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Abstract 

DISSIPATIVE PHENOMENA IN QUARK GLUON PLASMAS 

P. Danielewicz* and M. Gyulassy 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 

LBL-17278 

Transport coefficients of small chemical potential quark gluon plasma 

are estimated and dissipative corrections to the scaling hydrodynamic 

equations for ultrarelativistic nuclear collisions are studied. The 

absence of heat conduction phenomena is clarified. Lower and upper 

bounds on the shear viscosity coefficient are derived. The importance of 

non-perturbative antiscreening effects for transport properties is 

emphasized. Bulk viscosity associated with the plasma to hadron 

transition is considered. Finally, effects of dissipative phenomena on 

the relation between initial energy density and final rapidity density 

are estimated. 

*On leave from the Institute of Theoretical Physics, Warsaw University, 
Warsaw, Poland. 
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1. Introduction 

Ultra-relativistic collision of heavy nuclei offer the possibility of 

creating a new state of matter - the quark gluon plasma. Current 

estimates1 indicate that this plasma state could be reached by 

increasing the energy density of hadronic matter by an order of magnitude 

over that found in nuclei (€Nuc - 0.15 GeV/fm3). Unfortunately, such 

high energy densities are expected to be reached only for short times, AT -

few fm/c, due to the rapid longitudinal expansion of the plasmal However, 

. f h . 11 2-5 1 t e expansion proceeds hydrodynamlca y ,then information about the 

interesting early stages of the collisions can be extracted from the final 

rapidity density, dN/dy, of hadrons. Specifically, the initial energy 
6 1+ 2 2 

density, €o' can be related to dN/dy via €o cr (dN/dy) c, where Co is 

the speed of sound. The above relation is obtained assuming the validity 

of sc~ling hydrodynamics5,7-9 and the absence of dissipative effects. 

In this paper we estimate the magnitude of the transport coefficients 

of an idealquark-gluon plasma with SU(3) color and two flavors. We 

concentrate on the mid-rapidity plasma where the baryon chemical 

potential, ~a' can be ignored in comparison to the temperatute, T. 

Dimensional considerations dictate10- 15 that the viscosity coefficient, 

n, must be found proportional to T3. By imposing the physical 

constrains that the momentum degradation mean free path, A, must be 

larger than both the interparticle spacing and the thermal Compton 

wavelength, we obtain an approximate lower bound, n > 2T3. We also 

derive a practical upper bound on n < €T/4 - 3T3(TT) that is necessary 
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for the applicability of the Navier-Stokes equation. We study how 

standard many body perturbation theory estimates of n fails near the 

transition temperature and consider the possible importance of anti-

screening effects. The absence of heat conduction, K, in baryon free 

plasmas is emphasized, and we show why the Landau definition of K is 

preferred over the Eckart choice for small chemical potential. A 

possible source of bulk viscosity,t.;, is considered due to the finite 

relaxatinn time of the plasma to hadron phase transition. Finally, we 

solve the Navier-Stokes equation with the scaling boundary condition to 

estimate the magnitude of entropy production due to dissipative process 

in ultra-relativistic nuclear collisions. We find that dissipative 

effects could reduce the estimated initial energy density by a few 

GeV/fm3 relative to ideal hydrodynamics estimates. 

2. Relativistic Hydrodynamics and Heat Conduction 

;'," 

We review first the hydrodynamic formulation to help clarify some 

f · . h l' t . t h h d t . 3 5 9-11 con USlon ln tel erature concernlng e eat con uc lon " • 

Relativistic hydrodynamics is based on the local conservation laws, 

(2.1) 

ana 
= 0 (2.2) 

axa 

where TaB is the energy-momentum flux tensor, and na is the 4-flux of 

a quantum number. The equations are closed through the assumption of 

~ ... 
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local thermodynamic equilibrium. In the local rest frame of an ideal 

fluid 16 

Taa = diag (€,P,p,p), na = (n,O,O,O), (2.3) 

and the volume energy density €, pressure p, and densities of quantum 

numbers n are related through the equation of state of the medium. If 

the local rest frame is boosted to the velocity ~, then with an 

introduction of the 4-velocity 

(2.4) 

and the projection operator onto the local frame 3-space 

(2.5) 

the'fluxes can be written as 

Taa = €UaUa _ P6aa = (€ + p) uaua _ pgaa, 

na = nua. (2.6) 

It ;s ,straightforward to demonstrate that Eqs. (2.1-4,6), yield the usual 

nonrelativistic hydrodynamic equations of an ideal fluid. 

The dissipative corrections Taa , and va, 

a a a n = nu + v , (2.7) 
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account for the fact that it is not possible to maintain the local 

equilibrium down to the arbitrarily small space and time scales. The 

form of the corrections may be found by demanding that they are of the 

first order in gradients. and that the law of increase of entropy be 

satisfied16 • The power of the method is that it does not require 

specific microscopi~ considerations at this point. One identifies the 

entropy 4-fl ux 

(2.8) 

with a the rest-frame entropy-density, T the temperature, and k indexing 

the quantum numbers with the associated chemical potentials ~k. For 

the dissipative fluxes one finds 16 

. (2.9) 

and 

(2.10) 

with 

va = ~aa _a_ 
axa 

and with the coefficients nand s in (2.9) and the coefficients in (2.10) 

bei~g positive. The second term in (2.9) constitutes a correction to the 

pressure: p ~ p - sV up. The transport coefficients may be 
P 

identified by going to the nonrelativistic limit of the equations. There 

nand s are found to be the shear and bulk viscosity coefficients, 

respectively. In the case of a single conserved quantum number16 

'01 



.' 

,'. 

5 

(2.11) 

with K being the heat conduction coefficient. 

Equations (2.8-11) correspond to the Landau-Lifshitz definition of 

hydrodynamic velocity in which the local rest-frame is determined by the 

vanis~ing of the energj 3-flux {u Toe = 0). This definition of the 
o 

local rest frame, however, is not unique when there exist conserved 

quantum numbers. Another natural choice of the rest frame, proposed by 

Eckart17 , is the frame where the 3-flux of the conserved current 

vanishes (AoeV e = 0). If s~Veral conserved currents exist, then the 

rest frame could also be chosen as that in which the 3-flux of some 

linear combination of those currents vanishes. 

This freedom to adopt different definitions of the local fluid 

velocity leads'to different ways in which heat ~onduction enters the 

problem. In the' Landau-L iftshitz definition, having chosen the frame in 

which roj = O,heat'conduction arises in (2.11) as a correction to the 

spacial cur~ent of the con~erved quantum number. In the Eckart 

definition, having chosen the, frame in which n i = 0, heat conduction 

arises as a correction to TOi. Fat several conserved currents, 

apn~ = p, having chosen the rest frame for example by nI = 0, there 

would arise a first order correction in gradients to Toi as well as to 

the other currents n~, k > 1. The corrections would be identified 

with diffusion ~ffe~ts.18 

In the symmetric quark-gluon plasma, the fluxes of the conserved 

quantum numbers are identically zero - we have only one equation of 

motion (2.1). We are bound to adopt the Landau-Lifshitz definition of 
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hydrodynamic velocity. Therefore, the notion of the heat conduction does 

not arise. The fact that in a symmetric system the heat conduction is 
'. 13 

absent has been noted already long ago by Emel~yanov • Ev~n if the 

baryon flux were finite but small compared with particle fluxes, it is 

still preferable to adopt the Landau-Lifshitz definition of the hydro-

dynamic velocity as we now show. The Simplest way to see this is to note· 

that for finite V.(~/T} we expect in the Landau convention a finite 
1 

correction, Vi' in (2.11) even in the limit n ~ 0 (see eq. (2.19}). In 

that limit ni ~ v·. 
1 

If we now adopt the Eckart definition of the 

~ ni i i velocity, uE' then by definition = nUE ~v and hence 

i i V 
uE ~n ---+ 00 

n~o 

(2.12) 

This shows,that for. all chemical potentials with finite gradients, the 

Eckart f,luid velocity would lead to arbitrarily large corrections to 

TOi • A more detailed understanding of how the Eckart frame breaks down 

for small ~ can .be obtained by calculating the thermal conductivity in 

the relaxation time approximation. 11 The correction on(x,p) to the 

distribution function no(x,p} in equilibrium is then given by 

(2.13) 

With {2.13} we can calculate the corrections to T~v and n~ as 

{2.14} 

.. 
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where the sum in oTUv runs over quark, antiquark, and gluon distributions, 

and in on u only over quark and antiquark distributions with the respective 

± signs. The equilibrium distributions are 

( 2.15) 

where ±1 is for quarks (gluons) an~ ±u is the chemical potential only for 

quarks andantiquarks. In Ref. (11), (2.,13-2.14) were used to show that, 

oToi = K (nT2) V. (1:) 
g g € + P 1 T 

(2.16) 

with K ~ T T3 being the gluon contribution to heat conduction. , 
g c 

The source of trouble are however the quark and antiquark contributions 

which were not calculated in Ref. (11). Following the same steps as in 

Ref. (11), we find that quarks-antiquarks contribute 

(2.17) 

where Aq' Bq ~re f)nite, integrals over the equilibrium distributions 

in the frame uU = (1,0). Note first that the 3-flux of baryons does 

not vanish in the frame uU = (1,0) in which oTuV = oT~v + oT~v were 

calculated. Therefore, oTo1 contains energy flux associated with trans

lationalmotionas'well as heat flux. Consequently, the choice uU = (1,0) 

neither correspond to the Eckart choice nor the Landau choice. The Eckart 

I, 
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i choi ce woul d be the frame where 6n . ,;; O. The boost velocity 6U P = (1, 6Ui ) 

to the Eckart frame would thus be"determined as 6n i - n6u i = 0 and theref6re 

= 1. B IJ. (~') ---+ 00, 
n q 1 T n~o 

(2.18) 

The 6To; in that frame would also obviously diverge in the small n 

limit as well. We are therefore forced to use the Landau choice for 

small baryon density problems. In the small baryon density limit, the 

relaxation time approximation leads in that case to the following 

dissipative baryon flux 

(2.19) 

With a sma 11 baryon number fl ux, the heat conduction representi ng a 

correction to a small quantity, could be discarded (unless one were 

specifically interested in the baryon number evolution). 

3. Viscosity Coefficients 

3.1 Bounds on Shear Viscosity 

Familiar 'kinetic theory arguments19 lead to the following estimate 

of the shear viscosity coefficient 

n ~ i~ (n<p>A)i . 
1 . 

(3.1 ) 

where n is the local density of quanta transporting an average momentum 

<P>;. over a momentum degradation mean free path Ai' More detailed 
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kinetic theory derivations18 ,20 replace 1/3 by 4/15 in the ultra

relativistic (T>>m) domain and 1/3 by 0.21 in the non-relativistic 

d . 19 oma1n • 

Furthermore, A. can be related to the differential cross sections, 
1 

do i j I d st , v i a 

11 A. = Ln. 
1 . J J do ij . 2 

dst CITf Sln e. (3.2) 

The sin2 e weight in eq. (3.2) arises because large angle scatterings 

are most effective in momentum degradation. 

The above relations are valid only in gases where (1) the mean free 

paths are small compared to the size of the system A.«L and (2) 
1 

correlations among the particles can be neglected. 

dissipation dominates and Ai are replaced19 by L. 

For A.>L, one body 
1 ~ 

In fluids or 

crystals, .involving strong correlations, particles are' confined in local 

field minima and momentum transport is enhanced by mean field phenomena. 

For a quark-gluon plasma, the gas description should apply at very high 

energy densities because of asymptotic freedom. In contrast, a hadronic 

medium can be considered a gas at low energy densities because of the 

short range nature of the forces. Current Bag model and QCD Lattice 

calculations1 suggest that the gas approximation should hold for 

E < EH - 0.5 GeV/fm3 and E >.EQ - 2 GeV/fm3• In the transition 

region, the properties of matter are very uncertain. We will simply 

interpolate linearly between nH ~ n(EH) and nQ~ n(EQ) as a 

function of E, as would be appropriate for a first order transition. 
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Before estimating Ai via eq. (3.2) we note several physical 

constrains on A .• First, the uncertainty principle implies that A. 
1 1 

cannot be arbitrarily small for finite <p>. In fact, A. > I/<p>, and 
1 -

consequently 

(3.3) 

where n = ~ni is the total density of quanta. No matter how large is 

the free space cross section, the collision rate in many body systems is 

bounded by the typical energy per particle21 ,22. Second, in a gas A. 
1 

h 1 -1/3 must exceed t e interpartic e distance, A. > n • This leads to 
1 

another lower bound 

1 2/3 n ~ -3- <p> n (3.4) 

A violation of (3.4) would mean that it is possible to maintain local 

equilibr~um on distance scales involving only one particle. This is only 

possible in fluids and crystals, where, however, gas kinetic estimates for 

n tend to grossly under estimate n in any case. Note that for a fixed 

energy density £ ~<p>n, the two lower bounds are equal if n = £3/4 

Consequently, we can combine them to obtain 

1 
n > -3-

3/4 
£ (3.5) 

4 3 For ~ = a quark-gluon plasmas, E = 12.2 T , ng = 1.95 T , 
3 3 nq = 2.2T , n = 4.15 T. In this case eqs. (3.3 - 3.5) given n ~ 

1.4 T3, 2.6 T3, 2.2 T3 respectively. Clearly, eq. (3.4) imposes 

the most severe constraint because the average distance between quanta, 

n- 1/3 - 0.6/T, exceeds the thermal compton wavelength, I/<p> - 0.3/T. 

'" 
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In summary, a reasonable lower bound on the shear viscosity coefficients 

for ~ « T quark gluon plasmas is 

n (3.6) 

Finite chemical potentials would tend to raise n due to Pauli blocking 

effects. 

In addition to the physical lower bound (3.6), there is a practical 

upper bound on n necessary for the applicability of the Navier-Stokes 

equation. The derivation of the dissipative corrections to Tae and 

na in eq. (7) from transport theory relies on the smallness of the mean 

free path in comparison to gradients of field quantities. For the 

scaling hydordynami~ problem this requires· 

>..laQ,ne:/cnl < 1 (3.7) 

Therefore, in order to apply the Navier-Stokes theory we must have 

(3.8) 

For Lorentz invariant initial conditions Ref. (5, 7-9, 11) and zero 

chemical potential the hydrodynamic equations (2.1,2.2) reduce to 

~ ·.t 1. (e: + p) ::; ~2 (-34 n + 0 dT T 
T 

(3.9) 

To apply (3.9) to.(3.8) we must neglect the right hand side since it is 

higher order in >... This leads to e:(T) ::; e:
O

(TO/T)4/3 and hence 

1 n < - e:T (3.10) 
4 
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Inserting this upper bound into (3.9), we see that the plasma cools more 

slowly than with n = 0: 

(3.11) 

This limit just corresponds to constant energy rather than isentropic 

expansion. It also coincides with the maximum entropy expansion 

considered in Ref. (6). The rate of energy density loss, pIT, due to 

pdV work done on expansion is exactly compensated for by viscous 

reheating, 4n/3T2, in this limit. This reheating arises by the 

conversion of longitudinal flow energy into local excitation energy. 

Because €T is approximately a constant of motion for n near the upper 

bound, we can evaluate the right hand. side of (3.10) at the initial time 

TO marking the onset of final state hydrodynamic expansion. Together 

with eq. (3.6) this leads to 

(3.12) 

From the derivation, it is clear that there is on the order of a factor 

of two uncertainty on both bounds. Nevertheless, it is surprising that 

the range of acceptable n is so "narrow." Only for high To » 200 MeV 

and/or late times TO » 1 fm/c does the acceptable range open up. 

So far we have considered n only in the plasma phase. In the 

hadronic phase, typical transport cross sections are 0 
n 

In this case (3.1) yields 

T _ ( T ) (0.5 - 1) 
nH ~ on 200 MeV fm3 

~ 10 - 20 mb. 

(3~13) 

' .. 
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In order to compare (3.13) to the lower bounds (3.3, 3.4), we must adopt 

a model of the hadronic phase. A simple yet flexible model is that of a 

Shuryak resonance gas,4,6 for which 
2 (l+C~)/c~ 

Ph = cHE h, Eh = EH(T/Tc) , 
2 1/cH 0h = 0H(T/Tc) and the density of hadrons is 

( )

I/C2 
I ( 2) -_ n·

c 
T/Tc H nh = 0h Z cH (3.14) 

222 where nc = 0H/z(cH) and z(cH) = 2.2, 3.6. 6.9 for cH ~ 1/2, 1/3, 1/6 

respectively~6, For il.lustration two sets of parameters were considered 

in Ref. (6) that cover a plausible range of equations of state. The first 

set (I) corresponds to a strong first order transition at Tc = 200 MeV with 
, . 3 2 -3 EH, EQ = 0.7, 3.3 GeV/fm , cH = 1/6, and nc = 0.6 fm • The second 

set (II) correspods to a weak first order transition at Tc = 140 MeV with EH, 

. 2 1-3 EQ = 0.45,0.67; cH = 1/:3, and nc = .2 fm • For these equations of 

state (3.3) gives 

0.2(T/T
C

)6fm-3 I 

nH ~ 
0.4(T/T

c
)3fm-3 II 

(3.15) 

This is satisfied near T for ° < 50 mb, 18 mb respectively. 
c n 

~ Equation (3.4) gives, on the other hand, 

.,; 
0.7(T/T

C
)5fm-3 

0.8(T/T
c

)3fm-3 

I 

(3.16) 
II 
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This more severe constraint is satisfied by (3.13) only if cr < 14 mb, 
n 

9 mb respectively. Since (3.13) tends to fall below the lower bound in 

(3.16), we expect that in fact the shear viscosity coefficient will be as 

small as it can be in the hadron phase. In numerical estimates we shall 

therefore use (3.16). 

It is interesting to compare (3.16) with the maximal practical value 

of n, (3.10), consistent with scaling Navier-Stokes theory. For p = c~£, 
2 la£n £/aTI = {I + CH)/T, and so the coefficient in front of £T in (3.10) 

remains close t6 1/4 for both ;ets of parameters. Furthermore, using the 

maximal value -£T/4 in (3.9) leads to £T ~ £OTO ~ £HTo (£o/£H)' with £ 

approximately independent of T. Therefore, we c~n compare (3.16) to 

{ 3.17} 

For both sets of parameters the upper bound exceeds the lower-bound for 

the relevant range of temperatures Tc/2 < T < Tc' Consequently, 

Navier-Stokes should apply to the expansion of the hadronic phase. 

-., 
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4. Perturbation Theory Estimates 

It must be emphasized that the upper bound in (3.12) is only a 

practical constraint. It is entirely possible that n in QCD violates 

that bound near the critical temperature. In that case, we must (1) 

abandon the scaling boundary tonditions that lead to the enormous 

velocity gradients and/or (2) abandon the Navier Stokes description of 

the final state expansion phase at high energy densities. This 

possibility can only be assessed after reliable lattice calculations ofn 

using the Kuboformulas10 become available. 

As an intermediate step, we turn to perturbation theory for possible 

guidance. Consider the Born approximation for the elastic cross 

sections1 

(4.1) 

where cij = 9/4, 1, 4/9 is the color factor for ij = gg, gq, qq 

scatteri~g respectively. Strictly speaking. eq. (4.1) holds only for qq 

scatte~ing with different flavors. For forward scattering, It I « s, 

(4.1) is nevertheless a good approximation to the Born cross sections in 

all channels. For 90 0 scattering, It I = lul= s/2, it underestimates the 

qg cross section by only 20%, while for gg it is a factor of three too 

small. Since the longer quark mean free paths set the scale for 

dissipative effects, (4.1) will be adequate for our purposes. 

At finite temperatures the renormalization group analysis of the 

running color electric coupling constant leads to the approximate 

form23- 26 
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For t » T2~ i.e. small distan~e scales, as(t,O) reduces to the f~ee 

space running coupling constant4n/(11 - 2Nf(3)ln(ltI/A2) with Nf 
flavors. This is intuitively cleatbecaus~ at distance scales much 

smaller than'the interparticle spacing the effects of the many body 

medium should be ,unimportant. The parameter A is therefore to be 

identified with its value determined from deep inelastic eN, charmonium 

spectra, etc., A- 200 - 600 MeV. For It I «T2 the plasma acts to 

shield color electric fields. The scale at which screening'becomes 

important is It I ~ k6 where k6 = TIoo(q ~ 0) ~ 4nas(1 + Nf /6)T2 is the 

Oebye wave vector or electric mass squared. We note that for q = (0, k) ~ 0, 
222 kO decreases to 3/8 kO for kIT »1. That kO does not go to zero 

for k » T is due to the contribution of the point like four gluon vertex 

to TIoo. 

With (4.2) daldtdoes not diverge at small t. The maximum value of 

daldt occurs near lnltl/A2 ~ -1. That maximum value, however, diverges 

as T is lowered to T ~·0.13 A. Therefore, perturbation theory must break 

down for T/A < 1~ marking p~esumably the onset of confinement. 

With (3.1, 3~2, 4.1, 4.2)~ we can estimate n for nq ~ ng plasmas 

as 

n~ n~ T 
n = -n-ga-g-g--7'-+-n-q-a-q-g + -n-qa-q-q--='"+-n-g-a-q-g = ~ , (4.3) 

where the transport cross 'section is (x = Itl/s) 

\.' 
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{4.4} 

Note that due to color factors the gluon contribution to {4.3} .is only 

4/9 as large as the quark contribution. Also, an remains finite because 

of color screening for small x. 

2 2 The average square of the cm energy is s = <{PI + P2} > ~ 17 T 

in the plasma •. Therefore, for T ~ 00 we can approximate 

{4.5} 

Where the Debye xD is given by 

{4.6} 

and the effective temperature dependent running coupling is 

(4.7) 

With {4.5}, the integral in {4.4} is elementary 

'2 . 
a = 4na (T/A){(2 + 8x + 9x2 + 4x 3)£n(1 + l/x

D
) - (29/6 + 7x

D 
+ 4xD2)} • 

n 17 T2 D D D 

In the extreme asymptotic limit T ~ 00, xD ~ 0, the logarithmic 

approximation would hold and 

(4.8) 
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n/T3 
--+ [~ a2{T/A)£n{1/a{T/A))]-1 
T~oo 

(4.9) 

In practice, because of the 29/6 in (4.8), the logarithmic approximation 

underestimates n by more than factor of 3 for T I A < 106. Even in the 

extreme limit (4.9) is a factor of three larger than that estimated in 

Ref. (11) because of the smaller cross sections for quarks (Oqg - O'gg/2) 

included in (4.9) and the use of the large 90 0 gg cross section in Ref. (11). 

For T/A > 10 (4.8) overestimates (4.4) by only 20%. Numerically 

evaluating (4~4), we find n/T3 = 4.9, 8.8, 15, 42 for T/A = 0.3, 0.5, 

1, 10 and a{T/A) = 3.1, 0.9, 0.46, 0.17 respectively. 

We can now assess, at least within the limited context of pertur-

bation theory, under what conditions, (3.12), scaling Navier-Stokes 

theory may apply to the expansion stage of the plasma~ Using the 

numerical values of n/T 3, (3.12) implies that Navier-Stokes applies 
-1 only for proper times later than Lo ~ {5 - 6)A for T/A < 1 and L < _ 0 

-1 L for T/A > 10. Since A - 200 - 600 MeV perturbation theory assures 

us that Navier Stokes applies for the interesting first few fmlc region 

only for T > 1 GeV. Unfortunately, for relevant temperatures T - 200 -

300 MeV these estimates suggest that the first few fmlc evolution could 

be far from local equilibrium. However (for temperatures of interest), 

as - 0.5 is not small and higher order corrections may be important. 

One indication of that higher order effects must become important is 

that the Oebye length rO = 11kO becomes smaller than the inter

particle spacing n-1/3 ~ 0.6 T-1 when as > 0.15, i.e. for T/A < 10. 

... 
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Physically, however, we expect screening only on distance scales, rO ~ 

n-1/ 3• This corresponds to nr~ > 1, as usual in plasmas. In terms 

of xo' nr~ > 1 implies that xD ~ n2/ 3/s ~ 0.15. In that case 
3 the expression in the brackets in ,(4.8) is close to unity and nIT = 1.8, 

6.9, for T/I\, = 0.5, 1 respectively. This is a very substantial reduction 

of n as compared with using ~4.6}in (4.8). Therefore higher order 

effects on the screening mechanism for r - I\, could playa major role in 

keeping n within the ,bounds of (3.12). 

Furt~er ,support, for .the above can be ,found from ~he self consistent 

solution 'fo~ the electric mass in Ref. (26). Using ,the Schwinger-Dyson 

equations to sum higher order (loops within loops) corrections it was 

found tha~the correction to ord~r g3· was large and negative. This 

correction reduced k6 to k6 (1 - vyas) with y - L This physically 

appealing result indicates that for a ~ 1 antiscreening and presumably 

confinement could set in. With, this reduction factor, not only does nr~ > 1 

remain satisfied but in fact nr~ increases rapidly near the transition 

temperature. Taken face value k6 would be three times as small for T/A - 1 

and (4.4) would yield cr ~3 mb. This value is reasonable from the point of , n 

view of the additive quark model. In that case nIT3 ~ 3 also satisfies 

the criteria (3.12) for ,applicability of Navier-Stokes theory. Clearly 

the problem of higher order corrections is subtle and will need much more 

study before more quantitative conclusions can be reached • 
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5. Bulk Vicosity in the Mixed Phase 

It is known that bulk viscosity, ~, vanishes both in the 

non-relativistic and ultrarelativistic limits for a gas with a conserved 

number of particles.11 However, for processes occurring with a finite 

relaxation time L* the variation of the sound velocity gives rise to 

finite bulk viscoSity.16 We consider here a possible source of bulk 

viscosity due to the finite relaxation time involved in the quark-gluon 

plasma to hadronicmatter transition. For illustration, we consider the 

first order transition within the context of the Bag modeL1,6 For the· 

hadronic pha~e we take Eh, Ph' 0h for a Shuryak gas4,6 as in (3.14). 

For the quark phase, we take 

'q= ('Q - B}(iJ 4 + B 1 p = -( £: - 4B) 
q 3 q 

(5.1) 

where EQ = £: (T:) and the condition that p = Ph = P at Tc· gives q c q c 
2 4B = £:Q - 3cH£H. The latent heat in the transition is h£ = £Q -

£H ~ 4B. In chemical equilibrium for energy densities E between £H ~ £ ~ 

£Q' the system would bein a mixed phase with a fraction 

(5.2) 

of the volume occupied by the plasma. 

In a dynamically evolving system where £h) varies as in (3.9), the 

concentration A{L) may differ from Aeq{E{L)) because it takes a finite 

;. 
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time to convert the' plasma into hadrons~ In that case the pressure 

p{E,l) in (3.9) is a function of both E and 1. In equilibrium with EH ~ E ~ 

EQ the pressure is constant 

(5.3) 

Therefore for small deviations from equilibrium, 1 = 1eq +'01, 

(5.4) 

with the right hand side evaluated atl = 1eq' Noting that the speed 

of sound in the mixed phase is zero 

(5.5) 

(5.2, 5.5) yield 

(5.6) 

where C7{E) = (ap/aE) is the speed of sound squared in the system 
" 1

eq 
2 2 when the plasma fraction is held fixed. For E : EQ, c1 .:::::: cQ = 1/3, 

where c~ is the speed of sound squared in the plasma •. For E • EH, 
22·' 2 c1 • cH - 1/6 - 1/3 where cH is the speed of sound in hadronic 

matter. 
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T t · . (54) th 1 t· t· . t· 16 o es lmate <SA ln • we use' e re axa lon lme approXlma lon 

(5.7) 

where T* - A-I - 1 fm/c is the expected order of magnitude of the 

transition or nucleation time. Solving for A = Aeq - T*dA/dT, we find 

to lowest order that 

(5.8) 

Substituting ·into ('5.4), the pressure is reduced relative to its equili-

br i urn val ue as 

(5.9) 

Comparing with (3.9) we identify 

(5.10) 

Near the topo'f th~' transition e: ~ e:
Q

, c~ ~ 1/3, and t;, = T*4{e:
Q 

- B)/9-

GeV/fm2 - 5T~. Note that t;, is comparable to n near the transition 

temperature. Iri order that Navier':"Stokes appl ies (pc - p) /p shoul d be 

small. Obviously this requires that the transition occurs when the 

gradients in time have become sufficiently small. 

Including t;, in the estimate of the practical upper bound for n in 

(3.10) we get 

\' 
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{5.1l} 

In order for the upper bound to exceed the lower bound in {5.11},we must 

start with an initial energy density EO ~ E{T}{T/TO} such that 

{5.12} 

St t · 'th 1 d 't' 1 d t l' 27 d ar lng Wl ower energy enSl les can ea 0 supercoo lng an 

violent non-equilibrium phenomena such as deflagrations or detonations. 

Even {5.12} may not be enough if the shear viscosity is not close to the 

lower bound in {5.1}. For n = {4 - 6}T~, EO > {3 - 4}EQ would 

be required for dissipative effects to remain manageable through the 

transition region. 

To calculate the dependence of c; on E we'need to further 

specify a relation between the temperatures Tq, Th of the quarks and 

hadrons in the mixture. Since thermal equilibrium usually has the 

shortest relaxation time we will consider Tq = Th = T. When A * 
A {E}, then T * T either. The temperature and pressure are eq c 
determined by 

{5.13} 

Using aPi/aT = q or h we find that 
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(5.14) 

2 2 2 Thus c). smoothly interpolates beeween cQ at e: = e:Q and cH at e: = e: W If 

we would relax the assumption that Tq = Th, then the interpolation formula 

222 2 would change. However for cQ = cH' c). = cQ is independent of e: as 

it should be. In the numerical examples in the next section we will use 

(5.14). 

Finally, we comment on the bulk viscosity in the hadronic phase. As 

noted in Ref. (11), it is difficult to maintain chemical equilibrium in 

the hadronic phase because of the smallness of HH ~ HHH, inelastic rate 

at temperatures T ~ 200 MeV. The inability of the system to maintain 

chemical equilibrium brings about a change of the speed of sound and 

hence leads to bulk visGosity. As shown in Ref. (11), the, magnitude of 

is then likely to be comparable with n in the hadronic phase. Only in 

the quark-gluon plasma is bulk viscosity likely to be negligible. 

6. Results and Summary 

We now apply the previous estimates to the problem of relating final 

observed rapidity densities to initial energy densities. 5,6 For that 

purpose we recal1 6 that in the scaling regime 

(6.1) 

where cr(T) = (e: + p)/T is the entropy density, Tf is the breakup time and 

• 
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Ai ~ nr~A2/3 (ro ~ 1.18 fm) is the transverse area of the beam. 

Since d€ = Tdo, from (3.9), the entropy evolves according to 

d(To) 1 4 
dT = TT(1 n + ~) (6.2) 

In the absence of dissipative effects To is a constant of motion, we can 

replace Tfo{Tf ) by TOO(TO) 
. 1+c2 

c~/ (1 + c~) 
cr € , and obtain via (5.1) the relation 6 

o 

€o cr (dN/dy) o. However, for nonvanishing n, ~, we must solve (6.2). For the 
3 plasma phase we use (5.1) and n = bT t b > 2 and ~ = O. In that case (6.2) 

" "1 1 dll , 13 " " 1S eaS1 y so ve glv1ng 

.)1/3 
= (T + oT )( TO _ oT (TO) 

o 0 TOT , (6.3) 

with 

with K = (€Q - B)T~ ~ 12. If we ignore possible entropy production in 

the transition region, then the rapidity density becomes for Tf » TO 

3 
1 dN 1 '"'"' 1 (OT 0) . - - = - T o{ T ) '" - T o( T) 1 + -Ai dy 4 f f 4 0 0 To (6.5) 

Therefore t dissipative effects enhance the rapidity density by a factor 

(1 + oToIT
0

)3. If n is close to the minimum value 2T 3, then that 

enhancement factor is 1.3. For n = 4T 3 it becomes 1.6. In the extreme 

case, when dissipative effects are as large as they could get, €T is 
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. approximately constant and err ~ 0oTo(T/To)1/4 increases with T. In that 

limit the rest energy per unit rapidity is approximately constant and we 

recover Bjorken's estimate5 
EO cr dN/dy. 

In Fig. 1 we show the evolution of the energy density, entropy, and 

entropy production rates for the case E = 12.2 T4, 0 = 16.3 T3. 

Curve 1 corresponds to ideal non-viscous expansion. Curves 2, 3, 4 have 
3 nIT = 2, 6, 14. Observe that for extreme n the energy density could 

even rise initially. As noted before for such large n Navier-Stokes 

theory does not apply. Nevertheless curves 3 and 4 illustrate an 

interesting point. There is a very large energy reservoir stored in the 

form of kinetic energy of the nuclear fragments. In the central region 
-y 2 

considered here only e 0 - 10- of the total energy available 

remains after the two nuclei pass through one another. It is that 1% 

residue of the collision whose subsequent final state expansion we are 

considering here. If the dynamics is simply parton-parton scattering and 

radiation, then that reservoir of energy cannot be tapped, and E(T) must 

be a monotonically decreasing function. However, it is not ruled out 

that the confinement mechanism produces color fields or strings that 

connect the partons in the central region to the high rapidity partons. 

In terms of kinetic theory such effects would have to be included in 

Vlasov terms. Those color fields or strings could accelerate the quarks 

and gluons and even lead to an increasing internal energy E(T) as shown 

mimicked by curve 4. However, this type of behavior would be quite 

exotic. Our expectation is that the energy density will decrease with 

in the region bounded by curve 1 corresponding to isentropic expansion 

and the dotted line corresponding to isoergic expansion. From Fig. 1 we 

1 



27 

also see that most of entropy produced is in the first few fm/c. The 

reason again is that velocity gradients become small at later times. The 

asymptotic value of To, (6.5), is thus approached rather quickly. 

Next we solve (6.2) for an assumed first order transition within the 

Bag model (3.14, 5.1). To cover a broad range of possibilities we employ 

the two sets of parameters6 discussed above (3.15). In Fig. 2, part (a) 

is for a strong first order transition at Tc = 200 MeV, and part (b) is for 

a weak transition at Tc = 140 MeV. In both parts the curve n = 0 corre

sponds to isentropic expanson as computed in Ref. (6). The dashed curve in 

each is appropriate for the isoergic (d{€T)/dT = 0) expansion considered 

in Refs. (5,6). The curve nmin was calculated using n = 2T3 for € > €Q and 

(3.16) for € < €H. For €H < € < €Q we linearly interpolate, n = AnQ + {I - A)nH' 

with A given by (5.2). For these curves ~ = O. The curves labeled ~ 

still include not only nmin but also bulk viscosity (5.10, 5.14) in the 

transition region €H < € < €Q. 

For both sets of parameters, the inclusion of minimal shear viscosity 

lowers the initial energy density by -1 GeV/fm3• For large shear 

viscosity n = 3 nmin the curves (not shown) fall below the isoergic 

line. For the range of energy densities and rapidity densities 

considered, the shear viscosity must therefore be less than 3 nmin in 

order for Navier-Stokes to apply. While in the hadronic phase this 

condition appears to be satisfied, we recall from section 4 that there is 

considerable uncertainty on the value of n in the plasma phase. The 

inclusion of bulk viscosity associated with the transition obviously has 

greater effect in part (a) for the strong transition. If the latent heat 

is several Gev/fm3, then a large amount of time is spent in the 
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transition region, and considerable entropy is produced. In the extreme 

case (a) inclusion of ~ reduced EO by another GeV/fm3 for fixed 

dN/dy. In case (b) ~ had negligible effect because of the smallness of 

the latent heat. 

We conclude, from this study that finite mean free paths and 

relaxation times are likely to lead to a dynamical path intermediate 

between the idealized isentropic7- 9 and isoergic5 ones. In tetms of 

entropy production at least 20% and up to 100% enhancement of the entropy 

were found. While we wer~ not able to rul~ out anomalously large 

dissipative effects in the plasma near the transition temperature, the 

qualitative arguments pointed to values of n satisfying (3.12). 

Antiscreening was identified as potentially important effect in keeping n 

down. 

Our results are in· accord with previous estimates~,-7 with regard to 

the range initial energy densities that can be expected in ultra-

relativistic nuclear collisions. With rapidity densities as 
28 . 3 already observed in several cosmic ray events, EO ~ few GeV/fm can be 

expected for energies Elab > 1 TeV/A. The most important consequences of 

dissipative effects are likely to be on the signatures1,29 of the 

plasma ph ase. 

The energy density and temperature generally decrease slower with the 

inclusion of dissipative effects. This would lead to greater yields of 

direct probes such as photons and dileptons, which are sensitive to the 

thermal history of the reaction. On the other hand, larger transverse 

momentum associated with hydrodynamic expansion would be reduced as 

collective flow velocities are dissipated into heat. In general 

.I 
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dissipative effects would also dampen fluctuations that could otherwise 

serve as signatures of unusual phenomena. 27 Also any rapid variations 

of quantities such as the K or A multiplicity with increasing A number 

marking the transition from non-equilibrium to equilibrium dynamics would 
1 29 be smeared out by dissipative effects. Since most proposed' 

observables of the plasma phase are sensitive to the full space-time 

history of the reaction, dissipative phenomena must be taken into account 

if quantitatitive predictions are to be made. To that end, QCD lattice 

studies of T~v correlation functions and a better understanding of the 

reaction mechanism in ultra relativistic nuclear collisions are needed. 

The main theoretical challenge will be to understand how the rapidly 

expanding plasma converts into hadrons in the final state. We must keep 

in mind that the problem of confinement in a dynamical environment may 

lead to completely unexpected transport phenomena. 
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Figure Captions 

1. Evolution of the quark-gluon plasma in the proper time T: a) energy 

density E, b) transverse entropy-density aT, C) entropy production. 

Curve 1 corresponds to the ideal non-viscous dynamics and curves 2, 

3, 4 correspond to n/T3 = 2, 6, 14 respectively. The dotted line 

corresponds to isoergic expansion. 5,6 

2. Initial energy density EO at onset of the hydrodynamic expansion 

T - 1 fm/c versus pion rapidity density reduced by A2/3 for central 

A + A collisions. Parts (a) and (b) correspond to two models of the 

equation of state (see above (3.15)). The isentropic and isoergic 

curves from Ref. (6) are included. Curves labelled nmin include 

minimal viscous effects as dictated by finite interparticle spacing 

and the uncertainty principle. Curves labelled ~ incorporate bulk 

viscosity (5.10) as well as nmin' For reference the average 

reduced density in the Si + Ag JACEE event28 is indicated. 
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