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Abstract: To circumvent the ill-posedness issues present in various models of contin-
uum fluid mechanics, we present a dynamical systems approach aiming at the selection
of physically relevant solutions. Even under the presence of infinitely many solutions to
the full Euler system describing the motion of a compressible inviscid fluid, our approach
permits to select a system of solutions (one trajectory for every initial condition) satisfy-
ing the classical semiflow property. Moreover, the selection respects the well accepted
admissibility criteria for physical solutions, namely, maximization of the entropy pro-
duction rate and the weak—strong uniqueness principle. Consequently, strong solutions
are always selected whenever they exist and stationary states are stable and included in
the selection as well. To this end, we introduce a notion of dissipative solution, which
is given by a triple of density, momentum and total entropy defined as expectations of a
suitable measure-valued solution.
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1. Introduction

The Euler system describing the motion of a general compressible inviscid fluid rep-
resents one of the basic models in the framework of continuum fluid mechanics. The
unknown fields are the fluid density 0 = o(#, x), the momentum m = m(z, x), and the
energy £ = £(t, x) satisfying the system of partial differential equations:

dro0 +divom = 0,

m
>+pr=0,

atlll dl‘x
(1.1)

€ +div, [(5 +p) T] —0.
o

Writing the energy as a sum of its kinetic and internal component,

we suppose that the pressure p and the internal energy e satisfy the caloric equation of
state in the form

(y — 1)oe = p, where y > 1 is the adiabatic constant. (1.2)

In addition, we introduce the absolute temperature @ through the Boyle—Mariotte thermal
equation of state:

1
p = o yielding e = ¢,9, ¢, = 7 (1.3)
y —

Supposing that the fluid occupies a bounded spatial domain @ ¢ RY, N = 1,2, 3 we
impose the impermeability boundary condition

m - n|zo = 0. (1.4)
Finally, the initial state of the fluid is given through the initial conditions
0(0, ) =00, m(0, ) =my, £(0,-) = &. (1.5)

The Second law of thermodynamics is enforced through the entropy balance equation

3, (0s) + divy (sm) = 0 or ;s + (T) Vs =0, (1.6)
0
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where the entropy s is given as

s(0, ) = log(®“) — log(o). (1.7

There is a vast amount of literature dedicated to the mathematical theory of the Euler
system. In particular, it is known that the initial-value problem is well posed locally in
time in the class of smooth solutions, see e.g. the monograph by Majda [17] or the more
recent treatment by Benzoni—Gavage and Serre [1]. Smooth solutions, however, develop
singularities in a finite time for a fairly general class of initial data, see e.g. Smoller [19].
Thus, if the Euler system is accepted as an adequate description of the fluid motion in a
long run, a concept of generalized solutions is needed.

The modern theory of partial differential equations is based on the concept of weak
solution, where derivatives are understood in the sense of distributions. This gives rise to
a large class of objects in which unigueness might be lost. Several admissibility criteria
have been proposed to select the physically relevant weak solution, among which the
entropy inequality

0:(0s) +divy(sm) > 0 (1.8)

reflecting the Second law of thermodynamics. The recent adaptation of the method of
convex integration, developed in the context of incompressible fluids by De Lellis and
Székelyhidi [10], gave rise to numerous examples of ill-posedness also in the class of
compressible fluids, see Chiodaroli, De Lellis, Kreml [6], Chiodaroli and Kreml [7] ,
Chiodaroli et al. [8], among others. In particular, it was shown in [12] that the Euler
system (1.1)—(1.5) is ill-posed, specifically it admits infinitely many weak solutions for
alarge class of initial data. Moreover, these solutions satisfy the entropy inequality (1.8).
In addition, examples of regular initial data producing infinitely many weak solutions in
the long run have been also obtained in [12].

1.1. Admissibility criteria. In view of these facts, more refined admissibility criteria
are needed in order to select the physically relevant solutions. Dafermos [9] proposed
a selection criterion based on maximality of the total entropy. We formulate it in a
slightly stronger form, avoiding the issue of existence of right-sided time derivatives.
Specifically, suppose that [g;, m;, & ], i = 1,2 are two solutions of the Euler system
(1.1)—(1.5) with the associated total entropies

Si = ois(oi,m;, &), i =1,2.
We say that
[o1, my, E1]>plo2, my, &]
if:
e there exists T > 0 such that
loi1(z, ), my(z, ), & (1, )] = [02(t, 1), ma(2, ), Ea(¢, )] forany 7 € [0, 7];

o there exists § > 0 such that

/ Si(t+, x) dx > / So(t4, x) dx forall t € (7, T + ). (1.9)
Q Q
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A weak solution [, m, £] is called maximal (admissible) if it is maximal with respect
to the relation >p.

A modification of this criterion was further investigated in the context of the barotropic
Euler system in [11]. However, in this case it is rather the total energy that shall be
minimized, according to the principle of maximal energy dissipation. The criterion of
[11] translated to our setting of the full Euler system, leads to a weaker version of the
condition (1.9). Namely, we require that there exists a sequence (7)), T > T, Ty — T
such that

/ Sy (tpt, x) dx > / S5 (tp+, x) dx forall n € N. (1.10)
Q Q

It was shown in [11] that the solutions constructed there by the method of convex integra-
tion do not fulfil the corresponding criterion of maximal energy dissipation, suggesting
that such a criterion shall be retained in order to exclude nonphysical solutions.

To compare these two criteria, let us denote by > r the partial ordering induced by
(1.10). The following holds true: If a solution is maximal with respect to > r then it
is also maximal with respect to >p. This may seem surprising at first sight since (1.9)
is obviously a stronger condition than (1.10). But it is exactly for this reason why the
implication of maximality is valid. More precisely, the weaker condition (1.10) allows
to compare more solutions, for instance also those that oscillate around each other and
that are therefore not comparable by the condition (1.9).

An alternative criterion enforcing the Second law of thermodynamics is maximility
of the global entropy production proposed in [3]. In accordance with the Schwartz
representation principle, the inequality in the entropy balance (1.8) can be interpreted
as

. m
0;S + divy (S—) =3, S =os,
Q

where ¥ is a non-negative Borel measure on [0, 00) x Q. Similarly to the above, we say
that

o1, my, E1]>[02, my, &]

& X; > ¥, on any compact subset of [0, 0c0) X Q. (11D
It was shown in [3] that maximal solutions with respect to the relation > exist for the
full Euler system under rather general hypotheses on the data as well as the constitutive
relations.

Despite these efforts, however, none of the above selection criteria proved sufficient to
guarantee the desired well-posedness result. The major open question therefore remains:
how can physically relevant solutions be distinguished from the nonphysical ones? The
aim of the present paper is to take into account another physical property of an evolution
system, namely, the so-called semiflow property: starting the system at time 0, letting
it run to time s > 0 and then restarting and continue for the time r > 0, the state of
the system at the final time s + ¢ should be the same as if the system runs directly from
0 to s + ¢. If uniqueness holds, the semiflow property immediately follows. However,
for systems where uniqueness is unknown or not valid, it is generally not clear whether
such a semiflow even exists.
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1.2. Semiflow solutions. On the following pages we show how to approach this problem
and we construct a solution semiflow to the complete Euler system (1.1)—(1.4). In par-
ticular, this leads to a well-defined dynamical system associated to (1.1)—(1.4), which
depends in a measurable way on the initial condition. To this end, it is in the first place
necessary to identify the correct phase variables of the system together with a suitable
notion of solution. Even though the system (1.1) describes the evolution of the density,
momentum and energy, it turns out to be beneficial to replace the energy by the total
entropy. In other words, the state of the fluid at a given time ¢ > 0 will be determined
by the values of three phase variables,

the density o(z,-), the momentum m(¢, -), the total entropy S(z,-) = os(t, -),

interpreted through their spatial integral means as quantities in suitable abstract function
spaces.

The reason why we prefer the entropy S instead of the energy £ is the lack of suitable
a priori bounds for the latter. The integral means

tr—)/g(t,-)wdx, t|—>/m(t,-)-(odx
Q Q

will be continuous for ¢ € [0, co) for any smooth ¢, ¢, while

Q
whence the limits
/ S(t+, o dx, / S(t—, -)¢ dx are well defined for ¢ € [0, co)
Q Q

with the convention
S(0—) = Sp.

Hence, another difficulty regarding the classical theory of dynamical systems stems from
the fact that solutions are not continuous in time, which in particular holds here for the
total entropy. We overcome this issue by replacing continuity by existence of one-sided
limits at every time ¢ > 0.

As the next step, we shall determine what input information on the initial state of
the system is necessary. Apart from the initial state for the density, momentum and total
entropy, we shall be also given the total energy E( which is a constant of the motion and
provides various bounds for all the corresponding quantitities. Given the initial state of
the system Uy = (Ug, E¢), where

Up = [00, mg, So], together with the total energy

o> [ [Imol 1.12
0> ol 20 + 00e(00, So) | dx, (1.12)

we then identify in a unique way the state of the system at the time # > 0,

Ul Uo, )l = (lo(t, ), m(t, ). S—, )], Eo),

2
Eo Z/Q['nlg((tt—:.))'+g(t, -)e(Q(t, ), S(t+, ))} dx.

In addition, the mapping ¢ +— U[t; (Up, E)] will enjoy the semiflow property:
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U[0; (Uo, Eo)] = (Uo, Eo)

U[Il +12; (Up, Eo)] = U[Iz; Ulz1, (Uo, Eo)]] for any 71, t» > 0.

In particular, the state of the system at a time ¢ > 0 is uniquely determined in terms of
the initial data [gg, mg, So] and the initial energy Ej.
The trajectories

t > U[t; (Uo, Eo)] - ([Q(t, ), m(t, ), S(t—, )], Eo)

represent a generalized—dissipative—solution to the Euler system (1.1)—(1.5), which
we introduce in Sect. 3. It will be shown that they comply with the following stipulations:

o Weak—strong uniqueness. Suppose that the Euler system (1.1)—(1.5) admits a clas-
sical solution [p, m, £] on a time interval [0, Tiax),

Eo:/ &o dx.
Q

Then for Uy = [0, mg, S(0g, mg, )] we have

U o, £0)| = (o, ), m@, . S, ). mr, ). £, )| Eo)

for all ¢ € [0, Trnax)-
e Maximal entropy production. Suppose that

(lor, my. $11, Eo) = U[ 5 (U, Eo)|

and that ([02, m2, $7], Eo) is another dissipative solution starting from the same
initial data (Ug, Eo) and such that

o1(1) := /Q(Sl(t) —So)dx < 02(1) = /Q(Sz(l) — So) dx on [0, 00),

where o; is the entropy production rate associated to [g;, m;, S;], i = 1, 2, respec-
tively.
Then

o] = 03.

e Stability of stationary states. Let o =0 > 0,m = 0, £ = ﬁEO be a stationary
solution of the Euler system (1.1). Suppose that the system reaches the equilibrium
state at some time 7 > 0, i.e.

U[7: (leo. mo. Sol: £0) ] = ([2.0.5@.0.8) ], Eo).
Then
U #: (leo. mo. Sok: o) | = ([2.0. 5@ 0.8)]. £0)

forallt > T.
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1.3. Selection procedure. The semiflow U will be constructed by means of the selec-
tion procedure originally proposed in the context of stochastic Markov processes by
Krylov [16]. The method was later adapted to deterministic evolutionary problems with
time continuous solutions by Cardona and Kapitanski [5]. We have developed a similar
approach to the isentropic Euler system in [2], where we also relaxed the continuity
assumption on the trajectories. We refer the reader to Sect. 2 for details of the abstract
formulation.

In Sect. 3, we specify a class of generalized solutions to the Euler system (1.1)-
(1.5) termed dissipative solutions. They are, loosely speaking, the expected values of
suitable measure-valued solutions as introduced in [4] but with an additional refinement
regarding the associated concentration defect measures.

Applying carefully the selection procedure of [2,5,16], we obtain the desired semi-
flow solution in Sect. 4. The paper is concluded by a discussion of further extensions in
Sect. 5. In particular, in Sect. 5.2 we compare our construction to the two versions of
Dafermos’ criterium introduced in Sect. 1.1.

2. Dynamical Systems Approach

We start by adapting the general approach of [5,16] to problems with discontinuous
solutions paths, see also [2]. Suppose that the state of a physical system at each instant
t > 0 is characterized by an abstract vector U(¢) € S ranging in a suitable phase space
S. In our setting, the state space will be a separable Hilbert space or a Polish topological
space.

Consider a mapping

U:[0,00) xS — S, [t,Ug] — Ulr; Up],

meaning U[z; Up] is the state of the system emanating from the initial state Uy at a time
t>0.

Definition 2.1 (Semiflow). We say that a mapping U : [0, 00) x S — S is a semiflow if:
(a) The flow starts at the initial datum, that is
U[0, Up] = Uy for any Uy € S.
(b) It has the semigroup property, that is
Ult; + 12, Up]l = U[rp, Ulty, Ug]] forany Uy € S, 11,1 > 0.

In the classical theory of dynamical systems, continuity of the semiflow U is required
both in 7 and in Uy. In view of the issues discussed in the previous section, we develop a
generalized theory, where continuity in time is relaxed to the existence of the one-sided
limits at 7=, while continuity in Uy is replaced by measurability with respect to Borel
sets generated by suitable topologies.
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2.1. Trajectory space. The trajectories space can be defined as 7 = BV ([0, 00); S).
For trajectories we can define the following operations:

o Time shift. For &£ € 7 and T > 0 we set
Sr[E](t+) = E((T + 1)) for 1 € [0, 00).
e Continuation. For £!, £2 € T and T > 0 we set

L gl@b)if0<r <T, Elur £X(T—) =eN(T ),
E Uré&(tt) = ,
E2((t —T)x) fort > T, &' Ur €2(T+) = £2(04).

2.2. Solution space. The solution space can be loosely described as the family of all
solutions of a given system of equations emanating from a fixed initial datum in S. As
such the solution operator ¢/ can be understood as a mapping

U:S— 27, U[Uy] ¢ T, U[Upl(0—) = Uy for all U € U[Up].

Definition 2.2 (Solution operator). We say that a mapping i/ : S — 27 is a solution
operator if the following properties are satisfied:

[A1] Existence, compactness. For each Uy € S the set U/[Up] is a non-empty bounded
subset of BV1oc([0, 00); ), compact in the topology of L ([0, 00): S),

loc

U[Up](0—) = Uy for any U € U[Up].
[A2] Measurability. The set valued mapping
U:Tp eS8 UlUp) €27

is Borel measurable; where 27 is endowed with the Hausdorff topology defined
on compact subsets of the metric space Llloc([O, 00); S).
[A3] Shift invariance. For any U € U[Up] and any 7 > 0, we have

&r[U] e U [U(T-)].
[A4] Continuation. For any U! € U[Up], T > 0, and U? € U[U(T —)], we have
U Ur U? € U[Up.

A version of the following result for the case of 7 being a set of continuous trajectories
with values in a Polish space was proved by Cardona and Kapitanski [5]. However, for
applications in fluid dynamics, where time continuity of the energy or entropy is not
valid, a suitable modification is necessary which was proved in [2, Section 5].

Proposition 2.3. Let S be a Polish space and let T = BV, ([0, 00); S). LetU : S —
27 be a solution operator enjoying the properties [A11-[A4] from Definition 2.2.

Then U admits a measurable semiflow selection. Specifically, for any Uy € S there
exists a single trajectory

UeU[Up], U:S—>T C Llloc([O, 0); 8) Borel measurable,
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such that
U:[t,Up] € [0,00) x S UlUpl(r—), t > 0, U0—) =Ty

is a semiflow in the sense of Definition 2.1.
In addition, if B : S — R is a bounded continuous function and ). > 0, the selection
can be chosen to satisfy

/OO exp(—=At)B(U[t; Upl) dt < /Oo exp(=A)BV())dt YV e U[Up]. (2.1)
0 0

We recall that the selection procedure of Proposition 2.3 relies on a subsequent
minimization (or alternatively maximization) of a sequence of suitable continuous func-
tionals, as e.g. the functional in (2.1), over the set of all solutions. The functionals are
chosen in a way to separate points of the trajectory space 7 . For this purpose the Laplace
transform with respect to the time variable proved to be beneficial. In general, the selec-
tion depends on the particular choice of a sequence (A,),en representing the points
where the Laplace transform is evaluated. The functional in (2.1) shall then be chosen
as the first one to minimize/maximize. In our application to the complete Euler system
in the next section we chose (2.1) in order to maximize the entropy production rate.

In the remaining part of the paper, we identify a suitable solution operator If associated
to the Euler system that complies with the hypotheses of Proposition 2.3. In Sect. 5, we
present further discussion on the question of optimality of the choice of the functionals
and in particular the relation to the Dafermos criterion discussed in the introduction.

3. Dissipative Solutions

Our first goal in this section is to identify a suitable class of generalized solutions to
the Euler system (1.1)—(1.5). We start by introducing the basic state variables, then we
recall the (slightly modified) notion of dissipative measure-valued solutions from [4].
This leads us to our notion of dissipative solution which we introduce in Sect. 3.3.
Eventually, we study stability of dissipative solutions as well as their existence. The
semiflow is then constructed in Sect. 4.

3.1. Phase space. In what follows, we plan to work with the state variables ¢, m, and
the total entropy S = os. In accordance with hypotheses (1.2) and (1.3) (compare also
(1.7) with) the pressure p and the internal energy e can be written in the form

S
o’ ! exp( > .
o

y S 1
p=p.S) =0 exp| - 7€=€(Q,S)=y_

v

1
Lemma 3.1. The mapping
(0,8 = p9S), 0>0, SER,

is strictly convex.
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Proof. This is a matter of direct computation of the Hessian matrix. We have

ap.S) S S s
00 Yo eXp\ — ) — ¢ exp
Q @ Cy CUQ

—— = —po" T exp
aS Cy ch

a2p(g, S) _ SV S
— e* + (y—l)g——) o’ texp (—)
Cy Cv0
82p(g S) 1 S 1 S
Z PP 7—2 — _— 2, v4
952 exp cv0 20 e e o)’

3%p(o, S 1 S S S
"p(0. 5) =—(y—Do" Zexp|— )| — So" Fexp | —
9 2
008 Cy Cv0 c; Cv0

1 s s
= |:—(V—1)Q2— Q}QV 46XP( )
Cy Cvo

Obviously the Hessian matrix has positive trace, while its determinant reads

S\7T* (o2 S\ -1 S \?
[QV*“ exp (*)] {Qz |:()’ - 1o + ((y — Do - 7) } - (ng - 79) }
Cy0o cy Cy Cy Cy
2 4
S0 (X))
v GO

which completes the proof. O

and

Consequently, we may define

Q’”exp(&) ifo>0, §eR,
p@,S) = (y —Dee(0, ) =1 0ifp =0, S <0,

oifp=0, S>0,

which is a convex lower semi-continuous function on [0, c0) x R.
Similarly, we define the kinetic energy

Mif@>0, m e RV,
— =10ifm=0,

00if o =0,m #0,

which is a convex lower semi-continuous function on [0, c0) x RN . We conclude that
the total energy

| m|?
&E=E&(,m,S) =-——+pe(o, )
Q

may be viewed as a convex lower semi-continuous function of ¢ > 0, m € RN and
S eR.
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3.2. Dissipative measure-valued solutions. Following [4] we introduce the concept of
dissipative measure-valued solution to the Euler system (1.1)—(1.5). In addition, similarly
to [2], we refine the definition of the measures describing the concentration defects. The
reader may consult [4] for the physical background and mathematical objects like Young
measures used in what follows.

We start by introducing the state space of “dummy variables”:

0={i6..51|220 merY, Ser}.
By P(Q) we _denote the set of probability measures on Q, whereas M+(§l and
MH(SN ’_1 x 2) denote the set of non-negative bounded Radon measures on 2 and
SN=1 5 @, respectively, where S¥~! c R is the unit sphere.
A dissipative measure-valued solution of the Euler system (1.1)—(1.4) with the initial
data

[0o, mg, Sp] and the total energy Ey

consists of the following objects:

e a parametrized family of probability measures

Vi (t,x) € (0,00) x Q> P(Q), Vel )((0.T) x Q;P(Q));

weak — (

e kinetic and internal energy concentration defect measures
Cins Cint € L\?Voeak_(*) (0, oo; M+(§)),

e convective concentration defect measure

_ — 1
oo € L0000 M7V x5, 5 [

SN

. dQ:conV = Q:kin-

The Euler equations are satisfied in the following sense:

e The rotal energy is a constant of motion:

1 |m|? S
/ Vs 20 7 exp (== )) ax
Q 2 % o

+ ﬁ (d@in () + dCine (1)) = Eo fora.a. > 0. 3.1)
Q

e The conservation of mass (the continuity equation (1.1);) reads
o0
fo /Q[(Vt,x§ 0)p + (Vix:m) - Vyip| dxdr = —/QQ(NP(O) dx (3.2

for any ¢ € C}([0, 00) x Q).
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e The balance of momentum (equation (1.1),) reads

mQ®m
ff[vm, 09+ Vi Q>OT>:w}dxdt

+/ / (Vz,x;P(é,S’))divxgo] dx dr
0o Ja

o (3.3)

+/ [f/;w ](5®§):vx¢d€conv(t)i| dr

r-n [ [ [ divio de:mt(t)} ~ [ mop(o) ax
Q
for any ¢ € C1([0,00) x @2; RY), ¢ - n|yq = 0.
e The entropy balance (inequality (1.8)) is rewritten in the renormalized form:
o (S S\ .
/ / Vixi0Z | = Noo+ (Vi Ig0Z | = | m) - Vi | dxdt

0 JQ Q Q (3.4)

So
/ 0oz ( )(0(0) dx
Qo

for any ¢ € C}([0, 00) x ), ¢ > 0, and any Z,
Z € BC(R) non-decreasing.

It follows from (3.2) and (3.3) that
1 / Vix; 0)p dx, 9 € C'(Q),
Q
r— / (Vixi)g dx, ¢ € CH( RY), ¢ -njse =0,
Q

are continuous functions of time. Accordingly, equations (3.2) and (3.3) can be written

19 =12
/ / [Vix: 8)00 + Veog: ) - Vi) dxdr=[ / Vi 8)0 dx] .35
T Q Q =1

forany 0 < 11 < 1p < 00, and any ¢ € CC1 ([0, 00) x ), where (Vo.x; 0) = 00(x);

m ® m
/ f[vtx Y- 0@+ (Vixi L 5>0 5 )ZVx(p:| dx dr

+/ /(Vr,x§[7(é7 $)diveg dx dr
T Q

o L €00 Ve atimo)| a (3.6)
=1
+(y — l)/ |:/ leA‘P dcmt(t)] |:/ (vt,x; ﬁl)‘ﬂ dx] s
Q =1

(Vo,x; m) = mo(x),
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forany 0 < 171 < 1» < 00, and any ¢ € Cg([O, 00) X Q; RN), @ -nlo = 0.
As shown in [4, Section 2.1.1], the renormalized entropy inequality (3.4) implies that
Vi x [(Q, S) ) S > so0 > —oo} =1 fora.a. (¢, x) 3.7)
as soon as

So > 00so a.a.in Q2.

This is the minimum principle for the entropy s = ‘g > s0. From now on, we fix sg

and consider only solutions satisfying (3.7). This corresponds to having a new entropy
s — 5o > 0. Then one can perform the limit passage Z(s) / s in (3.4) obtaining the
entropy balance

o i
/ / [(v,,x;§>az<p+<v,,x;ﬂé>o§3>-w} dxdr < — / Sop(0) dx, (3.8)
0 Q o Q

cf. [3]. In particular,
t > / Ve S)p dx = xg (1) + x,(1), ¢ € C1(Q), ¢ =0,
Q

where X; is continuous and X% are non-decreasing. Thus (3.8) can be rewritten in the
form

2 - ~ﬁl 5 =7+
/ f |:<Vt,x; $)orp + Vex; [g=0S—=) - foﬂ} dx< [/ Vixs S)e dx] . (39
71 JQ o Q t=1]—

forany 0 < 11 < 10 < 00, and any ¢ € C]([O, 00) X 5), ¢ > 0, where (Vo— »; S’) =
So(x).

Now we have all in hand to formulate the definition of a dissipative measure-valued
solution.

Definition 3.2 (Dissipative measure-valued solution). A dissipative measure-valued
solution of the Euler system (1.1)—(1.4) with the initial data

[00, mg, Sp] and the energy Ey
is a parameterized family of probability measures
Vix 1 (t,x) € (0,00) x Q> P(Q), V € Ly (0, T) x 2 P(Q)),
together with the energy concentration defect measures
Chin, Cint € Lk (s (0, 00 M*(Q)),

and the convection concentration defect measure
— 1
N—1
Ceonv € st%ak_(*) (0, 00; M*(S x 2)), E /N ! d€eony = Cin,
SN-

satisfying the integral identities (3.1), (3.5), (3.6), and (3.9).
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Next, we list certain bounds that can be derived from hypothesis (3.7) and the energy
equality (3.1). As the entropy is bounded below by sp, we deduce from (3.1) that

/ (Vix; 07) dx S Epforaa.r > 0. (3.10)
Q
Similarly, as
2y
) = | y+l ~ 2
= a7 | L <
Vo 0
we conclude
2
/ (Vyx: 1| 7T) dx < Eo foraa. r > 0. 3.11)
Q

Finally, we derive some bounds on the total entropy S. Recall that S > s00; whence

|S’| =5 < —sp0 whenever S <0.
IfS > 0, we compute
57 ) —y P <C"Sé) Sy > 3§
o
Consequently,
f (Vix: 1Sy dx < Eg foraa. t > 0. (3.12)
Q

Next, we estimate the quantity S/ \/5 If S < 0, we get, repeating the above argument,

< —so\/g for § < 0.

S
Ve

IfS > 0, we write

vl Voess) (s 1)” ve) ~\ve

We may therefore infer that

5
Vx;_
0| 7

Finally, we recall the weak—strong uniqueness principle proved in [4, Theorem 3.3].

1
N———"

2y
)y dx < Egforaa.t > 0. (3.13)
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Proposition 3.3. Let 2 C R N N =1, 2, 3 be abounded domain with smooth boundary.
Suppose that the Euler system (1.1)—(1.5) admits a classical solution [o, m, €] in the
class

0, £ € C(0,T); W*(Q)), m € C([0, T); W2(2; RY)) (3.14)
with the initial data

1 |mg|?
Q0>07m0750=_| 0|
2 o0

+ cy00v0, Vo > 0.

Let V; x be a dissipative measure valued solution specified in Definition 3.2 starting
from the data

00, Mg, So = 0o0s(0o, Yo), Eo :f & dx.
Q

Then

Qkin|[0,T)x§ = cint|[0,T)x§ =0, Q:CO“V|[(),T)><SN*1><§ =0,
and
Vix = 8o(t.x).m(,x),5(t.x)]

foraa. (t,x) €[0,T) x Q.

Note that existence of a local-in-time classical solution in the class (3.14) was estab-
lished by Schochet [18].

3.3. Dissipative solution. Having collected the necessary preliminary material, we are
ready to introduce the central object of the present paper - the dissipative solutions to
the Euler system.

Definition 3.4 (Dissipative solution). The quantity ([0, m, S], Eg), where

2y
0 € Cyeak,loc([0, 00); L7(R)), m e Cweak,loc ([0, 00); L7+ (Q; RN)),
N (3.15)
S € L*(0, 00; LY (2)) N BVyeak 1oc ([0, 00); W_£'2(Q)), £ > > +1,

is a dissipative solution of the Euler system (1.1)—(1.4) with the initial data

(leo, mo, Sol, Eo) € L” () x L%(Q, RY) x L7(Q) x [0, 00)

if there exists a dissipative measure-valued solution V; , as specified in Definition 3.2
such that

0(t,x) = (V,; 8), m(t,x) = (Vi ;s i), S, x) = (V13 S).
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Remark 3.5. In accordance with the bounds (3.1), (3.10), (3.11), and (3.12), any dissi-
pative solution belongs to the class
2
0 € L([0, 00); L (R)), m € L¥([0, 00); L7 (2 RV)),
§ € L*([0, 00); LY (2));

whence to bounded balls in the afore mentioned spaces. These are compact metric
(Polish) spaces with respect to the weak topology. In particular, condition (3.15) reduces
to

tr—>/ oy dx, z|—>/ m - ¢ dx € Cipc[0, 00),
@ @ (3.16)
> / S¢ dx € BVjoe[0,00) V ¢ € C(Q), ¢ € C°(2: RV).
Q

Finally, we introduce a subclass of dissipative solutions that reflect the physical
principle of maximal dissipation defined via the entropy production rate

a(r):/ (S(x) — So) dx
Q

discussed in Sect. 1.2. Let ([o', m’, S'], Eg), i = 1,2, be two dissipative solutions
starting from the same initial data ([gg, mg, So], Ep) with entropy production rates ol
and 2. Similarly to (1.11), we introduce the relation

(lo',m', $1, Ep) > ([0* m?, ], Eq)
& ol(zt) > o2(z) for any T € (0, 00).

Definition 3.6 (Maximal dissipative solution). A dissipative solution ([o, m, S], Ep)
starting from the initial data ([og, mg, Sol, Eo) is a maximal dissipative solution if it
is maximal with respect to the relation >. Specifically, if

([8,m, 81, Eo) > ([0, m, S1, Eo),

where ([0, m, S1, Eo) is another dissipative solution starting from ([gg, mg, So], Eo),
then

o =06 in [0, 00).

Here o and & are the entropy production rates of ([0, m, S1, Eo) and ([o,m, S], E)
respectively.

3.4. Sequential stability. We start by introducing suitable topologies on the space of the
initial data and the space of dissipative solutions. Fix £ > N /2 + 1 and consider the
Hilbert space

Seuter = WE2(Q) x WH2(Q: RY) x WE2(Q) x R,
together with its subset containing the initial data
Druter = { (o0, mo. Sol. Eo) € L' (2 R¥*) x R |

1 lmg|? v So
00 = 0, So = 5000, > +CyQp eXp dx < Ep
el2 oo Cv00
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Note that Dgyje; is a closed convex subset of Sgyer. We also define the trajectory space
Teuler = BVi0c([0, 00); SEuler)-

In the following we are going to show sequential stability (compactness) of the set
of dissipative solutions. This will be subsequently used in the proof of existence of
dissipative solutions (using a suitable approximation) as well as measurability of the

mapping
([oo, Mo, Sol, Eo) € Druter — U([00, mo, So, Eo) € 278uer,

Teuler = Llloc([O’ 00); SEuler)»

where U ([09, mg, Sol, Eg) denotes the solution set

Uloo, mo. Sol. Eo) = {lo. m, S, Eol € Teuier

([o, m, S], Ep) is a dissipative solution with initial data ([og, mg, So], Eo)}

for the initial data ([0, mg, Sol, Eo) € Dguler- We have the following result.

Proposition 3.7. Suppose that {([00,¢, Mo.¢, So.¢], Eo,¢)}e>0 C Dguler is a sequence of
data giving rise to a family of dissipative solutions {([0s, M, S¢], Eo.¢)}e>0, that is,

([oe, mg, S¢], Eo.e) € U([00,e, Mo ¢, So.e], Eo,e)-

Moreover, we assume that there exists E > 0 such that Epe < E forall e > 0.
Then, at least for suitable subsequences,

2
00.e = 00 weakly in LY (), mg . — mq weakly in LV%‘(SZ; RM),

(3.17)
So.e = So weakly in LY (2), Ey. — E,

and
0s —> 0 in Cyeak,loc ([0, 00); L7 (Q)),

2y
m, — m in Cyeax.1oc ([0, 00); L7+ (25 RM)),

S — Sin L1 ([0, 00); W=42(Q)) for any ¢ < oo,

loc

Se — S weakly-(*) in L>(0, oo; LY (R)),
where

(o, m, S, Eo) € U([o, mg, Sol, Eo).

Proof. We mainly follow the ideas from [2, Proposition 3.1], to which we refer for
further details. Some modifications are needed to accommodate the additional variable
S (in the internal energy and the entropy balance).

First, we claim that the convergence in (3.17) follows immediately from the bound-
edness of the initial energy Eo  and the uniform bounds (3.10)—(3.12). Indeed, using
Jensen’s inequality and convexity of the energy established in Lemma 3.1, we deduce
that
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1 jm,|? e LM
S——+ (e, Se) | (1, %) = (V, i 55— +p0,95)) (3.18)
2 0 2 0
for a.a. (t,x) € (0,00) x Q, where Vy , is the (Young) measure associated with the
solution ([0, m¢, S¢], Ep ¢). Integrating over 2 we can see that the right hand side is
bounded by Eo . < E using (3.1).
On the other, we can use (3.10)—(3.13) to obtain the estimates

me* -
sup ——+ol +S8) | dx < c(E), 3.19)
>0 JQ Q¢
S 2y .
sup/ [|mg|2V/V+1 + ‘—8 } dx < ¢(E), (3.20)
>0JQ N

uniformly in &. Consequently, we deduce from equations (3.2), (3.3), and the energy
balance (3.1), that

0s —> 0 in Cyeak loc ([0, 00); LY (), 0 > 0,
m; — min Cyeatioe([0, 00): L7 (2 RV)),
where
0(0, ) = g0, m(0, -) = my.
Similarly, we get from (3.19) that
Se — S weakly-(*) in L>°(0, oo; LY (R2)).

Moreover, we deduce from the entropy balance (3.9) and Helly’s selection theorem that
/ Se(t, o dx — f S(t, )¢ dx forany r > 0 and any ¢ € wh2(Q),
Q Q

modifying S on the set of times of measure zero as the case may be (we splitgp = ¢* —¢~
and argue for both separately). Note that it is enough to show the former one for a dense
subset of W%2(2) which follows from a diagonal argument. Seeing that L? (2) endowed
with the weak topology is compactly embedded into W—%2(2) we obtain the desired
conclusion

S — Sin LI (0, 00; W42(Q)) forany 1 < g < oo.

loc

Obviously,
Eoe — Eo

passing to a subsequence as the case may be. Next, it is easy to perform the limit in the
equation of continuity (3.2) to obtain (3.5).

Finally, as a consequence of the energy balance (3.1), the Young measures Vy  have
uniformly bounded first moments; whence

Vix — V. weakly-(*) in L2 ) ((0, 00) x €2; P(S)) (3.21)

weak — (x

at least for a subsequence. In addition, using estimates (3.11)—(3.13) we can pass to the
limit in the entropy balance (3.9).

The limit in the total energy balance (3.1) and the momentum balance (3.3) involves
the concentration measures and is more technical. However, the procedure is exactly the
same as in [2, Section 3] therefore we omit the proof here. |
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3.5. Existence of dissipative solutions. The sequential stability from the previous part
combined with a suitable approximation implies the existence of a dissipative solution.
The precise statement is the content of the following assertion.

Proposition 3.8. Let ([oo, mg, Sol, Eo) € Dguler be given. Then the Euler system (1.1)—
(1.4) admits a dissipative solution in the sense of Definition 3.4 with the initial data
([oo, mo, Sol, Eo).

Proof. Given initial data ([0g, mg, Sol, Eo) € DEguler implies
2
00 € L7 (), mo € L1 (2 RY), Sy e L7(R), 00 = 0, S = s000,

with the respective bounds in terms of E, recall the lower bounds for the energy obtained
in (3.10)—(3.12). It is standard to construct smooth functions g ¢, mg . and Sp ¢, where
00.¢ 1s strictly positive and mg . compactly supported in €2, So.c > 00 ¢S50 such that

2
00,e = 001in L7 (), mo, — myg in LVTVI(Q; RY), So.e — Soin LY (),

and

1 |mo | y So,e 1 [my|? v So
= + cv0y , €XP dx — - + cv0p €Xp dx
Ql2 00.¢ ’ Cv00,¢e el2 oo Cv00

as ¢ — 0. Finally, we set 5o = So.¢/00, and ug . = mg ¢/00.-
Now, similarly to Kroner and Zajaczkowski [ 15], we consider the approximate system

d;0 + divy(ou) = 0,

9; (ou) + divy (ou @ u) + Vy (QV exp (i)) =¢&lu, ¢ >0, (3.22)
Cy
os+u-Vs =0,

with the initial data

0(0,) =00, w(0,-) =g, s(0,) = s0.¢. (3.23)

Here, the symbol £ denotes a suitable “viscosity” operator, with the associated set
of boundary conditions to be imposed on the velocity field u. In [15], the authors con-
sider £ = Ai with the Dirichlet boundary conditions. This is not convenient here,
as the resulting admissible test functions ¢ in the momentum equation (3.3) would be
compactly supported in 2. In order to preserve the weak—strong uniqueness principle
(Proposition 3.3), however, we need a larger class of test functions satisfying merely the
impermeability condition ¢ - n|3q = 0. To this end, we use a different ansatz inspired
by Kato and Lai [14].

Let W>2(Q2; RV) be the Hilbert space,
w32(Q:; RV) = {u e W32(Q: RV) |u - nlyq = 0} :

We suppose that @ C RN, N = 1, 2, 3is abounded regular domain so that W>'* (22; RV)
is compactly embedded in c! (Q; RN ). Moreover, W,,3 2 s separable as being a closed
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subset of the separable Hilbert space W32, Let ((; )) be the scalar product on W,?‘z,
that is,

(iw) =Y f 9%V - 9%w dx+/ v-wdx, v,we W2(Q: RV).
Q Q
la|=3

Similarly to [14], we consider L to be the self-adjoint operator on W,f”z associated to
the bilinear form (( ; )), namely

Lu = Z (—97)37u + u with the homogeneous Neumann boundary conditions.
Je|=3

The associated variational formulation of the momentum equation in (3.22) then reads

1=t s
u-godx] =f|:u®u:V(p+ Y ex (—)divgo:| dx
[/QQ - o Q x Q p o x (3.24)

—&((u; @))

forany T > 0, and any ¢ € W,f’z(Q; RM).

As W,?’z is a separable Hilbert space, the existence proof used in [15, Theorem 4.1]
applies without essential modifications (see also Hoff [13] for how to handle the transport
equations for ¢ and s). Given ¢ > 0, there exists a trio (o¢, Ug, S¢) Which is a classical
solution to (3.22) in the following sense:

e The balance of mass (3.22); and the entropy balance (3.22)3 hold pointwise in
(0, c0) x .

e The balance of momentum (3.22), holds in the sense of (3.24).

e The solution possesses enough regularity to rigorously justify the standard energy
estimate

d

1 5 y Se 5
— —0¢lug|” +cyol exp | — dx + e((ug; up))” =0. (3.25)
dr Jo 2 c

v

Finally, we set S; = 0.5, and m; = p,u,. Using the arguments of the preceding
section, it is easy to perform the limit ¢ — 0 in the sequence of approximate solutions

1 2 y Se
Oc, Mg = U, Sg = 0S¢, Eg = §Q£|u£| + 0, EXp dx
Q Cv0Qs >0

to obtain the desired dissipative solution, with the exception of the energy equality (3.1)

that now reads
1 |m|? S
/(V;,x;fg +cy0? exp —]) dx
Q 2 0 w0

+ﬁ(d€kin(f) +d€in (1)) < Eg fora.a.t > 0. (3.26)
Q

Note that, on account of (3.25), it is easy to see that viscous term in the momentum
equation vanishes as ¢ — 0. In contrast with (3.26), the entropy balance (3.9) holds as
equality. To convert (3.26) to equality, it is enough to augment Ciy(¢) by h(z) dx with a
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suitable spatially homogeneous /# > 0. Note that the momentum equation (3.3) remains
valid as €y (¢) acts on div, ¢, where ¢ - n|3q = 0; whence

/ h(t)divye@ dx = 0.
Q

4. Semiflow Selection

The goal of this section is to show that there is a semiflow selection to the Euler system
(1.1)—(1.4). We recall that the precise definition of a semiflow - in the abstract framework
- is given in Definition 2.1 (recall Subsection 3.4 for the definitions of Dgyjer and Zgyler).
The following is the main result of the present paper.

Theorem 4.1 (Semiflow solution) The Euler system (1.1)—(1.4) admits a semiflow solu-
tion in the class of dissipative solutions in the sense of Definition 3.4. More specifically,
for any initial data

Uy = ([eo, mg, Sol, Eo) € Druler

there exists a dissipative solution

U = [U[ts UO] = ([Q(ts ')’ m(t’ ')7 S(t_a )]’ EO) € ,TEuler
enjoying the following properties:

e for each Uy € Dgyler the solution U[-, Ug] is maximal in the sense of Definition 3.6,
® Dgyler is an invariant set, meaning

[U[t» UO] € DEu]er

foranyt > 0;
o the mapping

Up € Sguter = U, Up] € Llloc(o» 00; SEuler)

is Borel measurable;
o the mapping

U : [0, 00) x Dguler = Dguler

is a semiflow, specifically,
ULt + 125 Uol = U 123 [ Uls o |

forany ty, tp > 0, and any Uy € Dgyler-

The claim of Theorem 4.1 will follow from Proposition 2.3 as soon as we ver-
ify [A1]-[A4] from Definition 2.2 for the solution set U([og, mg, So], Eg) with
([eo, mg, Sol, Eo) € Dgyler- This will be done in the following lemmas.

Lemma 4.2. For each ([0g, mg, Sol, Eo) € Dguler the set U[pg, mg, So, Eo] is a non-
empty bounded subset of BV1oc ([0, 00); Spuler) and it is compact in the topology of
L (10, 00); Stuter)-
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Proof. The claim follows from Propositions 3.7 and 3.8. O

Lemma 4.3. Let ([0, m, S], Eo) be a dissipative solution to the Euler system in the sense
of Definition 3.4. Then G o ([o, m, S, Ey) is a dissipative solution corresponding to
the data ([o, m, S1(T —), Eyp).

Proof. We recall that the operation of time shift is given by
Sr o ([o,m, S], Eo)(t) = ([e,m, ST +1), Eg), T >0, 1 = 0.

Since a shift of a test function in (3.1)—(3.4) produces a test function in the same class,
the claim easily follows. O

Lemma 4.4. Let ([Ql,ml, S, Eo) be a dissipative solution of the Euler system,
T > 0 and let ([QZ, m?2, SZ], Eo) be another dissipative solution with the initial data
(le", m', S')(T—), Ep).

Then

(o', m', $'1, Eo) Ur ([0*, m?, 521, Eo)

is a dissipative solution of the Euler system.

Proof. The concatenation property for (3.1)—(3.3) is obvious. As far as (3.4) is concerned
we observe the following. The function

S
[0, ST 0Z (-)
]
is concave such that

/ oZ <£) (T—)p dx > lim sup/ Vixi0Z <§>>‘P dx.
Q o t—>T— JQ Y

So, (3.4) has the concatenation property as well. O

Lemma 4.5. The mapping

U : ([0, mo, Sol, Eo) € Dyter — U0, Mg, Sol, Eg) € 27Buer

is Borel measurable; where 2T8ve s endowed with the Hausdorff topology defined on

compact subsets of the metric space Llloc( [0, 00); SEuter)-

Proof. As a consequence of the sequential stability from Propositions 3.7 the claim
follows from [20, Thm. 12.1.8]. O

Proof of Theorem 4.1. In view of Proposition 2.3, the first claim of Theorem 4.1—the
existence of the semiflow U—follows now from Lemmas 4.2—4.5. Let us finally explain
why U([eg, mg, Sol, Eg) can be selected to be maximal in the sense of Definition 3.6.
As stated in Proposition 2.3 the selection can be chosen to satisfy

Jo~ exp(—=1)B(U(leo, mo, Sol, Eo) (1)) dr
< [ exp(—n)B(([8, m, S, Eo) (1)) dr.
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for any ([0, m, S‘], Eo) € U([og, mg, Sol, Eo). Here B : Sguler — R is a bounded and
continuous function. We suppose that

B(o.m. S, E) :a<f de),
Q

where ¢ : R — R is smooth, bounded and strictly decreasing. We proceed by con-
tradiction. Let ([§, m, S1, Eo) € U([oo, mg, Sol, Eo) be such that ([3, m, S], Eg) >
(o, m, S, Ey), thatis, [, Sdx > Jo S dxin (0, 00), where we denote ([0, m, S], Eq) =
U(leo, mg, Sol, Eo). Then we get

a(fQS‘dx> Sa(fQde),

S exp=n) [ (Jo S dx) — e (J Sdx) | ar < 0;

whence fQ Sdx = fQ Sdx aa. in (0,00) since « is strictly decreasing. Hence
U([oo, mg, Sol, Eo) is maximal with respect to >. The proof of Theorem 4.1 is hereby
complete. O

5. Concluding Discussion

We have shown the existence of a semiflow solution to the complete Euler system in
the class of dissipative solutions. The semiflow solution has been selected among other
solutions starting from the same initial data. The major issue is, of course, uniqueness of
such a selection. In accordance with Proposition 3.3 the selected solution is unique and
coincides with the strong solution emanating from the same initial state as long as the
latter exists. There is a special class of strong solutions - the equilibrium states. As we
shall see below, they enjoy certain stability properties thanks to the fact that the selected
solutions produce the maximal amount of entropy.

5.1. Stability of equilibrium states. The equilibrium states are stationary solutions to
the Euler system (1.1)—(1.4). Specifically, the momentum vanishes identically m = 0,
while the density o = ¢ > 0 and the entropy S = S are constant. Note that p is uniquely
determined by the total mass

M =gl =/ o(t, x) dx =/ 00(x) dx forany ¢ > 0.
Q Q

Given p and the total energy Eo, the (constant) equilibrium entropy S is the unique
maximizer of the total entropy among all states with given mass and energy:

fggdxzsup{fQde‘Q,SGLI(Q),QZQ
Joevo” exp () dx = Eo, fqo dx=Mm].

Indeed, suppose that g, S are constant, and

Joodx = [qodx=M, [Sdx < [,S dx,
Jqoe@, S) dx = [, 0e(o. S) dx = Ej.
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Normalizing the above relation by a factor I]ﬁl we may suppose |2| = 1. Using convexity
of the function ® (o, S) = ge(o, S) (cf. Lemma 3.1) and Jensen’s inequality, we get

E0=/q>(§,§)dx=q>(/§dx,[§dx)
Q Q Q
5@(/de,/5dx>§/<I>(Q,S)dx=E0.
Q Q Q

As & is strictly increasing in S and strictly convex in (g, S), we get successively
JoSdx=[,Sdx,ando =0, S =S.
We claim that a maximal solution can only see the equilibria with the energy Ej.

Proposition 5.1 (Stability of equilibria). Let ([0, m, S, E¢) be a dissipative solution to
the Euler system emanating from the initial data

00 = 0 — a positive constant, mg = 0, Sy — a constant.

Suppose that ([o, m, S|, Eg) is maximal in the sense of Definition 3.6.
Then

o=0 m=0, S=35, wheref

S _
cy07 exp <—_> dx = S. (5.1)
Q

Cyo

Proof. Asthe equilibrium solution maximizes the total entropy, we have S > So; whence
(5.1) is a dissipative solution. By the same token, it is a maximal solution and any other
solution “larger” in the sense of > has the same entropy, meaning it concides with the
solution (5.1). |

5.2. Dafermos’ admissibility criteria. Finally, we discuss some implications of Dafer-
mos’ admissibility criteria introduced in Sect. 1.1. As we have seen in the proof of
Theorem 4.1, maximimality of the entropy production by dissipative solutions has been
enforced by maximizing the integral

/ exp(—t)/ S(t, x) dx dr
0 Q

modulo the cut-off function «. Actually the same result could have been achieved by
maximizing

/ooexp(—)»t)/ S(t, x) dxdt, » > 0. (5.2)
0 Q

Thus, a natural question arises, namely, what would be the resulting solution if we
maximized successively the entropy for a family A, — 00? Lemma 5.2 below implies
the following: if there is a solution such that it has maximal Laplace transform of the
total entropy evaluated at every A, from a sequence 1, — 00, then it satisfies the entropy
production criterium by Dafermos in the form (1.9), that is, it is maximal with respect
to the partial ordering >p.

With this motivation in mind, we employ the following notation for F,G €
L*°(0, 0c0) N BV ([0, 00)): We say that F >p G provided there exists § > 0 such
that F(t+) > G(t+) for all t € (0, §); and we say that F' > G provided there exists a
sequence (7,),, Ty > 0, T, — 0 such that F(7,+) > G(1,+).
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Lemma 5.2. Let G C L°°(0, 00) N BV oc ([0, 00)) and assume that there exists F € G
such that for some sequence L, — o0 it holds

o0

o0
An/ exp(—A,t)F(t)dt > A,,/ exp(—A,t)G(t)dt  forall G € Gandn € N.
0 0

Then for every G € G \ {F} one of the following cases holds: either F =p G or
F ~r G, meaning, in the latter case it holds simultaneously F >r G and G >r F.
Accordingly, F is maximal with respect to >p.

Proof. Fix an arbitrary G € G\ {F'} and assume that the first claim F >p G is not valid.
That is, for every § > O there exists ¢ € (0, §) such that F(t+) < G(¢+) This directly
implies G > F. So it remains to show the converse statement, i.e. F >r G.

Case 1: If there is a § > 0 such that F(1+) < G(t+) forall t € (0, §) then we write

An /OO exp(—A,t)[G(t) — F(¢)]dt
0

e e]

8
= / exp(—A,)[G(t) — F(¢)]dt + A, f exp(—A,1)[G() — F(¢)]dt
0 8

5
Z hn eXp(—an)fo [G(1) = F()]dt — ([ Fllzee + |Gl L) exp(—=And),

where the right hand side is strictly positive provided n was chosen sufficiently large.
This is a contradiction with the maximality of the corresponding Laplace transforms of
F.

Case 2: If that is not the case, then the functions ', G oscillate around each other in
the sense that for every § > 0 there exists ¢t € (0, §) such that F(t+) > G(¢+). Hence
F >r G and the second claim, namely, F' ~r G, is valid.

Finally, as already observed in Sect. 1.1, maximality with respect to >z implies
maximality with respect to >p. Thus, F is maximal with respect to >p and the proof
is complete. O

In other words, if for some initial data the Euler system (1.1)—(1.4) possesses a
solution whose total entropy has maximal Laplace transforms evaluated at a sequence
An — 00, then the Dafermos’ criterium is satisfied. Note that since we have a semigroup
it is enough to test the criterium at the time t = 0.

We now argue that such a solution can be always chosen by our selection process
considering a suitable order of minimizers in the procedure described in [2, Section 5.1].
The latter one considers bounded continuous functionals 8 : S — R on the phase space.
The final selection U maximizes (or minimizes) 8(U) pointwise in time by selecting the
maximizer (or minimizer) of the functionals

1[V] = / exp(—Ant)B(V) dt, V € BVjoe([0, 00): S), (5.3)
0

from the solution set. In [2, Section 5.1], the sequence (A,), is chosen to be dense in
(0, 00). However, the density of (1,), is only needed to apply Lerch’s theorem imply-
ing the uniqueness of the Laplace transform. In fact, it is sufficient that the family of
functionals 7, in (5.3) separates points, which can be achieved by choosing a suitable
increasing sequence X, — oo. This follows from the following generalization of the
classical Lerch’s theorem. Consequently, it is enough that the total entropy of our selec-
tion maximizes (5.2) for A = A,, n € N.
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Lemma 5.3. Let A > 0 and (), C (0, 00) be a sequence with the following property:
foralln,m € N there exists k € N such that ¢, + &, = &. Then the set of functionals

L>®0,00) > R, F f exp(—(A+ &) F(t)dt, neN,
0

separates points.

Proof. Due to the condition on the sequence (&, ),, the set of finite linear combinations of
functions (e %), forms a subalgebra of C(([0, co)) which separates points and vanishes
nowhere. Hence by the locally compact version of the Stone—Weierstrass theorem it is
dense in Co ([0, 00)) and consequently dense in L 1(0, 00). The claim now follows since
L'(0, 00) is the predual of L>(0, c0): let F be such that all the functionals above are
zero. Then for every g € L(0, 00)

/OO g®)exp(—=At)F(t)dt =0
0

and consequently e ™F () =0forae.t € (0, 00) hence F = 0. |

From the above Lemma we see that a minimal sequence (1,), needed for Lerch’s
theorem is an arithmetic sequence of the form A, = A + n¢ where A,¢ > 0. For
completeness we note that the converse implication regarding the Dafermos’ criterium
is not valid. More precisely, if a function satisfies the Dafermos’ criterium (1.9) then
it will not necessarily be chosen by our selection. This observation is based on the
following result.

Lemma 5.4. Let G C L*°(0, 00) N BVioc ([0, 00)) and assume that F € G satisfies
F >=p G for every G € G. Then there exists \g = Lo(F, G) > 0 such that for all
A > Mg it holds

o o
A/ exp(—At)F(¢)dt > A/ exp(—At)G () dr.
0 0
Proof. We write

[e9) $
A/ exp(—AD[F (1) — G(1)]dt = A/ exp(—AD)[F(t) — G(t)]dt
0 0

+A /OO exp(—AD)[F (1) — G(t)]dt
)

5
> )»eXp(—)uS)fo [F(t) = GO)]dr = ([[Fllzo + |GllL) exp(=28).

Hence there exists 19 > 0 (depending on F, G) such that the right hand side is strictly
positive provided A > Ag. O

In other words, one would like to start the selection procedure given by an increasing
sequence (A,), with A1 as large as possible, in order to guarantee that the solution
satisfying the Dafermos’ criterium is selected. However, a uniform choice of A; is not a
priori known at the moment.
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