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Dissipative shock waves generated by a quantum-
mechanical piston
Maren E. Mossman1, Mark A. Hoefer 2, Keith Julien2, P.G. Kevrekidis3 & P. Engels1

The piston shock problem is a prototypical example of strongly nonlinear fluid flow that

enables the experimental exploration of fluid dynamics in extreme regimes. Here we inves-

tigate this problem for a nominally dissipationless, superfluid Bose-Einstein condensate and

observe rich dynamics including the formation of a plateau region, a non-expanding shock

front, and rarefaction waves. Many aspects of the observed dynamics follow predictions of

classical dissipative—rather than superfluid dispersive—shock theory. The emergence of

dissipative-like dynamics is attributed to the decay of large amplitude excitations at the shock

front into turbulent vortex excitations, which allow us to invoke an eddy viscosity hypothesis.

Our experimental observations are accompanied by numerical simulations of the mean-field,

Gross-Pitaevskii equation that exhibit quantitative agreement with no fitting parameters. This

work provides an avenue for the investigation of quantum shock waves and turbulence in

channel geometries, which are currently the focus of intense research efforts.
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F
rom the generation of localized solitons and quantized
vortices1 to the extended coherence of dispersive shock
waves2, quantum hydrodynamics exhibit an intriguingly

rich phenomenology. While many pioneering observations have
been made in superfluid helium3,4, dilute-gas Bose-Einstein
condensates (BECs) provide an exceptionally versatile medium in
which to access quantum hydrodynamics5. The experimental
control and theoretical understanding of BECs enable novel
techniques for entering new quantum hydrodynamic regimes. A
central focus of superfluid helium studies has been the investi-
gation of quantum turbulence, including the origin of dissipation
within the system6. Despite strong experimental and theoretical
research efforts spanning many decades (see ref. 7 and references
therein), quantum turbulence still poses many open questions.
For example, while many aspects of quantum turbulence in a
homogeneous system have been clarified, the nature of quantum
turbulence in channel geometries is now under intense investi-
gation in superfluid helium systems. In dilute-gas BECs, quantum
turbulence has been experimentally observed only in a very
limited number of settings so far. Those include the generation of
vortex turbulence in stirred BECs8–10, the observation of weak-
wave turbulence in a shaken BEC confined in a box potential11,
and the observation of spinor turbulence12,13. Aspects involving
the definition of a superfluid Reynolds number14, or energy and
enstrophy cascades15–17, remain under very active theoretical
investigation. A discussion of relevant experimental realizations
but also of theoretical attempts to study the problem has recently
been compiled in ref. 18.

Here, we introduce a setting for the observation of rich
quantum hydrodynamics by studying a BEC piston shock in a
channel geometry. The piston shock is a paradigmatic example of
strongly nonlinear flow, probing hydrodynamics in an extreme
regime. For a one-dimensional (1D) channel, the BEC piston
shock is theoretically predicted to be an expanding, coherent
dispersive shock wave (DSW) with rank-ordered, nonlinear
oscillations19. A related setting, the collision of two BECs with
strong transverse confinement in a channel, has been shown
experimentally and theoretically to give rise to similar dynamics,
such as the continuous transformation of a sinusoidal inter-
ference pattern into a train of dark solitons that was interpreted
as two adjacent dispersive shock waves20. However, in the pre-
sence of weaker transverse confinement, collision experiments in
BECs21 (and also in dilute Fermi gases22) cannot be described by
DSWs but by two counterpropagating, viscous or dissipative
shock waves (VSWs)23. Two features that distinguish a VSW—

however weak the dissipation—from a DSW are: (i) its shock
width is independent of time and proportional to the medium’s
dissipation, (ii) its speed is uniquely determined by the Rankine-
Hugoniot jump relations24. In contrast, a DSW exhibits an
expanding series of rank-ordered oscillations with two edge
speeds, each of which satisfies DSW closure relations that are
entirely different from the Rankine-Hugoniot relations2.

The fully three-dimensional (3D) BEC piston shock problem
explored here provides a clean setting for the quantitative study of
the roles of dispersion and dissipation in nonlinear quantum
hydrodynamics. We observe the generation of non-expanding,
large-scale shocks that satisfy the Rankine-Hugoniot jump rela-
tions, image features indicative of vortex turbulence at small,
healing length scales, and perform numerical simulations of the
conservative, mean-field Gross-Pitaevskii (GP) equation that
quantitatively agree with experiment. Piston compression is
found to continually generate two distinct wave-field compo-
nents: sound waves and solitons. The solitons breakup into vor-
tices via the well-known snake instability. We argue that the
decay of large amplitude excitations generated at the shock front
into vortex excitations lead to an emergent dissipative-like

behavior in a coarse-grained description of the fluid. Conse-
quently, piston compression provides both the generation
mechanism for turbulence into which large amplitude soliton like
excitations dissipate and the sustenance of a subsonic to super-
sonic shock front. Thus, the piston shock problem also opens a
pathway to the study of quantum turbulence with BECs in
channel geometries.

Results
Overview of shock dynamics. The general setting for our study is
comprised of an elongated BEC confined by a cigar-shaped
harmonic trap. A repulsive barrier, the height of which exceeds
the chemical potential of the BEC by a factor of 10, is created by
the dipole force of a far detuned laser beam. Initially, the barrier is
placed outside the BEC and is then moved through the BEC at a
constant speed denoted vp. Our axis convention is such that the
weakly confined z-axis is oriented horizontally [Fig. 1(a)]. For
reference, the bulk speed of sound in the center of the initial,
unperturbed BEC is cs,bulk ≈ 2.47 mm s−1, and the speed with
which sound pulses travel along the long axis of the initial,
unperturbed BEC is calculated to be cs;1d ¼ cs;bulk=

ffiffiffi

2
p

�
1:75 mm s�1 in the Thomas-Fermi regime25. Absorption images
are taken at sequential times during the piston sweep to analyze
the resulting dynamics.

For sweep speeds near or exceeding the speed of sound, cs,1d,
such as the case shown in Fig. 1 (b), the dynamics are intriguingly
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Fig. 1 Experimental set-up and integrated cross sections. a A repulsive

barrier (piston) is swept from right to left through a BEC with speed vp. A

bulge forms at the interface of the BEC and the piston. Image is not to scale.

b Experimental images and corresponding integrated cross sections for

experiment (green) and numerics (blue) at times t= 0, 60, 100, and 140

ms into a vp= 2 mm s−1 sweep
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rich. At t= 0 ms, the piston is located just to the right side of the
BEC. As the piston enters the BEC, a pronounced density spike
forms near the piston front. As the piston sweeps through the
cloud, a plateau region of high density develops in front of the
piston (Fig. 1(b), 60 ms). The leading (left) edge of the plateau
forms a steep shock front, where the density rapidly drops from
the plateau density to the initial BEC density. Once the plateau
reaches the left wing of the BEC, the shock front deforms and
approaches the shape of a rarefaction wave (see discussion
below). The onset of this behavior can be seen in Fig. 1(b) at t=
140 ms.

The experimentally observed dynamics are in excellent
agreement with our 3D numerical simulations based on the
Gross-Pitaevskii equation (GPE) with no fitting parameters.
Parameters utilized in the numerics are taken directly from
experiment. For more details, see Methods.

Characterization of the shock dynamics. For a quantitative
analysis of the piston shock wave dynamics, we consider three
characteristic features: the shock propagation speed, the shock
width, and the plateau density. Their behavior as a function of the
piston speed is shown in Fig. 2. The shock propagation speed is
determined by tracking the position of the shock front as it moves

through the central part of the BEC where it exhibits an
approximately constant speed. For both experimental and
numerical data, the shock front edge is obtained by calculating
integrated cross sections and subtracting the cross section of an
unperturbed BEC in the absence of a piston sweep. In the sub-
tracted plots, the shock front is fit with a straight line. The zero
intercept of the fit is recorded as the position of the shock front,
and its speed is the shock propagation speed. Experiment and
corresponding numerics indicate an approximately linear increase
in the shock speed with increasing piston speed (Fig. 2a). The inset
of Fig. 2a shows the evolution of the shock front width during
sweeps with vp= 2mm s−1 (blue solid) and vp= 3mm s−1 (red
dashed). The width is determined by following the shock front as
it is driven through the BEC. Similar to finding the shock front
position, we calculate integrated cross sections, subtract an
unperturbed cross section and record the spacing between the zero
intercept and the edge of the plateau region. Both piston speeds
result in a time-averaged width of Δxw= 15.5 μm. This constant
width over the course of a sweep is indicative of VSWs. The
plateau density, as a function of piston speed, is determined by
averaging the density of the plateau region that has formed in
front of the barrier when the piston reaches the center of the BEC.
This is where the initial density of the BEC is nominally uniform.
The observed dependence on the piston speed is approximately
linear for medium piston speeds, but undershoots a linear trend at
large piston speeds (Fig. 2b). In all cases, we see remarkable
agreement between experiment and numerics based on the GPE.

Because dilute-gas BECs are typically modeled as inviscid,
dispersive superfluids, an obvious approach is to compare the
observed behavior with that of BEC dispersive shock wave (DSW)
theory26–28 (see also the review ref. 2). The 1D DSW theory for
the BEC piston problem was presented in ref. 19 (see also ref. 29).
A dispersive shock wave is characterized by an expanding,
coherent nonlinear waveform with a trailing large amplitude
soliton edge, rank-ordered interior oscillations, and a leading
small amplitude, harmonically oscillatory edge. However, the best
fit to the predicted DSW soliton edge speed and plateau height is
poor (see Supplementary Fig. 1). On the other hand, VSW theory,
where a narrow, planar shock front is assumed to propagate
through a uniform, weakly viscous medium (see, for example
ref. 30), leads to a consistent description of both the shock speed
data and the plateau height data if an effective speed of sound of
cs,eff= 1.35 mm s−1 is assumed in the calculation. The resulting
VSW predictions are shown as the red solid lines in Fig. 2. VSW
speed and plateau height are independent of viscosity, and are
determined by the flow conditions in front of and behind the
shock front according to the Rankine-Hugoniot jump condi-
tions30. Relevant details of this analysis are given in Supplemen-
tary Note 1. We note that the obtained effective speed of sound is
lower than the bulk speed of sound in the BEC center (cs,bulk ≈
2.47 mm s−1) and the speed of sound for effectively 1D waves
along the BEC’s long axis (cs,1d ≈ 1.75 mm s−1). Utilizing
numerical simulations below, we argue that this difference is
due to a decrease in the effective hydrodynamic density and hence
pressure jump across the shock front.

Numerical simulations and vortex turbulence. The applicability
of viscous shock theory may seem surprising for a nominally
inviscid superfluid. Further insight can be gained from our
comparative (3+ 1)D numerical simulations of the Gross-
Pitaevskii equation, modeling the piston by a moving Gaussian
potential that is swept through the BEC (see Methods and Sup-
plementary Note 1 for details). While our numerics are per-
formed in three spatial dimensions, the expected dimensionality
of the dynamics can be classified in terms of the nondimensional
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Fig. 2 Shock speed, peak density, and shock width vs. piston speed.

Analyzed experimental (green dots) and numerical (blue triangles) results

for increasing piston velocity are plotted with overlaid theory curves for

VSW (red solid line), using an effective cs,eff= 1.35 mm s−1 obtained from a

fit of the experimental and numerical data to the VSW theory prediction.

VSW theory curves are also calculated for cs,1d= 1.75 mm s−1 (green

dashed) and cs,bulk= 2.47mm s−1 (blue dot-dashed). a Shock front speed.

Inset, Shock front width at different times for piston speeds 2mm s−1 (blue

solid) and 3 mm s−1 (red dashed), with corresponding error (shaded

regions). b The normalized plateau density is determined by measuring the

plateau integrated density when the piston reaches the center of the BEC.

Weighted mean ± s.d. are plotted for three (a) and five (b) sets of data. For

more information, see text
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quantity (see ref. 31 and references therein)

d ¼ Nλ
as
aho

; ð1Þ

where N is the number of trapped atoms, λ= ωz/ω⊥ is the
cylindrically symmetric trap aspect ratio, as is the scattering
length, and aho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=mω?
p

is the transverse harmonic trap
length scale. When d � 1 the transverse dynamics are sig-
nificantly constrained such that the BEC exhibits quasi-1D
behavior. When d � 1, the BEC is no longer geometrically
constrained and is truly described by 3D dynamics. A simulation
in the 1D regime with corresponding dimensional spatial, tem-
poral, and density scales of L= aho= 0.713 μm, T= 1/ω⊥=

0.695 ms, Γ ¼ 1=ð4πasa2hoÞ ¼ 29:1 μm�3, with ωz= 2π × 0.24 Hz
and N= 8732 is shown in Fig. 3a with d= 0.068. A coherent
soliton train or DSW is generated whose soliton edge speed
quantitatively agrees with DSW theory19, as shown in the Sup-
plementary Fig. 2. For more details on this analysis, see Supple-
mentary Note 2.

To match experimental parameters, the simulations in Fig. 3b
consider a large number of atoms, N= 410,005, with a tighter
trap geometry (a tenfold increase in the longitudinal trap
frequency) and the same scales L, T, and Γ as in the low atom
number case above. The dimensionality parameter is now d ≈ 32,
which places the dynamics well into the 3D regime.

Isosurface plots corresponding to Fig. 3b panels are shown in
Fig. 4. Based on these simulations, the dynamics can be
characterized as follows. At short times, a soliton train is initially
formed, as would be expected in DSW theory (Fig. 4, t= 17 ms).
Due to the large atom number–or, equivalently, weak transverse
confinement–the soliton train rapidly undergoes a transverse,
snake instability32, and vorticity emerges in the neighborhood of
the shock front (Fig. 4, t= 23 ms, t= 44 ms). The snake
instability manifests itself when the transverse harmonic oscillator
length aho exceeds the healing length by a factor of order one33.
As seen at t= 58 ms and experimentally in Fig. 5, the plateau

region hosts a variety of topological defects including vortex
rings, lines, and vortex interactions. Experimental evidence for
vorticity and soliton dynamics in the plateau regions obtained in
absorption images after 10.1 ms expansion can be found in Fig. 5.
Since the images in Fig. 5 are integrated along the x-axis, vortex
rings appear as two dark dots with a faint connection between
them34. Transformation of dark solitons into vortex rings has
been argued to be responsible for an apparent inelasticity of
collision events35. Furthermore, such rings have also been
recently identified in bosonic36 and fermionic37 systems.

Both tight harmonic transverse confinement and quantum
turbulence contribute to the highly inhomogeneous background
through which the shock propagates. The transverse trap width aho
and the healing length in the condensate center are less than 1 μm,
thus these characteristic length scales of the system are significantly
smaller than the measured shock width Δxw ≈ 15.5 μm. Conse-
quently, we argue that the shock experiences an effectively averaged
or filtered turbulent field and an associated decrease in the effective
density (and hence pressure). To quantify this, we use a technique
from the large eddy simulation (LES) framework38 to filter by
convolving the hydrodynamic field from the simulation in Fig. 3 at
t= 83ms. The filtering is done with a kernel, K(r)=w−3, for r in a
cube with side length w centered at the origin, and zero otherwise.
This leads to a reduction in the central, filtered condensate density,
�ρðr; tÞ ¼ ðK � ρÞðr; tÞ ¼

R

Kðr� r′Þρðr′; tÞ dr′, when compared to
the unfiltered, initial, unperturbed density. By choosing a cube side
length of w= 5.35 μm, we obtain excellent agreement with our
observed reduced speed of sound, cs,eff, independently fit in Fig. 2.
This kernel size leads to a 3.35-fold reduction in the central, filtered
condensate density. In this case, the effective sound speed satisfies

cs;eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π�h2as�ρ=m
2

q

¼ cs;bulk=
ffiffiffiffiffiffiffiffiffi

3:35
p

� 1:35mm s−1. The fil-

tered hydrodynamic field is well-described by an exact viscous
shock profile of the viscous shallow water equations as is shown in
Fig. 6 where �u ¼ ðK � ρuÞ=�ρ is the Favre-averaged velocity38 (see
Methods).

Support for this interpretation can be found in the literature on
shocks in turbulent gases38,39. Turbulent dynamics modeled as
dissipation at larger scales is the basis for the effective eddy
viscosity in LES38. We view the quantum turbulence here in a
similar fashion. In a coarse-grained description, the vortex
excitations act as a reservoir for energy dissipated from the large
amplitude wave excitations generated at the large-scale shock
front. We compare an exact viscous shock profile of the viscous
shallow water equations with our filtered 3D numerical simula-
tions in Fig. 6. This reveals a shock structure consisting of a
smooth transition from a nonzero subsonic flow (j�uj<cs;eff ) ahead
of the shock to supersonic flow (j�uj ¼ vp>cs;eff ) behind the shock.
The width of this transition is proportional to the effective
dissipation experienced by the shock. The numerically observed
nonzero mean flow ahead of and in the same direction as shock
propagation is additional evidence for a decrease in the shock’s
pressure (hence density) as observed in numerical simulations of
shock waves in a turbulent gas39. We stress that the only fitting
parameters in Fig. 6 are the filtering length scale, the shock width,
and the mean flow ahead of the shock. All remaining quantities—
mean density/velocity behind the shock, the shock speed, and the
viscous shock profile—are completely determined by the
Rankine-Hugoniot jump conditions for a piston in a viscous
fluid. The quantitative agreement between viscous shock theory,
the filtered, conservative BEC simulation, and experiment (Fig. 2)
constitutes strong support for our conclusions. For additional
analysis of the turbulence and associated energy production, see
Supplementary Note 3 along with corresponding Supplementary
Figs. 3 and 4.
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Rarefaction waves. The emergence of a shock front as described
above crucially depends on the presence of a finite background
density through which the front propagates. In the absence of
such a background density, the phenomenology is completely
different and rarefaction waves emerge (Fig. 1(b), 140 ms). Rar-
efaction waves, which are commonly discussed in the context of
the shock tube problem in gas dynamics24 or the dam break
problem in shallow water30, form when a region of high density
expands into a region of zero density (vacuum).

For dilute-gas BECs, we can study the formation of rarefaction
waves in a clean, unperturbed setting by starting with 4.1 × 105

atoms confined in the left half of the harmonic trap. A repulsive
barrier initially prevents the atoms from spreading out into the
empty right half of the trap. When the barrier is suddenly
removed, the BEC begins to spread out to the right and the front
edge of the BEC density assumes a parabolic shape. For further
details and experimental cross sections, see Supplementary Note 4.
The self-similar expansion of the rarefaction front is in stark
contrast to the dynamics of a sharp shock front. The parabolic
shape is consistent with the predictions of these types of waves
in a Bose-condensed gas20,26,28,40. The theory also predicts that
the expanding edge propagates at twice the local speed of
sound20,26.

We test this prediction in experiment by fitting the parabolic
expanding edge of the BEC integrated cross section at various
times during the expansion, and deduce from this the edge
propagation speed (See Fig. 7 and Supplementary Fig. 5). The edge
speed determined from our experiment (5.50 ± 0.33 mm s−1) and
from matching numerics (5.16 ± 0.01 mm s−1) is in good agree-
ment with the predicted behavior based on the 3D speed of sound
(i.e., 2 × cs,bulk= 5.6 mm s−1).
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The data and numerics in Fig. 7 are also compared to
2 ´ cs;bulk=

ffiffiffi

2
p

¼ 2 ´ cs;1d ¼ 4:02 mm s−1, which is the expected
rarefaction edge propagation speed in a 1D channel (d � 1). We
see a clear deviation from this behavior, further indicating the
fully 3D structure of our system (d � 1) and the inapplicability
of 1D DSW theory.

Discussion
In conclusion, we have observed and analyzed intriguingly rich
dynamics in a quantum-mechanical piston shock. For our typical
experimental parameters, the dynamics are described by dis-
sipative, rather than dispersive, shock waves. The piston provides
both the source of the shock front and the generation of super-
fluid quantum turbulence, manifested through the development
of vortical patterns and dispersive waves, via a transverse, snake
instability of a planar soliton train. We argue that an effective
dissipation arises in a nominally inviscid superfluid as a

consequence of the dissipation of large amplitude excitations
from the large-scale shock front into small-scale vortex
excitations.

Our experiments provide a versatile platform for the investi-
gation of quantum turbulence, which is currently an area of
intense research efforts in both cold atom and superfluid helium
systems. Further studies into lower dimensional systems with
similar geometries may also be of interest to determine the effect
of dimensionality on quantum turbulence.

Methods
Experimental procedure. Our experimental setting consists of an elongated BEC
of 4.1 × 105 87Rb atoms confined in an optical dipole trap with trap frequencies {ωx,
ωy, ωz}= 2π × {229, 222, 2.4} Hz. We estimate the atom number in the BEC by
fitting integrated cross sections of the absorption images to the numerical ground
state. Temperature is estimated to be � Tc , the critical temperature of the BEC,
given no observable thermal cloud. We note that for velocities of 4 mm s−1 and
lower, we see no noticeable atom loss in experiments. Agreement between
experiment and zero-temperature GP numerics throughout the complete barrier
sweeps further corroborates this point.

The piston is generated by a repulsive laser beam of wavelength λpiston= 660
nm and an elliptical cross section of Gaussian waists {wx, wz} ≈ {68,11} μm. The
barrier is swept from right to left (negative z-direction) using a high-speed mirror
galvanometer. Effects of the initial acceleration of the galvanometer are avoided by
initializing the barrier sweep far from the right edge of the BEC. This is done such
that the acceleration range occurs outside of the BEC. Absorption images are taken
after 2 ms expansion time to avoid image saturation.

Three-dimensional simulations. We perform (3+ 1)D numerical simulations of
the Gross-Pitaevskii equation31. The initial condition consists of the ground state
solution in the form ψ(r, t)= f(r)e−iμt in the presence of the harmonic trap without
the barrier. μ is the chemical potential, determined by the total number of atoms N
in the condensate according to

Z

R
3

f 2ðrÞdr ¼ N2a3ho; ð2Þ

where aho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=ðmω?Þ
p

and Γ ¼ 1=ð4πasa2hoÞ ¼ 29:1 μm�3 . We utilize a Fourier
spatial discretization and a second order split-step method, exactly integrating the
linear and nonlinear/potential terms separately. For the simulation of the experi-
ment, we use a grid spacing of 0.071 μm on a box of size 8.8 × 8.8 × 464 μm3 with a
time-step of 0.0013 ms. The simulation in Figs. 3b and 4 exhibits a healing length of
0.21 μm at the initial trap center and 0.16 μm in the plateau region. The simulation
in Fig. 3a exhibits a healing length of 1.24 μm at the initial trap center and 0.76 μm
in the DSW plateau region.

Viscous shock fitting. Following Favre averaging38, filtering is performed by
convolving the 3D density and momentum in the longitudinal direction with a
cube of side length 5.35 μm. This cube size results in the downstream speed of
sound cs,eff= 1.35 mm s−1, used in the main text to explain the experimental and
numerical observations. This cube size is a plausible filter in the context of large
eddy simulation modeling as it is an intermediate length scale to the measured
shock width (15.5 μm) and the healing length (~0.2 μm). The velocity is recovered
by dividing the filtered momentum by the filtered density (Favre filtering). The
shock profile is obtained from an exact, traveling wave solution of the 1D shallow
water equations (the dispersionless limit of the Gross-Pitaevskii equation without a
potential) with an additional, phenomenological viscous term

�ρt þ ð�ρ�uÞz ¼ 0

ð�ρ�uÞt þ �ρ�u2 þ 1
2
�ρ2

� �

z
¼ ν�uzz :

ð3Þ

for the nondimensional, filtered density �ρ, velocity �u, and viscosity parameter ν > 0.
The traveling wave speed, plateau (rightmost) density and velocity are obtained
from the Rankine-Hugoniot viscous shock conditions for a piston. The fitting
parameters are the nondimensional viscosity ν= 25 and the traveling wave center
z0=−25 μm, obtained by minimizing the sum of the absolute differences between
the filtered and traveling wave superfluid velocity.

Code availability. All relevant code used for numerical studies in this work is
available from the corresponding authors on reasonable request.

Data availability
All relevant experimental and numerical datasets in this work are available from
the corresponding authors on reasonable request.
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