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Dissipative quantum error correction and
application to quantum sensing with trapped ions
F. Reiter 1,2,3, A.S. Sørensen 4, P. Zoller1,2 & C.A. Muschik1,2

Quantum-enhanced measurements hold the promise to improve high-precision sensing

ranging from the definition of time standards to the determination of fundamental constants

of nature. However, quantum sensors lose their sensitivity in the presence of noise. To

protect them, the use of quantum error-correcting codes has been proposed. Trapped ions

are an excellent technological platform for both quantum sensing and quantum error cor-

rection. Here we present a quantum error correction scheme that harnesses dissipation to

stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered envir-

onment protect the qubit against spin-flips or phase-flips. Our dissipative error correction

scheme operates in a continuous manner without the need to perform measurements or

feedback operations. We show that the resulting enhanced coherence time translates into a

significantly enhanced precision for quantum measurements. Our work constitutes a stepping

stone towards the paradigm of self-correcting quantum information processing.
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Q
uantum noise is a major obstacle for devices that take
advantage of quantum mechanics, such as quantum
computers1, quantum networks2, quantum simulators3,

and quantum-enhanced sensors4–6. The quest to find viable
strategies for mitigating errors is thus an essential prerequisite for
the development of quantum technologies and has led to tech-
niques for quantum error correction7–14. Improving quantum
sensing protocols in the presence of noise15–21 by applying
quantum error-correcting codes22–26 represents a young research
direction and impressive proof-of-concept realizations have
already been demonstrated using nitrogen-vacancy centers11–13.
Here we consider whether high-precision measurements can be
improved by a self-correction mechanism induced by engineered
dissipation. In particular we regard trapped-ion systems, which
have proven to be an excellent platform for high precision
measurements27,28, as well as for the realization of quantum
error-correcting codes9,10.

Harnessing dissipative processes by engineering the coupling of
a system to an environment or reservoir29–37 provides a route for
processing quantum information alternative to relying on unitary
gate operations9–14. Such reservoir engineering techniques have
for example been successfully applied for state preparation38–42.
Dissipative schemes for preparing entangled resource states have
been shown to have advantages over standard methods, leading
for example to a better use of resources34 and extending entan-
glement lifetimes by stabilizing the target state38.

Employing dissipation for quantum error correction takes this
idea further since it requires the stabilization of an unknown state
(i.e., of a manifold of states). The idea of dissipative error cor-
rection has attracted considerable interest43–50. The challenge of
implementing this strategy by engineering suitable dissipative
processes in concrete experimental systems has recently led to
theoretical proposals for superconducting circuits51–55, as well as
first experimental efforts towards the realization of building
blocks required for dissipative quantum error correction56.
Despite their central roles in both quantum information proces-
sing and quantum metrology, such achievements have not been
made with trapped ions.

In this work, we address this challenge by combining the
paradigms of dissipative quantum error correction and trapped-

ion quantum information processing to a scheme for quantum
error-corrected metrology. Standard error-correcting schemes
entail classical apparatuses to perform measurements and feed-
back operations on the quantum system. In contrast to this gate-
based approach, our scheme neither relies on time-dependent
unitary operations, nor requires macroscopic measurements or
feedback operations. Instead, tailored dissipative dynamics con-
tinuously corrects for spin-flips or phase-flips at a microscopic
level by coupling the internal degrees of freedom of a system of
trapped ions to an environment consisting of cooled motional
modes (Fig. 1). The resulting dynamical protection of a qubit
against noise results in a significant enhancement of its lifetime,
and hence in a substantial improvement of quantum measure-
ments. The proposed scheme allows for the realization of a
repetition code7, where a logical qubit is encoded in a three-
particle entangled state. Dissipative processes are designed such
that the code space is a steady-state dark manifold, as shown in
Fig. 1. Errors take the quantum state out of this subspace, which
causes engineered dissipative processes to become resonant and
thereby coherently correct the error by a generalized optical
pumping process. Once the error is corrected, the engineered
dissipative processes are shifted out of resonance such that they
cease to act on the system. As we show below, this allows one to
stabilize a qubit against a given type of error: either single-qubit
spin-flips or phase-flips, or against correlated noise. Adding to the
potential of this approach for quantum information processing
we demonstrate that the proposed scheme can be applied for
improving the sensitivity of quantum sensing protocols, where a
“dissipative” quantum-error correction paradigm has not been
explored up to now. Here our scheme provides a blueprint for
quantum error correction enhanced metrology in trapped-ion
systems based on current experimental means. We analyze the
applicability of our scheme in the context of a paradigmatic
measurement setting with trapped ions and show that the
attainable sensitivity can be significantly enhanced for realistic
experimental parameters. Our work provides a stepping stone
towards a new paradigm of self-correcting quantum systems that
can be realized with current technology and will enable experi-
ments with ions that take dissipative quantum information pro-
cessing to a new level.
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Fig. 1 Dissipative realization of a three-qubit code in trapped ions. The unknown state |ψ〉= c0|000〉 + c1|111〉 is encoded in the internal states of three ions

and protected against single spin-flips by means of engineered couplings to a quantum reservoir that consists of motional modes. a Spin-flip errors are

continuously removed from the system through cooling of the motional modes. b Compromised states ψ ðjÞ�

�

�

¼ σ
ðjÞ
x ψj i; j ¼ 1; 2; 3 are driven back to the

logical subspace at a rate Γqec, while the code space is a dark manifold of the engineered dissipative processes. c The scheme can be scaled up to several

logical qubits using a segmented trap (Supplementary Note 3)
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Results
Error-correcting protocol. We consider a three-qubit repetition
code, where a logical qubit is encoded in three physical qubits,

ψj i ¼ c0 0j iLþc1 1j iL¼ c0 000j i þ c1 111j i; ð1Þ

with logical qubit states |0〉L = |000〉 and |1〉L = |111〉, forming a
codespace {|0〉L, |1〉L}. This encoding allows one to protect the
quantum state against single spin-flips on the physical qubits,
which lead to the single-error states

ψj ðjÞi ¼ σðjÞx ψj i; j ¼ 1; 2; 3; ð2Þ

where the Pauli operator σ
ðjÞ
x ¼ 0j ij 1h j þ 1j ij 0h j acts on the jth

qubit. As explained below, a majority vote allows for the
restoration of the state |ψ〉. Later we will also consider the cor-
rection of single-qubit phase-flips and correlated noise. In prin-
ciple it is also possible to convert this scheme into a protocol
simultaneously correcting spin-flip and phase errors by extending
it to a nine-qubit error-correcting code7 capable of correcting any
type of single-qubit error. However, a full error-correcting code is
not compatible with quantum sensing, since it would remove
both errors and the signal to be measured from the dynamics.

In the following, we describe the noisy dynamics of a quantum
system by a master equation _ρ ¼ LðρÞ with a Liouvilllian L of
Lindblad form,

LnoiseðρÞ ¼
X

k

D½Lk�ðρÞ; ð3Þ

D½Lk�ðρÞ ¼ LkρL
y
k �

1

2
L
y
kLkρþ ρL

y
kLk

� �

;

with dissipators D½Lk� and jump operators Lk. In the special case
when Lk describe local spin-flip noise affecting each of the
constituent qubits independently, the jump operators are given by

LðjÞx ¼
ffiffiffi

Γ

p
σðjÞx ; j ¼ 1; 2; 3; ð4Þ

where Γ is the rate at which a spin flip occurs.
Single spin-flip errors are corrected by implementing a

majority vote: to correct errors on, for example, the second
qubit, we interrogate the two-body stabilizer operators Sð12Þ ¼
σ
ð1Þ
z σ

ð2Þ
z and Sð23Þ ¼ σ

ð2Þ
z σ

ð3Þ
z , which involve the second qubit and

its neighbors, qubit 1 and qubit 3. The code state |ψ〉 is an
eigenstate of these operators with eigenvalue +1, while the single

error state |ψ(2)〉 is an eigenstate with eigenvalue −1. If a spin-flip
has occurred, the resulting state |ψ(2)〉 of the system thus violates
both stabilizers, S(12)|ψ(2)〉 = S(23)|ψ(2)〉 = −|ψ(2)〉. Conditioned on
this result, a spin-flip σ

ð2Þ
x is applied to qubit 2, and the original

state |ψ〉 is restored. Errors on the first and third qubits are
corrected in an analogous fashion. This recovery protocol can be
implemented in a continuous manner by realizing the dissipative
dynamics

Lqec ¼ D½Lð1Þx;qec� þ D½Lð2Þx;qec� þ D½Lð3Þx;qec�; ð5Þ

with quantum error-correcting jump operators of the form

Lð2Þx;qec ¼
ffiffiffiffiffiffiffiffi

Γqec

p

σð2Þx

1� σ
ð1Þ
z σ

ð2Þ
z

2

1� σ
ð2Þ
z σ

ð3Þ
z

2
: ð6Þ

Here, we have Γqec as the correction rate, σ
ð2Þ
x as the correcting

spin-flip, and two “interrogation parts” of the form (1−S)/2. Each
of them interrogates a stabilizer S, yielding 0 if the qubits are of
the same value and 1 if they are different. This realizes the
described majority vote: If both stabilizers S(12) and S(23) are
violated, an action L

ð2Þ
x;qec � σ

ð2Þ
x is realized. Correcting operators

for qubits 1 and 3 can be written analogously:

Lð1Þx;qec ¼
ffiffiffiffiffiffiffiffi

Γqec

p

σð1Þx

1� σ
ð1Þ
z σ

ð2Þ
z

2

1� σ
ð1Þ
z σ

ð3Þ
z

2
; ð7Þ

Lð3Þx;qec ¼
ffiffiffiffiffiffiffiffi

Γqec

p

σð3Þx

1� σ
ð1Þ
z σ

ð3Þ
z

2

1� σ
ð2Þ
z σ

ð3Þ
z

2
: ð8Þ

For the physical implementation, it will be useful to translate
the conditional jump operators in Eqs. (6)–(8) into the form

LðjÞx;qec ¼
ffiffiffiffiffiffiffiffi

Γqec

p

σðjÞ� Pn1¼1 þ σ
ðjÞ
þ Pn0¼1

� �

; j ¼ 1; 2; 3; ð9Þ

where σ
ðjÞ
þ (σðjÞ� ) are the raising (lowering) operators on

qubit j. Pnk¼n are projectors on the states with n qubits in
state |k〉, e.g., Pn1¼1 ¼ 100j i 100h j þ 010j i 001h j þ 001j i 001h j and
Pn0¼1 ¼ 011j i 011h j þ 101j i 101h j þ 110j i 110h j. Similar condi-
tional jump operators containing an interrogation part (1−S)/2
were proposed in ref. 31 and implemented with trapped ions in
ref. 39 using a sequence of quantum gates to dissipatively generate
Bell pairs. In the following, we show how the conditional jump
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Fig. 2 Setup for the implementation of the error correction scheme. The setup consists of three system ions, which couple collectively to two shared

motional modes a and b, used for the interrogation of the system. For the correction, we require auxiliary modes c(j), which can be realized either by

additional motional modes or ancilla ions. In the figure this additional degree of freedom is denoted by a level 1j icðjÞ . The ions are assumed to have two

levels, |0〉 and |1〉, which we shall refer to as ground states, and two levels, |e〉 and |f〉, referred to as excited states. The transitions are excited by a driving

(weak carrier) field Ω and strongly coupled to two motional sidebands a and b with coupling constant G. Excitations of the ions (|e〉, |f〉) are coherently

transferred to the auxiliary modes/ancillas by coherent couplings g and subsequently removed by cooling/reset with a rate κ
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operator performing a majority vote in Eq. (9) can be
implemented in a time-continuous fashion in a system of trapped
ions.

The presented scheme can be generalized to correct for
correlated spin-flip or phase errors, as explained in the “Methods”
section.

Setup. We consider a setup consisting of three ions in a trap with
identical levels and couplings as shown in Fig. 2. The logical qubit
states |0〉 and |1〉 are encoded in internal electronic levels of the
ions, which we shall refer to as ground states. In addition, we
consider two levels, |e〉 and |f〉, referred to as excited states. The
internal levels are coherently coupled to two collective motional
modes of the ion chain, a and b, by applying appropriate laser
fields. These modes are used for the interrogation of the system.
In addition, for the correction of physical errors we require
auxiliary modes c(j), which we discuss further down. The four
internal states are assumed to be at least meta-stable and the
modes are assumed to be cooled to the ground state. In a suitable
rotating frame, the free Hamiltonian of the system is given by

Hfree;ðΔ; δÞ ¼ Δ

X

3

j¼1

ej ij eh j þ fj ij fh j
� �

þ δ ayaþ byb
� �

: ð10Þ

As will be explained below, the selectivity of the correction
processes (i.e., spin-flips σ

ðjÞ
x ) to the single error states |ψ(j)〉 will be

achieved by a suitable choice of the detunings Δ and δ. To
interrogate the system, we apply weak carrier drives on the
transitions |1〉 ↔ |e〉 and |0〉 ↔ |f〉,

Hdrive;Ω ¼ Ω

2

X

N

j¼1

ej ij 1h j þ fj ij 0h j
� �

þH:c:; ð11Þ

and use sideband couplings that couple the transition |e〉 → |1〉 to
interrogation mode a and the transition |f〉 → |0〉 to interrogation
mode b,

Hint;G ¼ G
X

3

j¼1

ay 1j ij eh j þ by 0j ij fh j
� �

þH:c: ð12Þ

This description is valid within the Lamb–Dicke approxima-
tion. The Lamb–Dicke approximation holds for η2ð2nþ 1Þ � 1,
where n is the average phonon number and η = 2πx0/λ is the
Lamb–Dicke parameter given by the ratio of the ion’s ground
state wave packet size x0 and the wavelength of the applied light
field λ. For the considered type of experiment, we consider the
Lamb–Dicke parameter to be small. The coupling strength G is
assumed to be strong compared to all other rates in the system.
The combination of the couplings Hdrive,Ω and Hint,G, and the
detunings in Hfree,(Δ,δ) will be used to identify ions which, after
an error, reside in the state |1〉 (|0〉) and drive them to the state |e〉
(|f〉). While the interrogation modes a and b are needed to
determine whether an error has occurred on the system ions, we
also require couplings to additional auxiliary modes to remove
such errors:

As can be seen from Eq. (9), the recovery process consists
of two parts, one of which corrects states with a single qubit in
state |1〉, represented by Pn1¼1, by a lowering operation σðjÞ� , e.g.,
|001〉 → |000〉. The second part corrects states with a single qubit
in state |0〉, i.e., Pn0¼1, by a raising operation σ

ðjÞ
þ , e.g., |110〉 →

|111〉. For implementing the operation in Eq. (9) it is important to
maintain the coherence between these two parts of the error
correction. Thus, individual uncorrelated dissipation such as
decay of |e〉 and |f〉 by spontaneous emission does not suffice.
Instead, we use an engineered cooling process which is a
combination of a mapping of the errors from the system ions
to the auxiliary modes and a subsequent dissipative process to
remove the errors as explained below. These auxiliary modes can
be either additional ions or additional motional modes. The exact
level structure is not important, the only requirement is that the
first excited level needs to be strongly damped, thus effectively
resulting in a two-level system. In the following, we focus on
implementations based on the use of additional motional modes
subjected to sympathetic cooling40. However, the analysis that
follows can be straightforwardly adopted to the case of ancilla
ions by replacing the bosonic operator c(j) in Eq. (13) and Eq. (15)
by the Pauli operator σðjÞ� . In this case, the required dissipative
mechanism LðjÞ� ¼ ffiffiffi

κ
p

σðjÞ� acting on each ancilla ion can be
realized by continuously resetting its state by means of optical
pump fields39.

In the following we assume that for the correction of spin-flips
acting independently on qubits 1, 2, and 3, the excitations of the
system ions are mapped onto auxiliary motional modes c(j), j = 1,
2, 3. This is achieved by sideband couplings

Haux; g ¼ g
X

3

j¼1

eiδctðcðjÞÞy 0j ij eh j þ 1j ij fh j
� �

þH:c:; ð13Þ

with the coupling strength g and the detuning δc. The
Hamiltonian of the overall system is given by

Htotal ¼ Hfree;ðΔ;δÞ þ Hdrive;Ω þ Hint;G þ Haux;g : ð14Þ

The resulting excitations in the motional modes are removed
by a dissipative process,

LðjÞc ¼
ffiffiffi

κ
p

cðjÞ; ð15Þ

for which we assume a large cooling rate κ � g; δc so that we can
adiabatically eliminate c(j) from the dynamics57. This yields the
engineered cooling operators

LðjÞeng ¼
ffiffiffiffiffiffiffiffi

κeng
p

0j ij eh j þ 1j ij fh j
� �

; ð16Þ

with an engineered cooling rate κeng = g
2/κ. The minor shift of the
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Fig. 3 Error correction mechanism. The states after a spin-flip on ion 1, |

100〉 and |011〉, are off-resonantly excited to the excited states |e00〉 (left)

and |f11〉 (right). The strong sideband coupling G results in the formation of

the dressed states |ϕe/f,±〉. For Δ= δ= G, the lower dressed states |ϕe/f,−〉

are in resonance with the drives from the single-error states, allowing for

their selective excitation. The excitations in |e〉 and |f〉 are transferred from

the ion to the auxiliary mode c(1) by a coherent coupling, g, and removed by

cooling, κ, maintaining the coherence between the two paths |100〉→ |000〉

and |011〉→ |111〉. Correction of spin-flips on other ions j is performed in the

same way, utilizing the auxiliary mode c(j)
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levels by Haux,g can be neglected and the Hamiltonian becomes

Htotal;eng ¼ Hfree;ðΔ;δÞ þHdrive;Ω þHint;G: ð17Þ

As opposed to typical sources of noise such as spontaneous
emission and decay of the vibrational modes, the engineered
decay in Eq. (16) preserves the coherence between |e〉 and |f〉 (c0|e〉
+ c1|f〉 → c0|0〉 + c1|1〉), which is a prerequisite for quantum error
correction and for using the scheme in a quantum metrology
setting as discussed below.

Working mechanism. We use the above couplings to implement
the error-correcting dynamics in Eq. (9). To this end, we tailor
effective jump processes mediated by engineered resonances
involving the couplings to the excited levels and the motional
modes in the setup. We carefully adjust the system parameters
such that these dissipative mechanisms become resonant if the
system is in a single-error state, resulting in a dynamical cor-
rection of the error. Detrimental action on the codespace and on
the single-error space will be off-resonant and thus largely sup-
pressed. Still, the remaining undesired dynamics introduce
additional decay from the codespace and the single-error space
towards higher-error spaces. Their rates need to be balanced by
the choice of the available parameters, i.e., the strength of the
drive and the engineered decay to ensure that these processes are
not too detrimental.

Figure 3 illustrates the correction of the encoded qubit after a
spin-flip on qubit 1. Spin-flips on qubits 2 and 3 are corrected
analogously. Starting from the single-error state after a spin-flip
on qubit 1 (Eq. (2)),

ψj ð1Þi ¼ c0 100j i þ c1 011j i; ð18Þ

the weak drive Hdrive,Ω couples |100〉 to |e00〉 and |011〉 to |f11〉.
This excitation is a priori off-resonant due to the detunings in
Hfree,(Δ,δ). We now use the coupling Hint,G to create resonances in
the excited state manifold which are selective to the number of
qubits in |0〉 or |1〉 in the initial state: Hint,G couples |e00〉 back to |

100〉 by exciting the interrogation mode a, resulting in the state |
100〉|1〉a. This coupling between |e00〉 and |100〉|1〉a leads to the
formation of dressed states,

ϕe;±

�

�

�

¼ ce;± e00j i± ca;± 100j i 1j ia; ð19Þ

which are indicated in Fig. 3. For Δ = δ =G, the lower dressed
state resides at the detuning Δ1,− = 0 (the upper one at Δ1,+ = 2G),

such that it is in resonance with the drive Hdrive,Ω from |100〉.
Hence, |100〉 is excited to |ϕe,−〉.

Simultaneously, the |011〉-part in Eq. (18) is excited to the
state |f11〉. The excitation |f〉 is coupled to interrogation mode b by
Hint, G, which results in the formation of the dressed states

ϕf ;±

�

�

�

E

¼ cf ;± f 11j i± cb;± 011j i 1j ib; ð20Þ

with the energies Δ1,±. For the parameter choice Δ = δ =G, |011〉
is resonantly excited to |ϕf,−〉. Thus the state in Eq. (18) is excited
to

ϕ1j i ¼ c0 ϕe;�
�

�

�

þ c1 ϕj f ;�i: ð21Þ

From here, excitation exchange with the auxiliary mode c(1) by
Haux,g transfers the system to ψj i 1j icð1Þ . Cooling of the auxiliary
mode by L

ð1Þ
c recovers the original state |ψ〉. The last two steps can

be described as an effective decay process from |ϕ1〉 to |ψ〉 (cf. Eq.
(16)), which, together with the coherent drive from |ϕ1〉 to |ψ(1)〉,
realizes the desired error correction on qubit 1. Errors on other
qubits are corrected in an analogous fashion, utilizing the
auxiliary mode c(j). We will later verify that this procedure
indeed realizes the desired operators (9).

We remark that the correction of several types of errors can
also be realized sequentially rather than simultaneously. In this
case only a single auxiliary mode c is required. For correcting
local spin-flips, individual time slots T1, T2, T3 can be assigned for
correcting spin-flip errors on qubit 1, qubit 2, and qubit 3 such
that a sequence repeating these dedicated time slots T1, T2, T3, T1,
T2, T3, T1... corrects the errors on the individual qubits one after
the other. Such a “Trotterization” would, however, lead to an
effective decrease in the correction rate by a factor of three. The
error rates would, on the other hand, be unchanged such that the
increase in the lifetime of the codeword would be less pronounced
than in the continuous case.

Apart from the error-correcting mechanism, the scheme also
entails undesired processes where spins are not flipped in
accordance with the majority vote. As illustrated in Fig. 4, this
includes processes such as |100〉 → |110〉 or |000〉 → |100〉. For
example, the undesired excitations from |100〉 to the f-excited
state χf

�

�

�

E

¼ ð 1f 0j i þ 10fj iÞ=
ffiffiffi

2
p

and from |011〉 to the e-excited
state χej i ¼ ð 0e1j i þ 01ej iÞ=

ffiffiffi

2
p

, shown in Fig. 4a), are sup-
pressed by our parameter choice of Δ = δ =G. This can be
understood as follows: Hint,G couples |χf〉 to |100〉|1〉b. Due to
constructive interference between the two terms in |χf〉, this
coupling has a strength of

ffiffiffi

2
p

G. The resulting dressed states thus

a b

�eff,2 �eff,2 �eff,3 �eff,3� �� �

Ω Ω Ω Ω

g g g g

Δ Δ Δ Δ� � � �

√2G √2G √3G √3G

100 011 000 111,110 101 ,001 010 , ,100 010 001 , ,011 101 110

100 1 b 011 1 a 000 1 b 111 1 a
( 1f 0 + 10f )1

√2
( 0e1 + 01e )1

√2 + 0f 0 + 00f ) + 1e1 + 11e )
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√3
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Fig. 4 Intrinsic error processes. a Excitation of erroneous but correctable states, e.g., |100〉 and |011〉 can lead to excited states such as χf
�

�

�

¼
ð 1f0j i þ 10fj iÞ=

ffiffiffi

2
p

instead of |e00〉 and χej i ¼ ð 0e1j i þ 01ej iÞ=
ffiffiffi

2
p

instead of |f11〉. Their dressed states with the motionally excited states |100〉|1〉b and |

011〉|1〉a reside at detunings jΔj ¼
ffiffiffi

2
p

G. For Δ= δ= G, such processes are off-resonant with respect to the drive, resulting in weak excitation. These

processes, however, lead to a leakage of population from the subspace of correctable states since they generate double errors, e.g., 100j i !
ð 110j i þ 101j iÞ=

ffiffiffi

2
p

and 011j i ! ð 010j i þ 001j iÞ=
ffiffiffi

2
p

, which cannot be corrected by our protocol. b Excitation of the logical states |000〉 and |111〉 leads to

excited states |ξf〉 and |ξe〉 that couple to motionally excited states with strength
ffiffiffi

3
p

G and thus form dressed states at energies ±
ffiffiffi

3
p

G. These states are

driven off-resonantly by the weak drive, which has a detuning |Δ| = G. Such off-resonant excitations and subsequent engineered cooling processes transfer

code states to the manifold with one error and can thus be recovered by the correction mechanism in the same manner as the physical error
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reside at energies Δ2;± � ð1±
ffiffiffi

2
p

ÞG such that neither of the
dressed states are in resonance with the drive. As a consequence,
these processes taking the system away from the desired state will
be much slower than the resonant processes correcting the errors.
Excitation from |011〉 to |χe〉 is suppressed for the same reason.
The same arguments hold for states after single errors on other
qubits. The resulting slow process leads to a loss of population
from the subspace of single-error states to the subspace of double-
error states, which we discuss below.

In addition, the operation of the protocol also causes
losses from the logical subspace, as shown in Fig. 4b): |000〉 is
excited to ξf

�

�

E

¼ ð f 00j i þ 0f 0j i þ 00fj iÞ=
ffiffiffi

3
p

and |111〉 to
ξej i ¼ ð e11j i þ 1e1j i þ 11ej iÞ=

ffiffiffi

3
p

. These superposition states
consist of three terms and couple to |000〉|1〉b and |111〉|1〉a with
a coupling strength

ffiffiffi

3
p

G. The energies of the resulting dressed
states are therefore given by Δ3;± ¼ ð1±

ffiffiffi

3
p

ÞG. Hence, this
excitation is also off-resonant with respect to the drive, leading
only to a weak additional error process, which is, however,
intrinsic to the scheme.

To optimize the performance of the error correction in the
presence of these undesired dynamics, we invoke a quantitative
model of the effective dynamics of the system further down. We
find that the lifetime of the codeword is maximized by balancing
the intrinsic loss rates through the choice of the engineered decay
rate κeng and the driving strength Ω. Optimizing for long
operation times, we find that the optimum occurs when the total
decay rates (i) from the codespace to the single-error space and
(ii) from the single-error space to the double-error space are small
and similar in magnitude. Still, the precise values of the couplings
Ω, G, g, and κ are not critical in our scheme. To maintain the
coherence of the codeword |ψ〉 = c0|000〉 + c1|111〉 under the
correction in Eq. (9), we require that the rate Γqec is the same for
both parts of the superposition, which is for example fulfilled if Ω,
G, and g are identical for both paths illustrated in Fig. 3. To

achieve a maximum correction rate, the detunings Δ and δ need
to be tuned with an accuracy of at least κeng.

Effective model. In order to analytically verify that our scheme
realizes the desired operators, we use the effective operator
formalism57 to adiabatically eliminate the excited degrees of
freedom, which are coupled to the stable ground states by per-
turbative coherent couplings and are only weakly populated.
Adiabatic elimination of the internal levels |e〉 and |f〉 (see
“Methods”) leads to effective ground state dynamics (involving
only the internal levels |0〉 and |1〉 with motional modes in the
ground state) that is described by an effective master equation
with jump operators

L
ðjÞ
eff ¼

X

3

n¼1

ffiffiffiffiffiffiffiffiffi

κeff ;n
p

σðjÞ� Pn1¼n þ σ
ðjÞ
þ Pn0¼n

� �

: ð22Þ

The above jump operators contain the desired error-correcting
terms (n = 1) given by Eq. (9). These result in a decay of the
subspace of single-error states to the logical manifold at a
large effective rate Γqec ≡ κeff,1 ≈ Ω

2/κeng, where κeng = g
2/κ is

the engineered cooling rate introduced in Eq. (16). In addition
to these error-correcting processes, we also obtain weak undesired
decay terms (Fig. 4). These include (i) terms with n = 3
that act on the logical manifold introducing single-qubit errors
(e.g., |000〉 → |100〉) at a rate κeff,3 and (ii) terms with n = 2,
transferring single-error states to uncorrectable double-error
states (e.g., |110〉 → |100〉). As discussed above, these processes
are detuned by an amount ~G and are therefore strongly
suppressed. We verify this explicitly in Supplementary Note 2.

Performance of the scheme. We analyze the dynamics of our
protocol analytically and numerically. For the former, we use the
error correction rate Γqec = κeff,1 and the rates of undesired pro-
cesses κeff,2 and κeff,3 to describe the effective dynamics of the
scheme by a system of coupled rate equations (Supplementary
Note 2). For the numerical analysis, we simulate the full dynamics
of the system without using the effective operator formalism. This
is modeled by a master equation _ρ ¼ LtotalðρÞ with the Liouvillian
Ltotal ¼ Lnoise þ Lqec, which accounts for the noise processes we
aim to correct for and the physical couplings of the error cor-
rection scheme (see “Methods”). The error-correcting code is
assumed to operate on three physical qubits that are each subject
to spin-flip errors acting at a rate Γ. We calculate the fidelity F(t)
= Tr{ρ(t)|ψ(0)〉〈ψ(0)|} with respect to the initial state ψð0Þj i ¼
ð 000j i þ i 111j iÞ=

ffiffiffi

2
p

and compare the result with the decay of a
single qubit subject to spin-flips (cf. Eq. (4), with a rate Γ), that is
initially prepared in the state ψð0Þj i ¼ ð 0j i þ i 1j iÞ=

ffiffiffi

2
p

. For dif-
ferent sideband coupling strengths, we numerically optimize
the parameters κeng and Ω to achieve maximum fidelity at the
time t = 1/Γ. The number of excitations in the simulation is
limited to at most one. Given that we mostly operate in a regime
of weak driving Ω

2 � κ2eng; G
2 this constitutes a good approx-

imation. Truncating at higher numbers of excitations is found not
to result in a notable difference of the evolution.

The results are shown in Fig. 5, where we plot the dynamical
evolution of the system for different values of G/Γ (see
Supplementary Figure 1 in Supplementary Note 2 for a wider
range of sideband couplings). It can be seen that applying the
dissipative three-qubit error correction code yields a significant
advantage compared to using a single decaying qubit. For G =

5000Γ the code maintains a fidelity close to 0.9 at t � 1=Γ, where
the single-qubit fidelity has almost dropped to the steady state
value of 0.5.
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Fig. 5 Continuous error correction of a three-qubit code against spin-flip

noise compared to single-qubit decay. We simulate the dynamics of a

system of three physical qubits subjected to individual spin-flip errors at a

rate Γ under the action of the error correction scheme by simulating the full

master equation _ρðtÞ restricted to at most one excitation. The shown results

are obtained from optimizing the fidelity (see main text) at t= 1/Γ by the

choice of κeng and Ω for each considered value of the sideband coupling G.

For comparison, the red dotted line displays the decay of a single qubit

subject to spin-flips at a rate Γ. We find that the implementation of our

scheme in trapped ions leads to a significantly reduced decay: Assuming a

sideband coupling of G= 5000Γ (green solid line), a fidelity of F ≈ 0.9 of

the dissipatively protected logical qubit (encoded in three decaying physical

qubits) is maintained after a time t � 1=Γ
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The decrease in the fidelity of the codeword generally takes a
hockey-stick-shaped form consisting of two parts: a fast initial
drop and a slow exponential decay. This shape is a characteristic
feature of time-continuous quantum error-correcting schemes
(see, e.g., ref. 48). The initial drop is due to the fact that physical
decay processes acting on the three physical qubits and laser-
induced error processes lead to a loss of population from the
codespace. The losses set in immediately, while the error
correction-induced transfer back to the codespace sets in with a
delay that is determined by the timescale on which population
accumulates in the single-error space and Γqec. The subsequent
effective decay rate in the presence of error correction is
substantially reduced as compared to the single-qubit decay rate.
This is clearly visible in Fig. 5.

In Supplementary Note 2, we introduce a rate equation model,
which allows us to quantitatively describe the dynamics and to
derive the optimal parameters for the scheme. We find that the
fidelity of the codeword initially drops to F0 = 1−E0 with E0 ≈ Γerr/
Γqec, where Γerr = 3(Γ + κeff,3) is the loss rate from of the logical
subspace. For the slow exponential decay we obtain an effective
rate Γeff ≈ ΓerrΓleak/Γqec, where Γleak = 2(Γ + κeff,2) is the total
leakage rate from the subspace of single-error states to the
subspace of two-error states (Supplementary Note 2). Assuming
perfect error correction (G → ∞), the detrimental rates approach
the bare spin-flip rates, thus Γerr → 3Γ, Γleak → 2Γ, and the initial
drop and effective decay rate become E0 ≈ Γ/Γqec and Γeff ≈ 6Γ2/
Γqec, as expected for a continuous implementation of the three-
qubit code43,48.

For finite sideband coupling G, we maximize the fidelity for
long times by minimizing Γeff (the details of the optimization are
given in Supplementary Note 2). This leads to an optimal
parameter choice Ω ≈ κeng ≈ 1.2(ΓG2)1/3, which allows for a
correction rate Γqec ≈ κeng/3 and leads to small and similar error
and leakage rates, Γerr ≈ 3.3Γ and Γleak ≈ 2.7Γ. The resulting
initial drop and effective decay rate are E0 ≈ 10(Γ/G)2/3 and Γeff ≈

27(Γ/G)2/3Γ. Alternatively, the protocol can be optimized for
short operation times by minimizing the initial drop E0.

In “Methods” section, we discuss imperfections that can occur
in realistic setups and can lead to a reduction of the fidelity of the
logical state. We address the effect of (i) decoherence associated
with the decay of the excited degrees of freedom, (ii) imperfect
cooling and heating of the motional modes, and (iii) the effect of
“complementary” errors that are not corrected by our scheme.
More specifically, our scheme is designed to correct for one type
of errors (for example spin-flip errors). Errors other than the
targeted type cannot be corrected simultaneously in the present
version of the protocol. The performance of a scheme that
corrects spin-flips (x-errors), will for example be degraded by the
presence of “complementary” z-errors.

Application to quantum metrology. Quantum error correction
protocols find attractive applications for quantum metrology, as
has been proposed for example in refs. 22–24. Following these
ideas, we explore the application of our error correction scheme
for improving high-precision measurements of weak magnetic
fields with ions. To this end, we study a prototypical setting,
where a Ramsey-type protocol (Fig. 6a) is used to measure a
signal originating from a field in the z-direction acting on several
probe particles H ¼ ðω=2ÞPN

j¼1 σ
ðjÞ
z . We commence by con-

sidering three probe particles constituting one logical qubit. The
measurement sequence involves four steps. (i) Starting from the
initial state |000〉, a first Ramsey pulse (a π/2 rotation on the
logical qubit) prepares the superposition state ψð0Þj i ¼ ð 000j i þ
111j iÞ=

ffiffiffi

2
p

using standard gate operations in ions9,10. (ii) During
a Ramsey waiting time of duration τR, the superposition state
picks up a relative phase ϕ(τR) = 3ωτR, such that
ψðτRÞj i ¼ ð 000j i þ e�iϕðτRÞ 111j iÞ=

ffiffiffi

2
p

. (iii) A second Ramsey
pulse (another π/2 rotation on the logical qubit) transforms the
evolved state into |ψ′(τR)〉 = cos(ϕ(τR)/2)|111〉 + i sin(ϕ(τR)/2)|
000〉. (iv) Finally, a measurement in the σz-basis is performed on
one of the qubits. The probability to detect the first (or any other)
qubit in state |1〉 is given by P1 ¼ cos2ðϕðτRÞ=2Þ, which allows
one to infer the phase ϕ(τR) and thus the signal strength ω. As
explained in “Methods”, the sensitivity of this measurement is
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Fig. 6 Application of the proposed error correction scheme to quantum metrology. a Ramsey scheme. From an initial state |000〉, a Ramsey pulse prepares

ð 000j i þ 111j iÞ=
ffiffiffi

2
p

. Under H ¼ ðω=2ÞPN
j¼1 σ

ðjÞ
z , the state evolves to ð 000j i þ e�iϕ 111j iÞ=

ffiffiffi

2
p

during a Ramsey time τR. Rotation by a second Ramsey pulse

and measurement of the population P1 of one ion in the {|0〉,|1〉} basis allows deducing ω according to P1 ¼ cos2ðϕ=2Þ with ϕ= 3ωτR. b In the absence of

errors, the Ramsey measurement has full fringe contrast (dotted blue line). Spin-flips at a rate Γ=ω/2 damp out the oscillations (dashed red line).

Applying the presented scheme for error correction protects the evolution and restores the fringe contrast (solid green line, assuming a sideband coupling

of G= 5000Γ)
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given by δωj j ¼ 1= N
ffiffiffiffiffi

τR
p ffiffiffiffi

T
p� �

, where N is the number of probe
particles (N = 3 in our case) and T is the total measurement time
(T =mτR, where m is the number of runs). Increasing the Ramsey
time leads to an improvement of the measurement precision
(Fig. 7).

In the presence of noise, the precision of the measurement
changes significantly5,15,17–19, given that both the amplitude and
period of the fringes (cf. Fig. 6b) are affected by the noise. It has
been shown theoretically26 that quantum error correction can be
used to restore the optimal measurement precision in the
presence of directed noise, as long as it is not parallel to the
signal. Noise processes acting along the same direction as the
signal (z) cannot be distinguished from the signal and thus cannot
be targeted (we consider their effect in Supplementary Fig. 3). In
the following, we analyze how well the detrimental effect of noise
in the orthogonal direction (x) can be mitigated by the error
correction protocol. Generally, if a signal in an arbitrary direction
is assumed, correction of noise in x-direction as described below
will allow for sensing the z-component of the signal with
enhanced precision26.

In the Ramsey-type sensing scheme above, we consider a signal
in z-direction and transverse noise in the form of local spin-flips,
L
ðjÞ
x ¼

ffiffiffi

Γ
p

σ
ðjÞ
x . This degrades the state with a resulting decrease of

the fringe contrast (as can be seen in Fig. 6b). As shown in Fig. 7,
the normalized sensitivity

ffiffiffiffi

T
p

jδωj improves up to Ramsey
waiting times τR � Γ

�1, which limits the achievable measurement
precision. The application of our quantum error correction
scheme during step (ii) of the protocol (free evolution for a time
τR) thus reduces the speed at which the state is degraded. This
shifts the optimum Ramsey waiting time to higher values, which
improves the achievable measurement sensitivity. Figure 7
illustrates this effect for realistic experimental parameters and
demonstrates that the presented error correction scheme

significantly improves the performance of the Ramsey sequence
compared to the situation where transversal errors are not
corrected. The achievable sensitivity in the presence of both
transversal and parallel noise (σx and σz errors) is shown in
Supplementary Fig. 3.

So far our discussion has involved one logical qubit. The
scheme can be scaled up to involve Nlog logical qubits using a
segmented trap60,61, as shown in Fig. 1c) and explained in
Supplementary Note 3. In this case, the potential barriers can be
ramped up to divide the trap into segments confining three ions
each. For sufficiently high barriers, the motional modes of the ion
triples are independent from each other such that each logical
qubit can be individually protected. This ramping into individual
segments can be performed after the qubits are merged into an
entangled state containing all qubits. Thereby the protocol can be
used to obtain maximal quantum enhanced sensitivity while
simultaneously being protected against spin-flip errors.

Discussion
In summary, we have presented a continuous quantum error
correction scheme for trapped ions that dynamically stabilizes an
encoded qubit by coupling it to an engineered reservoir. This
protocol does not require the use of a classical measurement
apparatus or classical feedback loops. The error correction
mechanism results from a built-in back-action mechanism
induced by engineered dissipative processes. From a practical
perspective, avoiding the measurement procedure is a major
advantage since measurements typically require scattering thou-
sands of photons, which is a slow process and heats up the
motional mode. While our scheme relies on the coupling of
internal degrees of freedom to motional modes that underpins the
realization of quantum gates in trapped ions9,10, it does not
involve a sequence of gates, as in standard approaches to quan-
tum error correction. Instead, our protocol uses the interaction
between internal degrees of freedom and motional modes directly
and requires only always-on couplings that act simultaneously
and continuously on the encoded qubit. In this way, the role of
auxiliary modes, to which the error syndromes are mapped, can
be naturally played by the motional degrees of freedom, which
allows one to continuously remove errors by means of standard
sympathetic cooling of the motional modes.

The proposed error correction scheme can for example be used
for quantum sensing, as we showed for the case of one logical
qubit. By protecting random superposition states of three qubits
we significantly increase the lifetime of the coherent oscillations
in a Ramsey measurement. As a result, the sensitivity can be
improved and the optimal measurement time can be shifted to
higher values. For scaling up this approach, segmented ion traps
can be used that can accommodate several logical qubits in dif-
ferent trap segments.

Our protocol pushes forward the boundary of dissipation-
driven quantum information processing towards universal dis-
sipative quantum computing. Engineered dissipation has already
found useful applications for quantum state preparation, where
the initial state is destroyed in the process of preparing a desired
target state. In contrast, quantum error-correcting schemes need
to preserve coherences in the initial state of a quantum system.
Since such quantum error correction inherently relies on dis-
sipation to get rid of entropy, it naturally fits into the framework
of engineered dissipation. The realization of dissipative protocols
that are capable of manipulating non-orthogonal quantum states
while maintaining their coherence is an essential step in the
endeavor to perform dynamically stabilized quantum information
processing tasks. As the couplings assumed for the implementa-
tion of our scheme are generic couplings of a register of qubits to
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Fig. 7 Quantum error correction enhanced sensing. The plot shows the

normalized measurement precision jδωj
ffiffiffi

T
p

vs. the Ramsey time τR for a

Ramsey measurement subject to spin-flips. The action of the error-

correcting scheme can be seen to improve the achievable sensitivity by

about an order of magnitude: The shown results display the normalized

measurement precision assuming errors and (i) no error correction, (ii)

error correction using the ideal jump operators given in Eq. (9), and (iii)

error correction including undesired processes using the jump operators

given in Eq. (22). As reference, the precision in the absence of errors (iv) is

also shown. For the numerical simulation, we use G= 5000Γ, where Γ is

the spin-flip rate, and the optimized parameters Ω= 4κeng/5 and κeng= 1.2

(ΓG2)1/3 discussed in the text, and restrict the full master equation to the

subspace of at most one excitation
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motional modes/ancilla qubits, the presented working mechanism
can be adopted to other systems such as superconducting archi-
tectures and Rydberg atoms.

The principles we have employed to implement a dissipative
three-qubit code can be taken further towards more sophisticated
quantum error-correcting codes. Here it will be interesting to
tailor suitable many-body dissipation to protect larger classes of
stabilizers with the aim to realize, for example, topological error
correction. Moreover, it will be very interesting to develop codes
that do not only correct for noise of Pauli type as discussed in this
article, but also for other error types such as loss errors. Hybrid
schemes, where the paradigm of dissipative quantum error cor-
rection is combined with the technique of monitoring environ-
mental degrees of freedom, have already been proven to be useful
for sensing62 and may provide a promising route towards rea-
lizing such advanced schemes38.

We remark that the dissipative confinement of a quantum
system to a desired subspace could also be useful for quantum
simulations of lattice gauge theories, where devising methods for
limiting the dynamics of a system to the gauge-invariant part of
the Hilbert space is a key challenge for the development of future
quantum simulators63,64. From a broader perspective, the design
of dissipative maps can find a wide range of applications for
quantum information processing including dissipative schemes
for entanglement distillation65, generalized quantum measure-
ments and the simulation of exotic quantum channels55.

Methods
Dynamical model. The dynamics of the system is modeled by a master equation
_ρ ¼ LtotalðρÞ with the Liouvillian Ltotal ¼ Lnoise þ Lqec, where Lnoise describes the
noise processes we aim to correct for (Eq. (3)), and Lqec contains the physical
couplings required for the error correction scheme,

LqecðρÞ ¼ �i½Htotal;eng; ρ� þ
X

3

j¼1

D½LðjÞeng�ðρÞ: ð23Þ

Here the Hamiltonian Htotal,eng is given by Eq. (17) and the jump operators L
ðjÞ
eng

by Eq. (16). Simulation of the master equation allows us to verify the action of the
proposed error-correcting scheme numerically.

Effective dynamics of the open quantum system. We reduce the full dynamics
of the system to effective dynamics of the ground states by adiabatically eliminating
the excited degrees of freedom. To this end, we use the effective operator form-
alism57. Here we assume that the stable ground states are coupled to the excited
states by perturbative coherent couplings V = V+ + V

−
, where V+ (V−

) denotes (de-)
excitation. The coherent and dissipative dynamics of the excited states is described
by a non-Hermitian Hamiltonian

HNH ¼ He �
i

2

X

k

L
y
kLk; ð24Þ

where He contains the coherent couplings between the excited states and Lk are
decay processes taking them to the ground states. Applying the formalism57, we
then obtain the effective operators

Heff ¼ � 1

2
V�H

�1
NHVþ þH:c: ð25Þ

Lk;eff ¼ LkH
�1
NHVþ: ð26Þ

Here, Heff is the effective Hamiltonian and Lk,eff are the effective jump operators.
The resulting effective dynamics is described by an effective master equation

_ρ ¼ �i½Heff ; ρ� þ
X

k

D½Lk;eff �ðρÞ: ð27Þ

From this reduced model we derive the rates for the error correction and
leakage processes. Considering a simplified rate equation model allows us to assess
the performance of the scheme and to derive and optimize the available parameters
of the scheme analytically. The detailed calculations and a numerical comparison to
the full dynamics of Eq. (23) can be found in Supplementary Note 2.

Sensitivity of the measurement. The sensitivity of a Ramsey spectroscopy scheme
with entangled particles5,66–68 is determined as follows. Using the Ramsey
sequence described in the main text, a first Ramsey pulse prepares a system of N
qubits in the state ψð0Þj i�N¼ ð 0j i�Nþ 1j i�NÞ=

ffiffiffi

2
p

, which evolves under the
Hamiltonian H ¼ ðω=2Þ

PN
j¼1 σ

ðjÞ
z for a time τR, resulting in the state

ψðτRÞj i ¼ ð 0j i�Nþe�iNωτR 1j i�N Þ=
ffiffiffi

2
p

. After the second Ramsey pulse one of the
qubits is measured. The probability to find this qubit in state |1〉 is given by
P1 ¼ cos2ðNωτR=2Þ. The uncertainty in estimating P1 due to the statistical fluc-
tuations associated with a finite sample ΔP1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P1ð1� P1Þ=ndata
p

, depends on the
number of experimental data ndata. In the considered case this equals the number of
runs nruns = ndata = T/τR, where T is the total measurement time. The uncertainty in
the measurement of ω is therefore given by

jδωj ¼ ΔP1

jdP1=dωj
:

In the ideal case, this yields jδωj ¼ 1= N
ffiffiffiffiffiffiffiffi

TτR
p� �

. The numerical results in
Figs. 6 and 7 have been obtained by calculating the time evolution of the density
matrix of a three-ion system ρ(t) in the presence of the signal Hamiltonian,
individual spin-flips and the error-correcting scheme. Supplementary Figure 3 in
Supplementary Note 3 shows the dynamics that is obtained if collective dephasing
is added to the problem.

Correction of other types of errors. Our scheme can be generalized to correct for
correlated spin-flip or phase errors, as detailed in Supplementary Note 1.

The action of correlated spin-flips, Lx ¼ L
ð1Þ
x þ L

ð2Þ
x þ L

ð3Þ
x ¼

ffiffiffiffiffiffi

ΓX

p
σ
ð1Þ
x þ σ

ð2Þ
x þ σ

ð3Þ
x

� �

leaves the system in a superposition state of all single-
qubit spin-flip errors, ψXj i ¼ ψ ð1Þ�

�

�

þ ψ ð2Þ�

�

�

þ ψ ð3Þ�

�

�� �

=
ffiffiffi

3
p

. To correct for such
an error, we replace the coupling of the ions to the three auxiliary modes c(j) in Eq.
(13) by a coherent coupling to a single auxiliary mode c,

Haux;g ¼ gcy
X

3

j¼1

eiδct 0j ij eh j þ 1j ij fh j
� �

þH:c: ð28Þ

The drive in Eq. (11) also coherently acts on the three ions. Correlated errors of
all qubits are thereby coherently mapped onto c. Dissipating the excitations of c by
Lc ¼

ffiffiffi

κ
p

c (cf. Eq. (15)) then realizes the single collective jump operator
LX;qec ¼ L

ð1Þ
x;qec þ L

ð2Þ
x;qec þ L

ð3Þ
x;qec , with L

ðjÞ
x;qec as in Eqs. (6)–(8).

To generalize the scheme to phase-flips, we perform the mapping |0〉 → |+〉 and
|1〉 → | − 〉, where ±j i ¼ ð 0j i± 1j iÞ=

ffiffiffi

2
p

. The resulting codeword is given by |ψ〉 =

c+|+ ++〉 + c
−
|− −−〉. Phase-flips on the second qubit are corrected by the action of

the jump operator

Lð2Þz;qec ¼
ffiffiffiffiffiffiffiffi

Γqec

p

σð2Þz

1� σ
ð1Þ
x σ

ð2Þ
x

2

1� σ
ð2Þ
x σ

ð3Þ
x

2
: ð29Þ

Errors on the first and third qubit are corrected analogously.
To correct for correlated phase-flips, we proceed as in the case of spin-flips

above and adapt the scheme for individual errors to collective errors. We replace
the couplings of the ions to individual auxiliary modes c(j) by a coherent coupling
of all three ions to a single auxiliary mode c,

Haux;g ¼ gcy
X

3

j¼1

eiδc t þj ij eh j þ �j ij fh j
� �

þH:c:; ð30Þ

Phase errors of the qubits are thus coherently mapped on the auxiliary mode c.
Subsequent cooling of c (Eq. (15)) then yields the jump operator LZ;qec ¼
L
ð1Þ
z;qec þ L

ð2Þ
z;qec þ L

ð3Þ
z;qec which combines the individual operators L

ðjÞ
z;qec for j = 1, 2, 3

(cf. Eq. (29) for j = 2) and thus corrects for correlated phase errors.

External imperfections. In the following, we discuss imperfections that can occur
in realistic setups and may lead to a reduction of the fidelity of the logical state.

Our scheme is designed to correct for one type of individual or collective errors
(for example for correcting either spin-flip or phase errors). Errors other than the
targeted type cannot be corrected simultaneously in the present version of the
scheme. The performance of a scheme that corrects spin-flips (σx-errors), will for
example be degraded by the presence of “complementary” σz-errors,

LðjÞz ¼
ffiffiffiffiffi

Γz

p

σðjÞz ; ð31Þ

LZ ¼
ffiffiffiffiffiffi

ΓZ

p X

N

j¼1

σðjÞz : ð32Þ
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These errors contribute to the effective error-correcting dynamics and cause a
decaying envelope for the population of the codeword |ψ〉, resulting in an additional
decay of the fidelity FcompðtÞ ¼ FðtÞe�ð3ΓzþΓZ Þt . To limit the additional error to the
few-percent level at t � 1=Γ, it is thus required that Γk ≲Γ=50� Γ=100 depending
on the kind of error process. In Fig. 8, we plot the evolution for G/Γ = 5000 and
individual phase-flips with Γz/Γ = 0, 1/50, 1/25, finding that Γz/Γ = 1/50 leads to a
decrease in fidelity of about ~0.05 at t � 1=Γ. The decrease is less pronounced for
smaller G/Γ. In the absence of correction, even without dephasing (Γz/Γ = 0), one
observes much stronger decay of the fidelity.

Next, we address the effect of decoherence associated with the decay of the
excited degrees of freedom. More specifically, we include the decay of the excited
states |e〉 and |f〉 by spontaneous emission described by the jump operators
L
ðjÞ
mn ¼ ffiffiffiffiffiffiffiffi

γm;n
p

mj ij nh j, where m∈{e, f} and n∈{0,1}, in the master equation. Also
the motional modes are assumed to undergo decay Lr ¼

ffiffiffiffi

κr
p

r, where r ∈ {a, b}.
For simplicity we assume γm0 = γm1 = γm/2 (for m∈{e, f}), γe = γf = γ and κa = κb.
These imperfections do not change the effective couplings significantly.
Analytically, they can easily be taken into account as imaginary parts in the
detunings57: Δ → Δ − iγm/2 and δ → δ − iκr/2. For κeng � γm; κr we can safely
assume that the rates κeff,1 − 3 are not affected. Numerical simulations show that for
the parameters used in Fig. 5, fG=γm; G=κrg � 103 or fγm; κrg � Γ, respectively,
can be tolerated, as they only lead to minor errors at the percent level. Note that in
the quantum jump formalism, dephasing of states |e〉 and |f〉 enter into the effective
non-Hermitian Hamiltonian in a similar manner as the decay. Decay and
dephasing thus only differ in their dynamics after a decay causing an error; we
therefore obtain similar results for dephasing.

So far, the motional modes have been assumed to be in the ground state. Initial
excitations due to imperfect cooling to mean phonon numbers nr (r ∈ {a, b, c

(j)},
and heating processes with rates κþr constitute another source of imperfections. We
study their effect in detail in Supplementary Note 3. For the auxiliary modes c(j), we
find that neither heating nor initial excitations have a significant effect, provided
that the modes are subject to a strong and continuous cooling process, such as
sympathetic cooling or ancilla reset. For realistic experimental parameters
κþr � 10�3G58,59 one obtains errors ~0.01 per mode. For the interrogation modes a
and b, initial excitations lead to an additional error ε � na þ nb . Heating of the
interrogation modes has a more pronounced effect since motional excitations can
couple to excitations of the system ions by the strong sideband coupling Hint,G.
While such imperfections of the interrogation modes can also be countered by
cooling with a rate κr � κþr , the cooling rates need to be moderate, κr � G, to
avoid decoherence during the error correction process. As detailed in
Supplementary Note 3, for realistic parameters59 the resulting errors can be at the
few-percent level, comparable to the initial drop E0. Still, with these parameters the
presented scheme yields a significant improvement over the uncorrected case,
allowing for its application in quantum metrology.

Data availability. The data that support the findings of this study are available
from the authors upon request.
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