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We investigate dissipative phase transitions in an open central spin system. In our model the central spin

interacts coherently with the surrounding many-particle spin environment and is subject to coherent driving and

dissipation. We develop analytical tools based on a self-consistent Holstein-Primakoff approximation that enable

us to determine the complete phase diagram associated with the steady states of this system. It includes first-

and second-order phase transitions, as well as regions of bistability, spin squeezing, and altered spin-pumping

dynamics. Prospects of observing these phenomena in systems such as electron spins in quantum dots or

nitrogen-vacancy centers coupled to lattice nuclear spins are briefly discussed.
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I. INTRODUCTION

Statistical mechanics classifies phases of a given system

in thermal equilibrium according to its physical properties. It

also explains how changes in the system parameters allow us to

transform one phase into another, sometimes abruptly, which

results in the phenomenon of phase transitions. A special kind

of phase transitions occur at zero temperature: such transitions

are driven by quantum fluctuations instead of thermal ones and

are responsible for the appearance of exotic quantum phases in

many areas of physics. These quantum phase transitions have

been a subject of intense research in the last 30 years, and are

expected not only to explain interesting behavior of systems at

low temperature, but also to lead to new states of matter with

desired properties (e.g., superconductors, -fluids, and -solids,

topological insulators [1–6]).

Phase transitions can also occur in systems away from

their thermal equilibrium. For example, this is the case when

the system interacts with an environment and, at the same

time, is driven by some external coherent source. Due to

dissipation, the environment drives the system to a steady

state, ρ0(g), which depends on the system and environment

parameters, g. As g is changed, a sudden change in the system

properties may occur, giving rise to a so-called dissipative
phase transition (DPT) [7–14]. DPTs have been much less

studied than traditional or quantum ones. With the advent of

new techniques that allow them to be observed experimentally,

they are starting to play an important role [15]. Moreover, they

offer the intriguing possibility of observing critical effects

nondestructively because of the constant intrinsic exchange

between system and environment [16]. In equilibrium sta-

tistical mechanics a large variety of toy models exist that

describe different kind of transitions. Their study led to a deep

understanding of many of them. In contrast, in the case of DPT

few models have been developed.

The textbook example of a DPT occurs in the Dicke

model of resonance fluorescence [7,17]. There, a system of

spins interacts with a thermal reservoir and is externally

driven. Experimental [18] and theoretical studies [19–22]

revealed interesting features such as optical multistability,

first- and second-order phase transitions, and bipartite

entanglement.

In this paper, we analyze another prototypical open system:

The model is closely related to the central spin system

which has been thoroughly studied in thermal equilibrium

[23–25]. In its simplest form, it consists of a set of spin- 1
2

particles (in the following referred to as the nuclear spins),

uniformly coupled to a single spin- 1
2

(referred to as the

electron spin). In the model we consider, the central spin

is externally driven and decays through interaction with a

Markovian environment. Recently, the central spin model has

found application in the study of solid-state systems such

as electron and nuclear spins in a quantum dot [25] or a

nitrogen-vacancy center.
In what follows, we first provide a general framework for

analyzing DPT in open systems. In analogy with the analysis
of low-energy excitations for closed systems, it is based on
the study of the excitation gap of the system’s Liouville
operator L. We illustrate these considerations using the central
spin model. For a fixed dissipation strength γ , there are two
external parameters one can vary: the Rabi frequency of the
external driving field, �, and the Zeeman shift, ω. We present
a complete phase diagram as a function of those parameters,
characterize all the phases, and analyze the phase transitions
occurring among them. To this end, we develop a series of
analytical tools, based on a self-consistent Holstein-Primakoff
approximation, which allows us to understand most of the
phase diagram. In addition, we use numerical methods to
investigate regions of the diagram where the theory yields
incomplete results. Combining these techniques, we can
identify two different types of phase transitions and regions
of bistability, spin squeezing, and enhanced spin polarization
dynamics. We also identify regions where anomalous behavior
occurs in the approach to the steady state. Intriguingly, recent
experiments with quantum dots, in which the central (elec-
tronic) spin is driven by a laser and undergoes spontaneous
decay, realize a situation very close to the one we study here
and show effects such as bistability, enhanced fluctuations, and
abrupt changes in polarization in dependence of the system
parameters [26,27].
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This paper is organized as follows. Section II sets the

general theoretical framework underlying our study of DPT.

Section III introduces the model and contains a structured

summary of the main results. In Sec. IV we develop the

theoretical techniques and use those techniques to analyze the

various phases and classify the different transitions. Thereafter,

in Sec. V numerical techniques are employed to explain the

features of the phase diagram which are not captured by

the previous theory. Possible experimental realizations and

a generalization of the model to inhomogeneous coupling are

discussed in Sec. VI. Finally, we summarize the results and

discuss potential applications in Sec. VII.

II. GENERAL THEORETICAL FRAMEWORK

The theory of quantum phase transitions in closed systems

is a well-established and extensively studied area in the field of

statistical mechanics. The typical scenario is the following: a

system is described by a Hamiltonian, H (g), where g denotes

a set of systems parameters (like magnetic fields, interactions

strengths, etc.). At zero temperature and for a fixed set of

parameters, g, the system is described by a quantum state,

ψ0(g), fulfilling [H (g) − Eψ0
(g)]|ψ0(g)〉 = 0, where Eψ0

(g)

is the ground-state energy. As long as the Hamiltonian is

gapped (i.e., the difference between E0(g) and the first

excitation energy is finite), any small change in g will alter the

physical properties related to the state |ψ0(g)〉 smoothly and

we remain in the same phase. However, if the first excitation

gap � = Eψ1
(g) − Eψ0

(g) closes at a given value of the

parameters, g = g0, it may happen that the properties change

abruptly, in which case a phase transition occurs.

In the following we adapt analogous notions to the case of

DPT and introduce the concepts required for the subsequent

study of a particular example of a generic DPT in a central

spin model.

We consider a Markovian open system, whose evolution

is governed by a time-independent master equation ρ̇ =
L(g)ρ. The dynamics describing the system are contractive,

implying the existence of a steady state. This steady state

ρ0(g) is a zero eigenvector to the Liouville superoperator

L(g)ρ0(g) = 0. This way of thinking parallels that of quantum

phase transitions, if one replaces [H (g) − Eψ0
(g)] → L(g).

Despite the fact that these mathematical objects are very

different (the first is a Hermitian operator, and the second

a Hermiticity-preserving superoperator), one can draw certain

similarities between them. For instance, for an abrupt change

of ρ0(g) (and thus of certain system observables) it is necessary

that the gap in the (in general complex) excitation spectrum of

the system’s Liouville operator L(g) closes. The relevant gap

in this context is determined by the eigenvalue with largest

real part different from zero (it can be shown that Re(λ) � 0

for all eigenvalues of L [28]). The vanishing of the real part of

this eigenvalue—from here on referred to as asymptotic decay
rate (ADR) [29]—indicates the possibility of a nonanalytical

change in the steady state and thus is a necessary condition for

a phase transition to occur.

In our model system, the Liouvillian low-excitation spec-

trum, and the ADR in particular, can in large parts of the

phase diagram be understood from the complex energies

of a stable Gaussian mode of the nuclear field. We find

first-order transitions where the eigenvalue of this stable mode

crosses the eigenvalue of a metastable mode at zero in the

projection onto the real axis. The real part of the Liouvillian

spectrum closes directly as the stable mode turns metastable

and vice versa. A finite difference in the imaginary parts of

the eigenvalues across the transition prevents a mixing of the

two modes and the emergence of critical phenomena, such

as a change in the nature of the steady-state correlations at

the critical point. In contrast, we also find a second-order

phase transition where the ADR vanishes asymptotically as

both mode energies become zero (in both real and imaginary

part) in the thermodynamic limit. At this critical point a true

degeneracy emerges in the Liouvillian spectrum and mixing of

the two modes point gives rise to diverging correlations in the

nuclear system. This observation parallels the classification

of quantum phase transitions in closed systems. There, a

direct crossing of the ground- and first-excited-state energy

for finite systems (mostly arising from a symmetry in the

system) typically gives rise to a first-order phase transition.

An asymptotical closing of the first excitation gap of the

Hamiltonian in the thermodynamic limit represents the generic

case of a second-order transition [30].

Besides the analogies described so far [cf. Table I], there

are obvious differences, like the fact that in DTP ρ0(g) may

be pure or mixed, and that some of the characteristic behavior

of a phase may also be reflected in how the steady state is

TABLE I. Nonexhaustive comparison of thermal phase transitions (TPTs), quantum phase transitions (QPTs), and DPTs. The concepts for

DPTs parallel in many respects the considerations for QPTs and TPTs. || · ||tr denotes the trace norm and S the entropy. Note that if the steady

state is not unique, additional steady states may come with a nonzero imaginary part of the eigenvalue and then appear in pairs: Lρ = ±iyρ

(y ∈ R).

TPT QPT DPT

System Hamiltonian Hamiltonian Liouvillian

operator H = H † H = H † L–Lindblad

Relevant Free energy Energy eigenvalues “Complex energy” eigenvalues

quantity F (ρ) = 〈H 〉ρ − T 〈S〉ρ Eψ : H |ψ〉 = Eψ |ψ〉 λρ : Lρ = λρρ

Gibbs state Ground state Steady state

State ρT = argmin
ρ�0,Tr(ρ)=1

[F (ρ)] |ψ0〉 = argmin
‖ψ‖=1

[〈ψ | H |ψ〉] ρ0 = argmin
‖ρ‖tr=1

[‖Lρ‖tr]

ρT ∝ exp[−H/kBT ] [H − Eψ0
]|ψ0〉 = 0 Lρ0 = 0

Phase transition Nonanalyticity in F (ρT ) � = Eψ1
− Eψ0

vanishes ADR = max[Re(λρ)] vanishes
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approached. Nonanalyticities in the higher excitation spectrum

of the Liouvillian are associated to such dynamical phases.

III. MODEL AND PHASE DIAGRAM

A. The model

We investigate the steady-state properties of a homoge-

neous central spin model. The central spin—also referred

to as electronic spin in the following—is driven resonantly

via suitable optical or magnetic fields. Dissipation causes

electronic spin transitions from the spin-up to the spin-down

state. It can be introduced via standard optical pumping

techniques [31,32]. Furthermore, the central spin is assumed

to interact with an ensemble of ancilla spins—also referred

to as nuclear spins in view of the mentioned implementa-

tions [25]—by an isotropic and homogeneous Heisenberg

interaction. In general, this hyperfine interaction is assumed to

be detuned. Weak nuclear magnetic dipole-dipole interactions

are neglected.

After a suitable transformation which renders the Hamil-

tonian time-independent, the system under consideration is

governed by the master equation

ρ̇ = Lρ
(1)

= Jγ
(

S−ρS+ − 1
2
{S+S−,ρ}

)

− i[HS + HI + HSI ,ρ],

where {·,·} denotes the anticommutator and

HS = J�(S+ + S−), (2)

HI = δωIz, (3)

HSI = a/2(S+I− + S−I+) + aS+S−Iz. (4)

Sα and Iα (α = +, − ,z) denote electron and collective nuclear

spin operators, respectively. Collective nuclear operators are

defined as the sum of N individual nuclear operators Iα =
∑N

i=1 σ α
i . J� is the Rabi frequency of the resonant external

driving of the electron (in rotating wave approximation), while

δω = ω − a/2 is the difference of hyperfine detuning ω and

half the individual hyperfine coupling strength a. δω, for

instance, can be tuned via static magnetic fields in the z

direction. Note that HI + HSI = a �S �I + ωIz, describing the

isotropic hyperfine interaction and its detuning. The rescaling

of the electron driving and dissipation in terms of the total

(nuclear) spin quantum number J 1 is introduced here for

convenience and will be justified later. Potential detunings

of the electron driving—corresponding to a term �Sz in the

Hamiltonian part of the master equation—can be neglected if

� ≪ Ja.

In the limit of strong dissipation γ ≫ a the electron degrees

of freedom can be eliminated and Eq. (1) reduces to

σ̇ := TrS(ρ̇) = γeff

(

I−σI+ − 1

2
{I+I−,σ }

)

− i[�effIy + δωIz], (5)

where γeff = a2

γ
, �eff = �a

2γ
, and σ is the reduced density

matrix of the nuclear system. This is a generalization of

1Note that the total spin quantum number J is conserved under the

action of L.

the Dicke model of resonance fluorescence as discussed

in [7,10,22].

Master Eq. (1) has been theoretically shown to display

cooperative nuclear effects such as superradiance (even for

inhomogeneous electron nuclear coupling) [33] and nuclear

spin squeezing [34] in the transient evolution. In analogy to the

field of cooperative resonance fluorescence, the system’s rich

steady-state behavior comprises various critical effects such as

first- and second-order DPT and bistabilities. In the following

we provide a qualitative summary of the phase diagram and

of the techniques developed to study the various phases and

transitions.

B. Phenomenological description of the phase diagram

For a fixed dissipation rate γ = a the different phases and

transitions of the system are displayed schematically in Fig. 1

in dependence on the external driving � and the hyperfine

detuning ω. We stress the point that none of the features

discussed in the following depends critically on this particular

value of the dissipation. In Appendix A we discuss briefly

the quantitative changes in the phase diagram for moderately

lower (higher) values of γ . Further, we concentrate our studies

on the quadrant �,ω > 0, in which all interesting features can

be observed. In the following, we outline the key features of

the phase diagram.
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FIG. 1. (Color online) Schematic of the different phases and

transitions of master Eq. (1). In the two main phases of the system

A (blue) and B (red)—which together cover the whole phase

diagram—the system is found in a RSTSS (cf. text). While phase

A is characterized by normal spin-pumping behavior (large nuclear

polarization in the direction of the dissipation) and a low effective

temperature, phase B displays anomalous spin-pumping behavior

(large nuclear polarization in opposing direction to the dissipation)

and high temperature. They are separated by the first-order phase

boundary b, which is associated with a region of bistability C (framed

by the boundary c). Here a second non-Gaussian solution appears,

besides the normal spin-pumping mode of A. The region of bistability

C culminates in a second-order phase transition at (ω0,�0). Below

this critical point the system is supercritical and no clear distinction

between phases A and B exists. In this region a dynamical phase D

emerges, characterized by anomalous behavior in the approach to the

steady state. For a detailed description of the different phases and

transitions, see Sec. III B.
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First we consider the system along the line segment x

(ω = ω0,� � �0), where �0 = ω0 = a/2 (a is the individual

hyperfine coupling constant) define a critical driving strength

and critical hyperfine detuning, respectively. Here HI vanishes

and the steady state can be constructed analytically as a zero-

entropy factorized state of the electron and nuclear system.

The nuclear field builds up to compensate for the external

driving—forcing the electron in its dark state |↓〉—until the

maximal polarization is reached at the critical value �0. Above

this point the nuclear system cannot compensate for the driving

� anymore and a solution of a different nature, featuring

finite electron inversion and entropy is found. The point �0

shows diverging spin entanglement and is identified below as

a second-order phase transition.

For the separable density matrix ρ0 = |ψ〉 〈ψ |, |ψ〉 =
|↓〉 ⊗ |α〉 the only term in master Eq. (1) which is not trivially

zero is the Hamiltonian term S+( a
2
I− + J�). However,

choosing |α〉 as an approximate eigenstate of the lowering

operator I− |α〉 ≈ α |α〉 (up to second order in ǫ = 1/
√

J )

with α = −2J�/a ≡ −J�/�0, the corresponding term in

Eq. (1) vanishes in the thermodynamic limit. In Appendix B 1

we demonstrate that approximate eigenstates |α〉 can be

constructed as squeezed and displaced vacua in a Holstein-

Primakoff [35] picture up to a correction of order 1/J .

The squeezing of the nuclear state depends uniquely on

the displacement such that these states represent a subclass

of squeezed coherent atomic states [36]. Remarkably, this

solution—where along the whole segment x the system settles

in a separable pure state—exists for all values of the dissipation

strength γ .

In the limit of vanishing driving � = 0 the steady state

trivially is given by the fully polarized state (being the zero

eigenstate of the lowering operator), as the model realizes a

standard optical spin-pumping setting for dynamical nuclear

polarization [37]. With increasing �, the collective nuclear

spin is rotated around the y axis on the surface of the Bloch

sphere such that the effective Overhauser field in the x direction

compensates exactly for the external driving field on the

electron spin. As a consequence along the whole segment x

the dissipation forces the electron in its dark state |↓〉, and all

electron observables, but also the entropy and some nuclear

observables, are independent of �.

Furthermore, the steady state displays increased nuclear

spin squeezing in the y direction (orthogonal to the mean

polarization vector) when approaching the critical point.

A common measure of squeezing is defined via the spin

fluctuations orthogonal to the mean polarization of the spin

system. A state of a spin-J system is called spin squeezed [36]

if there exists a direction �n orthogonal to the mean spin

polarization 〈 �I 〉 such that

ξ 2
�n ≡ 2

〈

�I 2
�n
〉/

|〈 �I 〉| < 1. (6)

In [38] it was shown that every squeezed state also contains

entanglement among the individual constituents. Moreover,

if ξ 2
�n < 1

k
then the spin-squeezed state contains k-particle

entanglement [39–41]. In Appendix B 1 we show that the

squeezing parameter in the y direction for an approximate

I− eigenstate |α〉 is given as ξ 2
êy

=
√

1 − α2/J 2 + O(1/J ) =
√

1 − (�/�0)2 + O(1/J ). Note, however, that this equation is

valid only for ξ 2
êy

� 1/
√

J . For higher squeezing the operator

expectation values constituting the term of order O(1/J ) can

attain macroscopic values of order
√

J . For � � �0 we find

that the nuclear spins are in a highly squeezed minimum

uncertainty state, with k-particle entanglement.2 Close to the

critical point k becomes of the order of
√

J [ξ 2
êy

= O(1/
√

J )],

indicating diverging entanglement in the system.

Since the lowering operator is bounded (||I−|| � J ), at

� = �0 where the nuclear field has reached its maximum

value, the zero entropy solution constructed above ceases

to exist. For large electron driving, where � ≫ �0 sets

the dominant energy scale, the dissipation γ results in an

undirected diffusion in the dressed state picture and in the

limit � → ∞ the system’s steady state is fully mixed. In

order to describe the system for driving strength � > �0,

in Sec. IV A we develop a perturbative theory designed to

efficiently describe a class of steady states where the electron

and nuclear spins are largely decoupled and the nuclear system

is found in a fully polarized and rotated state with potentially

squeezed, thermal Gaussian fluctuations (also referred to as

rotated squeezed thermal spin states (RSTSS) or the Gaussian
mode). It is fully characterized by its mean polarization as

well as the spin squeezing and effective temperature Teff of

the fluctuations (cf. Appendix C). Squeezed coherent atomic

states, which constitute the solution along segment x, appear

as a limiting case of this class for zero temperature Teff = 0.

In order to describe these RSTSS solutions, we conduct

a systematic expansion of the system’s Liouville operator in

orders of the system size 1/
√

J , by approximating nuclear op-

erators by their semiclassical values and incorporating bosonic

fluctuations up to second order in an Holstein-Primakoff

picture. The resulting separation of time scales between

electron and nuclear dynamics is exploited in a formalized

adiabatic elimination of the electron degrees of freedom.

The semiclassical displacements (i.e., the electron and nu-

clear direction of polarization) are found self-consistently by

imposing first-order stability of the nuclear fluctuations and

correspond to the nuclear and electron steady-state expectation

values derived from the semiclassical Bloch equations (i.e.,

after a brute force factorization 〈SiIj 〉 → 〈Si〉〈Ij 〉, for i,j =
x,y,z) in the equations of motion (cf. Appendix D). For a

given set of semiclassical solutions we derive a second-order

reduced master equation for the nuclear fluctuations which,

in the thermodynamic limit, contains all information on the

nuclear state’s stability, its steady-state quantum fluctuations

and entanglement, as well as the low excitation dynamics in

the vicinity of the steady state and thus allows for a detailed

classification of the different phases and transitions.

Using this formalism, we find that the system enters a new

phase at the critical point �0, in which the nuclear field can no

longer compensate for the external driving, leading to a finite

electron inversion and a nuclear state of rising temperature

2As in Ref. [40] we call a pure state |ψ〉 of N -qubits k-particle

entangled if |ψ〉 is a product of states |ψl〉 each acting on at most k

qubits and at least one of these does not factorize. A mixed state is

at least k-particle entangled if it cannot be written as a mixture of

l < k-particle entangled states.
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for increasing driving strength. At the transition between

the two phases, the properties of the steady state change

nonanalytically and in Sec. IV B2 we will find an asymptotic

closing of the Liouvillian gap (cf. Sec. II) at the critical

point, as the Liouvillian’s spectrum becomes continuous in

the thermodynamic limit. Below we characterize the critical

point (ω0,�0) as a second-order phase transition.

Allowing for arbitrary hyperfine detunings ω, a phase

boundary emerges from the second-order critical point (line

b in Fig. 1), separating two distinct phases A (blue) and B

(red) of the Gaussian mode. The subregion C of A indicates a

region of bistability associated with the phase boundary b and

is discussed below.

At � = 0 the semiclassical equations of motion feature

two steady-state solutions. Not only the trivial steady state of

the spin-pumping dynamics—the fully polarized state in the

−z direction—but also an inverted state where the nuclear

system is fully polarized in the+z direction is a (unstable)

solution of the semiclassical system. Quantum fluctuations

account for the decay of the latter solution of anomalous

spin-pumping behavior. The two semiclassical solutions (the

corresponding quantum states are from here on referred to as

the normal and anomalous spin-pumping modes, respectively)

persist for finite �. As we show employing the formalism

described above (Sec. IV B3), quantum fluctuations destabilize

the mode of anomalous behavior in region A of the phase

diagram. The stable Gaussian solution in phase A displays

a behavior characterized by the competition of dissipation γ

and the onsetting driving field �. The nuclear state is highly

polarized in the direction set by the decay, and the electron

spin starts aligning with the increasing external driving field.

Furthermore, the normal spin-pumping mode of phase A is

characterized by a low effective spin temperature.

The analysis of the low excitation spectrum of the Liou-

villian (Sec. IV B4) shows a direct vanishing of the ADR

at the phase boundary b between A and B, while the

imaginary part of the spectrum is gapped at all times. At this

boundary, the normal mode of phase A destabilizes while

at the same the metastable anomalous mode turns stable

defining the second phase B. The two mode energies are

nondegenerate across the transition preventing a mixing of

the two modes and the emergence of critical phenomena such

as diverging entanglement in the system. Phase B—anomalous

spin pumping—is characterized by a large nuclear population

inversion, as the nuclear field builds up in opposite direction

of the dissipation. At the same time the electron spin counter

aligns with the external driving field �. In contrast to the

normal mode of phase A, phase B features large fluctuations

(i.e., high effective temperature) in the nuclear state, which

increase for high �, until at some point the perturbative

description in terms of RSTSS breaks down and the system

approaches the fully mixed state. Note that region A also

transforms continuously to B via the lower two quadrants of

the phase diagram (Fig. 1). In this supercritical region [42] no

clear distinction between the two phases exist.

To complete the phase diagram, we employ numerical tech-

niques in order to study steady-state solutions that go beyond

a RSTSS description in Sec. V. The subregion of A labeled

C indicates a region of bistability where a second steady-state

solution (besides the normal spin-pumping Gaussian solution

described above) appears, featuring a non-Gaussian character

with large fluctuations of order J . Since this mode cannot be

described by the perturbative formalism developed in Sec. IV

(which by construction is only suited for low fluctuations

≪J ) we use numerical methods to study this mode in Sec. V

for finite systems. We find that the non-Gaussian mode (in

contrast to the Gaussian mode of region A) is polarized in

the +z direction and features large fluctuations of the order of

J . Additionally this solution displays large electron-nuclear

connected correlations 〈SiIj 〉 − 〈Si〉〈Ij 〉. It emerges from the

anomalous spin-pumping mode coming from region B and the

system shows hysteretic behavior in region C closely related

to the phenomenon of optical bistability [43].

A fourth region is found in the lower half of the phase

diagram (D). In contrast to the previous regions, area D has

no effects on steady-state properties. Instead, the region is

characterized by an anomalous behavior in the low excitation

dynamics of the system. The elementary excitations in region

D are overdamped. Perturbing the system from its steady state

leads to a nonoscillating exponential return. This behavior is

discussed at the end of Sec. IV B3, where we study the low

excitation spectrum of the Liouvillian in this region within the

perturbative approach.

In summary, all the phases and transitions of the system

are displayed in Fig. 1. Across the whole phase diagram one

solution can be described as a RSTSS, a largely factorized

electron-nuclear state with rotated nuclear polarization and

Gaussian fluctuations. Phase A hereby represents a region

of normal spin-pumping behavior. The system is found in

a cold Gaussian state, where the nuclear spins are highly

polarized in the direction set by the electron dissipation and

the electron spin aligns with the external driving for increasing

field strength. In contrast, phase B displays anomalous spin-

pumping behavior. The nuclear system displays population

inversion (i.e., a polarization opposing the electron pumping

direction) while the electron aligns in opposite direction of

the driving field. Furthermore, the state becomes increasingly

noisy, quantified by a large effective temperature, which

results in a fully mixed state in the limit of large driving

strength � → ∞. Along segment x the state becomes pure and

factorizes exactly with a nuclear field that cancels the external

driving exactly. The nuclear state can be described using

approximate eigenstates of the lowering operator I− which

display diverging squeezing approaching the second-order

critical point �0. From this critical point a first-order phase

boundary emerges separating phases A and B. It is associated

with a region of bistability (area C), where a second solution

appears featuring a highly non-Gaussian character. The system

shows hysteretic behavior in this region. Region D is a phase

characterized by its dynamical properties. The system shows

an overdamping behavior approaching the steady state, which

can be inferred from the excitation spectrum of the Liouvillian.

Let us now describe the phases and transitions involving

the Gaussian mode in detail.

IV. PERTURBATIVE TREATMENT OF THE

GAUSSIAN MODE

As seen in the previous section along the segment x the

system settles in a factorized electronic-nuclear state, where
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the nuclear system can be described as a lowering operator

eigenstate up to second order in ǫ = J−1/2. Motivated by this

result, we develop in Sec. IV A a perturbative theory based on a

self-consistent Holstein-Primakoff transformation that enables

the description of a class of steady states, which generalizes

the squeezed coherent atomic state solution along x to finite

thermal fluctuations (RSTSS, Appendix C). A solution of this

nature can be found across the entire phase diagram and we

show that this treatment becomes exact in the thermodynamic

limit.

In Sec. IV B we discuss this Gaussian mode across the

whole phase diagram. Steady-state properties of the nuclear

fluctuations derived from a reduced second-order master

equation provide deep insights in the nature of the various

phases and transitions. Observed effects include criticality in

both the steady state and the low-excitation spectrum, spin

squeezing and entanglement, as well as altered spin-pumping

dynamics. Whenever feasible we compare the perturbative

results with exact diagonalization techniques for finite systems

and find excellent agreement even for systems of a few hundred

spins only. First, in Sec. IV B2 we apply the developed theory

exemplarily along the segment x to obtain further insights in

the associated transition at �0. In Sec. IV B3 we then give

a detailed description of the different phases that emerge in

the phase diagram due to the Gaussian mode. Thereafter,

in Sec. IV B4 we conduct a classification of the different

transitions found in the phase diagram.

A. The theory

In this section we develop the perturbative theory to derive

an effective second-order master equation for the nuclear

system in the vicinity of the Gaussian steady state.

For realistic parameters, the Liouville operator L of Eq. (1)

does not feature an obvious hierarchy that would allow for a

perturbative treatment. In order to treat the electron-nuclear

interaction as a perturbation, we first have to separate the

macroscopic semiclassical part of the nuclear fields. To this end

we conduct a self-consistent Holstein-Primakoff approxima-

tion describing nuclear fluctuations around the semiclassical

state up to second order.

The (exact) Holstein-Primakoff transformation expresses

the truncation of the collective nuclear spin operators to a total

spin J subspace in terms of a bosonic mode (b denotes the

respective annihilation operator):

I− =
√

2J − b†bb,
(7)

Iz = b†b − J.

In the following we introduce a macroscopic displacement√
Jβ ∈ C (|β| � 2) on this bosonic mode to account for a

rotation of the mean polarization of the state, expand the

operators of Eq. (7) and accordingly the Liouville operator

of equation Eq. (1) in orders of ǫ = 1/
√

J . The resulting

hierarchy in the Liouvillian allows for an perturbative treat-

ment of the leading orders and adiabatic elimination of the

electron degrees of freedom whose evolution is governed by

the fastest time scale in the system. The displacement β is

self-consistently found by demanding first-order stability of

the solution. The second order of the new effective Liouvillian

then provides complete information on second-order stability,

criticality, and steady-state properties in the thermodynamic

limit.

The macroscopic displacement of the nuclear mode,

b → b +
√

Jβ, (8)

allows for an expansion of the nuclear operators [Eq. (7)] in

orders of ǫ

I−/J =
√

k

√

1 − ǫ
βb† + β∗b

k
− ǫ2

b†b

k
(β + ǫb)

(9)
=

∑

i

ǫiJ −
i ,

where

J −
0 =

√
kβ, (10)

J −
1 = 1

2
√

k
[(2k − |β|2)b − β2b†], (11)

J −
2 = −

[

β∗b + βb†

2
√

k
b +

√
kβ

8

(

[

βb† + β∗b

k

]2

+ 4
b†b

k

)]

,

... (12)

and k = 2 − |β|2. Analogously, one finds

Iz/J =
2

∑

i=0

ǫiJ z
i , (13)

J z
0 = |β|2 − 1, (14)

J z
1 = βb† + β∗b, (15)

J z
2 = b†b. (16)

This expansion is meaningful only if the fluctuations in the

bosonic mode b are smaller than O(
√

J ). Under this condition,

any nuclear state is thus fully determined by the state of the

bosonic mode b and its displacement β.

According to the above expansions master Eq. (1) can be

written as

ρ̇/J = [L0 + ǫL1 + ǫ2L2 + O(ǫ3)]ρ, (17)

where

L0ρ = γ
(

S−ρS+ − 1
2
{S+S−,ρ}+

)

− i[S+(� + a/2J −
0 )

+ S−(� + a/2J +
0 ) + aS+S−J z

0 ,ρ], (18)

L1,2ρ = −i[a/2(S+J −
1,2 + S−J +

1,2) + (aS+S− + δω)J z
1,2,ρ].

(19)

The zeroth-order superoperator L0 acts only on the electron

degrees of freedom. This separation of time scales between

electron and nuclear degrees of freedom implies that for a given

semiclassical nuclear field (defined by the displacement β) the

electron settles to a quasisteady state on a time scale shorter

than the nuclear dynamics and can be eliminated adiabatically

on a coarse-grained time scale. In the following we determine

the effective nuclear evolution in the submanifold of the

electronic quasisteady states of L0.
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Let P be the projector on the subspace of zero eigenvalues

of L0, that is, the zeroth-order steady states, and Q = 1 −
P . Since L0 features a unique steady state, we find Pρ =
TrS(ρ) ⊗ ρss , where TrS denotes the trace over the electronic

subspace and L0ρss = 0. By definition it is PL0 = L0P = 0.

After a generalized Schrieffer-Wolff transformation [44], we

derive an effective Liouvillian within the zeroth-order steady-

state subspace in orders of the perturbation,

Leff = ǫPL1P + ǫ2
(

PL2P − PL1QL−1
0 QL1P

)

+ O(ǫ3).

(20)

After tracing out the electron degrees of freedom the dynamics

of the nuclear fluctuations b are consequently governed by the

reduced master equation

σ̇ := TrS(P ρ̇) = TrS(LeffPρ). (21)

The first-order term in ǫ of Eq. (20) can be readily

calculated,

Trs(PL1Pρ) = −i[〈A〉ssb + 〈A†〉ssb†,σ ], (22)

where A is an electronic operator,

A = β∗(aS+S− + δω) + a

4
√

k
[(2k − |β|2)S+ − (β∗)2S−].

(23)

〈A〉ss denotes the steady-state expectation value according to

L0, which depends on the system parameters γ and � and on

the semiclassical displacement β via optical Bloch equations

derived from L0 as described below. Equation (22) represents

a driving of the nuclear fluctuations to leading order in the

effective dynamics. Thus, for the steady state to be stable to

first order, we demand

〈A〉ss = 0. (24)

This equation defines self-consistently the semiclassical nu-

clear displacement β in the steady state in dependence on the

system parameters γ , �, and δω.

The calculation of the second-order term of Eq. (20) is more

involved and presented in Appendix E. We find the effective

nuclear master equation to second order,3

σ̇ = 2Ra

(

bσb† − 1
2
{b†b,σ }

)

+ 2Rb

(

b†σb − 1
2
{bb†,σ }

)

+ c
(

bσb − 1
2
{bb,σ }

)

+ c∗ (

b†σb† − 1
2
{b†b†,σ }

)

− i[(Ia + Ib + F )b†b + (α + B∗)b2 + (α∗ + B)(b†)2,σ ],

(25)

with

B = − aβ

16
√

k3
[(4k + |β|2)〈S−〉ss + β2〈S+〉ss], (26)

F = − a

8
√

k3
(4k + |β|2)(β〈S+〉ss + β∗〈S−〉ss)

+ a(〈S+S−〉ss + δω/a), (27)

3In [44] it has been shown that this type of master equation is of

Lindblad form.

and

Ra =
∫ ∞

0

dtRe[〈A†(t)A(0)〉ss],

Ia =
∫ ∞

0

dtIm[〈A†(t)A(0)〉ss],

Rb =
∫ ∞

0

dtRe[〈A(t)A†(0)〉ss],
(28)

Ib =
∫ ∞

0

dtIm[〈A(t)A†(0)〉ss],

c =
∫ ∞

0

dt〈{A(t),A(0)}〉ss,

α = 1

2i

∫ ∞

0

dt〈[A(t),A(0)]〉ss .

For a given set of system parameters the coefficients

defining the nuclear dynamics [Eqs. (26), (27), and (28)]

depend only on the nuclear displacement β. After choosing

β self-consistently to fulfill Eq. (24) in order to guarantee

first-order stability, Eq. (25) contains all information of the

nuclear system within the Gaussian picture, such as second-

order stability as well as purity and squeezing of the nuclear

steady state. Also it approximates the Liouville operator’s low

excitation spectrum to leading order and thus contains infor-

mation on criticality in the system. Equation (25) therefore

forms the basis for the subsequent discussion of the RSTSS

mode and the corresponding phases and transitions in Sec. IV.

In order to calculate the coefficients of Eq. (28), we have

to determine integrated electronic autocorrelation functions of

the type
∫ ∞

0
dt〈Si(t)Sj (0)〉ss and

∫ ∞
0

dt〈Si(0)Sj (t)〉ss , where

i,j = +, − ,z. The dynamics of single electron operator

expectation values are governed by the optical Bloch equations

derived from L0,

d

dt
〈��S〉 = M〈��S〉, (29)

where ��S := �S − 〈�S〉ss and �S = (S+,S−,Sz)
T and

M =

⎛

⎜

⎝

−(
γ

2
− iaLz

0) 0 −2i�̃∗

0 −
(

γ

2
+ iaLz

0

)

2i�̃

−i�̃ i�̃∗ −γ

⎞

⎟

⎠
, (30)

where we defined �̃ = � + a
2

√
kβ and Lz

0 is given in Eq. (14).

The steady-state solutions can readily be evaluated:

〈S+〉ss = 2i
�̃∗(γ + 2iaLz

0

)

γ 2 + 4aLz2
0 + 8|�̃|2

, (31)

〈Sz〉ss = −1

2

γ 2 + 4aLz2
0

γ 2 + 4aLz2
0 + 8|�̃|2

. (32)

Defining the correlation matrix S = 〈��S��S†〉ss and St =
〈��St��S†〉ss , the quantum regression theorem [45] yields the

simple result

St = eMtS, (33)

S
†
t = 〈��S��S†

t 〉ss = SeM
†t . (34)
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Finally, the time-integrated autocorrelation functions reduce

to the simple expression

F1 =
∫ ∞

0

dtSt =
∫ ∞

0

dteMtS = −M−1S, (35)

F2 =
∫ ∞

0

dtS
†
t = F

†
1 = −S(M−1)†. (36)

These matrices straightforwardly define the coefficients of the

effective master equation of the nuclear fluctuations [Eq. (25)].

In Appendix E 1 we provide explicit formulas to calculate the

relevant coefficients.

B. Phase diagram of the Gaussian mode

In this section we use the theory developed above to study

the RSTSS mode across the phase diagram. As outlined in the

previous section we first determine self-consistently possible

semiclassical displacements β, which guarantee first-order

stability [Eq. (24)]. For each of these solutions we determine

the effective master equation for the nuclear fluctuations

[Eq. (25)], which in the thermodynamic limit contains all infor-

mation on the steady state and the low excitation dynamics and

we discuss properties like second-order stability, criticality, as

well as purity and squeezing of the nuclear steady state. Using

this information we provide a complete picture of the various

phases and transitions involving the RSTSS solution.

1. Methods and general features

In order to determine the semiclassical displacements β

which guarantee first-order stability, we show in Appendix D

that Eq. (24) is equivalent to the steady-state conditions derived

from the semiclassical Bloch equations of the system. Due to

a symmetry in the equation, the steady-state displacements

appear in pairs β−, β+. Any semiclassical displacement β can

be straightforwardly converted to the mean spin polarizations

up to leading order in ǫ according to Eqs. (10), (14), (31),

and (32). In the thermodynamic limit the two sets of steady-

state expectation values extracted from β− and β+ share

the symmetry (±〈Sx〉,〈Sy〉,〈Sz〉,〈Ix〉, ± 〈Iy〉, ± 〈Iz〉). In large

parts of the phase diagram the solution β− (β+) displays high

nuclear polarization in the same (opposite) direction as the the

electron spin pumping. We define the corresponding quantum

states as the normal (anomalous) spin-pumping mode.

The two solutions β± define two corresponding master

equations of the nuclear fluctuations around the respective

semiclassical expectation values according to Eq. (25). These

master equations are subsequently used to determine second-

order stability of the nuclear fluctuations and, if the dynamics

turn out to be stable, the steady-state properties of the nuclear

system. We emphasize that the effective master Eq. (25) not

only can be used to determine steady-state properties, but also

reproduces accurately the low excitation spectrum of the exact

Liouvillian. It thus also describes the system dynamics in the

vicinity of the steady state (increasingly accurate for large J ).

From Eq. (25) one readily derives a dynamic equation for

the first-order bosonic moments

˙( 〈b〉
〈b†〉

)

= �

( 〈b〉
〈b†〉

)

, (37)

with

� =
(−(Ra − Rb) − iχ −2iξ

2iξ ∗ −(Ra − Rb) + iχ

)

, (38)

χ = Ia + Ib + F, (39)

ξ = α∗ + B, (40)

where all parameters are functions of the semiclassical

displacements β±. This equation of motion—and thus the

corresponding master equation itself– - features a fixed point

if the eigenvalues of the matrix � have negative real part

(Re[λ1,2] < 0). Due to the symmetry between β+ and β− one

finds that the eigenvalues of the two � matrices corresponding

to β± fulfill Re[λ1,2(β+)] = −Re[λ1,2(β−)] such that across

the whole phase diagram only one solution is stable at a time

and defines the corresponding phase in the phase diagram.

Note, however, that the unstable solution decays at a rate

that is second order in ǫ. Preparing the system in this state

consequently leads to slow dynamics, such that this solution

exhibits metastability.

In the following we implicitly choose the stable β for

which the real parts of the eigenvalues of � are negative and

discard the unstable solution. Figure 2 displays a selection

of steady-state expectation values in the thermodynamic limit

across the phase diagram for the stable solution. Different

expectation values illustrate the different nature of phases A

and B and show distinct signatures of first- and second-order

(b) Sx

(d) Sz

(a) Iz/J

(c) Ix/J

FIG. 2. (Color online) The system observables of the RSTSS

solution in the thermodynamic limit show clear signatures of first- and

second-order transitions (γ = a). (a) The nuclear polarization in the

z direction 〈Iz/J 〉ss switches abruptly from minus to plus at the phase

boundary b. (b) The electron polarization in the x direction 〈Sx〉ss

shows a similar discontinuous behavior along b. (c) The nuclear

polarization in the x direction changes smoothly across the phase

boundary b. Along the segment x (ω = ω0,� < �0) the nuclear field

in the x direction builds up linearly to cancel the external driving.

(d) The electron polarization in the z direction also does not show

signatures of the first-order transition b. Along segment x the electron

is fully polarized in the −z direction up to the second-order critical

point (ω0,�0), where it changes nonanalytically (see also Fig. 6).
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FIG. 3. (Color online) Asymptotic decay rate (ADR, cf. text) for

γ = a within the perturbative framework. Along b the ADR vanishes

nonanalytically, indicating the stabilizing and destabilizing of the

modes of regions A and B, respectively. b is a first-order phase

boundary culminating in a second-order critical point at (ω0,�0).

From here region D opens, which is characterized by a nonanalyticity

in the ADR at a finite value. This indicates a change in the dynamic

properties of the system which cannot be detected in steady-state

observables. Within D the system shows an overdamped behavior in

the vicinity of the steady state.

phase transitions which will be discussed in greater detail in

Secs. IV B3 and IV B4. The approximate steady-state polariza-

tions found in this way coincide with the exact values found via

diagonalization techniques to an extraordinary degree (∼10−3

relative deviation for J = 150). Corrections to the perturbative

solutions are of the order 1/J since the first-order expectation

values of the bosonic mode vanish by construction, since

〈b〉 = 0 [compare Eqs. (9) and (13)]. In the thermodynamic

limit the perturbative solution becomes exact.

The two eigenvalues of � are typically of the form λ1,2 =
a ± ib (except in region D, which is discussed below) and

define the complex energy of the mode. In this case the matrix

� contains all information on the low excitation spectrum of

the Liouvillian, which is approximated by multiples of the

mode energies within the perturbative treatment.4 The low

excitation spectrum contains information about criticality of

the system and the dynamics in the vicinity of the steady state

and is used to discuss and classify the different transitions

in the phase diagram. In particular, the eigenvalue of � with

largest real part approximates the ADR in the thermodynamic

limit in those regions of the phase diagram where the Gaussian

mode is responsible for the lowest excitations in the Liouvillian

spectrum (only in the region of bistability C this is not the

case).

The ADR according to the perturbative descriptions based

on Gaussian modes is displayed in Fig. 3. It is used to study the

transitions involving the Gaussian mode in the thermodynamic

limit. The ADR vanishes along a line b indicating a phase

boundary separating the normal and anomalous spin-pumping

4The inset of Fig. 9 clearly shows these bosonic characteristics of

the exact spectrum for J = 150. Outside the region of bistability the

real part of the spectrum is approximately equidistant.

phase, which is described in Sec. IV B4. Furthermore, a

nonanalyticity of the ADR at a finite value defines region

D, which characterizes a dynamical phase and is explained in

Sec. IV B3.

The dynamical matrix of the first-order moments �

provides information on the stability of the semiclassical

solutions, the criticality of the Liouvillian, and the nonana-

lyticities of region D. In order to understand the character

of the solutions in the different regions of the phase diagram

we consider next the steady-state covariance matrix (CM) of

the bosonic system. For a quadratic evolution like the one of

Eq. (25) the steady-state CM contains all information on the

state. We deduce the effective temperature and the squeezing

of the nuclear spin system, which connects to criticality in the

system.

For a one-mode system with vanishing displacements 〈x〉
and 〈p〉 [in the steady state of Eq. (25) this is always the case]

the CM is defined as

Ŵ =
(

2〈x2〉 2〈xp〉 − i

2〈px〉 + i 2〈p2〉

)

, (41)

with the usual definitions x = 1√
2
(b + b†) and p = 1√

2i
(b −

b†). Using Eq. (25) we straightforwardly calculate the steady-

state CM Ŵss across the phase diagram. As Ŵ = ŴT > 0, Ŵ is

symplectically diagonalizable, with

Ŵ = DO

(

M2 0

0 M−2

)

O−1, (42)

where O is orthogonal with det(O) = 1. For a single mode,

D � 1 and M � 1 are real numbers. While D is a measure of

the purity of the state [Tr(ρ2) = 1/
√|Ŵ| = 1/D], the smallest

eigenvalue of Ŵ, λmin ≡ DM−2 determines the amount of

squeezing in the system [46]. λmin < 1 indicates squeezing

in the bosonic mode. For M = 1, the CM Eq. (42) describes

a thermal state of the bosonic mode and D can be straight-

forwardly associated to a dimensionless effective temperature

Teff = ln

[

2√
D − 1

+ 1

]−1

. (43)

This definition is also meaningful for M > 1, since the

squeezing operation is entropy-conserving. Teff is also a

measure for the entropy of the spin system, as to leading order

it is connected to the bosonic mode via an unitary (i.e., entropy-

conserving) transformation. The effective temperature of the

different phases will be discussed below in Secs. IV B2

and IV B3 [cf. Fig. 7].

We stress the point that all properties of the CM derived

within the second order of the perturbative approach are

independent of the system size J . In particular, the amount

of fluctuations (i.e., the purity) in the state does not depend

on the particle number. In order to self-consistently justify

the perturbative approach, D has to be small with regard

to J . This implies that in the thermodynamic limit J → ∞
the perturbative results to second (i.e., leading) order become

exact.

The inverse purity D is displayed in Fig. 4(a). Except for

for a small region around the Gaussian phase boundary b the

fluctuations are much smaller than J = 150, which justifies the

012116-9



KESSLER, GIEDKE, IMAMOGLU, YELIN, LUKIN, AND CIRAC PHYSICAL REVIEW A 86, 012116 (2012)

Ω/Ω
0

ω
/ω

0

 

 

1 2

0.5

1

1.5

2

0 2 4
0

50

100

150

Ω/Ω
0

D

0 1 2
0

0.5

1

Ω/Ω
0

 

 

C

0

0.5

1

0 0.5 1
0

5

10

Ω/Ω
0

ω
/ω

0

 

 

1 2

0.5

1

1.5

2

20

40

60

80

100
(b)

(d)

(a)

(c)

D

C

FIG. 4. (Color online) Properties of the steady state CM Ŵss

[Eq. (42)]. (a) The fluctuations D are low in most parts of the

phase diagram except for a small wedge around the Gaussian

phase boundary. (b) Fluctuations D along the line ©l [green line

of (a)]. The phase boundaries separate a mode with low fluctuations

(enlarged in the inset), from a mode with large fluctuations. For

large � fluctuations increase, and the system eventually approaches

a fully mixed state. (c) The squeezing measure C (cf. text) in

the thermodynamic limit. C approaches 1 at (ω0,�0), indicating

diverging entanglement in the system. (d) C along the line ω = ω0

(solid line). The red circles indicate the the squeezing parameter

1 − ξ 2
êy

= 1 −
√

1 − (�/�0)2 (cf. text).

validity of the perturbative approach and explains the excellent

agreement with the exact diagonalization for this system size.

The squeezing λmin in the auxiliary bosonic mode does not

necessarily correspond to spin squeezing in the nuclear system.

In order to deduce the spin squeezing in the nuclear system

from the squeezing of the bosonic mode a transformation

according to Eq. (11) and Eq. (15) is necessary. In Appendix

B 1 we show that for |β| < 1 Eq. (11) can be reformulated

to connect the spin fluctuations to a squeezed and rescaled

bosonic mode

J −
1 =

√

2(1 − |β|2)S†(r)bS(r), (44)

where S(r) = e(r∗b2−rb†2)/2 is the squeezing operator and

cosh(r) = μ = (2k − |β|2)/[2
√

2k(1 − |β|2)] and sinh(r) =
−ν = β2/[2

√

2k(1 − |β|2)].

Thus, squeezing λmin of the mode b does, in general, not

imply reduced spin fluctuations in a direction orthogonal to

the mean spin polarization since the transformation between

spin fluctuations and b involves a squeezing operation itself

and a scaling by a factor 0 <
√

2(1 − |β|2) �
√

2.

In general, we thus have to apply a more involved squeezing

criterion. In [38] it was shown that for systems of N spin- 1
2

particles and for all directions �n the quantity

C�n ≡ 1 − 2

J

〈

�I 2
�n
〉

− 1

J 2
〈I�n〉2 < 1, (45)

signals entanglement if C�n > 0 for some direction �n. More-

over, 〈�I 2
�n 〉 < J/2 indicates a generalized spin squeezing of

the state.5

In the following we use the quantity C = max{0,C�n|�n ∈
R3} to investigate squeezing and bipartite entanglement in the

nuclear system. In order to calculate C�n we reconstruct the

approximate nuclear operators according to Eqs. (9) and (14)

from the semiclassical displacement β and evaluate the

expectation values according to the steady-state CM Eq. (41).

Finally, we maximize C�n with regard to all possible directions

�n to obtain C. The results are discussed in Sec. IV B4.

As discussed in more detail in the next section, the fact

that C → 1 as � → �0 on the line segment x indicates a

diverging entanglement length in the sense that O(1/(1 −
C)) = O(

√
J )-particle entanglement is present [40].

2. A second-order phase transition: The segment x

The segment x at ω = ω0 (Fig. 1) represents a very peculiar

region in the phase diagram, where the solution below the

critical point can be constructed analytically as demonstrated

in Sec. III B. The electron and nuclear system decouple,

resulting in a zero entropy product steady state. A nuclear

polarization builds up to cancel the external driving up to

the point of maximal Overhauser field (�0). At this point

squeezing and entanglement in the system diverge, indicating a

second-order phase transition. In the following we exemplarily

employ the formalism developed above along this line to obtain

further insight about the criticality at (ω0,�0). We calculate

the analytical steady-state solution as well as the effective

master equation governing the nuclear fluctuation dynamics in

its vicinity. We find that here the spectrum of the Liouvillian

becomes continuous (implying a closing gap) and real. At the

same time the creation operators of the elementary excitations

from the steady state turn Hermitian, giving rise to diverging

spin entanglement.

The first-order stability condition Eq. (24) is fulfilled, if

�̃ = 0 [compare Eqs. (31) and (32)], which yields the possible

semiclassical steady-state displacements

√
kβ = −�/�0,

(46)

⇔ β± = −
√

1 ±
√

1 − (�/�0)2,

corresponding to a normal (“−”) and anomalous (“+”) spin-

pumping mode, respectively.

Next, we explicitly calculate the second-order corrective

dynamics of the nuclear degrees of freedom for the normal

mode. The vanishing of the effective driving �̃ = 0 forces

the electron in its dark state—implying 〈S+〉ss = 〈S−〉ss =
〈S+S−〉ss = 0—and directly yields B = F = 0 [Eqs. (26)

and (27)]. The remaining constants can be calculated as

described above and introducing new bosonic operators (for

the normal mode β = β− � 1)

d = μb + νb†, (47)

5In distinction to the criterion Eq. (6) the squeezed component J�n
is not necessarily orthogonal to the mean spin.
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FIG. 5. (Color online) The ADR (γ = a) for J = 50, 100, 150

(broken lines) in comparison with the perturbatively calculated (solid

line, cf. Sec. IV B2) along ω = ω0. For finite systems one finds an

avoided crossing at �0. The size of the gap reduces with the system

size until it closes in the thermodynamic limit (solid line). Below �0

the ADR in the thermodynamic limit is given by Eq. (52).

with

μ = 2k − |β|2
2
√

2k(1 − |β|2)
, (48a)

ν = − β2

2
√

2k(1 − |β|2)
, (48b)

one finds the effective evolution of the nuclear fluctuations

given as

σ̇ = Ŵeff

(

dσd† − 1
2
{d†d,σ }

)

− i[�effd
†d,σ ], (49)

with

Ŵeff = 2a2Re

(

1

γ + i2a(|β|2 − 1)

)

(1 − |β|2), (50)

�eff = a2Im

(

1

γ + i2a(|β|2 − 1)

)

(1 − |β|2). (51)

d and d† fulfill boson commutation relations, since Eq. (47)

defines a symplectic transformation (|μ|2 − |ν|2 = 1). The

eigenvalues of the dynamical matrix � associated to Eq. (49)

are straightforwardly given as λ1,2 = −Ŵeff/2 ± i�eff .

The real part—representing the ADR of the system in

thermodynamic limit (compare Fig. 5)– -is always negative,

indicating the stability of the normal spin-pumping mode

(β−). In an analogous calculation one shows that the

semiclassical solution β+ > 1 is not stable to second order

since the eigenvalues of � have a positive real part, that is,

the fluctuations diverge, violating the initial assumptions that

the mode b has to be lowly occupied.

Selected steady-state expectation values derived from the

stable displacement β− to leading order in J (i.e., in the

thermodynamic limit) are displayed in Fig. 6.

Already for J = 150 we find excellent agreement between

the perturbative and exact mean polarizations. The nuclear

field builds up to exactly cancel the external magnetic field

�, forcing the electron in its dark state |↓〉 along x and thus
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z

FIG. 6. (Color online) Electron inversion 〈Sz〉 and the nuclear

field in the x direction 〈Ix〉 along ω = ω0 in the thermodynamic limit

according to the perturbative theory (circles) in comparison with

the numeric values from exact diagonalization for a finite system

of J = 150 (solid lines). The perturbative theory shows excellent

agreement with the numerical solutions. Further, the numerically

determined electron inversion and the expectation value of the

inhomogeneous nuclear operator 〈Ax〉 are displayed for a model

of two inhomogeneously coupled nuclear shells (g1 = 2g2) of size

J1,2 = 8 (dashed lines) and for five inhomogeneously coupled nuclear

spins (dotted lines) are displayed (discussion see Sec. VI).

realizing the model of cooperative resonance fluorescence [7]

even for weak dissipation γ � a [compare Eq. (5)]. This

solution is available only if � � �0 (defining segment x),

that is, up to the point where the nuclear field reaches its

maximum. At this point the system enters a new phase of

anomalous spin-pumping (described below) and the steady-

state properties change abruptly.

Inserting solution β− in the coefficients of master Eq. (49)

yields

Ŵeff = 2a2Re

(

1

γ − i2a
√

1 − (�/�0)2

)

√

1 − (�/�0)2,

(52)

�eff = a2Im

(

1

γ − i2a
√

1 − (�/�0)2

)

√

1 − (�/�0)2.

(53)

In the close vicinity below the critical point �0 the real part of

the gap in the Liouvillian’s spectrum closes as

Ŵeff ≈ 2
a2

γ

√

1 − (�/�0)2, (54)

and the imaginary part as

|�eff| ≈ 2
a3

γ 2
[1 − (�/�0)2], (55)

indicating criticality. Figure 5 displays the ADR along ω = ω0

in the thermodynamic limit [which is given on the segment x by

Eq. (52)] and for finite systems. It displays an avoided crossing
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at �0 with a gap that vanishes in the thermodynamic limit. This

closing of the gap coincides with diverging time scales in the

system, which renders the model more susceptible to potential

perturbing effects, a phenomenon well known in the context

of criticality [43].

In contrast to the general form Eq. (25), Eq. (49) contains

only one Lindblad term and the dynamics drive the system

into the vacuum |0d〉 of the squeezed mode d. As the system

approaches the critical value � = �0 (i.e., β− = −1) the mode

d adopts more and more a p̂ = 1√
2i

(b − b†)-like character and

thus the squeezing of this mode’s vacuum increases. The (in

general complicated) transformation between the squeezing of

the bosonic mode b and the spin operators (cf. Sec. IV B1) can

readily be established along x, since the operator d is trivially

related to the spin operators [cf. Eq. (11)]

J −
1 = 1

2
√

k
[(2k − |β|2)b − β2b†]

=
√

2(1 − |β|2)(μb + νb†)

=
√

2(1 − |β|2)d. (56)

The fluctuations in the y direction, for example, are conse-

quently given as

J
y

1 =
√

(1 − |β|2)p̂d , (57)

where p̂d = 1√
2i

(d − d†). One readily shows that

〈

�I 2
y

〉

= J
〈

J
y2

1

〉

= J (1 − |β|2)
〈

p̂2
d

〉

, (58)

up to order O(1) and we used 〈d〉 = 0 in the steady state. In

the p̂ vacuum |0p〉 it is 〈p̂2
d〉 = 1/2, such that we evaluate

ξ 2
êy

= 2
〈

�I 2
y

〉/

|〈 �I 〉| (59)

= 2(1 − |β|2)
〈

p̂2
d

〉

=
√

1 −
(

�

�0

)2

,

where we used |〈 �I 〉| = J and inserted the semiclassical

displacement β−.

This is the same result we derived in Sec. III B and

Appendix B 1 by constructing approximate eigenstates of the

lowering operator I− and along x we find that C ≈ 1 − ξ 2
êy

,

as shown in Fig. 4(d). Note that here êy is orthogonal to the

direction of the mean spin 〈 �I 〉. This allows us to deduce that

O(
√

J ) nuclear spins must be entangled close to the critical

point, which establishes a “diverging entanglement length” in

this system. To see this, we employ a variant of the criterion

Eq. (6), as discussed in [39]. There, it was shown that ξ 2
êy

< 1/k

sets a lower bound of Nξ−2
êy

on the quantum Fisher information

FQ of the state. In [40] it was shown that for states containing

at most k-particle entanglement, FQ is upper bounded by Nk.

Consequently, the values of ξ 2
êy

obtained close to the critical

point [cf. Eq. (59) and Appendix B 1] imply that at least

O(
√

J )-particle entanglement must be present. Note that the

bosonic description does not make it possible to describe the

range ξ 2
êy

= O(1/J ), that is, k = O(J ), where the fluctuations

become larger than the expansion parameter.

The nuclear squeezing and entanglement in the system

diverges approaching the critical point, as the Lindblad

operator d (defining the steady state |0d〉) becomes more and

more p̂-like. The fluctuations in the y direction tend to zero,

while at the same time—due to the Heisenberg uncertainty

relation—the steady state is in a superposition of an increasing

number of Iz eigenstates. Since in a system with infinite range

interactions (as the one we are considering) there is no obvious

definition of a coherence length, the range of the involved Iz

eigenstates can be considered as an analogous concept.

At the critical value � = �0 the symplectic transformation

Eq. (47) becomes ill defined (d becomes a p̂-like operator)

while both the dissipation rate and the mode energy tend to

zero. While the coefficients in Eqs. (48) diverge, the total

master equation is well defined [due to the factors (1 − |β|2)

in Ŵeff] and straightforwardly can be written as

σ̇ = a2

2γ

(

p̂σ p̂ − 1

2
{p̂2,σ }

)

. (60)

The Liouville operator’s spectrum is real and continuous with

Hermitian creation operators of the elementary excitations.

We stress the point that along segment x in the phase

diagram highly dissipative dynamics drive the system in a

pure and separable steady state with zero effective temperature

Teff = 0 [cf. Fig. 7(b)]. At the critical point �0 the steady

state changes its nature abruptly as the system enters a

high-temperature phase.

Furthermore, we remark that this steady state has no

relation to the system’s ground state. This is in contrast to the

extensively studied Dicke phase transition [15,47,48] where

the steady state is in close relation to the Hamiltonian’s ground

state (in fact, in the normal phase it is identical). In the present

model dissipation drives the system to a highly excited state

of the Hamiltonian and the observed critical phenomena are

disconnected from the Hamiltonian’s low excitation spectrum.

We have seen that at the critical point (ω0,�0) the gap of

the Liouville operator’s spectrum (in both real and imaginary

part) closes in the thermodynamic limit [Eqs. (54) and (55)].

Approaching the critical point the steady-state fluctuations

become more and more squeezed due to the increasing p̂-like

character of the mode d. The spin squeezing close to the

critical point [Eq. (59)] can be interpreted as a diverging

coherence length in a system with infinite range interactions
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FIG. 7. (Color online) Effective temperature Teff of the Gaussian

mode. Temperatures Teff > 6 are cut off, as the temperature diverges

along the phase boundary b. (a) The first-order phase boundary b

separates the low-temperature phase A from the high-temperature

phase B. (b) Teff along ω = ω0: On segment x the system is in a zero

entropy state (Teff = 0). Above the second-order critical point � >

�0 the system enters a high-temperature phase. Here the temperature

rises with increasing driving strength.
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(the electron mediates interactions between remote spins).

These are clear indications for a second-order phase transition,

which is formalized in Sec. IV B4.

3. Phases

In the present section we study the different phases of the

system, which involve the RSTSS solution (A, B, and D)

using the analytic tools developed above. By construction, the

RSTSS solution describes steady states where the electron

and nuclear states factorize to leading order in the system

size and the nuclear system is found in a fully polarized

and rotated state with Gaussian fluctuations, which are fully

characterized by their effective temperature and squeezing.

Figure 2 displays different steady state observables of the

Gaussian solution determined via the formalism described

above in the thermodynamic limit.

In phase A the system is characterized by normal spin-

pumping behavior. Only the semiclassical displacement β−
(normal mode) leads to a dynamical matrix � that has negative

real parts of its eigenvalues, while for β+ the eigenvalues have

positive real parts, indicating the instability of that mode in

second order. The nuclear system in the normal mode settles

in a state highly polarized in the −z direction following the

direction of the electron spin pumping [Fig. 2(a)]. Meanwhile,

increasing the external driving � and approaching the phase

boundary b, a nuclear field in the x direction builds up, but

only along x it can fully cancel the external driving [Fig. 2(c)].

Therefore, in general, the electron spin aligns more and more

with the external field [Figs. 2(b) and 2(d)]. Furthermore, the

effective temperature (and thus the entropy) of the phase is

low, as displayed in Fig. 7(a).

In region B, in contrast, β+ is the only stable solution,

defining the phase of anomalous spin-pumping behavior. The

nuclear system now shows strong population inversion; that is,

the nuclear polarization is found in the direction opposite to the

external pumping (z). In the same way the electron now aligns

in opposite direction to the external driving field (x). Also, in

contrast to phase A, the RSTSS now is in a high-temperature

state. For larger electron driving the temperature increases until

eventually the Gaussian description breaks down (as D ∝ J )

and for � → ∞ the system is found in a completely mixed

state [compare Fig. 4(b)].

In the upper half of the phase diagram (ω > ω0) phase A

changes abruptly into phase B at the boundary b and certain

steady-state spin observables [〈Iz〉, 〈Sx〉 [Figs. 2(a) and 2(b)]

and 〈Iy〉 (not displayed)] show distinct features of a first-order

phase transition, changing sign as the normal (anomalous)

mode destabilizes (stabilizes). This transition is discussed in

greater detail in the following Sec. IV B4. Following this

boundary toward the critical point (ω0,�0) the two phases

become progressively more similar. Below the critical point

(ω < ω0) there is no clear distinction between the normal

and anomalous spin-pumping mode anymore, a phenomenon

known from thermodynamics as supercriticality. Phase A

transforms continuously to phase B in this region. Close to

the critical point, supercritical media typically respond very

sensitively to the external control parameters of the phase

diagram (e.g., temperature or pressure) [42]. In our system

we observe that small changes in the parameter ω leads to

large changes in electron spin observables.

Next, we consider the third region associated with the

RSTSS solution, region D. We will find that this region differs

from the previous ones by the fact that it cannot be detected in

the system’s steady state but rather in dynamical observables.

The eigenvalues of the dynamic matrix � can be cal-

culated as λ1,2 = −(Ra − Rb) ± 2
√

4|ξ |2 − χ2 and provide

information on the approximate low excitation spectrum of the

Liouvillian. We can distinguish two cases for the low excitation

spectrum, which differ only in the Hamiltonian properties of

Eq. (25) (fully determined by χ and ξ [Eqs. (39) and (40)].

In the first case the quadratic bosonic Hamiltonian can be

symplectically transformed to be diagonal in a Fock basis (i.e.,

to be of the form ∝b̃†b̃). This is the case if χ2 > 4|ξ |2. As a

consequence the two eigenvalues of � have an identical real

part and imaginary parts ±2
√

χ2 − 4|ξ |2. In the second case

the Hamiltonian transforms symplectically into a squeezing

Hamiltonian ∝(b̃†2 + b̃2). Here one finds χ2 < 4|ξ |2, such

that the eigenvalues become real and symmetrically distributed

around −(Ra − Rb). In region D in Fig. 1 we find the effective

Hamiltonian for the nuclear fluctuations to be symplectically

equivalent to a squeezing Hamiltonian.

Figure 8 shows the ADR exemplarily along the line

ω = 0.5ω0(©II in Fig. 1) calculated according to the per-

turbative theory and via exact diagonalization, respectively.

The perturbative theory approximates accurately the low

excitation spectrum of the Liouvillian. We find that in region

D the ADR splits up when the coherent part of Eq. (25)

changes to a squeezing Hamiltonian. As mentioned above,

this nonanalyticity occurs at a nonzero value of the ADR and

thus does not leave signatures in the steady state behavior.

The steady state transforms smoothly along ©II. However,

the nature of dynamical observables change within region

D as the system displays anomalous behavior approaching
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FIG. 8. (Color online) The ADR and the imaginary part of the

respective eigenvalue (γ = a) for J = 150 (solid lines) in comparison

with the perturbatively calculated value (dots) along ©II . In the region

where the coherent part of Eq. (25) is a squeezing Hamiltonian, the

ADR (i.e., real part of the lowest Liouvillian eigenvalue pair) splits.

At the same time the imaginary part of the lowest eigenvalue pair

vanishes (black lines), indicating that the system is overdamped.
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the steady state. The splitting of the ADR coincides with

the vanishing of the imaginary part of the lowest nonzero

Liouvillian eigenvalues. Thus, the system is overdamped in

D. Perturbing the system from its steady state will not lead

to a damped oscillatory behavior, but to an exponential,

oscillation-free return to the steady state.

The blue area in the vicinity of region D in Fig. 3 does

not represents a new phase but is another interesting feature of

the system. Here, the ADR exceeds the value at � = 0 by a

factor of ∼3. For � = 0 the model describes the standard spin-

pumping setting. Large gaps in the low excitation spectrum

indicate the possibility to improve the effective spin-pumping

rate (remember that also in this region the steady state

is fully polarized, however, not in the −z direction, as is

the case for the normal spin-pumping configuration � = 0).

Indeed, simulations show that starting from a fully mixed

state, the system reaches the steady state faster than in the

standard setting (� = 0). This feature becomes more distinct

in systems, where the electron pumping rate γ is limited. For

γ = 0.1a the time to reach the fully polarized steady state

from a fully mixed state is shortened by a factor of ∼6.

4. Transitions

In this section we consider the transitions involving the

RSTSS solution in greater detail providing a classification

in analogy to quantum phase transitions in closed systems

(compare Sec. II).

As seen in the previous section, certain steady-state observ-

ables show clear signatures of a first-order phase transition at

b (Fig. 2). In order to understand this sharp transition we

consider the ADR exemplarily along path ©I in Fig. 9.
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FIG. 9. (Color online) The ADR (γ = a) for J = 50, 100, 150

(broken lines) in comparison with the perturbatively calculated (solid

line) along ©l . The vertical black lines indicate the asymptotic

boundaries of the region of bistability. In the whole region the ADR

tends to zero in the thermodynamic limit due to the appearance of

a non-Gaussian stable mode. (Inset) The next-higher excitations in

the spectrum for J = 150 display equidistant splittings in regions far

from the region of bistability. This is an indication for the bosonic

character of the steady state, which is exploited in the perturbative

approach.

The broken lines represent numeric results of exact di-

agonalization of the Liouvillian for J = 50, 100, and 150,

while the solid line indicates the result of the perturbative

approach. As described in Sec. IV B1, we implicitly choose

the semiclassical displacement β− (for � < 1.5�0) or β+ (for

� > 1.5�0) for which the ADR is negative, indicating a stable

solution. For increasing system size the ADR is increasingly

well approximated by the perturbative solution.

We stress the point that the red line represents the first

Gaussian excitation energy only. However, within the region

of bistability (indicated by two vertical bars and discussed

below in Sec. V), a non-Gaussian mode is responsible for

additional excitations in the exact spectrum. The Gaussian

mode eigenvalue (red line) in this region is reproduced

approximately by higher excitations of the exact spectrum (not

displayed). The perturbative theory is still correct within the

region of bistability but, as expected, it misses all non-Gaussian

eigenstates of the exact Liouvillian.

At the boundary b (� ≈ 1.5�0) the gap in the real part of the

spectrum of the Liouvillian closes nonanalytically, indicating

critical behavior. This observation is supported by the effective

temperature (and thus the fluctuations in the system), which is

increased in the vicinity of the boundary b, and diverges at the

boundary [Figs. 7(a) and 4(a)]. The vanishing of the ADR at b

(i.e., the vanishing due to the RSTSS solution) can be observed

at finite J (dashed lines in Fig. 9) and is not a feature appearing

in the thermodynamic limit only. The position of this closing

of the gap—which in the thermodynamic limit (solid line) is

found at � ≈ 1.5�0—is shifted for finite system sizes to lower

drivings �.

The origin of this closing of the Liouvillian gap becomes

more transparent if we take the mode energy of the respective

metastable solution into account.

In Fig. 10(a) the complex energy of both the stable and the

unstable mode are displayed (i.e., the first eigenvalue of the

matrix � [Eq. (37)]).

The normal spin-pumping mode (β−; blue lines) is stable

(Re[λ(β−)] < 0) up to the critical point where it destabilizes

(a) (b)
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FIG. 10. (Color online) Complex energy of the two modes

corresponding to the semiclassical solutions β± for γ = a. The

solid line in the nonshaded area represents the ADR of Fig. 9 and

Fig. 5, respectively. (a) Along ©l (ω = 1.5ω0). The eigenvalues miss

each other in the complex plane. The real parts cross directly. (b)

ω = ω0. The eigenvalues degenerate asymptotically (in both real and

imaginary parts) at the critical point. This closing of the gap originates

from an avoided crossing in finite systems with the relevant gap

vanishing in the thermodynamic limit (see also Fig. 5).
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and the anomalous mode appears (β+; red lines). At the critical

point the two solutions are macroscopically different β− �= β+
and their energy (i.e., Im[λ(β±)]) is distinct across the

transition [dotted lines in Fig. 10(a)]. Although the projection

of the eigenvalues on the real axis vanishes at the critical point

for both modes (indicating the stabilizing/destabilizing of the

modes) the eigenvalues pass each other in the complex plane

at large distance. There is no degeneracy in the spectrum of

the Liouvillian at the critical point and consequently there

can be no mixing of the two modes; the real parts of the

eigenvalues cross directly without influencing each other.

Except for the change in stability the modes do not change

their character approaching the phase boundary and no

diverging correlations (indicated by the squeezing parameter

C) can be observed. Together with the discontinuous change

in system observables such as mean polarizations we classify

this Gaussian transition as of first order.

Second, we consider the transition along ω = ω0 (including

the line segment x). In contrast to the situation before we

find that the semiclassical displacements β+ and β− merge

approaching the critical point such that the two modes

become asymptotically identical at �0 [Eq. (46)]. Approaching

the critical point, the eigenvalues of the two modes tend to

zero (both the real and the imaginary parts), causing the gap

of the Liouvillian’s spectrum to close [Fig. 10(b), Eqs. (54)

and (55)]. As we have seen in Sec. IV B2 at (ω0,�0) the

spectrum becomes real and continuous, signaling criticality.

The perturbative treatment intrinsically is a description in the

thermodynamic limit. If we consider the exact spectrum we

indeed find an avoided crossing due to the mode mixing at the

critical point with a gap that is closing for J → ∞ (cf. Fig. 5).

As we discussed in Sec. IV B2 the elementary excitations

become p̂-like, causing a diverging coherence length in the

system [indicated by the diverging squeezing parameter C in

Figs. 4(c) and 4(d)]. Together with the continuous but non-

analytical change of the mean polarizations these properties

classify the point (�0,ω0) as a second-order transition.

V. REGION OF BISTABILITY: NON-GAUSSIAN SOLUTION

As noted in Sec. III B along the Gaussian boundary b

extends a region of bistability [C in (Fig. 1)]—culminating in

the critical point (�0,ω0)—in which a second stable solution

appears. Within the perturbative framework from Sec. IV this

highly non-Gaussian solution could not be detected because

it features large fluctuations of the order of the system size

J . In the following we use numerical techniques to construct

and study this mode for finite systems. In the thermodynamic

limit the ADR tends to zero within C, such that there exists

a two-dimensional subspace of steady states. Here we find

two independent, physical solutions within the kernel of the

Liouvillian, one of which will turn out to be the Gaussian

normal spin-pumping mode described in Sec. IV. We analyze

the nature and properties of the other, non-Gaussian solution,

exemplarily along the line ω = 1.5ω0(©I in Fig. 1).

Figure 9 displays the ADR for different particle numbers.

Within the indicated region of bistability (the black vertical

lines represent the boundaries c and b, respectively) the ADR

tends to zero with increasing particle number. Already for J =
150 one finds a small region, where the ADR is small enough

(of the order of 10−6a) that one can construct two linearly

independent (quasi) steady-state solutions. Although we find

the eigenmatrix ρ1 associated with the ADR to be nonpositive

and traceless (the latter being a consequence of L being the

generator of a trace-preserving map) we can linearly combine it

with the true steady state ρ0 to obtain two linear independent,

positive solutions with trace one, ρlo (corresponding to the

normal spin-pumping mode) and ρup. These solutions span the

two-dimensional space of steady states in that region.

Figure 11 illustrates the solutions ρlo and ρup around the

bistable region in an equally weighted mixture. The density

matrices are represented by their diagonal elements in the

Iz basis. In the plane the blue dots (red diamonds) represent

the polarization in the z direction 〈Iz〉 of the lower (upper)

solution ρlo (ρup). Coming from below the critical region

(� < 1.15�0) the nuclear system is found in the Gaussian

normal spin-pumping mode, fully polarized, slightly rotated

away from the −z direction and with fluctuations of the order

of
√

J . This Gaussian solution persists within the critical

region where it becomes noisier until eventually—approaching

the right boundary b at � = 1.5�0—it destabilizes. In the

thermodynamic limit the lower solution is stable up to the

right boundary, where a first-order transition occurs and

the anomalous spin-pumping mode appears. Approaching

boundary b from above (� > 1.5�0) this mode transforms into

a non-Gaussian solution, which—in contrast to the coexisting

normal mode—features fluctuations of the order of J and is not

fully polarized. It shows large electron-nuclear and nuclear-

nuclear connected correlations 〈SiIj 〉 − 〈Si〉〈Ij 〉, and can con-

sequently not be approximated by the semiclassical solutions,

which rely on negligibility of these correlations (cf. Appendix

D). Approaching the left boundary c at � = 1.15�0 this mode

destabilizes eventually as the ADR becomes finite again and

the normal mode is the only stable solution in the system.
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−J
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0.01
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P
(m

) 
[a

.u
.]

c

b Iz , m
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FIG. 11. (Color online) Diagonal elements p(m) = 〈m| ρ |m〉 of

the nuclear density matrix in the z basis (Iz |m〉 = m |m〉) across the

region of bistability for ω = 1.5ω0 (J = 150, γ = a). In the bistable

region two stable modes– -the Gaussian normal spin-pumping mode

(lower branch; ρlo) and a non-Gaussian (upper branch; ρup)—coexist.

At the boundary b the latter transforms into the anomalous spin-

pumping mode, which is the sole stable solution above b. The blue

dots (red diamonds) in the plane indicate the average polarization in

the z direction 〈Iz〉 for the lower (upper) solution.
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The bistable behavior of the system in region C bears

close resemblance to the phenomenon of optical bistability

for saturable absorbers [49], where connections to phase

transitions have been established [43]. In this region the system

displays strong hysteretic behavior. Recent experiments in

quantum dots, realizing a setting close to our model system

display distinct signatures of hysteresis upon application of an

external driving field on the electronic spin [26,27]. Our results

suggest the observed optical bistability in central spin systems

as a possible pathway to understand these experimental results,

which will be a subject of further studies.

VI. IMPLEMENTATIONS AND EXTENSIONS

OF THE MODEL

In the present section we discuss potential physical real-

izations of the master Eq. (1) and address certain aspects

of an extension of the model for inhomogeneous hyperfine

couplings.

As mentioned above, the model we study is a generic

central spin model with various potential physical implemen-

tations. The most prominent ones represent singly charged

semiconductor quantum dots, where the electron spin couples

to the nuclear spins of the host material [25,37], and diamond

nitrogen vacancy (NV) centers coupled to either nuclear (13C

spins of the host material) or electron (e.g., nearby nitro-

gen impurities) spin ensembles [50,51]. Recently, diamond

nanocrystals containing single NV centers coated with organic

molecule spin labels, which are dipole coupled to the NV

center spin have been manufactured [52].

NV centers represent a natural realization of the Master

Eq. (1). Their ground state consists of three spin sublevels (of

spin projection quantum number m = 0, ± 1) featuring a zero

field splitting due to anisotropic crystal fields of 2.88 GHz [50].

In a static magnetic field this zero field splitting can be

compensated for and one of the transitions (e.g., m = 0 ↔ 1)

is brought into near hyperfine resonance with the ancilla

spin system, defining an effective two-level system. Since the

m = 0 level does not carry a magnetic moment, the hyperfine

interaction of the effective two-level system and the ancilla

system takes the anisotropic form of Eq. (4). Potential coun-

terrotating terms of the dipole-dipole interaction are neglected

in the static magnetic field in a rotating wave approximation.

Optical pumping of the electron spin in the m = 0 spin state

and resonant driving (either by optical Raman transitions or

radio frequency fields) realizes master Eq. (1) [32].

In general, the hyperfine interaction in such a setting will not

be homogeneous and the truncation to a symmetric subspace

of total spin J is not justified. In the following we consider an

extension of the model taking into account the inhomogeneous

nature of the hyperfine coupling in a shell model. Along

x we show that up to the critical point steady states can

be constructed analytically as electron-nuclear product states

involving nuclear eigenstates of the (inhomogeneous) lowering

operator. In analogy to the homogeneous case, such solutions

cease to exist after the critical point at which we find diverging

nuclear squeezing. These results are supported by numerical

simulations that confirm the analytical considerations and

provide further indications that other features of the phase

diagram aside from the second order transition can be found

in the inhomogeneous model.

In order to take into account inhomogeneities in the hyper-

fine coupling, we replace the homogeneous spin operators of

Eq. (4) with inhomogeneous operators Iα → Aα (α = x,y,z).

We approximate the actual distribution of coupling strengths

by n shells of spins with identical coupling

Aα =
n

∑

i=1

giA
(i)
α , (61)

where A(i)
α represent homogeneous spin operators within the

ith shell. Each homogeneous shell is assumed to be in a

symmetric subspace Ji .

In analogy to the homogeneous case we can construct

approximate eigenstates of the lowering operator A− |α〉 =
α |α〉. To this end we perform a Holstein-Primakoff transfor-

mation on the homogeneous spin operators within each shell

and displace the respective bosonic mode bi by βi and expand

the resulting operators in orders of 1/
√

Ji . As we demonstrate

in Appendix B 2 the choice of a particular displacement

βi uniquely defines the squeezing of the respective mode

bi if we demand that the corresponding state is an A−

eigenstate to second order in the expansion parameters, that

is, of order O(
∑

i 1/Ji). The corresponding eigenvalue is then

given as α = ∑n
i=1 gi

√
kiβi (ki = 2 − |βi |2). As discussed in

Sec. III B, |ψ〉 = |↓〉 ⊗ |α〉 is a steady state of the evolution to

second order, if α = ∑

i gi

√
kiβi = −J�/�0. In contrast to

the homogeneous case (n = 1) the latter condition does not de-

termine the steady state uniquely. Several sets of displacements

within the different shells can fulfill the steady-state condition.

However, all these microscopic realizations lead to the same

macroscopic behavior of the system such as the locking of

the electron inversion 〈Sz〉 = 0. Furthermore, at the critical

point, the solution is unique again (βi = 1 for all shells) and

the considerations on entanglement of Appendix B 1 can be

straightforwardly generalized to the inhomogeneous case with

the result that also here at the critical point the entanglement in

the system diverges, indicating a second-order phase transition.

Obviously, above the critical point no such solution can be con-

structed and the system observables change nonanalytically.

Figure 6 shows numerical results which confirm the above

considerations. We find numerically the exact steady-state

solution for a model of two inhomogeneously coupled shells

(g1 = 2g2) of size J1,2 = 8 (broken lines), as well as for

a system of five nuclear spins with coupling strengths

({gi}i=1,...,5 = {0.67,0.79,0.94,1.15,1.4}, dotted lines). For

low driving strengths � we find the Overhauser field building

up linearly, as expected. The emergence of the thermodynamic

phase transitions can be anticipated already for these low

particle numbers.

These analytical and numerical arguments for the emer-

gence of a second-order phase transition in the inhomogeneous

case, suggest the possibility to find other features of the

homogeneous phase diagram also in inhomogeneous systems,

such as NV centers in diamond.

Another attractive realization of a central spin system is

provided by singly charged semiconductor quantum dots: Up

to several 104 nuclear spins are coupled to a central spin- 1
2

elec-

tron; driving and spin pumping of the electronic state have been
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demonstrated experimentally with high efficiency [31,53]. In

this setting, however, the inhomogeneity of the hyperfine

coupling and the absence of an m = 0 central spin state lead to

a situation in which the effective nuclear Zeeman term HI in

Eq. (1) becomes inhomogeneous [it is composed of a Knight

field, nuclear Zeeman energy, and the (homogeneous) detun-

ing] and does not vanish for any choice of parameters. There-

fore, the above argument for a persistence of the second-order

phase transition does not apply. However, critical phenomena

similar to the ones described above were observed in optically

driven quantum dots [26]. The adaptation of our model to this

and other more general settings is subject to future studies.

VII. CONCLUSIONS

In analogy to closed systems where critical phenomena

arise from nonanalyticities of the Hamiltonian low-energy

spectrum, in open systems critical phenomena are intimately

related to the low excitation spectrum of the Liouville operator.

We investigated a generic driven and damped central spin

model and its rich steady-state behavior, including critical

effects such as bistabilities, first- and second-order phase

transitions, and altered spin-pumping dynamics. We developed

a two-step perturbative theory involving the expansion of

nuclear fluctuations up to second order in a self-consistent

Holstein-Primakoff transformation and the subsequent adia-

batic elimination of the electron degrees of freedom in the

vicinity of the steady state, which enabled us to provide

a complete picture of the system’s phase diagram. Linking

common ideas from closed-system phase transitions to the

dissipative scenario, we were able to introduce a classification

of the different transitions in the phase diagram.

The relevance of the considered model involves two aspects.

On the one hand, Eq. (1) describes a simple yet rich model,

which displays a large variety of critical phenomena. The

limitation to symmetric states allows for an efficient (and in the

thermodynamic limit exact) perturbative treatment that gives

deep insights into the nature of dissipative critical phenomena

from a fundamental point of view. On the other hand, the cen-

tral spin model is general enough to have realizations in a large

variety of physical systems (e.g., quantum dots, NV centers).

Our understanding of the critical phenomena in this model

could provide insight into recent observation of critical behav-

ior in related systems [26,27]. Furthermore the main features

of the phase diagram discussed above can also be found if the

central (two-level) spin is replaced by a different physical sys-

tem, for example, a larger spin or a bosonic mode. The theory

developed in Sec. IV can straightforwardly be adapted to dif-

ferent scenarios and opens the possibility to study dissipative

critical effects in a variety of different physical systems [15].

Finally, we showed that in a more realistic adaptation of the

model incorporating an inhomogeneous hyperfine coupling,

the second-order phase transition persists, indicating the pos-

sibility that the phase diagram remains qualitatively correct in

this experimentally more realistic case. A more thorough anal-

ysis of the effects of inhomogeneities is subject to future work.
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APPENDIX A: PHASE DIAGRAM FOR ALTERNATIVE

DISSIPATION STRENGTHS γ

In the main text of this article we discussed the steady-

state phase diagram of the master Eq. (1) exemplarily in the

case γ = a. However, we stress the point that the features

we describe do not depend critically on this particular value,

but rather prevail qualitatively for all dissipation strengths of

this order of magnitude. Most importantly, we noted before

the interesting phenomena that all considerations concerning

the segment x, including the second-order phase transition

at (ω0,�0) are entirely independent of the value of γ . In the

following we briefly discuss the remaining regions of the phase

diagram by means of two examples of a lower (γ = 0.2a) and

higher (γ = 5a) dissipation strength.

The case of low dissipation (γ = 0.2a) bears strong

resemblance to the case we discussed in the main text (γ = a),

which is shown exemplarily in Fig. 12(a) for the nuclear

steady-state polarization in the z direction 〈Iz/J 〉ss [compare

Fig. 2(a)]. The first-order boundary is only slightly shifted

toward lower driving strength �, and all the other features

prevail, qualitatively. One finds a region of bistability, as

well as a high- and low-temperature phase (not displayed).

However, one finds that with decreasing dissipation strength

the steady state becomes increasingly noisy.

The situation for higher dissipation is slightly different.

First, we note that as the dissipation is increased the first-

order boundary is rotated clockwise until in the limit γ ≫ a

[where the electron can be trivially adiabatically eliminated;

compare Eq. (5)] it coincides with the line (ω0,� > �0). This

behavior can already be seen for γ = 5a in Fig. 12(b), which

displays the nuclear steady state polarization in the z direction.

Interestingly, with increasing dissipation, the system’s steady

state becomes more pure and the region of bistability shrinks

in size. At the same time, the distinction in a high- and

low-temperature phase becomes less clear. However, a second

criterion characterizing the phases emerges in the form of the

FIG. 12. (Color online) (a) The nuclear polarization in the z

direction 〈Iz/J 〉ss of the RSTSS solution in the thermodynamic limit

for (a) γ = 0.2a and (b) γ = 5a. In the first case [(a)] the phase

diagram bears strong resemblance with the case γ = a (compare

Fig. 2). In the case of large dissipation [(b)] the first-order boundary

is rotated clockwise toward the line (ω0,� > �0) and the distinction

of the phases according to their nuclear polarization in the z direction

becomes less prominent. Instead, other criteria like the polarization

in the y direction (not displayed) emerge.
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nuclear polarization in the y direction. In phase A (B) the

system is highly polarized in the −y direction (y direction). A

more detailed analysis of this regime with the tools we have

developed is an interesting subject for future studies.

APPENDIX B: APPROPRIATE EIGENSTATES OF THE

LOWERING OPERATOR

1. Homogeneous case

In Sec. III B we have seen that we can construct the exact

steady state along segment x if we assume the nuclear system

to be in an eigenstate of the spin-lowering operator I− |α〉 =
α |α〉. Although it readily can be shown that this operator

exactly features only the eigenvalue α = 0, we can construct

approximate eigenvalues in an expansion in 1/J .

We stress the point that in the bosonic analog eigenstates

of the annihilation operator are coherent minimum uncer-

tainty states that display no squeezing. As we will see, the

eigenvectors of the atomic lowering operator in contrast are

squeezed coherent atomic states (on the southern hemisphere

of the Bloch sphere), where the squeezing parameter depends

uniquely on the rotation angle of the Bloch vector.

As noted in Sec. IV the Holstein-Primakoff transformation

[Eq. (7)] provides an exact mapping between spin operators

and a bosonic operator in the subspace of total spin quantum

number J . In the following we show that approximate

eigenstates of the lowering operator I− can be expressed as a

squeezed and displaced vacuum of the bosonic mode b

D(β)S( − r(β)) |0〉 =: |β〉 , (B1)

where D(β) = e
√

Jβb†−
√

Jβ∗b and S(r) = e(r∗b2−rb†2)/2 are the

displacement and squeezing operators, respectively, and |0〉 ≡
|J − J 〉 the fully polarized nuclear state. We find the squeezing

parameter uniquely defined by the displacement r = r(β).

Without loss of generality we assume β ∈ R (and thus r ∈
R); that is, the Bloch vector lies in the x-z plane. General states

β ∈ C with arbitrary Bloch vectors on the southern hemisphere

can straightforwardly be derived by a rotation around the z axis.

Note that the corresponding states on the northern hemisphere

can be constructed accordingly as eigenstates of the ascending

operator I+.

In order to show that Eq. (B1) defines an approximate

eigenstate of I− we first consider the transformation of

the nuclear operator under the displacement and squeezing

operator. Recall that according to Eq. (9) the displaced nuclear

operators can be expanded in orders of ǫ = 1/
√

J ,

D†(β)I−D(β) =
√

2J − (b† +
√

Jβ∗)(b +
√

Jβ)(b +
√

Jβ)

= JJ −
0 +

√
JJ −

1 + O(1), (B2)

where

J −
0 =

√
kβ, (B3)

J −
1 =

√

2(1 − β2)(μb + νb†)

=
√

2(1 − β2)S†(r)bS(r), (B4)

and cosh(r) = μ = 2k−β2

2
√

2k(1−β2)
and sinh(r) = −ν =

β2

2
√

2k(1−β2)
, which defines r = r(β) [the generalization

to complex β is straightforward and leads to Eq. (44)]. Thus,

it follows that

S†(−r)D†(β) I−D(β)S(−r)|0〉 = JJ −
0 |0〉 + O(1), (B5)

since b |0〉 = 0.

Multiplying both sides by D(β)S(−r) yields the desired

approximate eigenvalue equation

I− |β〉 = J
√

kβ |β〉 + O(1). (B6)

In the thermodynamic limit the term O(1) is negligible and the

eigenvalue equation is exact.6

Using the above representation we study the spin properties

of the states |α〉. In the following all expectation values are

understood to be evaluated in the squeezed coherent state |β〉:
〈O〉 ≡ 〈β| O |β〉.

Straightforwardly, one derives the nuclear mean polariza-

tions

〈Ix〉 = 1
2
〈β| (I+ + I−) |β〉 = J

√
kβ + O(1), (B7)

〈Iy〉 = 1
2i

〈β| (I+ − I−) |β〉 = 0 + O(1), (B8)

〈Iz〉 = J (β2 − 1) + O(1), (B9)

where in the last equation we used the expansion Eq. (14).

Note that the Bloch vector is orthogonal [up to order O(1)]

to the y direction for all (real) α and of length |〈 �I 〉| =
√

〈Ix〉2 + 〈Iy〉2 + 〈Iz〉2 = J + O(1).

Using Eq. (B6) and the angular momentum commutation

relations one readily calculates

〈�I 2
y 〉 = −1

2
〈Iz〉 + O(1),

= 1

2
J (1 − β2) + O(1),

= 1

2
J

√

1 − (
√

kβ)2 + O(1), (B10)

where, as usual, 〈�O2〉 := 〈O2〉 − 〈O〉2 and we used the

identity 1 − (
√

kβ)2 = (1 − β2)2.

Thus, we find for the squeezing parameter in the y direction,

ξ 2
y = 2

〈

�I 2
y

〉/

|〈 �I 〉| =
√

1 − (
√

kβ)2 + O(1/J ). (B11)

The squeezing diverges for the state that realizes the maximal

eigenvalue of the lowering operator (
√

kβ = 1). This corre-

sponds to a state fully polarized in the x direction.

2. Inhomogeneous case

We approximate a system of inhomogeneous hyperfine

coupling by grouping the nuclear spins into n shells. Within

a shell i the nuclear spins have identical coupling gi and the

respective (homogeneous) spin operators A(i)
α (α = x,y,z) are

truncated to a symmetric subspace Ji . The total spin operators

6This is true even for β → 0 since all terms in the expansion Eq. (B2)

that do not vanish upon application on |0〉 contain at least one factor

β as well.
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can then be written as

Aα =
n

∑

i=1

giA
(i)
α . (B12)

We define collective displacement and squeezing operators

D = �n
i=1e

√
J iβib

†
i −

√
J iβ

∗
i bi , (B13)

S = �n
i=1e

(r∗
i b2

i −rib
†2
i )/2, (B14)

where the bi is the respective bosonic operator for shell i. Also

here the squeezing parameter ri depends uniquely [with the

same functional dependence as before; cf. Eq. (B4)] on the

displacement βi within the shell, if we demand the first order

in the eigenvalue equation to vanish,

A−DS |0〉 =
(

∑

i

Ji

√
kiβi

)

DS |0〉 + O(1), (B15)

where ki =
√

2 − β2
i and |0〉 ≡ |0〉⊗n is the vacuum of the

shell modes.

We emphasize that, in general, the eigenvalues are highly

degenerate. For a given eigenvalue α there are infinitely

many microscopic realizations (i.e., sets of βi) that fulfill α =
∑

i Ji

√
kiβi . Only the maximal eigenvalue α = J features a

unique steady state that displays diverging squeezing as one

readily shows analogous to the homogeneous case.

APPENDIX C: ROTATED SQUEEZED THERMAL

SPIN STATES

A key concept of the paper are RSTSSs, a generalization of

squeezed coherent spin states to mixed states, parametrized

via an effective temperature. They describe nuclear states

which are fully polarized and rotated and feature fluctuations

which can be described by a bosonic mode in a thermal

(potentially squeezed) Gaussian state. In Sec. IV A we show

that the truncation of every nuclear operator to a subspace of

total spin J can be expressed in terms of a bosonic mode

b and its displacement β ∈ C, using a Holstein-Primakoff

transformation [compare Eqs. (9) and (13)],

I α/J =
∑

n

ǫnJ α
n , (C1)

where ǫ = 1/
√

J , and the bosonic operators J α
n contain

combinations of products of n bosonic operators b,b†. J α
0 ∈ C

describes the semiclassical expectation value which is fully

determined by the displacement β. β quantifies a rotation of the

fully polarized nuclear state on the Bloch sphere. The higher

order operators J α
n (n > 0) describe quantum fluctuations

around this semiclassical nuclear state. RSTSSs are those

states where the mode b is in an undisplaced (〈b〉 = 0),

squeezed thermal state, which is fully determined by its CM Ŵ

[Eq. (41)]. These bosonic states constitute the natural steady

states of the quadratic master Eq. (25), and we find in Sec. IV B

that across the whole phase diagram one steady state of the

system can always be described as a RSTSS.

Note that in the limit where the effective temperature of

the Gaussian state is zero, we recover the class of squeezed

coherent spin states [36], which constitute the solution along

segment x.

APPENDIX D: SOLVING EQ. (24)

In order to find the solutions to Eq. (24) (which are

numerically difficult to find) we first note that

〈A〉ss = 0 ⇔ 〈ḃ〉 = 〈ḃ†〉 = 0 ⇔ 〈J̇ −
1 〉 = 〈J̇ +

1 〉 = 0, (D1)

where the time derivative is understood with respect to the

first-order Liouvillian

L1ρ = −i
[

a
(

SxJ
x

1 + SyJ
y

1

)

+ (aS+S− + δω)J z
1 ,ρ

]

, (D2)

and in the usual way we define

J x
1 = 1

2
(J +

1 + J −
1 ), (D3)

J
y

1 = 1
2i

(J +
1 − J −

1 ). (D4)

Using the relation [J i
1,J

j

1 ] = iǫijkJ
k
0 one finds the equations

0 =
〈

J̇ x
1

〉

= a
(

〈Sy〉ssJ z
0 − 〈Sz〉ssJ y

0

)

− ωJ
y

0 , (D5)

0 =
〈

J̇
y

1

〉

= −a
(

〈Sx〉ssJ z
0 − 〈Sz〉ssJ x

0

)

+ ωJ x
0 , (D6)

0 =
〈

J̇ z
1

〉

= a
(

〈Sy〉ssJ x
0 − 〈Sx〉ssJ y

0

)

. (D7)

Furthermore, from the definitions of the J i
0 ’s one finds

1 =
(

J x
0

)2 +
(

J
y

0

)2 +
(

J z
0

)2
. (D8)

The steady-state expectation values 〈Si〉ss are found directly

via [cf. Eq. (18)],

L0ρ = γ
(

S−ρS+ − 1
2
{S+S−,ρ}+

)

− i
[

Sx

(

2� + aJ x
0

)

+ aSyJ
y

0 + aS+S−J z
0 ,ρ

]

, (D9)

by solving the resulting optical Bloch equations,

0 = −γ

2
〈Sx〉 + aJ

y

0 〈Sz〉 − aJ z
0 〈Sy〉, (D10)

0 = −γ

2
〈Sy〉 −

(

2� + aJ x
0

)

〈Sz〉 + aJ z
0 〈Sx〉, (D11)

0 = −γ (〈Sz〉 + 1/2) +
(

2� + aJ x
0

)

〈Sy〉 − aJ
y

0 〈Sx〉. (D12)

This set of coupled equations for the six variables {〈Si〉,J j

0 }
can be solved analytically and corresponds to the semiclassical

Bloch equations (derived from a brute force factorization:

〈SiIj 〉 → 〈Si〉〈Ij 〉, for i,j = x,y,z in the equations of motion).

The solutions which feature second-order stability (see Section

IV B1) are displayed in Fig. 2. Via Eqs. (10) and (14) β can be

deduced unambiguously from a given set {〈Si〉,J j

0 }.

APPENDIX E: DERIVING THE SECOND-ORDER

TERM OF EQ. (20)

The first term of the second order of Eq. (20) is of the same

form as the first order and can readily be calculated:

TrS(PL2Pρ) = −i
[

a/2(〈S+〉ssJ −
2 + 〈S−〉ssJ +

2 )

+ (a〈S+S−〉ss + δω)J z
2 ,σ

]

,

= −i[B∗b2 + B(b†)2 + Fb†b,σ ], (E1)

with the β-dependent coefficients (remember that also the

electron steady-state expectation values are functions of β)
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B = − aβ

16
√

k3
[(4k + |β|2)〈S−〉ss + β2〈S+〉ss], (E2)

F = − a

8
√

k3
(4k + |β|2)(β〈S+〉ss + β∗〈S−〉ss) (E3)

+ a(〈S+S−〉ss + δω/a).

Next, we consider the second term of the second-order

perturbative master equation

−Trs(PL1QL−1
0 QL1Pρ)

= −Trs[PL1(1 − P )L−1
0 (1 − P )L1Pρ]

=
∫ ∞

0

dτTrs(PL1e
L0τL1Pρ)

−
∫ ∞

0

dτTrs(PL1PL1Pρ), (E4)

where we used the Laplace transform −L−1
0 =

∫ ∞

0
dτeL0τ and

the property eL0τP = PeL0τ = P .

Noting that

Trs(PL1X) = −iTrs([bA + b†A†,X]), (E5)

and using Eq. (22) we find

−
∫ ∞

0

dτTrs(PL1PL1Pρ) =
∫ ∞

0

dτ 〈Aα〉ss〈Aβ〉ss[bα,[bβ ,σ ]],

(E6)

where α,β = †, “void”, and the Einstein sum convention is

used.

In the same fashion we find
∫ ∞

0

dτTrs(PL1e
L0τL1Pρ)

= −
∫ ∞

0

dτ 〈Aα(τ )Aβ(0)〉ss[bα,[bβ ,σ ]]

−
∫ ∞

0

dτ 〈[Aα(τ ),Aβ(0)]〉ss[bα,σbβ]. (E7)

Here we defined the autocorrelation func-

tions 〈Aα(τ )Aβ(0)〉ss = Trs(A
αeL0τAβρss) and

〈[Aα(τ ),Aβ(0)]〉ss = Trs(A
αeL0τ [Aβ,ρss]) (cf., e.g., [54],

pp. 22).

Putting together the results Eq. (E4) reduces to

−Trs(PL1QL−1
0 QL1Pρ)

= −
∫ ∞

0

dτ 〈�Aα(τ )�Aβ(0)〉ss[bα,[bβ ,σ ]] (E8)

−
∫ ∞

0

dτ 〈[�Aα(τ ),�Aβ(0)]〉ss[bα,σbβ],

�O := O − 〈O〉ss . Since we choose the displacement β such

that 〈Aα〉ss = 0 [Eq. (24)] it is �Aα = Aα . Merging Eqs. (E1)

and (E8), and regrouping the terms, one readily derives

Eq. (25).

1. Calculation of the coefficients

In order to determine the coefficients Eq. (28) we have

to calculate terms of the kind
∫ ∞

0
dτ 〈�Aα(τ )�Aβ(0)〉ss and

∫ ∞

0
dτ 〈�Aα(0)�Aβ(τ )〉ss . Exemplarily, we calculate the two

terms for α = β = “void”.

First, defining �v = [ a

4
√

k
(2k − |β|2), − a

4
√

k
β2,βa]T we can

write �A = �v∗ · ��S (and with �w = [− a

4
√

k
(β∗)2, a

4
√

k
(2k −

|β|2),β∗a]T we find �A† = �w∗ · ��S). Likewise, it is �A† =
��S† · �v (�A = ��S† · �w).

Consequently we compute
∫ ∞

0

dτ 〈�Aτ�A〉ss = �v∗
(∫ ∞

0

dτ 〈��Sτ��S†〉ss
)

�w

= �v∗
(∫ ∞

0

dτeMτ 〈��S��S†〉ss
)

�w

= �v∗(−M−1〈��S��S†〉ss) �w = �v∗F1 �w,

(E9)

where we applied the quantum regression theorem in the

second step and used the definitions of Sec. (IV A).

Noting that

∫ ∞

0

dτ 〈��S��S†
τ 〉ss =

(∫ ∞

0

dτ 〈��Sτ��S†〉ss
)†

= (−M−1〈��S��S†〉ss)†

= −〈��S��S†〉ssM−† = F2 = F
†
1 ,

(E10)

we write
∫ ∞

0

dτ 〈�A�Aτ 〉ss = �v∗F2 �w. (E11)

Analogously, we find the relations
∫ ∞

0

dτ 〈�A†
τ�A〉ss = �w∗F1 �w,

∫ ∞

0

dτ 〈�A†�Aτ 〉ss = �w∗F2 �w,

(E12)
∫ ∞

0

dτ 〈�Aτ�A†〉ss = �v∗F1�v,

∫ ∞

0

dτ 〈�A�A†
τ 〉ss = �v∗F2�v,

...

such that all coefficients of the effective master Eq. (20) can

be calculated by simple matrix multiplication.

[1] M. Vojta, Rep. Prog. Phys. 66, 2069 (2003).

[2] S. Sachdev, Rev. Mod. Phys. 75, 913 (2003).

[3] V. L. Ginzburg, Phys. Usp. 40, 407 (2007).

[4] E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004).

012116-20

http://dx.doi.org/10.1088/0034-4885/66/12/R01
http://dx.doi.org/10.1103/RevModPhys.75.913
http://dx.doi.org/10.1070/PU1997v040n04ABEH000230
http://dx.doi.org/10.1038/nature02220


DISSIPATIVE PHASE TRANSITION IN A CENTRAL . . . PHYSICAL REVIEW A 86, 012116 (2012)

[5] D. Belitz and T. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

[6] M. Hasan and C. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[7] H. J. Carmichael, J. Phys. B 13, 3551 (1980).

[8] P. Werner, K. Volker, M. Troyer, and S. Chakravarty, Phys. Rev.

Lett. 94, 047201 (2005).

[9] L. Capriotti, A. Cuccoli, A. Fubini, V. Tognetti, and R. Vaia,

Phys. Rev. Lett. 94, 157001 (2005).

[10] S. Morrison and A. S. Parkins, J. Phys. B 41, 195502 (2008).

[11] J. Eisert and T. Prosen, arXiv:1012.5013.

[12] M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling, Phys.

Rev. A 85, 013817 (2012).

[13] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller, Phys.

Rev. Lett. 105, 015702 (2010).
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