspace [46]. Indeed, let us introduce a Grassmanian coordinate θ as one does

in supersymmetric quantum mechanics, collecting ordinary fields into superfields which

depend both on x and θ and by arranging for δQ to act on superfields as a derivative in

the θ-direction. More explicitly, a superfield Φ may be expanded in the form

Φ(x, θ) = φ(x) + θψ(x), (3.13)

whereby

δQΦ =
∂

∂θ
Φ = ψ(x) . (3.14)

Note that ψ is Q-exact; δQφ = ψ, so that δQψ = 0.

Let us now work under the assumption that our cohomology is trivial, i.e., all Q-

closed operators are exact. We then group all non-exact operators and their descendants

into superfields. Our construction ensures that products of superfields are superfields, the

bosonic derivative of a superfield is a superfield and superspace derivatives of superfields

are also superfields. Thus, a super-Lagrangian which is local in the superfields will be

Q-closed via the standard argument,

S =

∫
ddxdθ L , δQS =

∫
ddxdθ

∂L
∂θ

= 0 . (3.15)

For example,

S =

∫
ddxdθ

(
1

2
∂µΦ∂

µΦ + V (Φ)

)
=

∫
ddx

(
∂µψ∂

µφ+ ψV ′(φ)
)

=

∫
ddx δQ

(
1

2
(∂µφ)2 + V (φ)

)
.

(3.16)
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(The astute reader will notice that our example above is somewhat unorthodox given that

the action is fermionic. This can be ameliorated by making the replacement ∂µΦ∂µΦ →
Φ∂µΦ∂µΦ with φ fermionic.)

Finally, in order for the theory to be topological we need that the stress tensor is

Q-exact. After minimally coupling the theory to a metric, we can define a super stress

tensor via

δgS =
1

2

∫
ddxdθ

√
−g Tµνδgµν , (3.17)

and identify the top component of the super stress tensor with the physical one. By

construction, the top component of Tµν is Q-closed. In our earlier example (3.16) we find

Tµν =

[
∂µφ∂νφ− ηµν

(
(∂φ)2

2
+ V (φ)

)]
+ θ

[
∂µψ∂νφ+ ∂µφ∂νψ − ηµν

(
∂ρψ∂

ρφ+ ψV ′(φ)
) ]

,

(3.18)

which indeed has the expected properties.

3.2.2 Source-deformed topological field theories

When the sources of the Schwinger-Keldysh theory are not aligned, the theory will no

longer be topological. To account for such a requirement we need to construct a “source-

deformed topological theory,” i.e., a theory which ceases to be topological once certain

sources are turned on. To construct such theories it is helpful to first take a step back

and consider (3.15). With δQ acting as ∂/∂θ, the integral of a super-Lagrangian L will be

Q-closed as long as L is a superfield, e.g., it does not explicitly depend on θ. One uses

the same line of reasoning to argue that the momentum operator generates a symmetry as

long as the Lagrangian does not explicitly depend on the position.

Even when a Lagrangian depends explicitly on position, one can define a spurionic

translation symmetry, by promoting the position-dependent couplings to spurions. For

example, the Lagrangian of a massive scalar field φ with a position-dependent mass,

L =
1

2
(∂φ)2 +

m2(x)

2
φ2 , (3.19)

is not translation-invariant since m2(x) is inert under the momentum operator. However,

we can define a spurionic translation symmetry if we allow m2(x) to transform in the

same way as φ(x) under translations. Defined this way, the Lagrangian is always invariant

under the spurionic translation. It is invariant under physical translations if and only if

the background field m2(x) is translation-invariant.

In the same way we can define a spurionic supersymmetry under which the action

is always invariant by allowing couplings to transform as superfields. This is the route

by which one proves almost all supersymmetric non-renormalization theorems [47]. For

example, consider the Grassman-odd functional

S′ =

∫
ddxdθ

(
1

2
∂µΦ∂

µΦ + aΦ + θaḡΦ

)
=

∫
ddx (∂µψ∂

µφ+ aψ + aḡφ) , (3.20)
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where a is bosonic and aḡ is Grassman-odd. It is equal to our example (3.16) when

aḡ = 0 and V (Φ) = aΦ. The supersymmetry is broken by the explicit dependence on

θ. But S′ is invariant under a spurionic supersymmetry. Collecting a and aḡ into a

background superfield

A = a+ θaḡ , (3.21)

S′ becomes

S′ =

∫
ddxdθ

(
1

2
∂µΦ∂

µΦ + AΦ

)
. (3.22)

If we define a nilpotent operator Q′ such that

δQ′A =
∂A
∂θ

, δQ′Φ =
∂Φ
∂θ

, (3.23)

then clearly, S′ is Q′-closed.

The action S′ is also closed under Q when the background superfield A has no top

component, or equivalently, when δQ′A = ∂A
∂θ = aḡ = 0. More generally, the action is

Q-closed if all of the background superfields are δ′Q-invariant, meaning that all of their top

components vanish. Put differently, a Q-closed action is one for whom all couplings are

invariant under a superisometry generated by ∂/∂θ.2

Observe that in (3.20) the coupling a acts as a source for the Q-exact operator ψ, while

the supersymmetry-breaking coupling aḡ acts as a source for the operator φ. This is the

prototype for a more general relation. Given any background superfield A = a + θaḡ, the

variation of the action S gives a conjugate super-operator O = O + θOḡ via

δS =

∫
ddxdθOδA =

∫
ddx (Oḡδa+Oδaḡ) . (3.24)

Observe that the supersymmetry-preserving bottom component of A, a, couples to the

Q-exact operator Oḡ, while the supersymmetry-breaking top component, aḡ couples to O.

This construction is exactly what we need. Grouping operators into superfields O =

O+θOḡ, we can compute correlation functions of both O andOḡ by turning on a background

superfield J. In this way the supersymmetry-breaking couplings are completely determined

by the supersymmetry-preserving ones.

3.2.3 Application to Schwinger-Keldysh partition functions

Let us apply the results of the previous subsections to the Schwinger-Keldysh effective

action which must have a topological sector in the limit when the sources are aligned

A1 = A2. More precisely, correlation functions of the difference currents J ia = J i1 − J i2 and

stress tensor T ija = T ij1 −T
ij
2 must vanish whenever B1µ(x) = B2µ(x) and g1µν(x) = g2µν(x)

(up to gauge transformations).

We denote the supercharge associated with the topological Schwinger-Keldysh sym-

metry by QSK. We now require that the action Seff is QSK-exact whenever the sources

2There is a similar statement for supersymmetric field theories coupled to a bosonic background of

background supergravity. The supersymmetries which are preserved by the background, the superisometries,

are those that leave the background invariant. See e.g. [48]
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are aligned. Recall that the dynamical fields X and C enter into the action only through

the pulled back sources. Thus, we will collect the pulled back sources into multiplets

such that the a-type pulled back sources become QSK-exact sources are aligned. Thus,

to each a-type pulled back source Aa we associate a ghost source Ag. Since QSK annihi-

lates Aa = A1 − A2, it follows that there is another ghost source Aḡ given by the action

of QSK on Ar = (A1 + A2)/2. Together the {Ar, Aḡ} and {Ag, Aa} make up the basic

Schwinger-Keldysh supermultiplets which must obey the following algebra

[QSK,RAr] = GAḡ , {QSK, Aḡ} = 0 ,

{QSK,GAg} = A(A1 −A2) = AAa , [QSK, Aa] = 0 .
(3.25)

Here {R, G, G, A} are Grassmann-even operators that commute with QSK which will be

determined as we go along. In the remainder of this work we will consider bosonic Aa
and Ar implying that the ghosts Ag and Aḡ have Grassmann-parity −1. Apart from the

ambiguity associated with {R, G, G, A} we can also make the redefinition Ag → Ag+CAḡ.
We will use this freedom in section 2.2 when we treat the KMS symmetry.

Equation (3.25) specifies how QSK should act on Ar and Aa and their respective ghost

partners. But to properly define the action of QSK we need to specify how it acts on the

dynamical fields X1, X2, and C1 and C2, such that, e.g.,

[QSK, Ba] = [QSK, X
µ
1 ]

∂

∂Xµ
1

B1(X1(σ))− [QSK, X
µ
2 ]

∂

∂Xµ
2

B2(X2(σ)) + ∂i[QSK, C1]

− ∂i[QSK, C2] (3.26)

vanishes whenever the sources are aligned

B1µ(x) = B2µ(x) ≡ Bµ(x) . (3.27)

If we work perturbatively around the aligned limit (3.27) then such a constraint may be

imposed by setting

[QSK, X
µ
1 ] = [QSK, X

µ
2 ] , (3.28a)

[QSK, C1] = [QSK, C2] . (3.28b)

See [2]. In this work we avoid a perturbative expansion around (3.27) by appealing to a

probe limit, where the X1 and X2 fields and their ghost partners are “frozen” as in (3.7).

Thus, (3.28b) is sufficient to ensure that (3.26) is satisfied.

Geometrizing the action of QSK as δQSK
→ ∂

∂θ , we combine the sources B1 i(σ) and

B2 i(σ) together with the dynamical fields C1, C2, Cg and Cḡ into superfields Br and Ba as

Br = RBr + θGBḡ , Ba = GBg − θABa , (3.29)

where

Br i =
1

2
(B1 i +B2 i) Ba i = B1 i −B2 i

Bḡ i = ∂iCḡ Bg i = ∂iCg ,
(3.30)
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and B1 i and B2 i were defined in (3.1). If we add fictitious ghost sources βḡ i and βg i (not

to be confused with βi) and promote QSK to a spurionic symmetry then we may replace

the last two equalities with

Bḡ i = βḡ + ∂iCḡ Bg i = βg + ∂iCg . (3.31)

Observe that both the a-type fields Ba and the ghosts Bḡ are QSK-exact and so comprise

a topological sector. Moreover, Ba and Br have opposite Grassman-parity.

In writing the various fields, we are working on the “worldvolume” M as we discussed

in section 2.1. The Schwinger-Keldysh effective action can then be written as the integral

of a super-Lagrangian over θ and the bosonic worldvolume coordinates σi as

Seff =

∫
ddσdθ L , (3.32)

where L = L(Br, Ba) is Grassman-odd. We pause here to make a brief but important

remark. The super-Lagrangian L can depend on bosonic as well as on superspace deriva-

tives ∂/∂θ of the superfields, both of which (anti)commute with QSK. Later, after treat-

ing the KMS symmetry, we will see that superspace derivatives will be modified. These

modifications will be key to implementing dissipation when applying this formalism to

thermal states.

We conclude this subsection with a few comments on ghosts. We have introduced the

ghosts solely in order to ensure the existence of the topological limit. On account of the

spin-statistics theorem, the ghosts are unphysical, and we expect there to be fundamental

constraints on how they appear in the effective action. In the quantization of e.g., gauge

theories and worldsheet string theory, one can prove no-ghost theorems for which ghost

number conservation seems to be a necessity. While we do not yet endeavor to prove a

no-ghost theorem for Schwinger-Keldysh effective theories, we can define a sensible notion

of ghost number following [49] by endowing Cg with ghost number 1 and Cḡ with ghost

number −1. Assigning θ ghost number 1, it follows that Br and Ba have ghost number 0

and 1 respectively. We expect that we ought to impose a ghost number symmetry so that

the total action will have ghost number zero, allowing terms like
∫
dθ BaBr.

3.3 The reality condition

The next condition we wish to impose is the reality condition (2.11), which we remind the

reader, is given by

Z[A1, A2]∗ = Z[A∗2, A
∗
1] , (3.33)

and we have allowed for the possibility of complex sources conjugate to complex operators.

In order to ensure (3.33) we will impose a similar constraint on the effective action,

Seff [ξ; A1, A2]∗ = −Seff [ξ′; A∗2, A
∗
1] , (3.34)

where ξ′ is an appropriate transformation of the dynamical fields ξ. In the probe limit in

which we are working in, the sources are given by B1µ(x1) and B2µ(x1), and the dynamical

fields are the C’s and their ghost partners.
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The reality condition (3.33) is a Z2 symmetry. In order to enforce it on the action it

is convenient to construct an anti-linear operator P which acts on the sources via

P (B1) = B∗2 P (B2) = B∗1 . (3.35)

We now extend the action of P onto the dynamical variables so that

Seff [Br, Ba]
∗ = −Seff [P (Br), P (Ba)] . (3.36)

Given that Seff =
∫
ddσdθL, we find that

Seff =

∫
ddσdθ L(Ba, Br) =

∫
ddσ

(
−ABa

∂L

∂Ba

∣∣∣∣
θ=0

+ GBḡ
∂L

∂Br

∣∣∣∣
θ=0

)
, (3.37)

and using (3.29) we find

Ba|θ=0 = GBg , Br|θ=0 = RBr , (3.38)

where one has to be careful regarding signs when varying the fermionic Lagrangian with

respect to fermionic operators. Since these signs will not play a role in our analysis, we

omit them for brevity. In equation (3.37) and in the remainder of this section we will omit

the dependence of L on the sources for concicesness. Now, since P is antilinear, i.e.

P (iB) = −iP (B) , (3.39)

we can use equation (3.37) to constrain P such that

P (Br(σ)) = (Br(σ))∗ , P (Ba(σ)) = −(Ba(σ))∗ ,

P (Bḡ(σ)) = −(Bḡ(σ))∗ , P (Bg(σ)) = (Bg(σ))∗ .
(3.40)

In the remainder of this work we consider only real C’s and B’s. This implies that the

ghosts Bg and Bḡ are real Grassmannian fields. With (3.40) an action of the form (3.37)

respects the reality condition (3.36) for real L as long as A, G, G and R are real. We

henceforth work with this convention. In their work, HLR [1, 3, 4], christened P as a

worldvolume CPT symmetry. However, we elect to follow CGL [2] and refer to it instead

as a reality condition. At the end of the day this is just a semantic distinction. All groups

demand that the effective action respects (3.36).

In defining the action of P on the superfields we have the freedom of choosing how it

acts on the superspace coordinate θ. For real A and G we may choose

P (θF ) = −θP (F ) , (3.41)

for F any external or dynamical field, so that P (Ba) = Ba and P (Br) = Br.3 With these

conventions we have

P (Seff) =

∫
ddσP (dθ)P (L(Ba,Br)) = −

∫
ddσdθ L∗(P (Ba), P (Br))

= −
∫
ddσdθ L∗(Ba,Br) , (3.42)

3Note that one may use an alternate convention where A and G are imaginary, in which case L should

be imaginary, and then a better choice for the action of P on superspace coordinates is P (θF ) = θP (F ).
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This makes it clear that an action of the form (3.37) will satisfy the reality condition (3.36)

when L is a real function of real supefields Ba and Br.
As discussed earlier, the super-Lagrangian L may also contain superspace derivatives

∂θ. The most general action may be written as

Seff =

∫
ddσdθ L(Ba,Br, ∂i, i∂θ) . (3.43)

Under P we have

P (i∂θBa) = i∂θBa , P (i∂θBa) = i∂θBa , (3.44)

so that

P (Seff) = −
∫
ddσdθ L∗(Ba,Br, ∂i, i∂θ) . (3.45)

Equating the right-hand side with (minus) (3.43), we see that the most general action (3.43),

with real B′s respects the reality condition if and only if the super-Lagrangian L is a real

function.

We will see shortly that KMS symmetry effectively concatenates Ba and Br into a long

superfield B and introduces a complex superspace derivative operator. We will revisit the

effect of the reality condition on such long multiplets toward the end of subsection 3.4.1.

3.4 KMS symmetry

Recall that the full KMS symmetry is a Z2 symmetry of the generating function (2.56).

This Z2 symmetry leads to an additional topological sector which we referred to as a

topological KMS symmetry. See (2.58). In what follows we found it more convenient to

construct the effective action by first implementing the topological KMS symmetry and

then the full KMS symmetry.

3.4.1 Implementing the topological KMS symmetry

Recall that the topological KMS sector arises whenever the Ãa = (A1 − e−iδβA2) type

sources vanish. To ensure the existence of an extra topological sector, we will use the same

algorithm as the one discussed in section 3.2.3: we assume the existence of a nilpotent linear

operator which we denote by QKMS and its action on superfields by δQKMS
. We now strive

to construct an action which will be QKMS-closed when all ã-type sources vanish B̃a = 0.

In order to construct proper supermultiplets compatible with both KMS and

Schwinger-Keldysh symmetries, let us first deduce the action of QKMS on the basic fields

{Br, Bḡ, Bg, Ba}. By definition, in a state characterized by β and Λβ ,
(
B1 − e−iδβB2

)
is

QKMS-exact. Since Q
2
KMS = 0, it follows that there exist two ghosts B̃ḡ and B̃g such that

the action of QKMS is given by[
QKMS,

(
R̃B1

)]
=
[
QKMS, e

−iδβR̃B2

]
= G̃B̃g ,

{
QKMS, G̃B̃ḡ

}
= −ÃB̃a . (3.46)

Here, as in (3.25), there is a great deal of freedom in choosing, e.g., the overall normalization

of the ghost terms. We assume that the new supercharge QKMS is invariant under both

flavor gauge transformations and coordinate reparameterizations. Then (3.46) implies[
QKMS, R̃B2

]
= eiδβ G̃B̃g . (3.47)
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To determine the action of QKMS on the ghosts we make two important assumptions.

The first is that the ghosts B̃g and B̃ḡ are linearly related to the ghosts Bg and B̄g.

We motivate this assumption by noting that the QKMS symmetry did not involve the

introduction of new bosonic fields. Rather, it involved a linear combination of thermally

shifted fields.

The second assumption is that the topological KMS and Schwinger-Keldysh symme-

tries remain distinct even in the high-temperature limit, δβ → 0. Naively, we might expect

that the opposite is true, on account of the fact that the QKMS-exact operators B̃a coincide

with the QSK-exact operators Ba at high temperature. Our motivation for taking QSK and

QKMS to be distinct is that, even when δβ → 0, the full KMS symmetry (2.55) remains

non-trivial.

Let us start by implementing the expectation that B̃g and B̃ḡ are linear combinations

of the Bg and Bḡ ghosts:(
B̃g
B̃ḡ

)
= F

(
Bg
Bḡ

)
, F =

(
Fg Fḡ
Fg F ḡ

)
, (3.48)

with F an invertible matrix whose components are functions of iδβ . We can always define

a new barred ghost B̃′ḡ,

B̃ḡ = B̃′ḡ + C1B̃g , (3.49)

such that the relations (3.46) are still valid when replacing B̃′ḡ with B̃ḡ. If Fg = 0 we can

use this freedom to set F ḡ = 0. Otherwise, we use it to set Fg = 0. Thus, we have

F =

(
Fg Fḡ
0 F ḡ

)
or F =

(
0 Fḡ
Fg 0

)
. (3.50)

We now require that in the limit where eiδβ = 1 we get a non-trivial supercharge

QKMS. If we choose the second option in (3.50) and set Fḡ and Fg to constants then the

relations (3.46) imply that QKMS ∝ QSK. So we choose the first possibility in (3.50). We

can now use a redefinition of the untilde’d ghosts, Bg = B′g + C2Bḡ (similar to (3.49)) to

set Fḡ = 0 if it is not zero already. Thus, F is characterized by two functions which we

choose to parameterize by Fg and det(F) = F ḡFg.
Given a pair of short superfields Ba and Br, equation (3.46) implies that QKMS mixes

the components of Br and Ba with each other. Thus, to realize the KMS topological

symmetry we introduce an extra superspace coordinate θ̄ and concatenate Br and Ba into

a long superfield B,

B = RBr + θGBḡ + θ̄GBg + θ̄θABa . (3.51)

Not any collection of operators of the form (3.51) constitute a superfield. In order for B to

constitute a superfield we require that QSK and QKMS act on it in a geometric way. Clearly

δQSK
B = ∂

∂θB . One can check that in order for δQKMS
to act as a superdifferential operator

on B we must tune
e−iδβGGÃR̃

G̃G̃AR det(F)
= 1 , (3.52)
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which gives us

δQSK
B =

∂

∂θ
B ,

δQKMS
B =

(
1

2

G̃RFg
GR̃

(
1 + eiδβ

) ∂

∂θ̄
− G̃FgA
GR̃

(
1− eiδβ

)
θ

)
B .

(3.53)

We can now choose
1

2

G̃RFg
GR̃

(
1 + eiδβ

)
= 1 , (3.54)

so that the derivative term in (3.53) takes a canonical form, and

2
A
R

1− eiδβ
1 + eiδβ

= −iδβ , (3.55)

in order for δQKMS
to satisfy the Leibniz rule. In (3.55) we have also chosen A/R → 1 in the

δβ → 0 limit for later convenience. With these choices we find that the Schwinger-Keldysh

and KMS variations are

δQSK
B =

∂

∂θ
B , δQKMS

B =

(
∂

∂θ̄
+ iδβθ

)
B , (3.56)

for bosonic operators. Likewise,

{QSK, QKMS} = iδβ . (3.57)

It is interesting to note that this is the algebra of minimal supersymmetric quantum me-

chanics, with the thermal direction playing the role of time. The anticommutator (3.57)

has also been obtained by CGL [2] and HLR [1, 3]. In [2] the authors seem to use

{δQSK
, δQKMS

} = 2 tanh (iδβ/2). One way to obtain this result would be to use (3.52), (3.54)

and −A = R = 1. We refrained from doing so in order that the KMS supercharge satisfy

the Leibniz rule. The authors of [1, 3] have used {δQSK
, δQKMS

} = 1− e−iδβ , although they

have two additional supercharges as we discuss in section 5.

Apart from the superfields given in (3.51), one can also generate superfields from

suitable superderivatives acting on (3.51). Indeed, it is easy to check that

Dθ =
∂

∂θ
− iδβ θ̄ , Dθ̄ =

∂

∂θ̄
, (3.58)

satisfy

{QSK, Dθ} = {QSK, Dθ̄} = {QKMS, Dθ} = {QKMS, Dθ̄} = 0 , (3.59)

D2
θ = D2

θ̄
= 0, and

{Dθ, Dθ̄} = −iδβ . (3.60)

Equation (3.59) ensures that DθB and Dθ̄B are superfields.

It should be noted that B was constructed by joining together the short superfields Ba
and Br, which are the natural superfields associated with the topological Schwinger-Keldysh

symmetry. One may, instead, consider superfields on which QKMS naturally acts, viz.,

B̃ = R̃B̃r + θ̃G̃B̃ḡ + ˜̄θG̃B̃g + ˜̄θθ̃ÃB̃a , (3.61)
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where the components of B̃ have been defined in (2.59) and (3.48) and {R̃, G̃, G̃, Ã} sat-

isfy (3.52) and (3.54), and we use tilde’d superspace coordinates to distinguish them from

the untilde’d ones. Indeed, one finds that

δQSK
B̃ =

(
∂

∂θ̃
+ i ˜̄θδβ

)
B̃ , δQKMS

B̃ =
∂

∂ ˜̄θ
B̃ , (3.62)

where we have set

2
Ã
R̃

1− eiδβ
1 + eiδβ

= −iδβ . (3.63)

The natural superderivatives which act on the B̃′s are

D̃θ̃ =
∂

∂θ̃
, D̃ ˜̄θ

=
∂

∂ ˜̄θ
− iθ̃δβ . (3.64)

A priori, it would seem that we can choose whether to work with the B superfields or the

B̃’s. In what follows we will use B. However, we forewarn the reader that in section 3.4.2

we will see that the full KMS symmetry of the generating function forces us to use both

types of superfields.

Recall that (in the probe limit) it is C1, C2, Cg and Cḡ which are dynamical and that

these fields always appear in combination with the sources via (3.1) and (3.30). Thus, in

order to ensure (3.56) we require that

δQSK
C =

∂

∂θ
C, δQKMS

C =

(
∂

∂θ̄
+ iδβθ

)
C . (3.65)

where

C =
1

2
R (C1 + C2) + θ̄GCg + θḠCḡ + θ̄θA (C1 − C2) (3.66)

As was the case for the Schwinger-Keldysh symmetry, the KMS symmetry can be enhanced

to a spurionic symmetry using (3.31).

The most general Schwinger-Keldysh effective action is now given by the super-integral

of a long superfield

Seff =

∫
ddσdθdθ̄ L . (3.67)

The super-Lagrangian L may be constructed from superfields and their bosonic or super-

space derivatives (see (3.58)).

Let us now pause to revisit the reality condition for the effective action (3.36),

Seff [Br, Ba]
∗ = −Seff [P (Br), P (Ba)] , (3.68)

which in turn ensures (2.11). Recall that the transformation law for the antilinear operator

P was given by (3.40). If B is real then we maintain that for any component B of B,

P (θB) = −θP (B) , P
(
θ̄B
)

= θ̄P (B) , (3.69a)

P (B) = B , P (DθB) = −DθB , P (Dθ̄B) = Dθ̄B . (3.69b)

Following the same logic we used at the end of subsection 3.3, we find that the most

general action

Seff =

∫
ddσdθdθ̄ L(B, ∂, iDθ, Dθ̄;β,Λβ) , (3.70)

respects the reality condition (3.36) if (and only if) L is a real function of its arguments.
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3.4.2 The full KMS symmetry

The topological KMS symmetry does not ensure that the full KMS symmetry (2.54) (or

equivalently (2.55)) is satisfied. In what follows, we will ensure that the full KMS symmetry

is satisfied by requiring that the effective action is invariant under an appropriate shift of

its fields. In particular, following CGL [2], we demand that the effective action satisfy

Seff [C, B1, B2;β,Λβ ] = Seff [Θ∗C ′, Θ∗B1,Θ
∗e−iδβB2; Θ∗β,Θ∗Λβ ] , (3.71)

where C ′ is a suitable transformation of the dynamical fields C that we will soon uncover.

In terms of a Lagrangian (and temporarily ignoring the initial state data β and Λβ to keep

the presentation simple), we demand∫
ddσ L (C(σ), B1(σ), B2(σ), ∂) =

∫
ddσ L

(
Θ∗C ′(σ),Θ∗B1(σ),Θ∗e−iδβB2(σ), (Θ∗)2∂

)
=

∫
ddσΘ∗L

(
C ′(σ), B1(σ), e−iδβB2(σ),Θ∗∂

)
(3.72)

=

∫
ddσ L

(
ηCC

′(σ), ηBB1(σ), ηBe
−iδβB2(σ),Θ∗∂

)
,

where we have defined

Θ∗
∂

∂σ
=

∂

∂ϑσ
. (3.73)

In the last equality of (3.72) we have carried out a change of integration variables and ηC
is the eigenvalue of the dynamical field C under CPT and ηB was defined in (2.46).

The Lagrangian L(C, B1, B2; β, Λβ) is, generically, not invariant under (3.72). A pre-

scription for making it invariant would be to modify the action by making the replacement

L(ψ;β,Λβ)→ 1

2
(L(ψ;β,Λβ) + L(Kψ;Kβ,KΛβ)) , (3.74)

where we have collected the external and dynamical fields into ψ and K is a linear Z2

transformation which depends on β and Λβ . In order for the total action to satisfy (3.72),

K acts on sources and derivatives as

KB1(σ) = ηBB1(σ) , KB2(σ) = e−iδβηBB2(σ) , K
∂

∂σ
= Θ∗

∂

∂σ
, (3.75)

and on the thermodynamic data as

Kβi = ηβiβ
i , KΛβ = −Λβ , (3.76)

(recall that Λβ is odd under CPT , and ηβi is the eigenvalue of βi under CPT ). Us-

ing (3.75) and (3.76) we find that Kδβ = −δβ implying, for example, that K2B2(σ) =

K
(
ηBe

−iδβB2(σ)
)

= ηBe
iδβK (B2(σ)) = B2(σ). Therefore, K is indeed a Z2 transforma-

tion, squaring to one when acting on (B1, B2;βi,Λβ). In light of (3.75) we also define the

action of K on the dynamical fields

KC1 = ηBC1 , KC2 = ηBe
−iδβC2 , K

(
Cg
Cḡ

)
= ηBS(iδβ)

(
Cg
Cḡ

)
, (3.77)

– 29 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
7

where S is a matrix. Since the action is bosonic, K can square to either 1 or −1 when

acting on ghosts. In what follows, we use K2 = −1 on ghosts. This condition implies that

S satisfies S(−iδβ)S(iδβ) = −1.

Observe that K maps r-type and a-type operators to r̃-type and ã-type operators

respectively,

KCr = ηBC̃r , KCa = ηBC̃a , (3.78)

and vice versa. In order to ensure that K is manifestly consistent with the topological

symmetries, its action on the ghosts and Grassmannian coordinates should be such that it

maps superfields to superfields. Therefore, we define

KC = ηBC̃ , (3.79)

where the tilde’d multiplet C̃ was defined in (3.61). The relation (3.79) may be ensured by

requiring that

K (θC) = − ˜̄θKC , K
(
θ̄C
)

= θ̃KC , (3.80)

together with

R̃ = R , Ã = A , S =

 0 Ge−iδβ
FgG̃

−FgG̃G 0

 , (3.81)

which are compatible with (3.55) and the requirement that K is a Z2 transformation implies(
FgG̃

)∗
= FgG̃eiδβ . (3.82)

Here we have used that G and G are real. Likewise, we find

K (DθC) = −
(
∂

∂ ˜̄θ
− iδβ θ̃

)
ηBC̃ = −D̃ ˜̄θ

(KC) , K (Dθ̄C) = ηB
∂

∂θ̃
C̃ = D̃θ̃ (KC) ,

(3.83)

where the superderivatives on the right-hand side are the same ones we found in (3.64),

appropriate when acting on tilde’d superfields.

It is interesting to note that K exchanges QSK with QKMS and so is a sort of R-parity,

in that, e.g.,

K (δQSK
C) = −δQKMS

C̃ , K
(
δQKMS

C
)

= δQSK
C̃ . (3.84)

If we, once again, extend the supersymmetry to a spurionic one we may, for instance,

extend (3.84) to the B multiplets,

K (δQSK
B) = −δQKMS

B̃ , K
(
δQKMS

B
)

= δQSK
B̃ . (3.85)

In the remainder of this section we will work with spurionic supersymmetry.

Our final expression for the effective action is now

Seff =
1

2

∫
ddσdθdθ̄L (B, ∂, iDθ, Dθ̄; β, Λβ)

+
1

2

∫
ddσdθ̃d ˜̄θL

(
ηBB̃, Θ∗∂, −iD̃ ˜̄θ

, D̃θ̃; ηββ, −Λβ

)
.

(3.86)
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As discussed earlier, we have used tilde’d superspace coordinates in order to emphasize the

distinction between tilde’d multiplets B̃ and untilde’d ones B.

It remains to check the compatibility of K with the reality condition. A short compu-

tation shows that

P
(
B̃
)

= eiδβ B̃ , P
(
D̃θ̃B̃

)
= −eiδβD̃θ̃B̃ , P

(
D̃ ˜̄θ

B̃
)

= eiδβD̃ ˜̄θ
B̃ , (3.87)

as long as

P
(
θ̃B
)

= −θ̃P (B) , P
(

˜̄θB
)

= ˜̄θP (B) . (3.88)

At first sight (3.87) seems at odds with (3.86). Note however that a bosonic action will

always have an even number of superderivatives. Put differently, D̃θ̃ will always appear in

conjunction with another D̃θ̃ or with D̃ ˜̄θ
so that the reality condition is always satisfied.

Let us briefly dwell on ghost number. Providing θ̄ with ghost number −1 we find that

B has ghost number zero, Dθ has ghost number −1 and Dθ̄ has ghost number 1. An action

with ghost number zero allows for terms of the form DθB1Dθ̄B2 but not terms of the form

DθB1DθB2.

In the remainder of this work we will omit the tilde’s on the superspace coordinates in

the KMS partner action in order to tidy up our notation. We will also choose conventions

where A → 1 (and therefore R → 1) in the δβ → 0 limit and that G = G = G̃ = G̃ = 1.

Our convention for the ghosts enforces, via (3.52) and (3.54), that

Fg =
2

1 + eiδβ
, det(F) = e−iδβ , (3.89)

and the tilde’d ghosts are

B̃ḡ =
1 + e−iδβ

2
Bḡ , B̃g =

2

1 + eiδβ
Bg . (3.90)

Let us point out that we have not been able to find a physical condition which would

completely determine the operators A andR, nor have we been able to rule out its existence.

We do note that such a condition will determine the overall normalization of B. We provide

a summary of our results in section 4.

3.5 Ward identities

Recall that we have identified the mappings xµ1 , xµ2 , c1 and c2 with the dynamical fields Xµ
1 ,

Xµ
2 , C1 and C2 in order to ensure that the conservation equations emerge from equations of

motion. In the current work we have focused on the probe limit where the only dynamical

fields are C1, C2 and their ghost partners Cg and Cḡ. These were grouped into a superfield

C ≡ RCr + θCḡ + θ̄Cg + θ̄θACa . (3.91)

The C field is a scalar under worldvolume reparameterizations and transforms as a phase

under worldvolume gauge transformations

δΛC = RΛ . (3.92)
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We now use C and the trivial mapping xµ = δµi σ
i to pull back target space sources to

the worldvolume,

Bi =

[
R
2

(B1µ(x(σ)) +B2µ(x(σ))) + θ̄θA (B1µ(x(σ))−B2µ(x(σ)))

]
∂ix

µ + ∂iC . (3.93)

Being constructed from ordinary functions of superfields, the super-pullbacks have the

feature that they manifest the topological Schwinger-Keldysh and KMS symmetries. In

addition, this superfield is invariant under the target space transformations,

B1µ → B1µ + ∂µΛ1 , B2µ → B2µ + ∂µΛ2 ,

C1 → C1 − Λ1 , C2 → C2 − Λ2 .
(3.94)

In the probe limit defined above it is particularly simple to show that the equations of

motion for the dynamical variables are the Ward identities for the target space operators.

Let us parameterize the variation of the effective action with respect to Bi, βj , and Λβ as

δSeff =

∫
ddσdθdθ̄

{(
(RA)−1Ji

)
δBi +

(
A−1hi

)
δβi +

(
A−1m

)
δΛβ

}
(3.95)

=

∫
ddσ
{
J irδBa i + J iaδBr i −

(
(RA)−1J ig

)
δBḡ i

+
(
(RA)−1J iḡ

)
δBg i + ha iδβ

i +maδΛβ
}
, (3.96)

where we have defined

Ji = RJ ir+θJ iḡ+θ̄J ig+θ̄θAJ ia and δBi = RδBr i+θδBḡ i+θ̄δBg i+θ̄θAδBa i . (3.97)

We have added factors of R and A to the first line of (3.95) in order that the bosonic

terms in the second line take the standard form (2.5). The first two entries in the variation

indicate that J ir and J ia are indeed the worldvolume average and difference currents, and so

we identify Ji as the worldvolume super-U(1) current. Without loss of generality we can

promote βi and Λβ to be the bottom components of background superfields, conjugate to

the superfields hi and m, although this is not necessary.

If we vary the target space sources B1µ and B2 ν as well as the phase fields C1 and C2

but keep the ghost components of C and the thermal data fixed, then (3.95) becomes

δSeff =

∫
ddσ {Jµr δBaµ + Jµa δBr µ − ErδCa − EaδCr}+ (boundary term) , (3.98)

with

Jµr = δµi J
i
r , Jµa = δµi J

i
a , Er = ∂iJ

i
a = ∂µJ

µ
a , Ea = ∂iJ

i
r = ∂µJ

µ
r . (3.99)

We thereby identify the target space currents to be

Jµ1 = δµi

(
J ir +

J ia
2

)
, Jµ2 = δµi

(
J ir −

J ia
2

)
, (3.100)
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and the equations of motion for Ca and Cr, Er and Ea, are equivalent to the target space

U(1) Ward identities, which in the probe limit are simply

∂µJ
µ
1 = 0 , ∂µJ

µ
2 = 0 . (3.101)

The perceptive reader might recall that the action Seff need be invariant under a

worldvolume gauge symmetry defined in (3.92). In our probe limit, the transformation law

for the fields in the Lagrangian are

δΛBi = R∂iΛ . (3.102)

As we mentioned in (2.38), we let Λβ vary under worldvolume U(1) transformations Λ as

δΛΛβ = −βi∂iΛ . (3.103)

Inserting (3.103) into (3.95) gives

δΛSeff = −
∫
ddσΛ

{
∂i
(
J ia − βima

)}
+ (boundary term) . (3.104)

We find that the worldvolume gauge invariance implies that ∂iJ
i
a = ∂i

(
βima

)
is identically

satisfied. Once the equations of motion for the dynamical fields are imposed, ∂iJ
i
a = 0, we

see that necessarily ∂i(β
ima) = 0.

4 Constructing the effective action

Let us summarize our findings so far. The degrees of freedom of the effective hydrodynamic

theory appear in the action through the superfields

B = RBr + θBḡ + θ̄Bg + θ̄θABa ,

B̃ = RB̃r + θB̃ḡ + θ̄B̃g + θ̄θAB̃a ,
(4.1)

where we have defined the operators

B̃r =
1

2

(
1 + e−iδβ

)
Br +

1

4

(
1− e−iδβ

)
Ba , B̃g =

2

1 + eiδβ
Bg ,

B̃a =
1

2

(
1 + e−iδβ

)
Ba +

(
1− e−iδβ

)
Br , B̃ḡ =

e−iδβ + 1

2
Bḡ ,

(4.2)

and the coefficient functions A and R must be real and satisfy

A
R

=
1

2
coth

(
iδβ
2

)
iδβ , (4.3a)

and

A −−−→
δβ→0

1 . (4.3b)

– 33 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
7

With these definitions the (spurionic) action of the Schwinger-Keldysh and KMS super-

charges on the above superfields is given by (3.56) and (3.62) to be

δQSK
B =

∂

∂θ
B , δQKMS

B =

(
∂

∂θ̄
+ iδβθ

)
B ,

δQSK
B̃ =

(
∂

∂θ
+ iδβ θ̄

)
B̃ , δQKMS

B̃ =
∂

∂θ̄
B̃ ,

(4.4)

and the associated superderivatives are given by (3.58) and (3.64),

DθB =

(
∂

∂θ
− iδβ θ̄

)
B , Dθ̄B =

∂

∂θ̄
B ,

D̃θB̃ =
∂

∂θ
B̃ , D̃θ̄B̃ =

(
∂

∂θ̄
− iδβθ

)
B̃ .

(4.5)

As discussed, we will work in the probe limit where the only sources are external U(1)

flavor gauge fields B1µ and B2 ν . The dynamical degrees of freedom are combined into a

superfield

C = RCr + θCḡ + θ̄Cg + θ̄θACa . (4.6)

One now uses the identity map Xµ
1 = Xµ

2 = δµi σ
i to pull back the sources to the worldvol-

ume and group them with C to obtain the superfield (3.7)

Bi = RBr i + θ∂iCḡ + θ̄∂iCg + θ̄θABa i , (4.7)

where

B1 i = δµi B1µ + ∂iC1 , B2 i = δµi B2µ + ∂iC2 , (4.8)

and the average and difference fields and sources on the worldvolume are

Bi r =
1

2
(Bi 1 +Bi 2) , Bi a = Bi 1 −Bi 2 , Cr =

1

2
(C1 + C2) , Ca = C1 − C2 . (4.9)

The superfield Bi is invariant under target space U(1) gauge transformations and it trans-

forms as a connection under a worldvolume U(1) gauge transformation,

δΛBi = R∂iΛ . (4.10)

The tilde’d version of Bi is given by

B̃i = RB̃r i + θ∂iC̃ḡ + θ̄∂iC̃g + θ̄θAB̃a i , (4.11)

as in (4.2).

The most general worldvolume gauge invariant action depends on Bi and B̃j , their

derivatives, superderivatives, and the external thermodynamic parameters βi and Λβ . The

parameter βi transforms as a gauge invariant vector and Λβ transforms as

δΛΛβ = −βi∂iΛ (4.12)

under the worldvolume U(1) symmetry and as a scalar under coordinate transformations.
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The Schwinger-Keldysh effective action is given by

Seff =

∫
ddσdθdθ̄ L (4.13)

where

L =
1

2
L (B, ∂, iDθ, Dθ̄; β, Λβ) +

1

2
L
(
ηBB̃, Θ∗∂, −iD̃θ̄, D̃θ; ηββ, −Λβ

)
(4.14)

with Θ∂i = ∂/∂ϑσ where ϑσ is the CPT transformation of σ, and ηBi and ηβi are the

CPT eigenvalues of Bi and βi respectively. (In even dimensions we can set ηβi = 1 and

ηBi = −1). The thermodynamic parameter Λβ has eigenvalue −1 under CPT . We refer to

the second term on the right as the KMS partner of L.

4.1 The structure of the action

The appearance of superderivative terms in the action, or lack thereof, has interesting

physical consequences. In essence, the superderivative terms control the number of a-type

fields which appear in the bosonic action. We will see later, in section 4.2, that the a-

type fields correspond to what is often called stochastic noise in the context of dynamical

equations coupled to a noise field. Such noise fields are often useful in providing for a

description of time-dependent processes in dynamical critical phenomena.

Let us begin our analysis by considering super-Lagrangians which contain no su-

perderivatives. Omitting KMS partners, we have

L = L(B, ∂;β,Λβ) . (4.15)

A Lagrangian of the form (4.15) will contain only one power of the a-type fields after

superspace integration. To see this, note that∫
dθdθ̄ L = ABa i

∂L
∂Bi

∣∣∣∣∣
θ=θ̄=0

+ ∂iCḡ ∂jCg
∂2L

∂Bi∂Bj

∣∣∣∣∣
θ=θ̄=0

. (4.16)

Put differently, the r-type current, J ir, that follows from (4.15) will contain no a-type fields.

Let us now add superderivatives to the Lagrangian. The superderivatives of Bi take

the form

DθBi = ∂iCḡ − θ̄
Riδβ

1− e−iδβ
B̃a i − θ̄θiδβ∂iCḡ , Dθ̄Bi = ∂iCg + θABa i , (4.17)

where we have used (4.2). In order for the Lagrangian to be bosonic it must contain an

even number of superspace derivatives. Given that D2
θ = D2

θ̄
= 0 the two derivative terms

we can write are

DθBiDθ̄Bj = −θ̄θ
(
Riδβ

1− e−iδβ
B̃a i

)
(ABa j) + (ghosts)

DθBiDθBj = (ghosts)

Dθ̄BiDθ̄Bj = (ghosts)

DθDθ̄Bi = ABa i − θ̄θAiδβBa i + (ghosts)

Dθ̄DθBi = −
Riδβ

1− e−iδβ
B̃a i + (ghosts)

(4.18)
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where we have omitted ghost terms for brevity. Note that the last two terms in (4.18) are

related via {Dθ, Dθ̄} = −iδβ , so we may omit one in place of the other. In what follows we

will use the convention

DBi = DθDθ̄Bi . (4.19)

From (4.18) and gauge invariance it follows that we may decompose the super-

Lagrangian into scalar and tensor terms

L =
1

2
L(B, ∂;β,Λβ) +

1

2

∑
n=0

in+1 Lijk1...kn(B, ∂;β,Λβ)DθBiDθ̄BjDBk1 . . . DBkn

+ (ghost contributions) + (KMS partner) . (4.20)

A few comments are in order. We note that terms of the type Jk1...knDBk1 . . . DBkn may

be integrated by parts to yield the tensor terms appearing in (4.20), for this reason such

terms have been omitted. We have seen that the scalar term in (4.20) is of linear order

in a. The tensor terms associated with Lijk1...kn are of order n + 2 in a-type fields. Note

however that truncating (4.20) to order n does not reduce to an expansion in a-type fields

due to the KMS partner action.

The ghost contributions in (4.20) involve terms which are undetermined from the

bosonic part of the action. A subset of these must be set to zero when demanding that the

action has ghost number zero. Terms which have ghost number zero and are not determined

by the bosonic part of the action include, for instance, DθBiDθ̄BjDθBkDθ̄Bl.

4.2 The derivative expansion

Often, hydrodynamics is presented as a derivative expansion [50, 51] where physical quanti-

ties are expanded in derivatives of the hydrodynamic variables. These are the temperature

T , normalized velocity uµ, and chemical potential µ. In order to make contact with the hy-

drodynamic derivative expansion we must expand the effective action (4.20) in derivatives.

Our conventions for counting derivatives are that the thermodynamic parameters

βi and Λβ and the bottom component Br i are zeroth order in derivatives. Then

δβ = O(∂), and

A
R

= 1 +
(iδβ)2

12
+O(δ4

β) (4.21)

contains terms to all orders in the derivative expansion. Thus, using (4.3), the superfield

Bi = Br i + θ∂iCḡ + θ̄∂iCg + θ̄θBa i +O(∂2) , (4.22)

does too. Given that Dθ = ∂θ − iθ̄δβ we also need to associate a derivative counting to Dθ

as well. We use conventions where θ and θ̄ are of order O(∂−1/2) implying that Dθ and Dθ̄

are of order ∂1/2 and Ba i is first order in derivatives. Other conventions are also possible

and will not modify the computation of measurable quantities.

The KMS partner of Bi, B̃i, also contains an infinite power series in derivatives. This is

expected. The fluctuation-dissipation theorem, which is enforced by the KMS symmetry,

dictates an all-order in derivatives relation among correlation functions. Even if we defined
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the superfield Bi to be Bi = Br i + θ∂iCḡ + θ̄∂iCg + θ̄θBa i with no gradient corrections,

ignoring the various problems that would arise with QKMS if we did so, its KMS conjugate

B̃i would have contained an infinite number of derivatives. With our current conventions,

to first order in the derivative expansion, we have

B̃i =
(
Br i + θ∂iCḡ + θ̄∂iCg + θ̄θ (Ba i + iδβBr i)

)
− 1

2
iδβ
(
Br i + θ∂iCḡ + θ̄∂iCg + θ̄θ (Ba i + iδβBr i)

)
+O(∂2) .

(4.23)

Consider a derivative expansion of the general action (4.20). Given such an expansion,

one can compute the resulting current Ji order by order in derivatives. In the absence of

ghosts and a-type fields J ir, the bottom component of Ji, should satisfy the hydrodynamic

constitutive relations appropriate at that order in the derivative expansion. In what follows

we will show that this is indeed the case, up to first order in the derivative expansion. We

defer a more extensive analysis to future work.

At zeroth order in derivatives, the only gauge-invariant scalars we can construct out

of βi, Λβ , and Bi are

ν = βiBi +RΛβ , and T−2 = −βiβi , (4.24)

(see (4.10) and (4.12) ). In what follows, we will use

ν = R ν + θνḡ + θ̄νg + θ̄θA(βiBa i) , (4.25)

which implies that

ν = βiBr i + Λβ , νḡ = βi∂iCḡ , νg = βi∂iCg . (4.26)

At zeroth order in derivatives we can characterize the most general action (4.20) by a

single function F (T, ν):

Seff =
1

2

∫
ddσdθdθ̄

(
F (T, ν) + F (T,−ν̃)

)
+O(∂) , (4.27)

so that only the leading terms on the right-hand side of (4.22) and (4.23) contribute at

this order.

The supercurrent associated with this action is given by

2
(
J ir + θJ iḡ + θ̄J ig + θ̄θJ ia

)
=
(
Ḟ (T, ν)− Ḟ (T,−ν)

)
βi +

(
θνḡ + θ̄νg

) (
F̈ (T, ν) + F̈ (T,−ν)

)
βi (4.28)

+ θ̄θ
(
βjBa j

(
F̈ (T, ν) + F̈ (T,−ν)

)
+ νḡνg (

...
F (T, ν)−

...
F (T,−ν))

)
βi

where a dot denotes a derivative with respect to ν. Thus,

J ir =
1

2

(
Ḟ (T, ν)− Ḟ (T,−ν)

)
βi . (4.29)
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The expected constitutive relations for a charge current, at zeroth order in derivatives, are

J ir = ρui , (4.30)

where ρ is the charge density which is related to the pressure P via the usual thermodynamic

relation ρ = ∂P/∂µ. Recall that the pressure must be an even function of the chemical

potential µ in order to retain CPT invariance of the theory [13]. As a result, ρ must be

an odd function of the chemical potential. Indeed, in comparing (4.29) with (4.30) we find

that we may identify the velocity ui, temperature T , and chemical potential µ as

T =
1√
−β2

, ui =
βi√
−β2

, µ = Tν , (4.31)

and, more importantly, the pressure P with the even part of F ,

P (T, ν) =
1

2
(F (T, ν) + F (T,−ν)) . (4.32)

A similar expression arises for the charge density ρ. It is gratifying that the constitutive

relations we obtain in (4.29) naturally respect CPT.

Let us now consider terms which are first order in derivatives. At that order, the

effective action has the form

Seff =
1

2

∫
ddσdθdθ̄

(
L0 + i LijDθBiDθ̄Bj + (KMS partners) + (ghost terms)

)
+O(∂2) ,

(4.33)

where the scalar contribution, L0, has terms with at most one derivative and the tensor

contribution Lij is zeroth order in derivatives. We have already seen that L0 = F +O(∂).

Corrections to the scalar action will come from scalar terms with one derivative. The

possible gauge invariant scalars with one derivative at our disposal are:

One derivative scalars: ∂iβ
i , βi∂iT , βi∂iν . (4.34)

Since we are working in the probe limit, we have ∂iβ
i = 0 and βi∂iT = 0. Thus, the scalar

part of the action can be written in the form:

L0 = P (T, ν) + p(T, ν)βi∂iν , (4.35)

where we have, with some foresight, identified the pressure term from our analysis of

the zeroth order derivative expansion. Note that the second term on the right-hand side

of (4.35) can be written as a total derivative and therefore will not contribute to the

equations of motion or currents.

As for Lij , there are two tensor structures which we can write down at zeroth order in

derivatives:4

Zero derivative tensors: P ij ≡ ηij +
βiβj

(−β2)
, βiβj . (4.36)

4In 2 + 1 dimensions there is another tensor structure available, εijkβk. Including this structure and

computing the ensuing response, one finds that this term leads to the anomalous Hall conductivity of [52].
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The most general Lij we can write down is then given by

Lij = −κ(T, ν)P ij − s(T, ν)βiβj . (4.37)

Carrying out the superspace integration we find that, for the scalar Lagrangian,∫
dθdθ̄ (L0 + (KMS partner)) = Ba iβ

i
(
Ṗ (ν)− Ṗ (−ν)

)
+

1

2
iδβ

(
2P (−ν)− iδβP (−ν) + βiBa iṖ (−ν)

)
(4.38)

+ δβ
(
βiBa i (p(ν) + p(−ν))− iδβp(−ν)

)
+ (ghosts) ,

where p′ = p and Ṗ (ν) = dP/dν. Note that the last two lines are a total derivative and do

not contribute to the equations of motion or currents.

For the tensor Lagrangian we find∫
dθdθ̄

(
i LijDθBiDθ̄Bj + (KMS partner)

)
= i (κ(ν) + κ(−ν))P ij(Ba i + iδβBr i)Ba j

+ i (s(ν) + s(−ν)) (βiBa i + iδβν)βjBa j ,

+ (ghosts) . (4.39)

As should be clear from (4.38) and (4.39), only the symmetric part of P , κ and s under

ν → −ν will contribute to the constitutive relations. Therefore, without loss of generality

we will set

P (T, ν) = P (T,−ν) , κ(T, ν) = κ(T,−ν) , s(T, ν) = s(T,−ν) . (4.40)

We find (neglecting total derivatives and ghosts)∫
dθdθ̄L =

(
Ṗ − sδβν

)
βjBa j−κP ij

(
∂iν −Gr ikβk

)
Ba j+i

(
κP ijBa iBa j + s

(
βiBa i

)2)
,

(4.41)

where we have used

δβBr i = £βBr i + ∂iΛβ = −Gr ijβj + ∂i(β
jBr j + Λβ) = ∂iν −Gr ijβj , (4.42)

cf., (2.34).

Computing the r-type current in the absence of a-type sources and setting a-type fields

and ghosts to vanish we find that

J ir = (Ṗ − sβj∂jν)βi − κP ij
(
∂jν −Gjkβk

)
. (4.43)

After a field redefinition of ν of the form ν → ν − s
P̈
βi∂iν we find that (4.43) describes the

constitutive relations for a charged particle with conductivity σ = κ/T in the Landau frame,

J ir = ρui + σP ij
(
Ej − T∂j

µ

T

)
, (4.44)

where Ei = Giju
j is the average electric field. Note that due to (4.40), the conductivity

σ is even under µ → −µ, as expected by CPT. Equation (4.44) describes a worldvolume
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current. To obtain the target space r-type current we can use the pushforwards described

in (3.99) to obtain

Jµr = ρuµ + σPµν
(
Eν − T∂ν

µ

T

)
. (4.45)

The effective action (4.41) has nonzero imaginary part,

Im

∫
dθdθ̄ L =

(
κP ij + sβiβj

)
Ba iBa j +O(∂3) , (4.46)

which may also be understood as the leading order contribution in a small−a expansion

also expanded in derivatives. In general, we require that Im(Seff) is bounded below in order

for the functional integral to converge. In and of itself, this does not lead to a constraint

on κ and s. Fortunately, the authors of [30] have recently proven that Im(Seff) ≥ 0 in a

setup very similar to ours. This implies

σ ≥ 0 , and s ≥ 0 , (4.47)

which recovers the textbook result σ = κ/T ≥ 0.

As discussed in [2, 3], the a-type fields in the effective action are associated with noise

in stochastic hydrodynamics [19, 24]. Following HLR [3], we introduce a noise field Ni via

a Hubbard-Stratanovich transformation. Under the functional integral we have

Seff =

∫
ddσ

((
Ṗ − sδβν

)
βj − κP ij

(
∂iν −Gr ikβk

)
− 2

(
sβiβj + κP ij

)
Ni

)
Ba j

+ i
(
κP ij + sβiβj

)
NiNj ,

(4.48)

so that the constitutive relations, (in a non Landau frame) are given by

J ir =

(
Ṗ

T
− s

T 2
uj∂jν

)
ui + σP ij

(
Ej − T∂j

µ

T

)
− 2

(
s

T 2
uiuj + σTP ij

)
Nj , (4.49)

where Nj is a random noise drawn from a Gaussian sample whose transverse components

have inverse width proportional to the conductivity and longitudinal components propor-

tional to s. As emphasized by CGL [2], this rewriting in terms of stochastic hydrodynamics

is only valid when higher order a-type fields are neglected. If we were to continue beyond

quadratic order in the small−a expansion, it would no longer be possible to account for the

a-type fields with noise via a Hubbard-Stratonovich transformation. In general one needs

the full Schwinger-Keldysh effective action to properly treat thermal fluctuations, through

the a-type fields.

4.3 The fluctuation-dissipation relation

Instead of carrying out a derivative expansion to characterize the constitutive relations

it is also possible to carry out an expansion of the action in fields. Such an expansion

should give us a handle on exact relations among thermal correlation functions, such as

the fluctuation-dissipation theorem.
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Consider a quadratic action of the form

Seff =
1

2

∫
ddσdθdθ̄

(
BiF

ij(∂, β)Bj + iDθBiσ
ij(∂, β)Dθ̄Bj + (KMS partners)

)
+O(B3) ,

(4.50)

in an even number of spacetime dimensions, with real F ij and σij . We assume that F ij is

such that the action is gauge invariant. In order to simplify the ensuing computation let

us perform the Fourier transform on the fields

O(σ) =

∫
ddk

(2π)d
eik·σO(k) =

∫
dωdd−1~k

(2π)d
e−iωτ+i~k·~σO(ω,~k) . (4.51)

We further simplify our analysis by going to the static gauge where βi∂i = b∂τ and Λβ = 0,

to obtain

Seff =
1

2

∫
ddk

(2π)d
dθdθ̄

(
Bi(k)F ij(−ik, β)Bj(−k) + iDθBi(k)σij(−ik, β)Dθ̄Bj(−k)

+ B̃i(k)F ij(ik, β)B̃j(−k)− iD̃θ̄B̃i(k)σij(ik, β)D̃θB̃j(−k)

)
.

(4.52)

Expanding the action (4.52) in terms of a and r-type sources and omitting the ghost

terms we find

Seff =

∫
dωdd−1k

(2π)d
Br i (ω, k)A(bω)R(bω)

(
Re
(
F ij(iω, ik) + F ji(iω, ik)

)
− ib

2
ω
(
σij(−iω, −ik) + σji(−iω, −ik)

))
Ba j (−ω, −k)

− iBa i (ω, k)A(bω)2Re
(
σij(iω, ik

)
)Ba j (−ω, −k) , (4.53)

with F ij = F ij(iω, ik) and σij = σij(iω, ik). In obtaining (4.53) we have used that A
and R are real and hence symmetric under a sign flip of their argument. The resulting

(classical worldvolume) momentum space correlators are given by (see (2.7))

Gijsym = −iA(bω)2Re
(
σij(iω, ik) + σji(iω, ik)

)
,

Gijadv = iA(bω)R(bω)

(
Re
(
F ij(iω, ik) + F ji(iω, ik)

)
+
ibω

2

(
σij(iω, ik) + σji(iω, ik)

))
,

Gijret = iA(bω)R(bω)

(
Re
(
F ij(iω, ik) + F ji(iω, ik)

)
− ibω

2

(
σji(−iω, −ik) + σji(−iω, −ik)

))
,

Gijaa = 0 . (4.54)

It is easy to see that the Gij ’s in (4.54) satisfy

iGijsym =
1

2
coth

(
bω

2

)(
Gijret −G

ij
adv

)
. (4.55)

The result (4.55) is reminiscent of the fluctuation-dissipation theorem, but is somewhat

misleading in that we have not yet solved the equations of motion for the C fields. In an

upcoming manuscript we will demonstrate that the relations (4.55) still hold after carrying

out the Gaussian path integral and translating (4.54) to target space Green’s functions.
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5 Discussion and outlook

In this work we have used the microscopic symmetries of Schwinger-Keldysh partition

functions to determine the constraints on effective field theories for thermal states. We

then used those constraints to obtain effective field theories for dissipative hydrodynamics.

Our work is largely inspired by that of Haehl, Loganayagam, and Rangamani (HLR) [1, 3]

and is also based on Crossley, Glorioso, and Liu (CGL) [2] although it differs from them

in several respects.

5.1 Comparison with previous work

While our expression for the effective action is most similar to that of HLR [1, 3] the details

and interpretation differ significantly. For example, the authors of [1, 3] consider actions

which are invariant under four supercharges, as opposed to our two. Further, in addition

to the fields we have described they advocate for a dynamical U(1)T field. HLR [1, 3] also

do not appear to use the KMS partner terms in the action, which we implemented in order

for the fluctuation-dissipation relations to be satisfied. Let us address some of these points

in detail.

As discussed in section 3.2, the Schwinger-Keldysh partition function has a topological

limit. We enforced this property by positing a single BRST-like supercharge QSK. The

authors of [1, 3] have postulated that the topological limit is imposed through two such

supercharges, QSK and QSK. We are not aware of a proof that there is always a second

supercharge QSK, nor of a counterexample in which it is forbidden. The extra generator

QSK is somewhat reminiscent of the generator of an anti-BRST symmetry which emerges in

the BRST quantization of gauge theories [53–55]. Along with the topological Schwinger-

Keldysh symmetry, we also imposed a topological KMS symmetry generated by QKMS.

This is at odds with the pair of KMS supercharges, QKMS and QKMS posited by the

authors of [1, 3]. In our work we account for QSK and QKMS by introducing a superspace

spanned by two Grassmannian coordinates. The authors of [1, 3] also introduce such a two

parameter superspace.

Another prominent feature of [1, 3] is the existence of a dynamical gauge field AI with

I running over worldvolume bosonic and superspace indices. This additional U(1)T field

appears in covariant derivatives through the schematic form DI ∼ ∂I + AIδβ . Since there

are two superspace coordinates and four supercharges, in order for the superderivatives to

commute with the supercharges the connection AI must transform under the topological

Schwinger-Keldysh and KMS symmetries.

One way to think about the U(1)T field is as follows. The dynamics of the Langevin

equation may be encoded in a Schwinger-Keldysh path integral [29]. The ensuing action

may be understood as a Schwinger-Keldysh effective action of the sort considered in our

work. This action is invariant under only two of the four supercharges posited by HLR. As

shown by HLR in [1], one can render this action invariant under all four supercharges by

introducing a dynamical U(1)T field.

The authors of [1, 3] then hypothesized that the Grassmannian component of the field

strength of AI , Fθθ̄, spontaneously condenses with 〈Fθθ̄〉 = −i. It is interesting to note
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that the superderivatives we constructed, cf. (3.58), Dθ = ∂θ − iθ̄δβ and Dθ̄ = ∂θ̄, may

be interpreted as having a background U(1)T connection with this same field strength.

We believe that the similarity between the superderivatives is not accidental. In a future

publication we will argue that one may add an external source, AI(σ), which couples to

the current generated by the transformation δβ (see (3.57)). After such a procedure, one

finds that AI(σ) effectively acts as a connection through the form espoused in [1, 3].

From a structural perspective the action we propose is the sum of two terms

(see (4.20)). The first uses an r/a superfield O, and the second uses an r̃/ã superfield

Õ. We refer to the second term (which seems to be absent in HLR’s construction [1, 3])

as the KMS partner of the first. The partner action ensures that the total action respects

the full KMS symmetry. This, in turn, guarantees that the fluctuation-dissipation relation

and its non-linear generalizations [2, 56] hold.

A final difference between our work and that of [1, 3] concerns worldvolume symmetries.

In section 3.5 we have argued that the dynamical fields are the mappings Xµ and the phases

C. Even though we have a superspace, we only imposed worldvolume reparamaterization

and U(1) symmetries on the effective action. In contrast, the authors of [1, 3] employ a

dynamical superembedding XI in addition to C, and impose superreparameterization and

super-U(1) invariances. We note in passing that in our probe analysis, one can show that

the terms allowed by U(1)-invariance can be upgraded to be super-U(1)-invariant.

While the notation we use is very similar to [1, 3], the construction we use is, in practice,

very reminiscent of that of [2]. In fact we have checked that, in the probe limit, our action

largely agrees with that of CGL [2]. As far as we could tell, the main difference between our

actions has to do with the discrete symmetries imposed on the generating function. While

we demanded CPT , CGL demanded PT . This seems to generate a slight mismatch in the

parity of observables under µ→ −µ. The perceptive reader might worry that in addition,

CGL advocated for a partial diffeomorphism and gauge invariance on the worldvolume

while we uphold a full diffeomorphic and gauge invariant theory. Recall however that the

initial state parameters βi and Λβ are fixed data. The residual transformations that leave

βi and Λβ invariant are exactly those used by CGL, implying that the symmetries of both

theories are the same.

Our main contributions to the CGL [2] construction include amalgamating fields into

superfields, providing an a priori argument for the existence of a topological KMS sym-

metry, and imposing the full KMS symmetry via the introduction of tilde’d superfields.

Most importantly, we have redefined the superfields using R(iδβ) and A(iδβ) so that the

associated transformations and superderivatives satisfy the Leibniz rule (even beyond the

~→ 0 limit discussed in [2, 57]).

To summarize, in this work we have constructed a superspace formalism of dissipative

hydrodynamics with a notation similar to that of [1, 3], but formulation closer in spirit to

that of[2]. We have demonstrated that the hydrodynamic constitutive relations and the

fluctuation-dissipation relations are compatible with our formalism. This is, of course, a

minimal requirement of a Schwinger-Keldysh effective action for hydrodynamics. With a

full fledged effective action one can do much more.
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5.2 Outlook

We now turn our attention to loose ends and open questions which are suggested by our

work. One such loose end is the treatment of hydrodynamic frame transformations [58]

in the effective action. In hydrodynamics, one may redefine the hydrodynamic variables

to eliminate unphysical transport coefficients, and we expect this redefinition to descend

from an operation in the Schwinger-Keldysh action. While we do not know with certainty

how to implement this redefinition, we have preliminary indications that it descends from

supersymmetry-preserving redefinitions of the sigma model superfields.

Another loose end which we need to address is a complete effective action which goes

beyond the probe limit. In section 4 we have demonstrated that, in the probe limit, the

symmetry requirements listed in section 2 lead to appropriate constitutive relations and

fluctuation dissipation relations. As discussed in section 3.5 all our arguments easily go

through when dealing with the full hydrodynamic theory, but restricted to quadratic order

in the a-type fields. Preliminary investigations suggest that it is straightforward to correct

the action perturbatively in a-type fields.

An additional prospect for the future involves a finer study of transport. There are

qualitatively different types of transport that may be realized in the most general hydro-

dynamic setting, as classified in [18]. It remains to be demonstrated that all classes of

transport may be realized through effective actions of the sort studied in this paper (or, for

that matter, by those used by CGL [2] and HLR [1, 3]). In particular, it would be inter-

esting to determine the modifications to the action which are necessary to match ‘t Hooft

anomalies, which would account for anomaly-induced transport [59] (see also [36, 60]).

Another question concerns the status of our effective actions as full-fledged quantum

theories. One point of concern in this respect is that the sigma model may have zero

modes, and when this occurs we expect that they must be quotiented out. Our motivation

for this is a bit oblique. We did not emphasize it before, but the low-energy description of

the Sachdev-Ye-Kitaev (SYK) models at large N and low temperature [61], or the theories

dual to dilaton gravity on a nearly AdS2 spacetime [62–64], is a 0 + 1d sigma model of

the type discussed in this paper. In the SYK models and two-dimensional gravity, one

must quotient out this sigma model by a SL(2;R) symmetry which acts as 1d conformal

transformations on the worldvolume [61].

The main reason for focusing our attention so far to hydrodynamics is practical. Much

is known of hydrodynamics on phenomological grounds, and so it offers a useful testing

ground to nail down the correct principles for Schwinger-Keldysh effective field theory. One

of the most unusual features of these models is the existence of an entropy current. As we

alluded to above, one may use the effective action to argue for the existence of an entropy

current with a positive semi-definite divergence (see [57]). We will also explore the entropy

current in a future publication, tying it to the U(1)T symmetry proposed by [1, 3].

On a more fundamental level, it is important to understand whether there is a

Schwinger-Keldysh no-ghost theorem. In this work we have been deliberately vague re-

garding the implementation of a ghost number symmetry. We have mentioned that a

ghost number symmetry will forbid certain terms in the effective action. One way to check
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whether ghosts have been correctly incorporated would be to match our action to a the-

ory where one may reliably compute quantum corrections to hydrodynamic correlators. A

prime candidate for such a theory is the AdS/CFT correspondence. We hope to report on

this issue in the near future.

A formal aspect of this work which we have considered in detail is the KMS symmetry.

We have first argued that the full KMS symmetry of the Schwinger-Keldysh generating

function implies the existence of a topological KMS symmetry. In this sense the topological

KMS symmetry emerges once the full KMS symmetry is implemented. In generating the

effective action we have found it useful to first implement the topological KMS symmetry

and only then impose the full KMS symmetry. Clearly, with some work, one should be

able to implement the full KMS symmetry in one go and obtain the topological sector

as a result.

Once the correct principles for constructing the Schwinger-Keldysh effective theory

are known, one can then use the lessons learned to tackle systems where much less is

known. An obvious place to start is with the generalizations of the Schwinger-Keldysh

partition function which encode out-of-time-ordered correlators, as emphasized by [4, 65]

(see also [66]). These have been the subject of intense study from the point of view of

diagnosing early-time chaotic growth in many-body systems (see e.g. [31]). In particular,

in generalizations of the SYK models [67, 68] and in holography [69, 70] there is a curious

relation between the “butterfly velocity” appearing in the exponential growth of out-of-

time-ordered four-point functions, which determines the speed at which the chaotic growth

propagates, and the underlying diffusion constants. Perhaps this relation follows from the

symmetries of an effective theory on the four-fold contour, which generalizes the Schwinger-

Keldysh hydrodynamics of our work.

Finally, it is an open problem to realize the Schwinger-Keldysh effective descriptions

in this work from the AdS/CFT correspondence. While some crucial first steps toward this

goal were made in [71, 72], the matter is far from settled. For example, in our effective

actions there are ghost partners of the sigma model fields, but there is (as of yet) no sign of

these ghosts in a dual gravitational description. It is conceivable that a proper treatment

of the two-sided black hole, within the Schwinger-Keldysh formalism, may shed light on

this puzzle. This, in turn, may shed light on what ought to be meant by the ER=EPR

correspondence [73].
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