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1. Introduction.    We consider the dissipative differential system of the form

yt = (Tyk)k+(Syk-x)k-x + (Ryk-2)k-2+ - ■

+ (Eyxxx)xxx + (Dyxx)xx + (Cyx)x + (By)x + Ay

for t>0 and -co^a<x<bfícc. Here, y = (r¡1, -n2,..., if1) is a function of x and t

with values in an «t-dimensional complex Euclidean space Em and T, S, R,...,

E, D, C, B, A are mxm matrix-valued functions of x alone. The inner product in

£m is defined as usual by

m

(y,z)=2v'z'       mth\y\ = [(y,y)]112.
i = i

The aim of this paper is to study the Cauchy problem for the system (1.1).

We shall make the following three assumptions :

(1.2) B = B*, C=-C*, D=-D*,..., T=-T*;
(1.3) <£> = Bx + A+A*^0,   a<x<b;

(1.4) T(x) is nonsingular for each x e (a, b); the elements of T, Tx, Txx,..., Tk_x',

S, Sx, S2,..., Sk_2;..., B are absolutely continuous on each compact subinterval

of (a, b). Also the elements of Tk, Sk_x,..., Bx and A are square integrable on each

compact subinterval of (a, b).

In order to formulate the problem, we shall introduce some notational con-

ventions. We set F=(I— ®)/2, where Z is the identity mxm matrix, and write

L2(a, b ; F) for the space of all vector-valued measurable functions y for which

$a (Ey, y) dx«x>. With an inner product (y, z\ in L2(a, b; F) defined by <>>, z>j

= J * (Fy, y) dx and a norm ¡| v||i = [\y, y}x]112, L2(a, b; F) becomes a Hubert space

which we shall sometimes denote by Hx- L2(a, b; F'1) and L2(a, b; I) are defined

in a similar way and will also be denoted by H2 and Ha respectively. With an inner

product <_v, z>12 in the product space H12 = Hx x H2 defined by (y, z}12 = (,y1, zx>i

+ <_v2, z2>2, H12 is again a Hubert space. If y, z are functions on (a, b) to £m, we

shall write (y, z}=jba (y, z) dx.

We now define two transformations L2° and L21 as follows:

LEV = (Tyl)k + (Sy1k-x)k-i+■ ■ ■ +(Dy1xx)xx+(Cyl)x + (By')x + Ay\

D(L2°x) = [y1 : y1 e Hx, y1 smooth with compact support in (a, b)];

Received by the editors October 26, 1966.

130

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DISSIPATIVE ORDINARY DIFFERENTIAL OPERATORS 131

LW = (Tyl)k + (Sy1k-x)k-x+ ■ ■ ■ + (Dyxx)xx+(Cy1x)x + (By1)x + Ay1,

(1.6) D(Llx) = [y1 : y1eHx,y1, y1, yxx, ..., j4 -1 absolutely continuous,

(Tyl)k+(Syl-xX-i+■ ■ ■ +(By1)x + Ay1 e H2].

The closure of L21 in the graph topology of Hx x H2 will be denoted by L2X, and the

graph of LU, i.e., the set of all pairs {[y1, Lily1], y e D(L°2°X)} will be denoted by

G(Lfx).
Suppose now that y1, z1 e D(L\X); then integrating by parts successively and

taking (1.2) into account, we obtain

</, LhxZ^ + iUxy1, z1) = <y\ (Tzi)k} + <(Tyl)k, z1} + ■ ■ ■

+ <y\ (Czx)x} + ((Cyl)x, z1> + </, (Bz^ + Az1}

+ {(By1)x + Ay\z1y

(1.7) = f [(j1, Tzhk.x)x + (Tyhk-x, z1)x + (y1,Txz12k_2)x
Ja

+ (Fxylk-2, zx)x+-(yx, Dz1^;,

-(Dyxx, zl)x + (y\ Czx)x + (Cyl, z1)x + (By1, z1),] dx

+ <^y1,z1}.

Suppose that y1 is a solution of (1.1) that is sufficiently smooth and let the

differential operator on the right of (1.1) be denoted by Ly1. Then it follows from

(1.7) that

<y\y1}t = <Ly1,y1y + <:y1,Ly1y
i\ =

where

21 =

IB

C*

D*

D* + E*x

C

0

-D*

-T*

0

Dx

-D

0

T

0

0

-(%y,y)a+

D + Exx

-Ex

E

2Iy j0> + <%\/>,

0   0    0

p J2IC-1]and y =[y\y1,y1x,

We note that the matrix 2Í is nonsingular since it is in triangular form and the

diagonal terms, i.e., T*, —T*,..., Fare all nonsingular.

If in addition to the condition 'S g 0, we require the solution to satisfy boundary

conditions of the form

(1.8) -(Wy,y)a+Wy,y)bü0,

then the solution "energy" will be nonincreasing in time. It is in this type of solution

we are interested and accordingly, we shall impose the condition (1.8). Boundary

conditions of this type will be called dissipative. The Cauchy problem for the
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system (1.1) can now be formulated in terms of semigroups of operators. We

require of the operator

Ly = (Tyk)k + (Syk_x)k-i+■ ■ ■ +(Cyx)x + (By)x + Ay

with a domain D(L) suitably restricted by dissipative boundary conditions that it

generates a strongly continuous semigroup of bounded operators, say [S(t); t^O].

The initial value is here assumed in the mean square sense, i.e.,

St. lim S(t)y0 = y0,       Jo £ H0,
t-o +

and the differential equation is satisfied in the sense that the strong derivative

(dS(t)ldt)y0 = L[S(t)y0],       y0 e D(L), t > 0.

Our main object is to find all generators of this type. Furthermore we give in §4, a

complete description of the boundary space associated with the system (1.1). The

first- and second-order cases of this problem have been considered by Phillips [1]

and Brooks [4], respectively, using a Green's function argument. In [5], Phillips

and the present writer have considered the first- and second-order cases by a

general operator-theoretic approach developed by Phillips in [2] and [3]. That it

has been possible, in the general case treated in the present paper, to obtain all the

information obtained in [1], [4], [5] by using the operator-theoretic approach is an

indication of the power of that method.

The author wishes to express his gratitude to Professor Ralph Phillips for

suggesting this more general investigation, for his inspiration, and for his helpful

criticisms and encouragement in the preparation of this paper, and also to the

referee for his suggestions.

2. Dissipative generators. We start this section by defining 2¿ functions

g^Xx, u), gfXx, u),..., gfk\x, u) as follows : Suppose that j(x) is a function

possessing derivatives of all orders and such that j(x) ^ 0, j(x) = 0 outside [ — 1, 1 ]

and J j(x) dx=l. Let £ > 0 be fixed and let x be a fixed number such that a + e < x < b

-e. We set gfXx, u)=je(x-u), whereje(x) = (l¡e)j(x¡e).

To define the remaining functions, let

a< a' < x < b' < b,       e < e0,

a + 2e0 < a',       b — 2e0 > b'

and write ax = a' — e0. We now take

gfXx, u) = J   [je(x - v) -jSo (ax -v)]dv;

g?Xx, u) = P [gfXx, F)-«3»À0(«i-^)] dv,
Ja

where «3>£(x) = |   g<2Xx, v) dv;
Ja

g?«Xx, u) = £ [gfx-'Xx, v)-h2k,e(x)jSo(ax-v)} dv,

where h2k<e =      g(2k~1Xx,v)dv.
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Lemma 2.1. For each integer z-^3, hrX(x) is bounded for all positive e'^e and

limhr¡e(x) exists as e->0. For each integer r>l, g{J\x, u) is a smooth function

vanishing together with all its derivatives near a and b, and as e —> 0, g{p(x, u)

converges boundedly to a bounded measurable function of u.

Proof. The verification that gf \x, u) is a smooth function vanishing together

with all its derivatives near a and b is straightforward and is omitted. We proceed

to prove the remaining two assertions of the lemma. First we note that gf\x, u)

has the stated properties. In fact, for all positive e ^e and all u,

\gp(x,u)\ â jjeo(ax-u)du.

Also, as e ->- 0 and for all u < x, gf\x, u) tends to a continuous function g02\x, u)

which decreases from 0 near u=ax — e0and takes the constant value § jSo(ax — u) du

in a' < u < x. For all u > x, g02)(x, u) takes the constant value 0. Hence g02)(x, u) is a

bounded measurable function of u and g(e2)(x, u) has the stated properties. From

this it also follows that lim£^0 h3¡e(x) = lime-,0 ¡aifKx, v) dv = pa lim£^0 gf\x, v)

exists. That h3¡s. is bounded for all positive e' ^ e is clear.

Next we consider gf\x, u). Since h3X(x) is bounded for all positive e'^e and

gi2)(x, u) is bounded for all positive e ^ e and all u and vanishes near a and b,

g$\x, u) is bounded for all e' g e and all u. Further,

lim{gf\x, u)-h3,e(x)jeo(ax-u)}
e-*0

exists as a bounded measurable function of u and therefore,

lim gf\x, u) = lim      [g(£2)(x, v) - h3¡e(x)j£o (ax -v)]dv
£-•0 e-0 Ja

[goXx,v)-h3,o(x)jeo(ax-v)]dv
Ja

exists and is a bounded and measurable function of u. Thus g{e3\x, u) has the stated

properties. Proceeding in this way, we have the result.

As in [5], we define a bilinear form Q(y, z) on HX2 by setting

Q(y,z) = </,z2> + </,z1>-<^1,z1>,

where y=[y1,y2], z=[z1,z2] in HX2 and denote the (9-orthogonal complement

of a set S^Hx2by S'.

Lemma 2.2. G(Llx) = G(L%ax)'.

Proof. We first note that G(Lix)<=G(L02°x)'. In fact, let z=[z\ z2] e G(LX2X); then

we only need to show that Q(y, z)=0 for every y = [y1, Lily1] in C7(F2i). But this

follows from (1.7) since under the hypothesis, y1 vanishes at the end points a and b.

To prove that G(L02°X)'^ G(L\X), we suppose that z e G(L°2X)', i.e., Q(y, z) = 0 for all

y e G(L°2°X). Then if z = [z1, z2], it has to be proved that z1, z1, zlx,..., z\k_x are
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absolutely continuous, that z1 e L2(a,b; F) and that z2=L21z1 eL2(a, b; F-1).

We note that if z1, zx,..., z2k_x have all been shown to be absolutely continuous,

then integration by parts gives

0 = Q(y,z) = <F1,z2>+<J^V,z1>-<®F1,z1>

= </, z2-(Tz\)k-(Szk_x)k-i-(Bz\-Azly

for all smooth y1 with compact support. It follows that z2 = (Tzk)k + (Szk _ x)k - x

+ ■■■ +(Bz1)x + Az1, and z2 e G(L\x).

To prove that z is absolutely continuous, let 4> be an arbitrary vector in Em and

g(2kXx, u) be as defined previously and substitute y1(u)=gfkXx, u)</> in

0 = Q(z, y) = <z1,L^1j1> + <z2,j1>-<®z1,/>,

i.e., in

0 = <z\ Tyhk+kTxyhc-x+' • •> + <z1, Sy12k,2 + (k-\)Sxy12k.z+ • • •>

+ • • • + (z\ Byly - (Az\ j1) + <z2, j1).

We then have

0 = - j   ((Fz1)^), [ -j's(x - u) +j'eo (ax - u) - hz¡e(x)j¡0(ax -«)+•••

+ h2k,s(x)j¡20k-1X°-x-u)]<f>)du

- ¿ J   ((Tuzx)(u), [jE(x - u) -jEo(ax -u)+h3Jx)j'Co(ax - u)

+ ----h2k,c(x)j<?-2Xax-u)]<t>)du

-••■ + •••+ f (z2(u)-(Az')(u), gfkXx, u)<p) du.
Ja

Since this is true for arbitrary <¡> e Em, we have

(Tzy)(u)j'e(x-u)du-k      (T^yuÜ^x-^du
Ja Ja

+ {integrals of terms involving gsZkXx, u),..., ge2Xx, w)}i + f^i = 0,

where Kx denotes the sum of terms involving h2kE(x)j'£o(ax-u),

h2k.e(x)j"0(ax -u),..., h2k¡e(x)j¡2k - v(ax - u) ;   h2k _ x,,(x)js0(ai -«)»•••»

h2k-x.áx)Jlf'2Xax-u); ...;   je0(ai~u)   and   jé0(ax-u).

Writing f£(x) = $bajE(x-u)f(u) du, we have

Yx(Tz\(x) = k(Tuz\(x)-{   }x-Kx,

which we write as

(Tz% = k(Tj%-{   }x-Kx.

Now it can be shown as in Lemma 1.2.1 of [5] that Tz1, Txzl, Txxz},..., Tkzx;

Sz1, Sxzl,..., Sfc-iZ1; ... ; Bz1, Az1 and z2 all belong to Lx(a', b'; I). Further,
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since by Lemma 2.1 each g(2)(x, u) converges boundedly to a bounded measurable

function of u, as e ->- 0, each of the terms

f (T^MgfXx, u)du,..., f ^(^-(Az^uygfXx, u) du
Ja Ja

will tend to a limit uniformly in [a' + 2£0, Z»' —2e0] and a fortiori in the L^norm.

Thus (Tz\-+w, say, in Lx[a' + 2e0, b'-2e0] as e-^0. That Tz1 is absolutely

continuous now follows exactly as in Lemma 1.2.1 of [5] and from this, it follows

that z1 is absolutely continuous.

Next, to prove that z1 is absolutely continuous, we write the equation 0=Q(z, y)

in the form

0 = <z\ (Ty¡k_x + (k-l)Txy¡k.2+ ■ ■ ■ +Tk.xyl)xy

+(z\ (Sy2k.3+ ■ ■ ■ +Sk^2y1k_x)xy+-(Az\y1y + (z2, />

and integrate by parts, obtaining

0 = -<z¿, Ty12k_x + (k-l)Txy12k.2+- ■ ■ +Tk_xy1ky+ ■ ■ • +<z2,/>.

We now set y1(u)=g(2k~1)(x, u)<f>. Then

0 = - f ((Tzl)(u), [-Jé(x-u)+j'eo(ax-u)+ ■ ■ ■ +h2k_1,E(x)j(e20k-3Xax-u)]<j>) du
Ja

+ (k-l) f ((7-.ZÍX«), [je(x,u)-jeo(ax-u)- ■ ■ ■ +h2k_x(x)j¡2k-2Kax-u)]4>)du
Ja

+ ••• +

whence

\\z2(u),gf\x,u)cf)du,
Ja

8_

dx
(TzlUx) = (A - l)(Tuzl)s + {   }2 + K2-

Generally, to prove z1 is absolutely continuous, we write the equation 0= Q(z, y)

in the form

0 = <zr\ Ty\k-ry + [integrals of terms involving y}2k_r)_x, y}2k_T)_2,...,/].

We then set y1(u)=gfk~r\x, u)<j> and argue as before. This concludes the proof.

Corollary. L\x^L\x and D(L°2X) = [y1 ; y1 e D(L\X) and Çny,z)a=0 for all

z1 e D(L\X), where y= [y1, y1,..., j^-i] andz= [z1, z\,. ..,z\k_x\}.

This corollary can be proved in a way analogous to the method used in proving

the corollary to Lemma 1.2.1 of [5].

If S0 and Sx denote (/(L^i) and G(F2:i) respectively, then it is clear that S0 is a

null space, Sx = S'0 and that Sq^Sx. The quotient space H=SX¡S0 is, in the termi-

nology of [3], a boundary space. In the usual topology for a quotient space, H is a

Hubert space and H is isomorphic and isometric to Sx n S^, the inner product in

Sx n S¿ being the inner product (y, zyX2 in HX2. Denoting the points of H by

y, z, ■ ■., we shall express the fact that y e Sx belongs to the coset y e H by writing
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ßy=y. We define a bilinear form Q on H by setting Q(ßy, ßu) = Q(ßy, ßu); then it

can be shown that Q is a continuous, regular Hermitian bilinear form.

Definition. A transformation T21 on Hx to H2 is said to engender the operator T

on H0 to itself where Z)(F) = [j1; y1 e D(T21) and T^y1 e H0], and Ty1 = T21y1.

Suppose now that L° and L1 denote the operators on H0 engendered by L21 and L21

respectively. Then we have the following result on applying Theorem 3.3 of [3]:

Theorem 2.3. There is a one-to-one correspondence between the maximal negative

subspaces [ZV] of H, taken with respect to Q, and the maximal dissipative operators

[L] on H0 such that L°<=L<=L1, the correspondence being defined by

D(L) = [y1;ß[y1,LY]eN],

which is dense in H0.

The following is Theorem 1.1.3 of [2]:

Theorem 2.4. A necessary and sufficient condition for an operator L to generate a

strongly continuous semigroup of contraction operators on a Hilbert space H to

itself is that L be a maximal dissipative operator with dense domain.

Combining Theorems 2.3 and 2.4 we obtain the desired solution to the Cauchy

problem for the system (1.1).

3. Solutions of the homogeneous equations. Consider the system of ordinary

differential equations

(3.1) (Tyk)k + (Syk-i)k-i+ ■ ■ ' +(Cyx)x + (By)x + Ay-\y = 0,

where A is a complex parameter and x e (a, b).

Let F(x) be an mxm matrix-valued function of x such that the elements of F are

measurable functions of x and Lebesgue integrable on compact subintervals of

(a, b). Consider the ordinary first-order system of equations

(3.2) ux(x) = F(x)u(x),

where u(x) is a vector-valued function of x to £m. For a proof of the following

well-known lemma see, for example, Coddington and Levinson [6, p. 97, Problem 1].

Lemma 3.1. Let | be an arbitrary vector in Em and let c e (a, b). There exists a

unique vector-valued function u ofx to Em, which is absolutely continuous on compact

subintervals of (a, b), satisfies (3.2) for almost all x e (a, b), and is such that u(c) = £.

Set
I 0   0

0 10

F =

0

F02k,l

F2kA = T-\X-A-Bx),

r«.a - t-\-b~cx),

T2k,3 = T-1(-C-Dxx),   etc.

0

0

I

r,
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With T as defined, we now use Lemma 3.1 as in the proof of Theorem 2.1 of [4]

to obtain the following

Theorem 3.2. Let c e (a, b) and let -n1, r¡2,..., r¡2k be vectors in Em. Then there

exists a unique vector-valued function y of x to Em such that y, yx, yxx,.. .,y2k-x are

absolutely continuous with square integrable derivatives on compact subintervals of

(a, b), y satisfies (3.1) for almost all x e (a, b) and we have y(c) = r¡1, yx(c) = r¡2,...,

yn-x(c) = t\2k.

We shall need the following lemma in the proof of our next theorem.

Lemma 3.3. Let y be a solution o/(3.1); then (21 y, y)(x) is an increasing function of

x on (a, b). If ce (a, b), then y e L2(c, b; F) if and only if City, y)b < +<x>.

The proof of this is straightforward and is therefore omitted. The following is the

second main result of this section.

Theorem 3.4. Let Fb [Fa] denote the collection of all solutions of equation (3.1)

such that (2ij, y)b < +oo [(2ij, y)a > —oo] and for each x, let 2i(x) have q negative and

p positive eigenvalues. Then Fb [Fa] is a linear subspace of the solution space of

(3.1) of dimension lb ££ km [la £ km]. If Cb [CJ denotes the collection of all solutions of

(3.1) such that (^.y,y)b^0 hjly,y)a^0], then Cb<=Fb [C.cfJ and Cb [Ca] contains

at least one km-dimensional [km-dimensional] subspace.

Proof. An argument similar to that used in proving the corollary to Lemma 2.2

of [4] shows that p = km=q. From Lemma 3.3, Fb^L2(c, b; F). Further, Fb is a

linear subspace of L2(c, b; F) since equation (3.1) is linear. Let {yx,y2, ■ • -.JW}

be a basis for the solutions of (3.1); then if y is an arbitrary solution of (3.1), there

exist constants a, such that y = ^2lmx a^y1. Now (21 j», y)x = J.2k = x atâ;(2Lc„ y,)x, and

if we let Y denote the 2Am x 2Am matrix with its ith column equal to yh then the

matrix of the above form is the nonsingular hermitian matrix Y*(x)^t(x) Y(x) which

again has km negative and km positive eigenvalues. Let

Cx=[y.(%y,y)xfk0};

then CX2 <= CXl if xx á x2 and each Cx contains at least one Am-dimensional subspace.

Further, we have C„ = r\xsb Cx.

Now the A/n-dimensional subspaces are compact (in a suitable topology) and

hence Cb contains at least one A/n-dimensional subspace. The results for the a end

of the interval are proved in a similar way. This concludes the proof.

4. Boundary behavior. Our aim in this section is to obtain more information

about the boundary space H. We first transform the system (1.1) into a new system

(4.1) Uy1 = (tyl)k+($yï-ù*-i+ ■ ' ' +(Cy1x)x + (Êy1)x+ ly1

so that í)=0. For this purpose we set f=T,S=S,..., C=C, É = B, Â = (A-A*)\2

-Bx¡2; then ^=0 and A-Â=eS>/2.
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As in §3 of [5], we define an operator o- on H12 to itself by

o[y\y2] = [y1,y2 + (Â-A)yi];

then a is regular and if we define Q by Q(y, z) = <j1, z2> + <j2, z1), we have

Q(oy, oz) = Q(y, z).

Further, setting S1 = a51, S0 = oS0, H=Sx/S0 and H=§xlS0, it is easily verified

that o induces a one-to-one bicontinuous mapping of H onto H taking maximal

negative (maximal positive) subspaces of H into maximal negative (maximal

positive) subspaces of H. Moreover, arguing precisely as in §1.3 of [5], we see that

there is a one-to-one correspondence between the boundary space H (and therefore

the boundary space H) and the set of all solutions of the equation

(4.2) (F-^-ZXF-^ + Zjj^O.

In order to determine the set of solutions of (4.2), we consider the two equations

(F-'Llx-Vy1 = 0

and

(F-^+Zjj^O,

that is

(4.3) (Tyh)k+(Syh-x)*-x+' ■ ■ +(Cy1x)x + (Byi)x + Ayi-yil2 = 0

and

(4.4) -(Tyh)*-(Syh-x\-x' ■ ■ -(Cy1x)x-(By^)x-Bxyi + A*y^-y^2 = 0.

As in Theorem 3.4, 9Í has km negative and km positive eigenvalues. Since % is a

nonsingular hermitian matrix, it is clear that p+q = 2km. Using Theorem 3.4, we

now have

Theorem 4.1. If Fb [Fa] denotes the collection of all solutions of (4.3) such that

(91 j", y)b < +00 [(9ij>, y)a > -co], then Fb [Fa] is a linear subspace of the solution space

of (4.3), of dimension say, lb^km [/a = ¿w]. If Cb [Ca] denotes the collection of all

solutions of '(4.3) such that (91 y, y)b = 0 [(91 y, y)a £ 0], then Cb c Fb [Ca c Fa] and Cb [Ca]

contains at least one km-dimensional [km-dimensional] subspace.

A similar result holds for the equation (4.4). The set Gb [Ga] of solutions z1 such

that (9iz, z)"> —oo [(21z, z)a< +00] is of dimension say, mb^km [ma^km] and the

set for which (2tz, z)" = 0 [(9tz, z)a^0] contains a ¿«i-dimensional [¿w-dimensional]

subspace.

Arguing now as in §1.3 of [5], we construct a special basis for the set of all square

integrable solutions of (4.3). Let Na and Nb he a fixed ¿m-dimensional and a fixed

¿«z-dimensional subspace contained in Ca and Cb, respectively. Then it is easy to

see that Na and Nb are linearly independent. Thus Na and Nb together span the
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2Aw-dimensional solution space of (4.3). We can therefore choose lb-kmyFs in Na

which together with Nb span Fb. These lb — km functions will be square integrable

at both ends a and b. Similarly, we have la — km functions from Nb which are square

integrable at both ends, i.e., which belong to L2(a, b; F). Moreover, these

(lb — km) + (la — km) functions span the space of all solutions which are square

integrable at both ends. Also the space of solutions of (4.4) which are square

integrable at both ends, i.e., which belong to L2(a, b; F) is of dimension (ma — km)

+ (mb — km), and again it can be shown as in §1.3 of [5] that the square integrable

solutions of (4.3) and (4.4) comprise all of the solutions of equation

(F-^-IXF^Llx + ̂ y1 = 0.

Finally, we note that if y= [y1, L2X y1] and y1 is a solution of (4.3), then Q(y, y)>0

and if z = [z1,L21z1] and z1 is a solution of (4.4), then Q(z, z)<0.

Since as we have seen, there is a one-to-one correspondence between the boundary

space H and the set of all solutions of the equations (4.2) we have the following :

Theorem 4.2. Let dH, dN, dP denote the dimensions of the boundary space, the

negative subspace of Q and the positive subspace of Q respectively. Then

dH = la + lb+ma + mb-4km,   dN = ma+mb-2km,

and

dp = la + lb — 2km.
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