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Correlations between different regions of a quantum many-body system can be quantified through
measures based on entropies of (reduced) subsystem states. For closed systems, several analytical
and numerical tools, e.g., hydrodynamic theories or tensor networks, can accurately capture the
time-evolution of subsystem entropies, thus allowing for a profound understanding of the unitary
dynamics of quantum correlations. However, these methods either cannot be applied to open quan-
tum systems or do not permit an efficient computation of quantum entropies for mixed states. Here,
we make progress in solving this issue by developing a dissipative quasi-particle picture —describing
quantum entropies and the mutual information in the limit of large space-time coordinates with
their ratio being fixed— and showing its validity for quadratic open quantum systems. Our results
demonstrate that the open quantum many-body dynamics of correlations can be understood in
terms of propagating (dissipative) quasi-particles.

I. INTRODUCTION

Entropy has a fundamental role in science [1]. In ther-
modynamics, it provides the arrow of time while in in-
formation theory, it quantifies the uncertainty associated
with a random variable [2]. Entropic functionals capture
correlations, e.g., through the mutual information [3–5],
and can even characterize entanglement. This aspect is
crucial for the study of nonequilibrium universal behav-
ior in the spreading of correlations, either under unitary
[6–27], dissipative [28–33] or stochastic [34–46] dynamics.

Here, we consider a dissipative nonequilibrium setup:
a many-body system undergoes an open quantum Lind-
blad dynamics [47], combining coherent and irreversible
effects, and is initialized in a state which is not a sta-
tionary state of the Hamiltonian nor of the full Lindblad
dynamics. We focus on a subsystem embedded in this
system, see Fig. 1(a), and we are concerned with the
time-evolution of subsystem entropies and of the mutual
information of the bipartition. For closed integrable sys-
tems, in the limit of large space-time coordinates with
their ratio being fixed, this is typically described by a
quasi-particle picture [6, 8, 48–52]. The initial state acts
as a source of entangled pairs of quasi-particle excitations
—labelled by the quasi-momentum q. These propagate
ballistically in opposite direction with velocity ±|vq| [see
Fig. 1(a)] and, when shared by the subsystem and the
remainder of the many-body system, contribute to the
subsystem entropy through their correlation content [53].
This picture (see Refs. [54–58] for extensions) has proved
valuable in understanding the dynamics after quantum
quenches as well as the approach to thermodynamic en-
sembles in closed systems [49]. However, its applicabil-
ity to nonequilibrium systems undergoing dissipative dy-
namics is far from clear, and, thus, studying correlations
in open quantum systems remains a challenging task.

In this paper, we introduce a dissipative quasi-particle
picture accounting for irreversible effects associated with
open quantum Lindblad dynamics [cf. Fig. 1(b)]. We

FIG. 1. Quasi-particle picture for closed systems and
irreversible effects. a) A subsystem of length ` is embed-
ded in a closed many-body system. Quasi-particles of an ini-
tially entangled pair travel in opposite directions, with ve-
locity ±|vq|. When one of them enters the subsystem (see
black star), correlations of the pair contribute to the sub-
system entropy. b) For open systems, the quantum state is
mixed and, thus, subsystem entropies are affected by statisti-
cal uncertainty. Furthermore, quasi-particle densities are not
conserved [cf. Eq. (22)] but rather obey a rate equation.

show that it accurately predicts the time-evolution of
subsystem entropies and, importantly, of correlations for
quadratic open quantum systems, within the setup dis-
cussed above, starting from nonstationary states with low
correlations. The essence of our picture is encoded in
the formula in Eq. (1), which is a conjecture that we
make based on the results derived in Ref. [32] for a spe-
cific fermionic system. As we discuss in this paper, the

Rényi-n (and von Neumann) entropy S
(n)
` of a subsystem

of length `, obeys, at leading order in ` and for times of
order t ∝ ` (see below), the relation

S
(n)
` (t) =

∫
dq

2π

{
`s(n),mix
q (t)+

+ min(2|vq|t, `)
[
s(n),YY
q (t)− s(n),mix

q (t)
]}

.

(1)

Here, s
(n),mix
q , s

(n),YY
q are two different entropic contri-

butions. The first, s
(n),mix
q , accounts for the mixedness of

the qth quasi-particle state [cf. Fig. 1(b)]. The quantity
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s
(n),YY
q [see Eq. (16) below] is instead the quasi-particle

contribution to the Yang-Yang entropy [59], which is the
entropy quantifying the number of microscopic states
that, in the thermodynamic limit, give rise to a same
macroscopic state specified by the quasi-particle densi-
ties. In closed systems, this macroscopic state is the
generalized Gibbs ensemble describing local stationary
properties of the system [60–65], and quasi-particles are
given by the Hamiltonian eigenmodes. In our setting,
quasi-particles are instead defined by the eigenmodes of
the Lindblad dynamics and their density is in general
time-dependent [see Fig. 1(b)].

The formula in Eq. (1) has a transparent physical in-
terpretation. The first term accounts for the contribu-
tion due to statistical uncertainty of the full system state
[cf. Fig. 1(b)]. The second term is related to the ballis-
tic propagation of quasi-particles. The “min” function
counts the pairs shared by the bipartition at time t [6]
[cf. Fig. 1(a)], while the square brackets provide their
correlation content. As for closed systems, the latter de-

pends on s
(n),YY
q but it is here diminished by statistical

uncertainty as quantified by s
(n),mix
q . While, for mixed

states, subsystem entropies do not measure correlations,
our formula allows us to “extract” from them the appro-
priate contribution uniquely associated with correlations:
as we show, the second term in Eq. (1) [see Eq. (27)] is
indeed equivalent to the mutual information between the
subsystem and the remainder of the system. Our ap-
proach thus introduces a powerful method for describing
correlations in open quantum many-body systems.

Below, we provide Eq. (1) with predictive power, de-
riving all relevant terms for quadratic systems [66–70].
We focus the presentation on bosonic ones.

II. QUADRATIC DISSIPATIVE DYNAMICS

We consider translation invariant one-dimensional
quantum systems made of L sites. Each site is occupied
by a bosonic mode, described by the operators xi, pi, such
that [xi, pj ] = iδij . We collect these operators in the col-
umn vector r = (x1, p1, x2, p2, . . . xL, pL). The commu-
tation relations are expressed as [ri, rj ] = iΩij , where Ω
is a block matrix with blocks given by

dΩcij = δij σ , where σ =

(
0 1
−1 0

)
.

For a given matrix M we denote matrix elements as Mij ,
while we denote its i, jth 2× 2 block as dMcij .

The many-body system undergoes a gaussian Marko-
vian open quantum time-evolution [71–76]. The dynam-
ics of any operator O is implemented by the master equa-
tion Ȯt = L[Ot], with Lindblad generator [47, 77]

L[O] = i[E,O] +

2L∑
i,j=1

Cij

(
riOrj −

1

2
{O, rirj}

)
. (2)

The system Hamiltonian E =
∑2L
i,j=1Hij rirj is

quadratic with H = HT , and T denotes transposition.
The positive semi-definite matrix C accounts for irre-
versible effects and decomposes as C = A + iB, with
A being real symmetric and B real anti-symmetric.

Translation invariance requires H and C to be block-
circulant, i.e. matrices of the form

M =



m0 m1 m2 . . . mL−1

mL−1 m0 m1 m2

...

mL−1 m0 m1
. . .

...
. . .

. . .
. . . m2

m1

m1 . . . mL−1 m0


, (3)

with mi being 2 × 2 matrices. Such block-circulant ma-
trices are thus fully specified by L, in principle different,
2 × 2 matrices, which provide all their blocks according
to the relation

dHcij = hmod(j−i,L) and dCcij = cmod(j−i,L) . (4)

Each of these blocks describes how sites i and j are (either
coherently or dissipatively) coupled. Any block-circulant
matrix, like the matrix M above, becomes block-diagonal
under rotation with the Fourier-transform unitary oper-
ator U , with dUckj = eiqkj12, where 12 is the 2 × 2
identity and qk = 2πk/L the quasi-momenta. That is,

M̂ := UMU† has only blocks on the diagonal — so-called
symbols — given by

dM̂ckk := m̂qk =
1

L

L∑
i,j=1

eiqk(i−j)mmod(j−i,L) . (5)

A. Examples of dissipation

The map in Eq. (2) can account for completely generic
quadratic dissipative processes. For concreteness, we dis-
cuss here in details the form assumed by the generator
for the most common dissipative processes. We consider
pump and loss of bosonic excitations at rates γ+ and γ−,
diffusion in momentum space at rate γx (implemented
through operators xi) and in position space at rate γp

(implemented through operators pi). However, our ap-
proach is very general and is not restricted to these cases.
We further allow for dissipation to be non-local, i.e. not
occurring independently from site to site. The matrix
C consists of the combination of different processes. For
example, one may have C =

∑
α C

α where Cα, with
α = +,−, x, p, are associated with the processes men-
tioned above and read as dCαcij = γαfαijc

α, with

c± =
1

2

(
1 ∓i
±i 1

)
, cx =

(
1 0
0 0

)
, cp =

(
0 0
0 1

)
. (6)

Here, the functions fαij = fα(dij) solely depend on the
distance dij = min[|i− j|, L− |i− j|] between sites.
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We now present an explicit calculation of the the sym-

bols âqk and b̂qk , for the above processes, assuming for
concreteness an even number of sites L = 2n. We first
provide the blocks on the diagonal of the matrices Ĉα.
These are given by

dĈαckk := ĉαqk = cα Sk[fα] ,

where Sk[f ] is a (functional) quantity determined by the
function f and the parameter k as

Sk[fα] =

fα(0) + (−1)kfα(n) + 2

n−1∑
j=1

fα(j) cos(qkj)

 .

(7)
The Fourier transform of the symmetric part of the com-
plete dissipative matrix C = C+ +C−+Cx +Cp, which
is defined as A = (C + CT )/2, is given by

âqk =
γ+Sk[f+] + γ−Sk[f−]

2

(
1 0
0 1

)
+ γxSk[fx]

(
1 0
0 0

)
+ γpSk[fp]

(
0 0
0 1

)
.

(8)

The Fourier transform of the anti-symmetric component,
B = (C − CT )/2 is instead

b̂qk =
γqk
2
σ ,

γqk = γ−Sk[f−]− γ+Sk[f+] .
(9)

B. The covariance matrix

For gaussian states, the system information is con-
tained in the covariance matrix Gij = 〈{ri, rj}〉/2
[75, 78, 79], where 〈·〉 = Tr(ρ ·) is the expectation on
the quantum state ρ. Under the dynamics in Eq. (2),
G evolves, defining X(t) = etΩ(2H+B), as [74] (see also
Appendix A)

G(t) = X(t)GXT (t) +

∫ t

0

duX(u)ΩAΩTXT (u) . (10)

From this equation, we can obtain the time-evolved co-
variance matrix in the space of quasi-momenta, just by
applying the Fourier transform implemented by U . Using
that U is unitary, from Eq. (10) we obtain

Ĝ(t) = X̂(t)Ĝ(0)X̂†(t) +

∫ t

0

du X̂(u)ΩÂΩT X̂†(u) (11)

where we have X̂(t) = etΩ(2Ĥ+B̂). Since the Fourier

matrices Ĥ, Â, B̂ are all block-diagonal and assuming an
initial translation-invariant state, we have that Ĝ(t) is
block-diagonal with

dĜ(t)ckk = ĝqk(t) .

The matrices ĝqk(t) evolves according to

ĝqk(t) = x̂qk(t)ĝqk(0)x̂†qk(t) +

∫ t

0

du x̂qk(u)σâqkσ
T x̂†qk(u)

(12)

where x̂qk(t) = etσ(2ĥqk+b̂qk ) is the symbol of the matrix
X(t).

In the following, we focus on the dynamics of quantum
entropies for a subsystem of ` adjacent sites embedded in
such an open quantum many-body system. Our formula
in Eq. (1) holds in the scaling limit of large ` and large
times t, with t/` fixed. In this limit, to observe a competi-
tion between coherent and irreversible effects, dissipation
rates must be of order `−1. For rates of order one, the
system would immediately converge to its steady-state,
due to the large time limit. For rates weaker than `−1,
dissipation would be irrelevant.

III. ENTROPY FROM MIXEDNESS OF THE
STATE

We start by deriving the entropy associated with the

state of the quasi-particles being mixed, s
(n),mix
q . To this

end, we shall consider entropies of the full many-body
state.

The Rényi-n entropy is defined as S(n) = (1 −
n)−1 ln Tr ρn and the von Neumann entropy is included as
the limiting case n→ 1, yielding SvN = −Tr ρ log ρ. For
gaussian states, these are computed exploiting the covari-
ance matrix G [80]. To obtain the entropies one considers
the matrix Σ = iΩG. Its eigenvalues come into pairs ±λi,
with λi ≥ 0. Defining the function y±(x) = x± 1/2, one
then has

S(n) = − 1

1− n

L∑
i=1

ln
[
yn+(λi)− yn−(λi)

]
,

SvN =

L∑
i=1

[y+(λi) ln y+(λi)− y−(λi) ln y−(λi)] .

(13)

To find the contributions s
(n),mix
q , we move to Fourier

space where the matrix Ĝ(t) is block-diagonal, with
blocks ĝqk(t) related to the covariance matrix of the
quasi-momentum qk. Since [U,Ω] = 0, the eigenvalues

of Σ coincide with those of Σ̂ = UΣU† = iΩĜ. Thus, the
full system entropy is given by the sum of all the con-
tributions due to the different quasi-momenta, obtained
from the positive eigenvalue λqk(t) of iσĝqk(t) as

s(n),mix
qk

(t) = − 1

1− n
ln
[
yn+(λqk(t))− yn−(λqk(t))

]
,

(14)
with y±(x) = x ± 1/2. The entropy of the full system
state is then given by

S(n)(t) =

L∑
k=1

s(n),mix
qk

(t) ≈ L

2π

∫ 2π

0

dq s(n),mix
q (t) . (15)
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The approximate behavior holds for L � 1, in the con-
tinuum limit for the quasi-momenta. From now on, when
using q instead of qk we will refer to quantities expressed
in the continuous limit.

IV. ENTROPY FROM QUASI-PARTICLE
DENSITIES

We now discuss the term s
(n),YY
q , which solely depends

on the quasi-particle density %q. For bosonic systems,
this is given by [81]

s(n),YY
q (t) = − 1

1− n
ln
[
(%q(t) + 1)n − %nq (t)

]
. (16)

For closed systems, quasi-particles are defined through
the Hamiltonian eigenmodes and, thus, densities are
time-independent. However, in our setting, the dynam-
ical generator is not just given by the Hamiltonian but
rather by the Lindblad map L in Eq. (2). It is thus natu-
ral to define quasi-particles as the “eigenmodes” βq, β

†
q of

L. The densities are then obtained as %q = 〈nq〉, where
nq = β†qβq is the quasi-particle number operator. In gen-
eral, these densities are time-dependent [cf. Fig. 1(b)].

A. Eigenmodes of the Lindblad generator

To find the Lindblad eigenmodes, one should find anni-
hilation and creation operators, [βq, β

†
p] = δqp, such that

L[βq] = ζqβq , which implies L[β†q ] = ζ∗qβ
†
q .

The starting point is to compute the action of the Lind-
blad operator on quadrature operators,

L[ri] =
∑
j

[Ω(2H +B)]ijrj . (17)

Then, we transform the operators r in Fourier space by
defining the vector r̂ = Ur. This needs to be understood

as the vector of elements r̂i =
∑2L
j=1 Uijrj . Using the

form of U , we can actually define

r̂2k−1 = ϕqk :=
1√
L

L∑
j=1

eiqkjxj ,

r̂2k = πqk :=
1√
L

L∑
j=1

eiqkjpj ,

(18)

for k = 1, 2, 3, . . . L. Recall that qk = 2πk/L is the quasi-
momentum. Exploiting Eq. (17), we obtain

L[r̂i] =

2L∑
j=1

{
U [Ω (2H +B)]U†

}
ij
r̂j

=

2L∑
j=1

[
Ω
(

2Ĥ + B̂
)]

ij
r̂j .

(19)

For the last equality, we have used that [U,Ω] = 0 as

well as Ĥ = UHU† and B̂ = UBU†. Since Ĥ and B̂ are
block diagonal, we can “unravel” Eq. (19) into L relations
involving 2× 2 matrices. These read as

L
[(
ϕqk
πqk

)]
= σ

(
2ĥqk + b̂qk

)(
ϕqk
πqk

)
, (20)

and with ĥqk , b̂qk being the symbols of H,B. To find the
eigenmodes, we need to find a linear combination βqk of
the operators ϕqk , πqk , such that L[βqk ] ∝ βqk . Since

Eq. (20) contains the term b̂qk , in general, the presence
of dissipation is expected to modify the structure of the
eigenmodes due to the Hamiltonian contribution only.

Together with the eigenmodes, one also obtains the
eigenvalues ζq associated with them. In full generality
one has

L [βq] = −
(γq

2
+ i eq

)
βq , (21)

with γq and eq real. Here, γq is the “decay” rate (it can
be negative for bosons) for the qth quasi-particles. The
function eq plays the role of a dispersion relation and,
in analogy with closed systems, it provides the quasi-
particle velocity as vq = e′q. Interestingly, we note that
for the dissipative processes mentioned above, the eigen-
modes in Eq. (21) coincide with those of the Hamilto-
nian. This is due to the fact that, for gain/loss and

diffusion dissipation, the matrix σb̂qk is proportional to

the identity [see definition of b̂qk in Eq. (9)], so that the
eigenmodes of the Hamiltonian are also eigenmodes of
the Lindblad generator. However, our approach is by no
means limited to these cases and also applies to instances
in which dissipation alters the nature of the Hamiltonian
quasi-particles (see an example below).

As a consequence of Eq. (21), and also of the relation in
Eq. (A1), the operator nq obeys ṅq = L [nq] = −γqnq +
αq, with αq ≥ 0 a positive constant which solely depends
on the structure of the dissipation. By integrating this
equation, we find

%q(t) = e−t γq%q(0) +
αq
γq

(
1− e−t γq

)
, (22)

where %q(0) are the densities in the initial quantum state.

Their dynamics affects s
(n),YY
q through Eq. (16).

V. APPLICATIONS

So far, we have presented the different terms appear-
ing in Eq. (1) and we have shown how to derive them
for quadratic open quantum systems. We can thus now
benchmark our formula against numerical simulations.
To this end, we will consider two different Hamilto-
nian models subject to the dissipative processes discussed
above in different combinations.
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FIG. 2. Rényi and von Neumann entropy. (a-b) Prediction of the Rényi entropy, for both the tight-binding model (dotted
line) and the harmonic chain (dashed line), obtained from Eq. (1). Red circles are exact numerical results. (a) Dissipative rates
are γ+ = `−1/4, γ− = γp = γx = `−1, while the correlation lengths of the processes (see main text) are ξ+ = 1, ξ− = 2, ξx = 3
and ξp = 4. (b) We consider the “critical” regime for which there is no steady state for the bosonic system. We achieve this

by taking γ± = `−1 and γx/p = 0. We have further set ξ± = 1. Plots in (a-b) are for ` = 10 and L = 100. The initial state for
the tight-binding model is the one in Eq. (24) for µ = χ = 1, while for the harmonic chain it is the ground state of the model
for m0 = 1. (c) Tight-binding chain with non-local dissipation characterized by γ− = 4γ+ = `−1, γx = `−1/2 and γp = 0.7`−1.

Furthemore, we take ξ± = 1 and ξx/p = 2. The plot shows a comparison between numerical results for the Renyi-2 entropy of
the subsystem (circles) and our prediction in Eq. (1) for different initial mixed states [see Eq. (24)] parametrized by χ = 1 and
µ = 2, 4, 6, 8. We take ` = 20 and L = 300. (d) Tight-binding chain with local decay and local pump of bosonic excitations
with rates γ− = 1.3`−1 and γ+ = 0.75`−1. Furthemore, we take the nearest-neighbor dissipative term proportional to γν ,
introduced in Eq. (28). We show the von Neumann entropy of the reduced state for γν = 0, 0.2, 0.4. We compare our prediction
(dashed line) with exact numerical results (circles). We take ` = 40 and L = 400 and an initial state with µ = χ = 1.

A. Tight-binding chain

As a first example, we look at a tight-binding bosonic
hopping model defined by the Hamiltonian

E = J

L∑
i=1

(
aia
†
i+1 + a†iai+1

)
, (23)

where ai = (xi + ipi)/
√

2 is the annihilation operator for
site i. Expanding this in the quadrature operators, this
Hamiltonian gives rise to a matrix H, with form given
in Eqs. (3)-(4) and just the matrix h1 different from zero
and equal to

h1 =
J

2

(
1 0
0 1

)
.

The eigenmodes βqk of the Hamiltonian are given by

βqk =
1√
L

L∑
i=1

eiqkai ,

with dispersion relation and quasi-particle velocities

eqk = 2 cos(qk) , and vqk = −2 sin(qk) .

We consider the dissipative processes introduced
above, with fα(d) = e−d/ξα , where ξα encode how
the non-local dissipative processes are “correlated” in
space. The action of the Lindblad on the density of
quasi-particles, nqk = β†qkβqk , can be computed, using
Eqs. (21)-(A1), and is given by

L[nqk ] = −γqknqk + αqk ,

with γqk given in Eq. (9) and

αqk = γ+Sk[f+] +
γx

2
Sk[fx] +

γp

2
Sk[fp] .

As initial state we take the one described by the block-
diagonal covariance matrix

dGµcii =
µ

2

(
eχ 0
0 e−χ

)
, (24)

where µ ≥ 1. This covariance matrix is associated with
a squeezed thermal state and allows us to show how our
formula are also valid for initial mixed states. In the
above expression, χ is the squeezing parameter while the
parameter µ represents the average density in the thermal

state ρ ∝ e−1/T
∑L
i=1 a

†
iai .

B. Harmonic chain

As a second example, we consider the harmonic chain

E =
J

2

L∑
i=1

(
p2
i +m2x2

i + (xi − xi+1)2
)
. (25)

We take as initial state the ground state of the Hamil-
tonian for m = m0 [81, 82]. The system dynamics is
characterized by non-local dissipative terms, as for the
previous model, and by a quenched value of m 6= m0.

Such a Hamiltonian gives rise to a matrix H of the
form in Eqs. (3)-(4) with

h0 = J

(
m2

2 + 1 0
0 1

2

)
, and h1 = −J

2

(
1 0
0 0

)
.
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The eigenmodes of H are given in terms of the Fourier
operators [81, 82]

βqk =
1√
2eqk

(eqkϕqk + iπqk) ,

β†qk =
1√
2eqk

(eqkϕ−qk − iπ−qk) ,

where ϕ−qk = ϕ†qk , π−qk = π†qk . The dispersion relation
eqk and the quasi-particle velocities are

eqk = J
√
m2 + 2[1− cos(qk)] ,

vqk =
J sin(qk)√

m2 + 2[1− cos(qk)]
.

The action of the full Lindblad generator on the eigen-
mode βqk gives

L[βqk ] = −
(γqk

2
+ ieqk

)
βqk ,

where γqk is given in Eq. (9). On the number operator
nqk = β†qkβqk it gives

L[nqk ] = −γqknqk + αqk ,

with

αqk =γ−Sk[f−]
(1− eqk)2

4eqk
+ γ+Sk[f+]

(1 + eqk)2

4eqk

+
γx

2eqk
Sk[fx] +

γpeqk
2
Sk[fp] .

(26)

C. Numerical checks on the entropy

In Fig. 2(a-b), we show a comparison between the pre-
diction obtained through Eq. (1) for the dynamics of the
Rényi-2 entropy and exact numerical results, for both
models. The agreement is remarkable also in regimes in
which γq = 0 and the entropy increases logarithmically

with time, S
(2)
` ≈ ` ln t [shown in Fig. 2(b)]. Moreover, in

Fig. 2(c), we compare our predicition in Eq. (1) with nu-
merical results for the tight-binding model when starting
from the mixed state obtained from Eq. (24) with µ > 1.
Also in this case the prediction is satisfactory and nu-
merical results tend to it in the scaling limit employed.

D. Mutual information

The entropies S
(n)
` do not quantify correlations, due

to the presence of contributions from the mixedness
(statistical uncertainty) of the full many-body state
[cf. Fig. 1(b)]. However, building on our interpretation
of Eq. (1) in terms of a dissipative quasi-particle picture,
we can still achieve a description of correlations between
the subsystem of interest and the remainder. Recalling

Eq. (15), we identify the contribution due to statistical
uncertainty with the first term in Eq. (1). Thus, sub-

tracting the latter term to the subsystem entropy S
(n)
` ,

we define the quantity

S
(n)
`,pairs =

∫
dq

2π
min(2|vq|t, `)

[
s(n),YY
q (t)− s(n),mix

q (t)
]
.

(27)
Such a contribution is only sensitive to quasi-particle
pairs which are shared by the subsystem and the remain-
der. As such, it must be invariant under exchange of

these two parts, i.e. S
(n)
`,pairs = S

(n)
L−`,pairs, at leading or-

der in ` and in our scaling limit [31, 32]. This relation
suggests that, in this limit, we can compute the mu-

tual information, given by I(n) = S
(n)
` + S

(n)
L−` − S(n),

as I(n) = 2S
(n)
`,pairs. In Fig. 3(a), we show our predic-

tion S
(2)
`,pairs for the tight-binding chain starting from the

mixed state in Eq. (24). In Fig. 3(b), we show instead the
prediciton for SvN

`,pairs for the harmonic chain. We com-
pare both predicitons with exact numerical results for
the mutual information between the subsystem and the
remainder of the many-body system. As shown in the
insets, the extrapolation of the numerical results (bul-
lets) converges to our prediction (square), showing how
indeed the formula in Eq. (27) provides the behavior of
quantum correlations in the system.

VI. QUASI-PARTICLES ALTERED BY
DISSIPATION

In the previous examples, we have considered dissipa-
tive processes which, as discussed after Eq. (21), preserve
the nature of the Hamiltonian quasi-particles. To demon-
strate the generality of our approach, we now show that
our formulae Eq. (1)-(27) remain valid beyond these in-
stances.

To this end, we consider again the tight-binding model
in Eq. (23), subject to local pump and decay of excita-
tions, i.e. with functions f±ij = δij . In addition, we intro-
duce a dissipative contribution described by the matrix

dBνcij = γνfνij b
ν , bν =

(
1 0
0 0

)
, (28)

with fν being the anti-symmetric function fνij =
δ1,mod(j−i,L) − δL−1,mod(j−i,L), solely involving nearest-
neighboring dissipative “coupling”. Namely, the matrix
Bν is of the form given in Eqs. (3) with bν1 = γνbν

and bνL−1 = −γνbν . The matrix C in this case is thus

C = C+ + C− + iBν , and all rates must be chosen such
that C ≥ 0.

While the term s
(n),mix
q is straightforwardly given by

Eq. (14), in order to exploit our formulae the main chal-
lenge is to find the quasi-particles of such a dissipative
dynamics.
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FIG. 3. Mutual information. Comparison between numerical results for (half of) the mutual information I(n) and the

prediction for S
(n)
`,pairs in Eq. (27). (a) Renyi-2 mutual information for the tight-binding chain. We compare numerical results

for (half of) the mutual information and our prediction for S
(2)
`,pairs in Eq. (27). The initial state is the one in Eq. (24) with µ = 5,

other parameters are as in Fig. 2(c). The inset shows how the extrapolation of the numerical results (bullets) to `→∞ matches
our prediction (square) for Jt/` = 0.25. (b) Harmonic chain: we consider non-local decay with γ− = `−1/2, ξ− = 2 and m = 3.
The initial state is the ground state for m0 = 1. Inset: the extrapolation of the numerical results (bullets) to `→∞ matches
the prediction (square) for Jt/` = 2. (c) Tight-binding chain subject to local decay (γ− = 1.3`−1) and pump (γ+ = 0.75`−1) of
excitations and to the term introduced in Eq. (28) (γν = 0.4`−1) which modifies the nature of the Hamiltonian quasi-particles.
The initial state is the squeezed vacuum with χ = 1. The inset shows the agreement between numerical results (bullets) and
our prediction (square) for Jt/` = 1.5. (d) Ising model: we consider decay (see details in Appendix B) with γ− = `−1/2, ξ− = 2
and Hamiltonian parameter hx = 5. The initial state is the ground state for hx0 = 3. The inset shows the agreement between
extrapolation of numerical results for (half of) the von Neumann mutual information (bullets) and our prediction (square) for
Jt/` = 0.3. For all panels, we have considered ` = 20, 40, 60, . . . 140 and L large enough to avoid finite-size effects.

In order to find the eigenmodes of the Lindblad genera-
tor identified by the matrix C of this section, we consider
the analogue of Eq. (20) (moving to Fourier space), which
for this case becomes

L
[(
ϕqk
πqk

)]
= σ

(
2ĥqk + b̂qk + b̂νqk

)(
ϕqk
πqk

)
, (29)

with

ĥqk = J

(
cos qk 0

0 cos qk

)
, b̂qk =

(
0 γ/2
−γ/2 0

)
,

b̂νqk =

(
−2iγν sin qk 0

0 0

)
.

(30)

In the above equations, we have γ = γ− − γ+, which
does not depend on qk since decay and pump processes
are local (i.e. diagonal). Computing the product between
the matrices in Eq. (29) we find,

L
[(
ϕqk
πqk

)]
=

(
−γ/2 2J cos qk

−2J cos qk + 2iγν sin qk −γ/2

)(
ϕqk
πqk

)
.

(31)
The fact that the contribution proportional to γν mod-
ifies the quasi-particles of the Hamiltonian manifests in

the fact that the matrix σb̂νqk does not commute with

the matrix σĥqk . We now note that while J is of or-
der one, γν , just like all other dissipation rates in our
scaling limit, is of order `−1. Therefore, in order to find
how the Hamiltonian quasi-particles are altered by dis-
sipation, we can proceed by finding the eigenmodes of L
through a first-order perturbation theory in γν . (Also
γ is proportional to `−1 and thus small in the scaling

limit considered. However, we do not have to expand
in γ since decay and pump processes do not modify the
Hamiltonian eigenmodes.)

We thus proceed as follows. We decompose the gener-
ator as L = L0+γνL1, where the first term is determined
by the tight-binding Hamiltonian plus pump and decay
dissipation, while L1 is solely determined by the contribu-
tion proportional to the rate γν . Similarly, we decompose
the eigenmodes of L as βqk = β0

qk
+ γνβ1

qk
. The modes

β0
qk

are the eigenmodes of L0, coinciding with those of
the tight-binding Hamiltonian,

L0[β0
qk

] = ζ0β
0
qk

=
(
−γ

2
− ieqk

)
β0
qk
.

The term β1
qk

represents the correction due to the dissi-
pative contribution modifying the quasi-particles, which
we can generically write as

β1
qk

= u1ϕqk + iu2πqk ;

u1, u2 are two complex parameters that need to be de-
termined. A first constraint comes from asking that
[βqk , β

†
qk

] = 1 up to first-order in γν . This gives

[βqk , β
†
qk

] = [β0
qk
, (β0

qk
)†]

+ γν
([
β1
qk
, (β0

qk
)†
]

+
[
β0
qk
, (β1

qk
)†
])

+ · · · = 1 ,

(32)

which can be shown to be satisfied if Re(u1 + u2) = 0.
We thus set u1 = s+ iv1 and u2 = −s+ iv2, with s, v1, v2

real parameters.
We now derive the perturbative equations which will

provide constraints for s, v1 and v2. Expanding the eigen-
value relation L[βqk ] = ζβqk up to first order in γν and
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using ζ = ζ0 + γνζ1, we find

L0[β0
qk

]+γνL1[β0
qk

]+γνL0[β1
qk

]=ζ0β
0
qk

+γνζ0β
1
qk

+γνζ1β
0
qk
.

Calculating the action of the different parts of the gener-
ator [using Eq. (31)] on the various operators, and sim-
plifying several terms, we find that the following equality
must be satisfied

ϕqk

{[
2(v2 − v1)J cos qk −

√
2 sin qk −

ζRe
1√
2

]

+ i

[
4sJ cos qk −

ζIm
1√
2

]}
+

+ πqk

{[
4sJ cos qk +

ζIm
1√
2

]

+ i

[
2(v1 − v2)J cos qk −

ζRe
1√
2

]}
= 0 ,

(33)

with ζRe
1 and ζIm

1 being the real and the imaginary part
of the term ζ1. Now, the aim is to find a combination
of s, v1, v2, ζ1 for which all square brackets in the above
equation vanish. The solution can be found and gives
s = 0, (v2−v1) =

√
2 sin qk/(4J cos qk), as well as ζIm

1 = 0
and ζRe

1 = − sin qk.
The above correction to the eigenvalue is of extreme

importance since it gives the proper decay rate for the
altered quasi-particles [cf. Eq. (21)]

L[βqk ] =
(
−γ

2
− γν sin qk − ieqk

)
βqk . (34)

We now can find the rate equation applying the Lindblad
generator on the quasi-particle number operator β†qkβqk .
As done also in Eq. (A1), we can write this as

L[β†qkβqk ] = L[β†qk ]βqk+β†qkL[βqk ]+

2L∑
i,j=1

Cij [ri, β
†
qk

][βqk , rj ].

For the first two terms on the right-hand-side of the above
equation, we can readily use the result in Eq. (34). Notic-
ing that C is already of order `−1 (since both γ± and γν

are of order `−1) the last term in the above equation can
be determined by neglecting the correction to the eigen-
modes β1

qk
. As such we have

2L∑
i,j=1

Cij [ri, β
†
qk

][βqk , rj ] ≈
2L∑
i,j=1

Cij [ri, (β
0
qk

)†][β0
qk
, rj ]

= γ+ − γν sin qk ,

(35)

and the rate equation reads

%̇qk(t) = −(γ + 2γν sin qk)%qk(t) + γ+ − γν sin qk . (36)

For the initial value of %qk(0), we can again use the
fact that the correction term β1

qk
is of order `−1 so that

%qk(0) = 〈β†qkβqk〉 ≈ 〈(β
0
qk

)†β0
qk
〉, in the large ` limit,

where the expectation is computed with the initial state.
We recall here that the dissipative rates in Eq. (36) re-
main relevant, even though of order `−1, since time is
rescaled by ` so that the product γ±/νt remains finite
(see also discussion on the scaling limit at the end of
Section II). We note that the above perturbation theory
developed for this example is actually very general and
can be used to find the eigenmodes for any quadratic
Lindblad generator in our scaling limit.

In Fig. 2(d), we show that our formula in Eq. (1) cor-
rectly captures the subsystem entropy also for the model
described here. Moreover, in Fig. 3(c), we also show how
exact numerical results for the mutual information tend
towards our prediction in Eq. (27), as the system size is
increased.

VII. DISCUSSION

We introduced two key formulae [Eq. (1) and Eq. (27)]
which describe the time-evolution of subsystem entropies
and of correlations —through the mutual information—
in generic quadratic open quantum systems. These for-
mulae encode a dissipative quasi-particle picture which is
predicated on the existence of pairs of propagating dissi-
pative quasi-particle excitations.

For the sake of concreteness, we discussed in detail
the most common dissipative processes [cf. Eq. (6)]. For
these, we found that the eigenmodes of the Lindblad dy-
namics —defining the quasi-particles— are solely deter-
mined by the Hamiltonian. However, our formulae re-
main valid also when the nature of the quasi-particles
changes in the presence of dissipation. As we have shown,
even in these instances, we can compute the entropy con-
tributions in Eq. (14), find the eigenmodes of the Lind-
blad generator and obtain the rate equation for the den-
sities %q(t). This demonstrates the generality of our ap-
proach as well as its effectiveness in studying correlations
in open quantum many-body systems.

In support of the broad applicability of our approach,
we finally mention that this holds also for fermionic
systems. We provide an example in Appendix B [see
Fig. 3(d)] and we further refer to the recent Ref. [83]
for a derivation of Eq. (1) in the case of the quadratic
dissipative Ising model.
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Appendix A: Time-Evolution of the covariance
matrix

For completeness, we illustrate here the main steps to
obtain the time-dependence of the covariance matrix in
Eq. (10). This is completely established by the dynamics
of all possible two-point operators rkrh.

We start with some considerations on the Lindblad
operator in Eq. (2). This is equivalent to

L[X] = i[E,X] +

2L∑
i,j=1

Cij
2

([ri, X]rj + ri[X, rj ]) ,

and one can show that

L[XY ] = XL[Y ] +L[X]Y +

2L∑
i,j=1

Cij [ri, X][Y, rj ] . (A1)

This is useful to evaluate the action of the Lindblad op-
erator on quadratic operators. To this end, we first com-
pute the action of the Lindblad on linear operators,

L[ri] =

2L∑
j=1

[Ω(2H +B)]ij rj . (A2)

Furthermore, the last term in Eq. (A1) is proportional
to the identity and reads as

2L∑
i,j=1

Cij [ri, rk][rh, rj ] =
[
ΩCΩT

]
kh
.

We now define the 2L × 2L matrix Γkh = 〈rkrh〉. Its
derivative is determined by the Lindblad generator as

d

dt
Γkh(t) = 〈L[rkrh]〉t .

Using the above results, we find that

d

dt
Γ(t) = [Ω(2H +B)]Γ(t) + Γ(t)[Ω(2H +B)]T + ΩCΩT .

Noticing that the covariance matrix G is nothing but
G = (Γ + ΓT )/2, we find

d

dt
G(t) = [Ω(2H+B)]G(t)+G(t)[Ω(2H+B)]T +ΩAΩT ,

whose solution is the one reported in Eq. (10).

Appendix B: Example for a fermionic system

Our formulae Eq. (1) and Eq. (27) are also valid
for fermionic quadratic open quantum systems. In this
case, the vector r contains Majorana operators r =
(w1

1, w
2
1, w

1
2, w

2
2, . . . w

1
L, w

2
L), obeying the anticommuta-

tion relations {ri, rj} = 2δij . For gaussian states, the

full information is encoded in the (fermionic) covariance
matrix Gij = 〈[ri, rj ]〉 /2. The two entropic contribu-

tions s
(n),mix
q , s

(n),YY
q can be determined following the

steps presented in the main text and using fermionic re-
lations for the dynamics of the covariance matrix [69] and
the analogue of Eqs. (13),(14),(16) for fermions [32]. The
generator L can be written in a form similar to Eq. (2)
[66]. For instance, the pump and loss dissipative matrices
are in this case specified by the blocks

c± = γ±
(

1 ±i
∓i 1

)
.

.
In the following, we work out an exampe showing the

validity of our approach.

1. (Fermionic) Transverse field Ising chain

We consider the transverse field Ising model in its for-
mulation with Majorana operators. The Hamiltonian is

E = −iJ

L∑
i=1

w2
iw

1
i+1 + iJhx

L∑
i=1

w2
iw

1
i = i

2L∑
i,j=1

Hijrirj .

The matrix H is an anti-symmetric matrix and has the
form

H =



h0 h1 0 . . . −hT1
−hT1 h0 h1 0

...

−hT1 h0 h1
. . .

...
. . .

. . .
. . . 0
−hT1 h0 h1

h1 . . . −hT1 h0


,

with

h0 =
Jhx

2

(
0 −1
1 0

)
, and h1 =

J

2

(
0 0
−1 0

)
.

By applying the Hamiltonian part of the generator on
linear operators, we obtain

i[E, ri] = 4

2L∑
j=1

Hijrj .

In Fourier space, we define the vector r̂ = Ur, and anal-
ogously to Eq. (18), we have

r̂2k−1 = ϕqk :=
1√
L

L∑
j=1

eiqkjw1
j ,

r̂2k = πqk :=
1√
L

L∑
j=1

eiqkjw2
j ,

(B1)
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for k = 1, 2, 3, . . . L. Recall that qk = 2πk/L. The action
of the Hamiltonian generator on these operators gives

i[E, r̂i] = 4

2L∑
j=1

Ĥij r̂j ,

where Ĥ is block-diagonal with 2× 2 blocks ĥqk ,

ĥqk = h0+h1e
−iqk−hT1 eiqk =

J

2

(
0 −hx + eiqk

hx − e−iqk 0

)
.

To find the eigenmodes of the Hamiltonian we consider
(for each k)

i

[
E,

(
ϕqk
πqk

)]
= 4ĥqk

(
ϕqk
πqk

)
. (B2)

We define s12 = 2J(eiqk − h), and βqk as the linear com-
bination βqk = u1ϕqk + iu2πqk . We require {βqk , β†qk} =

|u1|2 + |u2|2 = 1/2. Using the result in Eq. B2 and the
definition of s12 we find

i[E, βqk ] = u1s12πqk − iu2s
∗
12ϕqk

!
= −ieqkβqk .

The last equality is what needs to be imposed to find βqk
as an eigenmode of the Hamiltonian. The function eqk
is the dispersion relation, which also needs to be deter-
mined. This gives two further equations

eqku1 = u2s
∗
12 , u2eqk = u1s12 . (B3)

From the second equation we find u1 = u2eqk/s12 which,
once inserted in the first one, gives

eqk =
√
|s12|2 = 2J

√
(hx)2 + 1− 2hx cos(qk) .

This is the well-known dispersion relation for the Ising
chain. Given that eqk = |s12|, we can write

s12 = eqke
iθk ,

and thus, from the second equation above, we find u2 =
u1e

iθk . Since we need to have |u2
1|+ |u2

2| = 1/2 and since
an overall phase is not important in βqk , we take u1 = 1/2
and u2 = eiθk/2, where, for the sake of clarity, we have
that

eiθk =
s12

eqk
=

eiqk − hx√
(hx)2 + 1− 2hx cos(qk)

.

It can then be straightforwardly checked that i[E, βqk ] =
−ieqkβqk .

In the same spirit, we can find the eigenmodes starting
from the Fourier operators ϕ−qk , π−qk . This is simply
done by defining the operators r̂ = U†r. Rotating the
matrix H into this representation, we find

i

[
E,

(
ϕ−qk
π−qk

)]
= 4

(
ĥqk

)∗(ϕ−qk
π−qk

)
. (B4)

One can obtain the eigenmodes β−qk , as before. We col-
lect all these operators and their Hermitean conjugates
together:

βqk =
1

2

(
ϕqk + i

s12

eqk
πqk

)
,

β†−qk =
1

2

(
ϕqk − i

s12

eqk
πqk

)
,

β−qk =
1

2

(
ϕ−qk + i

s∗12

eqk
π−qk

)
,

β†qk =
1

2

(
ϕ−qk − i

s∗12

eqk
π−qk

)
.

(B5)

Inverting these relations, we find the expression for the
Fourier operators ϕqk , πqk and their Hermitean conju-
gates ϕ−qk , π−qk

ϕqk = (βqk + β†−qk) , πqk = i(β†−qk − βqk)
eqk
s12

ϕ−qk = (β−qk + β†qk) , π−qk = i(β†qk − β−qk)
eqk
s12

.

(B6)

For fermionic systems, the covariance matrix is defined
as Gmn = 〈[rm, rn]〉 /2 = 〈rmrn〉−δmn. In Fourier space,
this becomes

Ĝ = (UGU†)kh = 〈r̂qk r̂−qh〉 − δkh .

We consider as initial state the ground state of the Ising
Hamiltonian for hx = hx0 . The quantities e0

qk
, s0

12 (notice
that also s12 depends on qk even if this is not written
explicitly) are associated to the value hx0 of the transverse
field. It can be checked that the covariance matrix in
Fourier space, for the ground state of E, is such that

ĝqk =

 0 i
e0qk

(s012)∗

−i
e0qk
s012

0

 .

The real space covariance matrix is obtained as G =
U†ĜU and determines the initial system state.

For the time-evolution, we consider a quenched Hamil-
tonian field hx 6= hx0 and the presence of non-local decay.
The eigenmodes are the ones in Eq. (B5), and the veloc-
ities of the quasi-particles are

vqk =
4J2hx sin(qk)

eqk
.

To enable prediction from our method, we finally need
to compute the action of the Lindblad generator on the
number operator for quasi-particles nqk = β†qkβqk . This
provides the rate equation for the densities of quasi-
particles. We find, for non-local decay characterized by
the function fij , the relation

L [nqk ] = −4γqknqk + 2γqk + γqk
s12 + s∗12

eqk
,
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with γqk = γ−Sk[f−]. The densities of the quasi-particle
for the quenched Hamiltonian in the initial state can be
computed from the initial covariance matrix in Fourier

space, as

〈nqk〉 =
1

2
− 1

4

[
e0
qk

eqk

s12

s0
12

+
e0
qk

eqk

s∗12

(s0
12)∗

]
.

In Fig. 3(d), we show numerical results for the Ising
chain considered here. As displayed, our formula in
Eq. (27) provides a good description for the time-
evolution of the mutual information in the system.
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glement resonance in a disordered bose-fermi mixture,
arXiv:2106.06277 (2021).

[27] M. Neel, Z. Yicheng, L. Yuan, D. Jerome, R. Marcos,
and W. D. S., Generalized hydrodynamics in strongly
interacting 1d bose gases, Science 373, 1129 (2021).

[28] J.-S. Bernier, R. Tan, L. Bonnes, C. Guo, D. Poletti, and
C. Kollath, Light-cone and diffusive propagation of cor-
relations in a many-body dissipative system, Phys. Rev.
Lett. 120, 020401 (2018).

https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1088/1742-5468/2006/03/p03001
https://doi.org/10.1088/1742-5468/2006/03/p03001
https://doi.org/10.1088/1742-5468/2007/10/p10004
https://doi.org/10.1088/1742-5468/2007/10/p10004
https://doi.org/10.1088/1742-5468/2008/05/p05018
https://doi.org/10.1088/1742-5468/2008/05/p05018
https://doi.org/10.1103/PhysRevB.79.155104
https://doi.org/10.1103/PhysRevB.79.155104
https://doi.org/10.1038/nature10748
https://doi.org/10.1088/1742-5468/2012/07/p07016
https://doi.org/10.1088/1742-5468/2012/07/p07016
https://doi.org/10.1088/1742-5468/2012/07/p07016
https://doi.org/10.1088/1742-5468/2012/07/p07022
https://doi.org/10.1088/1742-5468/2012/07/p07022
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1103/PhysRevLett.123.190602
https://doi.org/10.1103/PhysRevLett.122.250602
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevLett.125.200501
https://doi.org/10.1103/PhysRevLett.125.200501
https://doi.org/10.1103/PhysRevLett.126.040602
https://doi.org/10.1126/science.abf0147
https://doi.org/10.1103/PhysRevLett.120.020401
https://doi.org/10.1103/PhysRevLett.120.020401


12

[29] K. Macieszczak, E. Levi, T. Macr̀ı, I. Lesanovsky, and
J. P. Garrahan, Coherence, entanglement, and quantum-
ness in closed and open systems with conserved charge,
with an application to many-body localization, Phys.
Rev. A 99, 052354 (2019).

[30] W. T. B. Malouf, J. Goold, G. Adesso, and G. T. Landi,
Analysis of the conditional mutual information in ballis-
tic and diffusive non-equilibrium steady-states, Journal
of Physics A: Mathematical and Theoretical 53, 305302
(2020).

[31] S. Maity, S. Bandyopadhyay, S. Bhattacharjee, and
A. Dutta, Growth of mutual information in a quenched
one-dimensional open quantum many-body system,
Phys. Rev. B 101, 180301 (2020).

[32] V. Alba and F. Carollo, Spreading of correlations in
markovian open quantum systems, Phys. Rev. B 103,
L020302 (2021).

[33] D. Rossini and E. Vicari, Coherent and dissipative dy-
namics at quantum phase transitions, arXiv:2103.02626
(2021).

[34] Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect
and the many-body entanglement transition, Phys. Rev.
B 98, 205136 (2018).
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