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Abstract— In this paper, we discuss the dissipativity property
of Duhem hysteresis models. Under some sufficient conditions
on the functions which defines the Duhem model, an explicit
construction of the storage functions is given which takes into
account the data on the anhysteresis function. We present an
example on the semi-linear Duhem model.

I. INTRODUCTION

Hysteresis is a nonlinear operator with memory that is

commonly found in a wide range of physical systems, such

as, magnetic material, piezo-electric material and mechanical

friction. For studying the influence of hysteresis in a system,

numerous hysteresis models have been proposed, such as the

backlash, elastic-plastic, Preisach and Duhem models [2],

[10].

In the literature related to magnetic materials, the hys-

teresis behavior is caused by the friction/pinning of the

magnetic domain-walls [7], [15]. When the influence of the

friction/pinning of magnetic domain-walls is neglected, the

relation between the magnetization and the external magnetic

field is defined as anhysteresis function. In this case, Jiles and

Atherton [7] propose a hysteresis model for describing the

magnetization that is composed of an anhysteresis part and

another component which is due to the pinning of magnetic

domain-walls. Similarly, Coleman and Hodgdon [3] propose

another hysteresis model to describe the same phenomenon.

The general model that contains both models is the Duhem

model [10], i.e., the Coleman-Hodgdon model [3] and Jiles-

Atherton model [7] are a class of Duhem model. Since the

anhysteresis function has played a role in the description of

hysteresis in magnetic material, we take it into account in

our study.

Hysteresis phenomenon that is due to the friction, either

between the magnetic domain-walls or between mechanical

surfaces, dissipates energy by heat. This is related to the

concept of dissipativity in the systems theory literature [14],

[16], [18]. For linear electrical and mechanical systems,

the energy loss can be described by constructing a storage

function [14], [16], [18] whose time-derivative is less than

or equal to the quantity of the supplied power to the sys-

tems. However, constructing storage function for hysteresis

operator is not straightforward.

The existence of the storage function for hysteresis op-

erator can be useful to analyze the stability of systems
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which contain a hysteretic element. In Gorbet et al [4], a

storage function is constructed for Preisach operator with

non-negative weighting function, and it is employed to show

the stability of electro-mechanical systems with a hysteretic

piezo-actuator. For relay and backlash operators, the corre-

sponding storage function has been proposed in Brokate and

Sprekels [2]. However, the construction of storage function

for the Duhem model remains limited and the paper [6]

has presented a preliminary result only for a small class of

Duhem model. In this paper, we extend the result in [6] by

admitting a larger class of Duhem model.

This paper is organized as follows. In Section II, we

introduce the Duhem hysteresis operator and formulate the

dissipativity problem. In Section III, we give sufficient

conditions for a Duhem model to admit a storage function.

An example on the construction of such storage function is

presented in Section IV.

II. DUHEM HYSTERESIS OPERATOR

We denote by C1(R+) the space of continuously differ-

entiable functions f : R+ → R.

Using the same description as in [10], [12], [17], the

Duhem model Φ : C1(R+) → C1(R+), u 7→ Φ(u) =: y
is described by

ẏ(t) = f1(y(t), u(t))u̇+(t) + f2(y(t), u(t))u̇−(t),

y(0) = y0, (1)

where u̇+(t) := max{0, u̇(t)}, u̇−(t) := min{0, u̇(t)}. We

refer to [10], [12], [17] for the detail discussion on the

solution of (1). Note that the differential equation (1) can

also be put into state-space form where the state consists of

both variables u, y. In this paper, we analyze the dissipativity

using the behavioral framework where the analysis is done

directy on the manifest variables u, y, in the same vein as

that for linear systems in [16]. Let U, Y ⊂ R be the domain

of u(t) and y(t), respectively.

The functions f1 and f2 in (1) are defined appropriately

according to the hysteresis curve obtained from experimental

data.

We can now state our problem as follows.

Definition 2.1: The Duhem model as in (1)-(3) is said to

be dissipative with respect to the supply rate 〈ẏ, u〉 if there

exists a positive definite storage function H(y, u) such that

for every u ∈ C1(R+) and y := Φ(u),

dH(y(t), u(t))

dt
≤ 〈ẏ(t), u(t)〉. (2)

We remark that the supply-rate function as given in the

Definition 2.1 has been used in the study of dissipativity for
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Preisach model [4] and in the study of counter-clockwise

systems [1], [13]. This supply-rate function also belongs

to the family of general supply-rate functions as described

in [16] which studies general dissipativity theory for linear

systems using the behavioural framework.

In Section III, we show that under some assumptions on

f1, f2, we have a family of storage functions which satisfies

(2). It is constructed using only the data on f1, f2.

The motivation of the dissipativity property in (2) stems

from the physical law governing an electrical inductor. The

magnetic flux φ and the electric current I in an inductor can

be related by an operator Φ, i.e., φ = Φ(I) (for instance,

with a linear inductor model, Φ(I) = LI where L is the

inductance). Basic electrical law yields that φ̇ = V where V

is the voltage across the inductor. Hence the electrical power

(defined by 〈V (t), I(t)〉) transferred to the inductor is equal

to 〈(
˙︷︸︸︷

Φ(I))(t), I(t)〉. Since inductor is a passive electrical

element and there is energy loss due to hysteresis, the power

being stored in the inductor has to be less than or equal to

the amount of power being transferred into the inductor. In

this case, (2) holds with u = I .

III. MAIN RESULTS

Before we can state our main results in Theorem 3.3 and

3.5, we need to introduce three functions: an anhysteresis

function fan, the function ωΦ (or νΦ) and the intersection

function Ω (or Υ). These functions play important roles in the

construction of storage function and in the characterization

of dissipativity. They are defined based on the data on f1
and f2.

A. Curves definition

1) The anhysteresis function: In order to define the an-

hysteresis function, we rewrite f1 and f2 as follows

f1(y(t), u(t)) = F (y(t), u(t)) +G(y(t), u(t)),
f2(y(t), u(t)) = −F (y(t), u(t)) +G(y(t), u(t)),

}

(3)

where F,G : R2 → R. We assume that the implicit function

F (σ, ξ) = 0 can be represented by an explicit function

σ = fan(ξ) or ξ = gan(σ). Such function fan (or gan) is

called an anhysteresis function and the corresponding graph

{(ξ, fan(ξ))|ξ ∈ R} is called an anhysteresis curve. Using

fan, it can be checked that f1(fan(ξ), ξ) = f2(fan(ξ), ξ)
holds.

By employing the implicit function F for representing

anhysteresis, we can include Duhem models that admits

fan = 0 or gan = 0. For instance, the dissipativity property

for Duhem model with gan = 0 was presented in our

preliminary work [6]. Note also that the functions F and

G in (3) are defined by

F =
f1 − f2

2
G =

f1 + f2

2
.

2) The functions ωΦ and νΦ: For every pair (y0, u0) ∈
Y × U , let ωΦ,1(·, y0, u0) : [u0,∞) → R be the solution of

x(τ) − x(u0) =

∫ τ

u0

f1(x(σ), σ) dσ,

x(u0) = y0 ∀τ ∈ [u0,∞),

and let ωΦ,2(·, y0, u0) : (−∞, u0] → R be the solution of

x(τ) − x(u0) =

∫ τ

u0

f2(x(σ), σ) dσ,

x(u0) = y0 ∀τ ∈ (−∞, u0].

Using the above definitions, for every pair (y0, u0) ∈ Y ×
U , the function ωΦ(·, y0, u0) : R → R is defined by the

concatenation of ωΦ,2(·, y0, u0) and ωΦ,1(·, y0, u0):

ωΦ(τ, y0, u0) =

{
ωΦ,2(τ, y0, u0) ∀τ ∈ (−∞, u0)
ωΦ,1(τ, y0, u0) ∀τ ∈ [u0,∞).

(4)

Similarly, we can introduce the function νΦ which is dual

to construction of ωΦ.

For every pair (y0, u0) ∈ Y × U , let νΦ,1(·, y0, u0) :
[u0,∞) → R be the solution of

x(τ) − x(u0) =

∫ τ

u0

f2(x(σ), σ) dσ,

x(u0) = y0 ∀τ ∈ [u0,∞),

and let νΦ,2(·, y0, u0) : (−∞, u0] → R be the solution of

x(τ) − x(u0) =

∫ τ

u0

f1(x(σ), σ) dσ,

x(u0) = y0 ∀τ ∈ (−∞, u0].

Using the above definitions, for every pair (y0, u0) ∈ X ,

the function νΦ(·, y0, u0) : R → R is defined by the

concatenation of νΦ,2(·, y0, u0) and νΦ,1(·, y0, u0):

νΦ(τ, y0, u0) =

{
νΦ,2(τ, y0, u0) ∀τ ∈ (−∞, u0)
νΦ,1(τ, y0, u0) ∀τ ∈ [u0,∞).

(5)

3) Intersection function: The function, which describes

the intersection between fan and ωΦ, is characterized in the

following lemma.

Lemma 3.1: Let Y, U be an open set. Assume that f1 and

f2 in (3) be such that f1, f2 and fan are continuously dif-

ferentiable1. Moreover, assume that fan is strictly increasing

and there exists a positive real number ǫ such that for all

(σ, ξ) ∈ Y × U the following inequality holds

f1(σ, ξ) <
dfan(ξ)

dξ
− ǫ whenever σ > fan(ξ) , (6)

f2(σ, ξ) <
dfan(ξ)

dξ
− ǫ whenever σ < fan(ξ) , (7)

1In the case in which the function fan is uniquely defined we may obtain
directly its smoothness from the property,

dfan

db
(b) =

∂f2
∂b

(fan(b), b) −
∂f1
∂b

(fan(b), b)
∂f1
∂a

(fan(b), b) −
∂f1
∂a

(fan(b), b)
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Then there exists Ω ∈ C1(Y × U,R) such that

(1) Ω(σ, ξ) ≥ ξ whenever σ ≥ fan(ξ) and Ω(σ, ξ) < ξ

otherwise.

(2) ωΦ(Ω(σ, ξ), σ, ξ) = fan(Ω(σ, ξ)). (8)

(3) Moreover, for all u ∈ C1, y := Φ(u),
d
dtΩ(y(t), u(t)) exists.

Proof: Consider the continuous function ϕ : R×Y ×U → R

defined as ϕ(ξ, y0, u0) = ωΦ(ξ, y0, u0) − fan(ξ). Consider

also A0 and A1 the two subsets of R3 defined as,

A0 = {(ξ, y0, u0) ∈ R
3, (y0, u0) ∈ X ,

y0 > fan(u0) , ξ > u0} ,

A1 = {(ξ, y0, u0) ∈ R
3, (y0, u0) ∈ X ,

y0 < fan(u0) , ξ < u0} ,

Note that the function fan being strictly increasing by

assumption, implies that these sets are open sets. Also, the

function ωΦ satisfies

∂ωΦ

∂ξ
(ξ, y0, u0) = f1(ωΦ(ξ, y0, u0), ξ)

∀(ξ, y0, u0) ∈ A0 ,

∂ωΦ

∂ξ
(ξ, y0, u0) = f2(ωΦ(ξ, y0, u0), ξ)

∀(ξ, y0, u0) ∈ A1 .

Consequently, ωΦ(ξ, y0, u0) is solution of ordinary differ-

ential equations computed from C1 vector field. With [5,

Theorem V.3.1], it implies that ωΦ is a C1 function in

A0 ∪A1. Moreover, the function fan being C1 implies that

the function ϕ is C1 in A0∪A1. With (6) and (7), the function

ϕ satisfies,

∂ϕ

∂ξ
(ξ, y0, u0) < −ǫ 6= 0 , ∀(ξ, y0, u0) ∈ A0 ∪ A1 .

Consequently, ϕ is a strictly decreasing function in its first

argument in the set A0 ∪A1. This also implies that,

ϕ(ξ, y0, u0) < ϕ(u0, y0, u0)− ǫ(ξ − u0)

∀(ξ, y0, u0) ∈ A0 ,

ϕ(ξ, y0, u0) > ϕ(u0, y0, u0)− ǫ(ξ − u0)

∀(ξ, y0, u0) ∈ A1 .

Note that if y0 > fan(u0), then ϕ(u0, y0, u0) > 0 and

consequently there exists a unique real number u∗ such

that ϕ(u∗, y0, u0) = 0 and (u∗, y0, u0) ∈ A0. On the

other hand, if y0 < fan(u0), then ϕ(u0, y0, u0) < 0 and

consequently there exists a unique real number u∗ such that

ϕ(u∗, y0, u0) = 0 and (u∗, y0, u0) ∈ A3. Therefore, by

denoting Ω(y0, u0) = u∗, by employing the implicit function

theorem and using the fact that ϕ is C1, it can be shown that

Ω is C1. 2

Roughly speaking the function Ω satisfying (1)–(3) means

that for all (σ, ξ), the two functions ωΦ(·, σ, ξ) and fan(·)
intersect at a unique point larger or smaller than u0 depend-

ing on the sign of σ− fan(ξ). Moreover, along the solutions

of (1), the time derivative of the intersecting point exists.

H1(y0, u0)

fan

y0

u0 Ω(y0, u0)

Fig. 1. Graphical interpretation of the storage function H1 in (12). For a
given (y0, u0), H1 is equal to the area in light grey

Similarly, the following lemma characterizes the function

that describes the intersection between fan and νΦ.

Lemma 3.2: Let Y, U be an open set. Assume that f1 and

f2 in (3) be such that f1, f2 and fan are continuously dif-

ferentiable. Moreover, assume that fan is strictly increasing

and assume that there exists a positive real number ǫ such

that for all (y, u) in Y × U the following inequality holds

f2(σ, ξ) <
dfan(ξ)

dξ
− ǫ whenever σ > fan(ξ), (9)

f1(σ, ξ) <
dfan(ξ)

dξ
− ǫ whenever σ < fan(ξ), (10)

Then there exists Υ ∈ C1(Y × U,R) such that

(1) Υ(σ, ξ) ≥ ξ whenever σ ≥ fan(ξ) and Υ(σ, ξ) < ξ

otherwise.

(2) νΦ(Υ(σ, ξ), σ, ξ) = fan(Υ(σ, ξ)). (11)

(3) Moreover, for all u ∈ C1, y := Φ(u),
d
dtΥ(y(t), u(t)) exists.

B. Storage function using ωΦ

We define a candidate storage function H1 : X → R.

H1(σ, ξ) = σξ −

∫ ξ

0

ωΦ(τ, σ, ξ) dτ

+

∫ Ω(σ,ξ)

0

ωΦ(τ, σ, ξ)− fan(τ) dτ , (12)

where the function Ω is as given in Lemma 3.1. The graphic

interpretation of H1 is shown in Figure 1.

Theorem 3.3: Consider the Duhem hysteresis operator Φ
defined in (1)-(3) with locally Lipschitz functions F,G :
R

2 → R and with anhysteresis function fan. Suppose that the

hypotheses in Lemma 3.1 hold and the following condition

holds for all (σ, ξ) in Y × U

(A) F (σ, ξ) ≥ 0 whenever σ ≤ fan(ξ), and F (σ, ξ) <
0 otherwise.

Then for every u ∈ C1(R+) and for every y0 ∈ R,

the function t 7→ H1

(
(Φ(u))(t), u(t)

)
with H1 as in (12)

is differentiable and satisfies (2). In other words, Φ is

dissipative with respect to the supply rate 〈ẏ, u〉 with the

storage function H1.
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Proof: It can be checked that the hypothesis (A) on F

implies that f1(σ, ξ) ≥ f2(σ, ξ) whenever σ ≤ fan(ξ), and

f1(σ, ξ) < f2(σ, ξ) otherwise.

Let u ∈ C1(R+) and y0 ∈ R and denote u∗ :=
Ω(y, u). First, we would prove that for all t ∈ R+,

Ḣ1

(
(Φ(u))(t), u(t)

)
exists. Using (12) and with Leibniz

derivative rule and denoting y = (Φ(u)), we have

dH1

(
y(t), u(t)

)

dt
= ẏ(t)u(t)

+

[

ωΦ(u
∗(t), y(t), u(t))− fan(u

∗(t))

]

u̇∗(t)

+

∫ u∗(t)

u(t)

d

dt
ωΦ(τ, y(t), u(t))dτ , (13)

where we have invoked the relation ωΦ(u(t), y(t), u(t)) =
y(t).

Let t ≥ 0. The first term in the RHS of (13) exists

for all t ≥ 0 since y(t) satisfies (1). Note that since

ωΦ(u
∗(t), y(t), u(t)) = fan(u

∗(t)), the second term of (13)

is zero since u̇∗(t) exists by Lemma 3.1. In order to get

the dissipativity with the supply rate (2), it remains to check

whether the last term of (13) exists, is finite and satisfies
∫ u∗(t)

u(t)

d

dt
ωΦ(τ, y(t), u(t))dτ ≤ 0. (14)

It suffices to show that, for every τ ∈ [u(t), u∗(t)], the

following Dini’s derivative :

lim
ǫց0+

1

ǫ
[ωΦ(τ, y(t+ ǫ), u(t+ ǫ))− ωΦ(τ, y(t), u(t))], (15)

exists and the limit is less or equal to zero when u∗(t) > u(t)
and the limit is greater or equal to zero elsewhere.

For any ǫ ≥ 0, let us introduce the continuous function

ωǫ : R → R by

ωǫ(τ) = ωΦ(τ, y(t+ ǫ), u(t+ ǫ)). (16)

More precisely, for every ǫ ≥ 0, ωǫ is the unique solution of

ωǫ(τ) =







y(t+ ǫ) +

∫ τ

u(t+ǫ)

f1(ωǫ(s), s)ds

∀τ ≥ u(t+ ǫ),

y(t+ ǫ) +

∫ τ

u(t+ǫ)

f2(ωǫ(s), s)ds

∀τ ≤ u(t+ ǫ),

(17)

Note that ω0(τ) = ωΦ(τ, y(t), u(t)) for all τ ∈ R and

ωǫ(u(t+ ǫ)) = y(t+ ǫ) ∀ ǫ ∈ R+ . (18)

In order to show the existence of (15) and the validity of

(14), we consider several cases depending on the sign of u̇(t)
and y(t)− fan(u(t)).

First, we assume that u̇(t) > 0. This implies that there

exists a sufficiently small γ > 0 such that for every ǫ ∈ (0, γ],
we have u(t+ ǫ) > u(t) and

ω0(u(t+ ǫ)) = y(t) +

∫ u(t+ǫ)

u(t)

f1(ω0(s), s) ds.

Moreover, with the change of integration variable s = u(v)
2 we obtain

ω0(u(t+ ǫ)) = y(t) +

∫ t+ǫ

t

f1(ω0(u(v)), u(v)) u̇(v) dv,

for all ǫ ∈ [0, γ].
The functions ǫ 7→ w0(u(t + ǫ)) and ǫ 7→ y(t + ǫ) with

ǫ ∈ (0, γ] are two C1 functions which are solutions of the

same locally Lipschitz ODE and with the same initial value.

By uniqueness of solution, we get ω0(u(t+ ǫ)) = y(t+ ǫ).
This fact together with (18) shows that

ωǫ(u(t+ ǫ)) = ω0(u(t+ ǫ)) ∀ǫ ∈ [0, γ].

Let us evaluate (15) when y(t) ≥ fan(u(t)). In this case,

Lemma 3.1(1) shows that u(t) < u∗(t). Also, since for every

ǫ ∈ (0, γ] the two functions ωǫ(τ) and ω0(τ) satisfy the same

ODE for3 τ ∈ [u(t+ ǫ), u∗(t)], we have

ωǫ(τ) = ω0(τ) ∀τ ∈ [u(t+ ǫ), u∗(t)],

for all ǫ ∈ [0, γ]. This implies that

lim
ǫց0+

1

ǫ
[ωǫ(τ) − ω0(τ)] = 0, (19)

for all τ ∈ [u(t), u∗(t)]. Therefore, for the case where u̇(t) >
0 and y(t) ≥ fan(u(t)), the inequality (14) holds.

Now, we check (14) when y(t) < fan(u(t)) and u̇(t) > 0.

Note that according to Lemma 3.1(1), u∗(t) < u(t). Also,

since u̇(t) > 0, there exists γ > 0 such that we have τ ≤
u(t) < u(s) and u̇(s) > 0 for all s in (t, t + γ). It follows

from (17) and assumption (A) that for every ǫ ∈ (0, γ):

dωǫ(u(s))

ds
= f2(ωǫ(u(s)), u(s)) u̇(s)

≤ f1(ωǫ(u(s)), u(s)) u̇(s) ∀s ∈ [t, t+ ǫ],

and the function y satisfies

dy(s)

ds
= f1(y(s), u(s)) u̇(s) ∀s ∈ [t, t+ ǫ].

Since ωǫ(u(t + ǫ)) = y(t + ǫ) and using the comparison

principle (in reverse direction), we get that for every ǫ ∈
[0, γ):

ωǫ(u(s)) ≥ y(s) ∀ s ∈ [t, t+ ǫ].

Since the two functions ωǫ(τ) and ω0(τ) for τ ∈ [u∗(t), u(t)]
are two solutions of the same ODE, it follows that 4 ωǫ(τ) ≥
ω0(τ) and we get that if it exists:

lim
ǫց0+

1

ǫ
[ωǫ(τ)− ω0(τ)] ≥ 0 ∀τ ∈ [u∗(t), u(t)]. (20)

2This change is allowed since for every ǫ ∈ [0, γ], u is a strictly
increasing function from [t, t+ ǫ] toward [u(t), u(t + ǫ)].

3we have for all τ ∈ [u(t+ ǫ), u∗(t)] :

dωǫ(τ)

dτ
= f1(ωǫ(τ), τ) ,

dω0(τ)

dτ
= f1(ω0(τ), τ)

4Otherwise there exist τ1 < τ2 such that ωǫ(τ1) = ω0(u(τ1)) and
ωǫ(τ2) > ω0(u(τ2)) which contradict the uniqueness of the solution of
the locally Lipschitz ODE.
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In the following, to show the existence of the limit given

in (20), we compute a bound on the function ǫ 7→ 1
ǫ
[ωǫ(τ)−

ω0(τ)]. Note that for every ǫ ∈ [0, γ],

|ωǫ(τ) − ω0(τ)| ≤ |y(t+ ǫ)− y(t)|

+

∣
∣
∣
∣
∣

∫ u(t)

u(t+ǫ)

f2(ωǫ(s), s) ds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ τ

u(t)

f2(ωǫ(s), s)− f2(ω0(s), s) ds

∣
∣
∣
∣
∣

≤ |y(t+ ǫ)− y(t)|+

∫ u(t+ǫ)

u(t)

|f2(ωǫ(s), s)| ds

+

∫ u(t)

τ

|f2(ωǫ(s), s)− f2(ω0(s), s)| ds,

for all τ ∈ [u∗(t), u(t)]. By the locally Lipschitz property of

f2, by the boundedness of f2 and by the boundedness of ωǫ

on [τ, u(t)] for all ǫ ∈ [0, γ], we obtain

|ωǫ(τ)− ω0(τ)| ≤ |y(t+ ǫ)− y(t)|

+

∫ u(t)

τ

L |ωǫ(s)− ω0(s)| ds+ α|u(t+ ǫ)− u(t)| ,

where α is a bound of f2 on a compact set and L is the

Lipschitz constant of f2 on [ωmin , ωmax ]× [τ, u(t)] with

ωmin = min
(c,s)∈[0,γ]×[τ,u(t)]

ωc(s),

ωmax = max
(c,s)∈[0,γ]×[τ,u(t)]

ωc(s) .

With Gronwall’s lemma, this implies that for every ǫ ∈ [0, γ]

|ωǫ(τ)− ω0(τ)|

≤ exp((u(t)−τ)L)
[

|y(t+ǫ)−y(t)|+α|u(t+ǫ)−u(t)|
]

,

for all τ ∈ [u∗(t), u(t)]. Hence

lim
ǫց0+

1

ǫ
|ωǫ(τ) − ω0(τ)|

≤ exp((u(t)− τ)L)
[

|f1(y(t), u(t))|+ α
]

u̇(t),

for all τ ∈ [u∗(t), u(t)]. Consequently the limit given in (20)

exists. It implies that the inequality (14) holds when u̇(t) > 0
and y(t) < fan(u(t)).

We can use similar arguments to prove that (14) is satisfied

when u̇(t) < 0.

Finally, when u̇(t) = 0, we simply get

lim
ǫց0+

1

ǫ
|ωǫ(τ) − ω0(τ)| = 0,

by continuity of the above bound. 2

Remark 3.4: The storage function H1 in the Theorem 3.3

is non-negative if f1 is positive and fan is strictly increasing

or gan = 0. To show this, let us consider the case when fan
is strictly increasing. If u(t) ≥ 0 and y(t) ≥ fan(u(t)), we

H2(y0, u0)

Υ(y0, u0)

fan

y0

u0

Fig. 2. Graphical interpretation of the storage function H2 in (21). For a
given (y0, u0), H2 is equal to the difference between the area in light grey
and the area in dark grey

have that fan(τ) ≤ y(t) for all τ ∈ [0, u(t)] and fan(τ) ≤
ωΦ(τ, y(t), u(t)) for all τ ∈ [u(t),Ω(y(t), u(t))]. Hence

H1(y(t), u(t)) =

∫ u(t)

0

y(t)− fan(τ) dτ

+

∫ Ω(y(t),u(t))

u(t)

ωΦ(τ, y(t), u(t))− fan(τ) dτ ≥ 0.

On the other hand, if u(t) < 0 and y(t) ≥ fan(u(t)),
we have that y(t) ≤ ωΦ(τ, y(t), u(t)) for all τ ∈ [u(t), 0]
(due to the positivity of f1). Also, if Ω(y(t), u(t)) ≥ 0,

fan(τ) ≤ ωΦ(τ, y(t), u(t)) for all τ ∈ [0,Ω(y(t), u(t))]
and if Ω(y(t), u(t)) < 0, fan(τ) > ωΦ(τ, y(t), u(t)) for

all τ ∈ [Ω(y(t), u(t)), 0]. Hence

H1(y(t), u(t)) = −

∫ 0

u(t)

y(t)− ωΦ(τ, y(t), u(t)) dτ

+

∫ Ω(y(t),u(t))

0

ωΦ(τ, y(t), u(t))− fan(τ) dτ ≥ 0.

For the case y(t) < fan(u(t)), the non-negativity of H1 can

be checked using the same routine.

If we have gan = 0, the non-negativity of H1 can be

checked directly (we refer also to [6]). △

C. Storage function using νΦ

Dual to the results from the previous subsection, we can

also define storage functions based on νΦ. The candidate

storage function H2 : Y × U → R is given by

H2(σ, ξ) = σξ −

∫ ξ

0

νΦ(τ, σ, ξ) dτ

+

∫ Υ(σ,ξ)

0

νΦ(τ, σ, ξ)− fan(τ) dτ , (21)

where the function Υ is as defined in Lemma 3.2.

Theorem 3.5: Consider the Duhem hysteresis operator Φ
defined in (1)-(3) with locally Lipschitz functions F,G :
R

2 → R and with anhysteresis function fan. Suppose that

the hypotheses in Lemma 3.2 and the assumption (A) in

Theorem 3.3 hold. Then for every u ∈ C1(R+) and for every

y0 ∈ R, the function t 7→ H2

(
(Φ(u))(t), u(t)

)
with H2 as

in (21) is differentiable and satisfies (2). In other words, Φ
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is dissipative with respect to the supply rate 〈ẏ, u〉 with the

storage function H2.

The proof of the theorem is similar to the proof of

Theorem 3.3.

Remark 3.6: Similar to Remark 3.4, it can be checked that

the storage function H2 in the Theorem 3.5 is non-negative

if f2 is positive and fan is strictly increasing. Since both

Theorem 3.3 and Theorem 3.5 have the same assumptions,

e.g., (A) and the hypotheses in Lemma 3.1, the convex

combination of H1 and H2 is also a storage function which

satisfies (2). Moreover, if additionally, it is assumed that f1
and f2 are positive and fan is strictly increasing, the convex

combination of H1 and H2 is also a non-negative storage

function. △

IV. EXAMPLE

Let us consider an example of semilinear Duhem model

[12] with A+ = −α1, B+ = α2, E+ = α3, A− = α1, B− =
−α2, E− = α3, C = 1 and D = 0. In this case,

f1(σ, ξ) = −α1σ+α2ξ+α3, f2(σ, ξ) = α1σ−α2ξ+α3,

and it can be computed that fan(u(t)) =
α2

α1
u(t). Moreover,

Lemma 3.1 holds if α3 < α2

α1
.

A routine calculation of the curve ωΦ gives us

ωΦ(τ, y(t), u(t)) = τ
α2

α1
−

α2

α2
1

+
α3

α1

+

[

y(t)− u(t)
α2

α1
+

α2

α2
1

−
α3

α1

]

e(−α1(τ−u(t))),

for τ ∈ [u(t),∞) and

ωΦ(τ, y(t), u(t)) = τ
α2

α1
+

α2

α2
1

−
α3

α1

+

[

y(t)− u(t)
α2

α1
−

α2

α2
1

+
α3

α1

]

e(α1(τ−u(t))),

for τ ∈ (−∞, u(t)].
Let us consider the case when y(t) > fan(u(t)). In this

case, the function Ω(y(t), u(t)) is given by

Ω(y(t), u(t)) = u(t)−
1

α1
ln

[ α2

α2
1

− α3

α1

y(t)− u(t)α2

α1
+ α2

α2
1

− α3

α1

]

Note that by the assumption on α3 and since we consider

y(t) > α2

α1
u(t), we have that Ω(y(t), u(t)) > u(t), i.e., the

intersection point is located to the right of u(t). On the other

hand, when y(t) ≤ α2

α1
u(t), the function Ω(y(t), u(t)) is

given by

Ω(y(t), u(t)) = u(t) +
1

α1
ln

[
α3

α1
− α2

α2
1

y(t)− u(t)α2

α1
− α2

α2
1

+ α3

α1

]

.

By the assumption on α3 and since we consider y(t) ≤
α2

α1
u(t), we have that Ω(y(t), u(t)) ≤ u(t).
It follows from the above computation that

d
dtΩ(y(t), u(t)) exists and it is continuously differentiable.

As an example on the construction of storage function, let

us denote k1 = α2

α1
, k2 = α2

α2
1

− α3

α1
and u∗(t) = Ω(y(t), u(t)).

Using the construction of storage function as in Theorem 3.3

and using ωΦ and Ω as above, the storage function H1 (when

y(t) > fan(u(t)) and u(t) ≤ 0) can be explicitly given by

H1(y(t), u(t)) = y(t)u(t)−
1

2
k1(u(t))

2 − k2
(
u∗(t)− u(t)

)

+
1

α1
[y(t)− u(t)k1 + k2]

[

1− e(−α1(u
∗(t)−u(t)))

]

.

V. CONCLUSION

In this paper, we have presented a family of storage

functions for the Duhem model by using the curves ωΦ and

νΦ we defined. Sufficient conditions for dissipativity on the

Duhem model are also given which take into account the

anhysteresis function.
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