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Dissipativity Theory for Switched Systems
Jun Zhao and David J. Hill, Fellow, IEEE

Abstract—A framework of dissipativity theory for switched
systems using multiple storage functions and multiple supply rates
is set up. Each subsystem of a switched system is associated with a
storage function to describe the “energy” stored in the subsystem,
and is associated with a supply rate that represents energy coming
from outside the subsystem when the subsystem is active. The
exchange of “energy” between the active subsystem and an
inactive subsystem is characterized by cross-supply rates. Stability
is reached when all supply rates can be made negative, as long as
the total exchanged energy between the active subsystem and any
inactive subsystems is finite in some sense. Two special forms of
dissipativity, passivity and L2 -gain, are addressed. For both cases,
asymptotic stability is guaranteed under certain “negative” output
feedback plus asymptotic zero state detectability. Switched passiv-
ity conditions and switched L2 -gain inequalities are, respectively,
derived, which are generalizations of classical ones. Feedback
invariance of passivity and a small-gain theorem are also given.

Index Terms—Dissipativity, L2 -gain, passivity, stability,
switched systems.

I. INTRODUCTION

D ISSIPATIVITY theory of nonlinear systems, which was
developed by Willems [40] and further extended by Hill

and Moylan [17]–[19], has become one of the major approaches
to the study of complex systems, especially for the stabilization
issue. Based on the consideration of abstract energy that may
have certain physical meaning for a particular system, roughly
speaking, dissipativity usually means that the increase in energy
storage in the system is no more than the supplied energy from
outside the system. Dissipativity is characterized by storage
functions and supply rates, which represent the energy stored
inside the system and energy supplied from outside the system,
respectively.

Dissipativity is a desirable system property for two reasons.
First, the storage functions induced by dissipativity usually pro-
vide natural candidates for Lyapunov functions. Therefore, in
many cases, stability and stabilization problems can be solved
once the dissipativity property is assured [3], [34], [41]. Such
storage functions often come from simple observation of physi-
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cal variables, or can be constructed intuitively. The other reason
for dissipativity to be useful is that it can give rise to stabiliza-
tion results of interconnected systems, and thus, qualifies as an
efficient tool for the analysis and design of composite (large-
scale) systems. In this respect, the well-known invariance of
passivity under feedback interconnection and small-gain theo-
rems plays a central role. There are many papers concerning
dissipativity and passivity-based control (see, for example, the
results summarized in recent books [13], [26], [39]).

On the other hand, switched systems as an important class
of hybrid systems have drawn considerable attention in recent
years. This is mainly due to the switched and hybrid nature of
many physical processes and the growing use of computers in
the control of physical plants [5], [23], [24], [38]. The extensive
engineering applications of switched systems are also motivated
by the better performance that can be achieved using a controller
switching strategy [20], [29], [36].

Stability issues are currently a major focus in studying
switched systems. Though effective theory and approaches for
the analysis and control of continuous-time or discrete-time
systems have been available, and to a large extent, are well-
developed, similar techniques for switched systems may not
be valid due to the complicated behavior caused by interaction
between continuous dynamics and discrete dynamics. Conse-
quently, the study of stability for switched systems is more dif-
ficult than the study for continuous systems or discrete systems,
and so becomes a challenging issue [5], [23], [28], [44]. In this
respect, the Lyapunov stability theory and its variations or gen-
eralizations still play a dominating role [22], [24], [25], [38]. A
common Lyapunov function for all subsystems guarantees sta-
bility under an arbitrary switching law [23]. Many methods have
been proposed to construct such a common Lyapunov function
(see, for instance, a hierarchical switching strategy [21] and
a common quadratic Lyapunov function method [30]). Since
most switched systems in practice do not possess a common
Lyapunov function, more attention has been paid to stabiliza-
tion under some properly chosen switching law. The multiple
Lyapunov function technique, proposed by Peleties and De-
Carlo [31], and further extended by Branicky [2] is a powerful
tool for finding such a switching law or identifying a class of
useful switching laws. Many results in this direction have been
available (for example, see [12], [23], and [24] and recent work
on output feedback control [7], predictive control [27], and H∞
control [43], [45]).

Given the importance of dissipativity concepts for smooth
systems, it is expected that they are also useful for hybrid and
switched systems. This has not received much attention un-
til now with few results appearing on the topic. Dissipativity
and stability analysis for general impulsive and hybrid systems
were addressed in [8] and [9], where necessary and sufficient
conditions for dissipativity using a common storage function
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and a common supply rate were established. Since switched
systems are a special class of impulsive systems, these con-
ditions also provide systematic and effective tests for dissipa-
tivity and stability of switched systems. Recently, these results
were generalized as a vector version of dissipativity theory for
large-scale impulsive dynamical systems [10]. A novel class of
energy-based hybrid controllers was proposed to achieve en-
hanced energy dissipation [11]. Passivity of nonlinear control
systems based on completeness and using controller switch-
ing was discussed in [33]. A passivity-based design method
for switched control systems was proposed in [4]. Passivity
analysis of discrete-time hybrid systems was carried out in [1].
L2-induced gains and root-mean-square gains were introduced
in [15] and [16], respectively, and conditions for all subsys-
tems to share the same gain were derived. An average dwell
time method was proposed for stability and L2-gain analysis
of delay switched systems [37]. Besides, there are applications
of passivity-based control to electrical systems with a hybrid
nature. For example, the hybrid passivity idea was applied to a
three-phase voltage-sourced reversible-boost-type rectifier [6],
and a passivity-based control strategy was proposed for switched
reluctance motors with nonlinear magnetic circuits [32]. An
energy-based switching control strategy was presented to glob-
ally stabilize the cart-pendulum system [47]. However, all of
the results mentioned earlier adopt a unified “storage function”
to characterize dissipativity or passivity. Actually, dissipativ-
ity associates a particular mathematical description with a set
of closely related storage functions corresponding to possible
physical realizations [17].

The adoption of multiple supply rates and multiple storage
functions for switched systems is natural. This is not only for
the purpose of relaxing the restriction of single storage func-
tions, but also based on practical considerations. Indeed, each
subsystem usually has its own storage function according to
certain physical meaning, and in fact, different subsystems may
have completely different physical meanings. Similarly, sup-
ply rates may sensibly vary across the subsystems. From this
point of view, the dissipativity description for a switched sys-
tem using the same storage function and the same supply rate
for all subsystems is often unreasonable and impractical. Indi-
vidual features of storage functions and supply rates should be
preserved in a proper description of dissipativity.

Theoretically, since storage functions often qualify as Lya-
punov function candidates, the demand for multiple Lyapunov
functions in the study of switched systems naturally leads to
the adoption of multiple storage functions in the dissipativity
description, which, in turn, needs multiple supply rates. Thus,
from physical and theoretical viewpoints, it is clear that the
classical notion of dissipativity needs to be cleared to cover
hybrid and switching settings. Zefran et al. [42] proposed a no-
tion of passivity by using multiple storage functions. Stability
and feedback invariance were proven. However, this passivity
concept requires each storage function to be nonincreasing on
the switching sequence of consecutive “switched on” times as
a prerequisite to meet Branicky’s nonincreasing condition of
multiple Lyapunov functions, which, in turn, guarantees stabil-
ity. Besides, no asymptotic stability is induced by strict pas-

sivity or feedback passivity. Multiple storage functions were
also exploited to study a passivity property of switched systems
with state-dependent switching in [46]. However, this passivity
property is based on certain constraints directly put on storage
functions of inactive subsystems. Some additional conditions
are needed to deduce stability.

This paper presents a framework of dissipativity for switched
systems using multiple storage functions and multiple supply
rates. Unlike continuous systems, a switched system has an un-
usual phenomenon that must be taken into consideration when
dealing with change of energy. A storage function of a subsys-
tem is still “changing” on the time intervals when the subsystem
is inactive. For example, this can simply be because all subsys-
tems share the same state variables. The active subsystem drives
the state which, in turn, causes the change of storage functions
of inactive subsystems. This “changing” energy of any inactive
subsystem, though not necessarily real energy, is viewed as “ex-
ported energy” from the active subsystem, and is characterized
by cross-supply rates.

The organization of the paper is as follows. Section II gives
the preliminaries. In Section III, we present a dissipativity no-
tion for switched systems using multiple storage functions and
multiple supply rates. Associated properties are also discussed,
focusing on stability. Sections IV and V briefly address two
special forms of dissipativity, namely, passivity and L2-gain,
respectively, proving a passivity theorem and small-gain theo-
rem. Finally, Section VI contains the concluding remarks.

II. PRELIMINARIES

In this paper, we consider a switched system of the form

ẋ = fσ (x, uσ )

y = hσ (x) (1)

where σ is the switching signal taking values in

M = {1, 2, . . . ,m}

which may depend on time or state, or both, or even be gen-
erated by higher level hybrid feedback in the loop; x ∈ Rn is
the state, ui and hi(x) are the input and output vectors of the
ith subsystem, respectively. Further, fi(x, u) and hi(x) are con-
tinuous and satisfy fi(0, 0) = 0 and hi(0) = 0, i = 1, 2, . . . , m.
Here, we apply the standard notations adopted from [2] and [24].
The switching signal σ can be characterized by the switching
sequence

Σ = {x0 ; (i0 , t0), (i1 , t1), . . . , (in , tn ), . . . |in ∈ M,n ∈ N}
(2)

in which t0 is the initial time, x0 is the initial state, and N is the
set of nonnegative integers. When t ∈ [tk , tk+1), σ(t) = ik , that
is, the ik th subsystem is active. Therefore, the trajectory x(t) of
the switched system (1) is defined as the trajectory xik

(t) of the
ik th subsystem when t ∈ [tk , tk+1). We assume that the state of
the switched system (1) does not jump at the switching instants,
i.e., the trajectory x(t) is everywhere continuous. The switching
sequence Σ may or may not be infinite. In the finite case, we may
take tn+1 = ∞, with all further definitions and results still valid.
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Fig. 1. Mass–spring–damper system with controller switching.

For any j ∈ M , let

Σ | j = {tj1 , tj2 , . . . , tjn
, . . . , ijq

= j, q ∈ N}
be the sequence of switching times when the jth subsystem is
switched ON, and thus

{tj1 +1 , tj2 +1 , . . . , tjn +1 , . . . , ijq
= j, q ∈ N}

is the sequence of switching times when the jth subsystem is
switched OFF.

Assumption 2.1: For any finite T > t0 , there exists a positive
integer KT , which may depend on T, such that during the time
interval [t0 , T ] the system (1) switches no more than KT times.

As usually assumed in the literature, this assumption simply
means that only finite many switchings occur during any finite
time and the number of switchings is bounded from above by an
integer that depends on the finite time. This assumption is very
general because otherwise the switching can be arbitrarily fast
in some finite time interval, which is obviously unacceptable in
practice.

By L1 [0,∞) we denote the usual L1 function space over
[0,∞), that is, µ = µ(t) ∈ L1 [0,∞) if∫ ∞

0
| µ(t) | dt < ∞.

Let L+
1 [0,∞) denote the subset of L1 [0,∞) consisting of all

nonnegative functions.

III. DISSIPATIVITY

This section gives the description of dissipativity for switched
systems by using multiple storage functions and multiple supply
rates, and studies related properties focusing on stability. The
key point here is to handle the difficulty caused by the change of
storage functions when corresponding subsystems are inactive.

A. Motivating Examples

We examine two examples.
Example 3.1: [35]. Consider a mechanical system with con-

troller switching depicted in Fig. 1.
The mass–spring–damper system with nonlinear stiffness and

damping is described by the following nonlinear system

ẋ1 = x2

ẋ2 = − 1
m

f(x1) −
1
m

g(x2) +
1
m

u

y = x2 (3)

where f(0) = 0, g(0) = 0.
Suppose that we are only allowed to apply two prespecified

candidate controllers

ui = −∆fi(x1) − ∆gi(x2) + vi, i = 1, 2

with

(g(x2) + ∆gi(x2))x2 ≥ 0

∆fi(0) = 0, and ∆gi(0) = 0 to the system and switch between
them. This results in the switched system

ẋ1 = x2

ẋ2 = − 1
m

(f(x1) + ∆fi(x1))

− 1
m

(g(x2) + ∆gi(x2)) +
1
m

vi

y = x2 (4)

which may be considered as a mechanical system with changing
stiffness and damper, or changing environment [42]. It is well
known that, for each i and fixed ∆fi, ∆gi, the ith subsystem is
passive from the input vi to the output x2 .

The energy functions of the two subsystems are

Si(x) =
∫ x1

0
(f(s) + ∆fi(s))ds +

1
2
mx2

2 , i = 1, 2.

When the first subsystem is active on [T1 , T2) we have

S1(x(T2)) − S1(x(T1)) ≤
∫ T2

T1

ω1
1 (v1(τ), y(τ)) dτ (5)

with

ω1
1 (v1 , y) = v1y

and the change of the energy function for the second subsystem
is given by

S2(x(T2)) − S2(x(T1)) ≤
∫ T2

T1

ω1
2 (x(τ), v1(τ), y(τ), τ) dτ

(6)

with

ω1
2 (x, v1 , y, t) = v1y + (∆f2(x1) − ∆f1(x1))x2 . (7)

Similarly, when the second subsystem is active on [T1 , T2), we
have

S2(x(T2)) − S2(x(T1)) ≤
∫ T2

T1

ω2
2 (v2(τ), y(τ)) dτ (8)

with

ω2
2 (v2 , y) = v2y

and the change of the energy function for the first subsystem is
given by

S1(x(T2)) − S1(x(T1))

≤
∫ T2

T1

ω2
1 (x(τ), v2(τ), y(τ), τ) dτ (9)
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with

ω2
1 (x, v2 , y, t) = v2y + (∆f1(x1) − ∆f2(x1))x2 . (10)

Example 3.2: Consider the switched system(
ẋ1
ẋ2

)
= fσ (x1 , x2 , uσ )

y = hσ (x1 , x2) (11)

where

f1(x1 , x2 , u1) =
(

x2
−x3

1 − x2 + u1

)

f2(x1 , x2 , u2) =
(

x2
(1 + x2

2)(−x1 − 2x2 + u2)

)

and

h1(x1 , x2) = h2(x1 , x2) = x2 .

Choose

S1(x) =
1
4
x4

1 +
1
2
x2

2

and

S2(x) =
1
2
x2

1 +
1
2

ln
(
1 + x2

2
)
.

When the first subsystem is active on [T1 , T2), we have

S1(x(T2)) − S1(x(T1)) ≤
∫ T2

T1

ω1
1 (u1(τ), y(τ)) dτ

with

ω1
1 (u1 , y) = u1y,

and

S2(x(T2)) − S2(x(T1))

≤
∫ T2

T1

ω1
2 (x(τ), u1(τ), h1(x(τ)), τ) dτ

with

ω1
2 (x, u1 , h1 , t) = x2

(
x1 −

x3
1

1 + x2
2

)
+

x2

1 + x2
2
u1 . (12)

Similarly, when the second subsystem is active on [T1 , T2),
we have

S2(x(T2)) − S2(x(T1)) ≤
∫ T2

T1

ω2
2 (u2(τ), y(τ)) dτ

with

ω2
2 (u2 , y) = u2y

and

S1(x(T2)) − S1(x(T1))

≤
∫ T2

T1

ω2
1 (x(τ), u2(τ), h2(x(τ)), τ) dτ

with

ω2
1 (x, u2 , h2 , t)

=
(
1 + x2

2
)
x2

(
x3

1

1 + x2
2
− x1

)
+ x2

(
1 + x2

2
)
u2 . (13)

In these examples, the change of energy can be categorized
into two types: first, corresponding to an active subsystem, the
change of energy is characterized by ωi

i , which is exactly the
same as the usual supply rates of passivity, and the other is for
inactive systems, determined by ωj

i , i �= j.

B. Definition of Dissipativity

Recall that the dissipativity property in state space form for a
continuous control system

ẋ = f(x, u)

y = h(x) (14)

is characterized by a supply rate function ω(·, ·) and a storage
function S(x) satisfying

S(x(t)) − S(x(t0)) ≤
∫ t

t0

ω(u(τ), y(τ)) dτ (15)

for ∀t ≥ t0 (see [40]).
This classical form of dissipativity is obviously applicable to

the switched system (1) as

S(x(t)) − S(x(t0)) ≤
∫ t

t0

ω(uσ (τ )(τ), hσ (τ )(x(τ))) dτ. (16)

However, this property is restrictive for switched systems be-
cause, as seen in the earlier examples, each subsystem usually
has its individual supply rate ωi , and thus, a storage function
Si(x) when this subsystem is active. A common supply rate
ω, and thus, a common storage function S(x) for all subsys-
tems may be difficult to find or may not exist at all. Therefore,
it is reasonable and necessary to adopt multiple supply rates
and multiple storage functions to characterize the dissipativity
property for switched systems. However, a simple adoption of
multiple storage functions and supply rates of each subsystem
may result in the loss of a desirable property that is expected to
be induced by dissipativity, namely, stability. This may happen
mainly because of the negative impact of inactive subsystems on
the behavior of the whole switched system. The major difficulty
here is that unlike multiple Lyapunov functions, where a nonin-
creasing condition on a “switched ON” time sequence is a basic
assumption though the Lyapunov function is allowed to increase
when the corresponding subsystem is inactive, storage functions
are allowed to increase not only on time intervals when the cor-
responding subsystems are inactive but also on the “switched
ON” time sequence. Therefore, the change of storage functions
must be carefully taken into account when the corresponding
subsystems are inactive.

Definition 3.3: System (1) is said to be dissipative under the
switching law Σ if there exist positive-definite continuous func-
tions S1(x), S2(x), . . . , Sm (x), called storage functions, locally
integrable functions ωi

i (ui, hi), 1 ≤ i ≤ m, called supply
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rates, and locally integrable functions ωi
j (x, ui, hi, t), 1 ≤

i, j ≤ m, i �= j, called cross-supply rates, such that

Sik
(x(t)) − Sik

(x(s))

i) ≤
∫ t

s

ωik
ik

(uik
(τ), hik

(x(τ))) dτ

k = 0, 1, 2, . . . , tk ≤ s ≤ t < tk+1 (17)

Sj (x(t)) − Sj (x(s))

ii) ≤
∫ t

s

ωik
j (x(τ), uik

(τ), hik
(x(τ)), τ) dτ

j �= ik , k = 0, 1, 2, . . . , tk ≤ s ≤ t < tk+1 . (18)

iii) For any i, j, there exist ui(t) = αi(x(t), t) and φi
j (t) ∈

L+
1 [0,∞), which may depend on ui and the switching se-

quence Σ, such that

fi(0, αi(0, t)) ≡ 0, ∀t ≥ t0 (19)

ωi
i (ui(t), hi(x(t))) ≤ 0, ∀t ≥ t0 (20)

and

ωi
j (x(t), ui(t), hi(x(t)), t) − φi

j (t) ≤ 0, ∀j �= i,∀t ≥ t0 .
(21)

Remark 3.4: In Definition 3.3, Sj and ωj
j are the usual stor-

age function and supply rate, respectively, for the jth subsystem
when active. Unlike in the classical definition of dissipativ-
ity where storage functions are semipositive definite, we need
positive definite storage functions here for switched systems
to induce stability and output stabilizability. This situation is
the same as that of multiple Lyapunov functions [2], where all
Lyapunov functions for subsystems need to be positive defi-
nite. It is worthwhile noticing that the jth subsystem is inactive
on the time interval [tk , tk+1), and thus, the “energy” Sj (x)
may apparently remain unchanged. However, because all sub-
systems share the same state variable, Sj (x) indeed changes
from Sj (x(tk )) to Sj (x(tk+1)). This can be viewed as the re-
sult of “imported energy” from the active ik th subsystem into
the inactive jth subsystem. This “energy” is characterized by
the “cross-supply rate” ωi

j from the ith subsystem to the jth
subsystem and satisfies the dissipation inequalities (18).

In Condition iii), (19) is needed to guarantee that the origin is
the equilibrium of the system (1) with the control ui(t). Equation
(19) is obviously satisfied for a broad class of controllers. For
example, any state feedback controller ui = αi(x) with αi(0) =
0 satisfies (19). Equations (20) and (21) simply mean that, for
at least one ui(t), if no external energy is supplied to the ith
subsystem when active, then the total “energy” coming from
the active ith subsystem to the inactive jth subsystem is finite.
This condition is natural and reasonable. Otherwise, infinitely
large energy would be produced by the ith subsystem without
external energy. When the cross-supply rates are of the form

ωi
j (x, ui, hi, t) = ϑi

j (x)ωi
i (ui, hi) + φi

j (t)

with positive functions ϑi
j (x) and φi

j (t) ∈ L+
1 [0,∞), Condition

iii) is automatically satisfied. In the sequel, for simplicity, we
assume that any ui(t) satisfying (19) and (20) also satisfies
(21).

Though all subsystems are assumed to be time invariant, the
overall switched system will have time-variant features because
of switching. This is even more so for the case of time-dependent
switching laws. Considering this, the cross-supply rates are
defined to be time dependent to cover more general situations.
Such time-variant cross-supply rates also indicate that on
different active time intervals of the ith subsystem, the supply
rate of the energy from ith subsystem to jth subsystem may be
different.

Remark 3.5: When i) holds for a common storage function
Si(x) = S(x) and a common supply rate

ωi
i (ui, hi) = ω(ui, hi)

with ω(0, hi) ≤ 0, ii) is satisfied with

ωi
j (x, ui, hi, t) = ωi

i (ui, hi)

and iii) holds with ui(t) = 0 and φi
j (t) = 0. Therefore, this

notion of dissipativity is a natural generalization of the classical
one with positive-definite storage functions.

Example 3.6: Let us revisit Examples 3.1 and 3.2. For
Example 3.1, we define a class of switching laws

Π =




σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ(x(t), t) = 1

⇒ (∆f2(x1(t)) − ∆f1(x1(t)))x2(t)

≤ exp(−λt)

σ(x(t), t) = 2

⇒ (∆f1(x1(t)) − ∆f2(x1(t)))x2(t)
≤ exp(−λt).




(22)
where λ > 0 is any fixed constant.

For any switching law σ ∈
∏

, the switched system (4) is
dissipative. In fact, i) holds with ωi

i (vi, hi) = vihi due to the
passivity of each subsystem. ii) has already been shown to be
valid in Section III-A. It is easy to check iii) with vi ≡ 0 and

φ2
1 = φ1

2 = exp(−λt) ∈ L+
1 [0,∞).

Note that
∏

contains infinitely many switching laws because if
we set

Ω1 = {x | (∆f2(x1) − ∆f1(x1))x2 ≤ 0}
and

Ω2 = {x | (∆f1(x1) − ∆f2(x1))x2 ≤ 0}
then Ω1

⋃
Ω2 = Rn .

In particular, we can pick a state-dependent switching law
from

∏
as

σ(t) = σ(x(t)) = i if x(t) ∈ Ωi , i = 1, 2. (23)

In view of the construction of the cross-supply rates (7) and
(10), (23) is the only switching law in

∏
that has nonpositive

cross-supply rates.
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For Example 3.2, we consider the switching law given by

σ = σ(x(t), t)

=




1 if 0 ≤ x2(t)

(
x1(t) −

x3
1(t)

1 + x2
2(t)

)

≤ exp(−t)

or x2(t)

(
x1(t) −

x3
1(t)

1 + x2
2(t)

)

< − 1
1 + x2

2(t)
exp(−2t),

2 if x2(t)

(
x1(t) −

x3
1(t)

1 + x2
2(t)

)

> exp(−t)

or − 1
1 + x2

2(t)
exp(−2t)

≤ x2(t)

(
x1(t) −

x3
1(t)

1 + x2
2(t)

)
< 0.

(24)

Similarly to the discussion for Example 3.1 earlier, it is easy
to verify that the switched system (11) under the switching
law (24) is dissipative with Condition iii) that holds for ui = 0,
φ1

2 = e−t and φ2
1 = e−2t . In addition, the cross-supply rates (12)

and (13) are apparently not nonpositive.

C. Stability Analysis

This section addresses stability in the sense of Lyapunov. We
show how dissipativity can be used to induce stability for the
switched system (1).

Theorem 3.7: Under Assumption 2.1, if the system (1) is
dissipative with storage functions Si(x) satisfying Si(0) = 0,
then, the origin is stable in the sense of Lyapunov for any control
ui(t) satisfying Condition iii).

Proof: For any constant c > 0, let

B(c) = {x| ‖ x ‖≤ c}
ri(c) = min

x
{Si(x)| ‖ x ‖= c}

and

r(c) = min
i
{ri(c)}.

For any given ε > 0, we will show that Si(x(t)) < r(ε) for
any i ∈ M and t ≥ t0 provided the initial state x0 is in a small
neighborhood of the origin. To this end, we will give the proof
in three steps:

a). There exists T > 0, such that for all integer K satisfying
tK +1 ≥ T, for any j ∈ M , tjq

∈ Σ | j and tjq
> tK +1 , it holds

that

Sj (x(tjq
)) − Sj (x(tK +1)) <

1
2
r(ε).

b). For some integer K satisfying tK +1 ≥ T

Si(x(t)) <
1
2
r(ε)

holds for any x0 in some neighborhood of the origin, t ∈
[t0 , tK +1) and i ∈ M.

c). For the integer K in b), any j ∈ M , tjq
∈ Σ | j and tjq

>
tK +1 , we have

Sj (x(tjq
)) < r(ε).

We first prove a). Condition iii) says that, for ui satisfying

ωi
i (ui(t), hi(x(t))) ≤ 0

there exist φi
j (t) ∈ L+

1 [0,∞), i �= j, such that

ωi
j (x(t), ui(t), hi(x(t)), t) ≤ φi

j (t).

Since φi
j (t) ∈ L+

1 [0,∞), there exists T > 0 such that for any
T1 , T2 , T ≤ T1 ≤ T2 ≤ ∞, it holds that∫ T2

T1

φi
j (t)dt <

1
2m

r(ε), i, j ∈ M, i �= j (25)

where m is the number of the subsystems. Now, for any j ∈ M ,
let tjq

∈ Σ | j and tjq
> tK +1 . Obviously, jq ≥ K + 2. It is

easy to deduce from (17) and (18) that

Sj (x(tjq
)) − Sj (x(tK +1))

=
jq −K−1∑

λ=1

(Sj (x(tK +λ+1)) − Sj (x(tK +λ)))

≤
jq −K−1∑

λ=1

∫ t
K + λ+ 1

t
K + λ

ψ
i
K + λ

j (t)dt (26)

where

ψ
i
K + λ

j (t) =




ωj
j (uj (x(t), t), hj (x(t)))

if iK +λ = j,

ω
i
K + λ

j (x(t), ui
K + λ

(x(t), t), hi
K + λ

(x(t)), t)

if iK +λ �= j.
(27)

Note that ωj
j ≤ 0 and ω

i
K + λ

j ≤ φ
i
K + λ

j by assumption, so we

know that ψ
i
K + λ

j ≤ φ
i
K + λ

j .
Taking (25) into account, we have

Sj (x(tjq
)) − Sj (x(tK +1))

≤
jq −K−1∑

λ=1

∫ t
K + λ+ 1

t
K + λ

φ
i
K + λ

j (t) dt

≤
m∑

i=1

∫ ∞

tK + 1

φi
j (t) dt

<
1
2
r(ε). (28)

We now prove b). Assumption 2.1 says that on the time inter-
val [t0 , T ] the system (1) switches at most KT times for some
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T-dependent integer KT . For notational simplicity, we drop the
subscript T and denote KT by K. Thus, the (K + 1)th switch-
ing time tK +1 satisfies tK +1 ≥ T , no matter where to start.
Note that Si is positive definite and Si(0) = 0, we can find
δ1 > 0, δ1 < ε, such that Si(x) < 1

2 r(ε) when x ∈ B(δ1). For
this δ1 > 0, we can find δ2 > 0, δ2 < δ1 such that Si(x) < r(δ1)
when x ∈ B(δ2). Continuing this procedure, we finally have a
sequence

ε = δ0 > δ1 > δ2 > · · · > δK > δK +1 > δK +2 > 0

with the property

Si(x) < r(δp), when x ∈ B(δp+1)p = 1, 2, . . . ,K + 1,∀i,

Si(x) <
1
2
r(ε), when x ∈ B(δ1),∀i. (29)

This property is depicted in Fig. 2.
Note that (17) and (20) imply that Sik

(x(t)) decreases when
the ik th subsystem is active, and therefore,

Sik
(x(t)) ≤ Sik

(x(tk )), t ∈ [tk , tk+1), k = 0, 1, 2, . . . .
(30)

In particular, in view of (29), if x0 ∈ B(δK +2), we have

Si0 (x(t)) ≤ Si0 (x0) < r(δK +1), t ∈ [t0 , t1). (31)

We claim that

x(t) ∈ B(δK +1), t ∈ [t0 , t1) (32)

holds. In fact, if (32) is not true, there exists t∗ ∈ [t0 , t1) such
that x(t∗) /∈ B(δK +1). Note that x0 ∈ B(δK +2), there must
exist t̄ ∈ (t0 , t1) satisfying ‖ x(t̄) ‖= δK +1 . According to the
definition of r(δK +1), we have Si0 (x(t̄)) ≥ r(δK +1) which
contradicts (31).

Obviously, (29), (30), and (32) imply

Si1 (x(t)) ≤ Si1 (x(t1)) < r(δK ), t ∈ [t1 , t2) (33)

which, in turn, gives

x(t) ∈ B(δK ), t ∈ [t1 , t2). (34)

Recursively repeating these steps, we finally have

SiK
(x(t)) ≤ SiK

(x(tK )) < r(δ1), t ∈ [tK , tK +1) (35)

and

x(t) ∈ B(δ1), t ∈ [tK , tK +1). (36)

By virtue of

ε = δ0 > δ1 > δ2 > · · · > δK > δK +1 > δK +2 > 0

it holds that

x(t) ∈ B(δ1), t ∈ [t0 , tK +1). (37)

Therefore, for any i ∈ M = {1, 2, . . . ,m}, we have

Si(x(t)) <
1
2
r(ε), t ∈ [t0 , tK +1). (38)

Using a) and b) we have

Sj (x(tjq
)) ≤ Sj (x(tK +1)) +

1
2
r(ε) < r(ε).

Fig. 2. Proof of Theorem 3.7.

Thus, c) holds. Therefore, it is easy to show that x(t) ∈ B(ε)
for ∀t and stability follows.

Remark 3.8: Normally, stability is addressed for the system
(1) with ui = 0. Here, we consider stability with respect to a
specific class of inputs satisfying (19).

Remark 3.9: It can be seen from the proof of Theorem 3.7
that any storage function of an inactive subsystem is allowed to
grow but the total growth is bounded by a function in L+

1 [0,∞).
Moreover, the growth tends to zero as the initial state x0 goes
to the origin. This is guaranteed by the Assumption 2.1, which
means finite switchings in any finite time interval for any initial
state x0 , and by the function φi

j , which is independent of the
initial state x0 .

IV. PASSIVITY

Passivity is one of the most useful forms of dissipativity. The
connection to stability has a long history reflected in so called
Kalman–Yacubovitch–Popov theory (KYP) for linear systems
(see [40] and [41]). In this section, we define passivity for system
(1) and establish a passivity theorem. We assume that ui and yi

have the same dimension.
Definition 4.1: System (1) is said to be passive under the

switching law Σ if it is dissipative with respect to

ωj
j (uj , hj ) = uT

j hj − δju
T
j uj − εjh

T
j hj , j = 1, 2, . . . ,m

for some δj ≥ 0, εj ≥ 0, and strictly input (output) passive if
δj > 0 (εj > 0). Here, cross-supply rates can take any forms.

Remark 4.2: We only need the supply rates ωj
j (uj , hj ) to

be quadratic. Since cross-supply rates, which represent energy
exchange between different subsystems, are allowed to take
arbitrary forms, this passivity concept is very broad.
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According to this definition, the system (4) in Example 3.1
with any switching law in (22), and the system (11) in Example
3.2 with the switching law (24) are passive.

A. Switched KYP Condition

We analyze conditions for passivity of switched systems in
this section. We focus on smooth affine switched systems of the
form

ẋ = fσ (x) + gσ (x)uσ

y = hσ (x) (39)

with the switching signal σ taking values in

M = {1, 2, . . . ,m}.

We look for smooth storage functions and continuous supply
rates and cross-supply rates.

Since for system (39), strict input passivity is never satisfied
(see similar discussion on nonswitched systems [39]), we only
consider passivity with supply rates

ωi
i (ui, hi) = uT

i hi − εih
T
i hi.

We have infinitely many choices of cross-supply rates. In order
to generalize the classical KYP condition to switched systems,
in this section, for simplicity, we limit ourselves to cross-supply
rates of the form

ωi
j (x, ui, hi, t) = ϕi

j (x)ωi
i (ui, hi)

= ϕi
j (x)

(
uT

i hi − εih
T
i hi

)
(40)

for some positive continuous functions ϕi
j (x).

Also, we only consider two types of switching laws. One is a
time-dependent switching law, where σ(t) = ik , t ∈ [tk , tk+1),
and the switching times

{tk , k = 1, 2, . . . , }

are predesigned. The other is a state-dependent switching law,
where

σ(t) = σ(x(t)) = i if x(t) ∈ Ωi

and
m⋃

i=1

Ωi = Rn, int Ωi

⋂
Ωj = ∅, i �= j.

Note that in these cases, Condition i) and ii) in Definition 3.3
can be written into a unified form

Sj (x(t)) − Sj (x(s))

≤
∫ t

s

ϕik
j (x(τ))

×
(
uT

ik
(τ)hik

(x(τ)) − εik
hik

(x(τ))T hik
(x(τ))

)
dτ,

∀j, k, tk ≤ s ≤ t < tk+1 (41)

with ϕi
i(x) = 1.

For time-dependent switching and state-dependent switching,
we have, respectively

Lfi k
Sj ≤ −εik

ϕik
j hT

ik
hik

t ∈ [tk , tk+1),

Lgi k
Sj = ϕik

j hT
ik

, t ∈ [tk , tk+1). (42)

and

Lfi
Sj ≤ −εiϕ

i
jh

T
i hi, x ∈ Ωi

Lgi
Sj = ϕi

jh
T
i , x ∈ Ωi (43)

where Lfi k
Sj are the Lie derivatives of Sj along the vector

field fik
while Condition iii) is obviously satisfied due to (40).

Inequalities (42) and (43) are localized forms of the well-known
passivity (or KYP) conditions [18].

B. Stabilization by Output Feedback

In this section, we show how passivity induces asymptotic
stability via output feedback as in the nonswitched case [19].
Since finite switching is a trivial case, we consider the case of
infinite switching.

We first introduce the concept of asymptotic zero-state de-
tectability for nonlinear systems, which will be useful to prove
asymptotic stability.

Definition 4.3: A system

ẋ = f(x)

y = h(x) (44)

is called asymptotically zero-state detectable if for any ε > 0,
there exists δ > 0, such that when ‖ y(t + s) ‖< δ holds for
some t ≥ 0, ∆ > 0 and 0 ≤ s ≤ ∆, we have ‖ x(t) ‖< ε.

Remark 4.4: This asymptotic zero-state detectability is a
weaker version of small-time norm observability [14].

Theorem 4.5: If the system (1) is passive, then, the origin is
stabilized by any controllers ui of the form

ui(t) = αi(x(t), t)

satisfying

fi(0, αi(0, t)) ≡ 0

and

uT
i (t)hi(x(t)) ≤ 0.

If, in addition, all Si are globally defined radially unbounded,
there exists at least one j such that

lim
k→∞

(tjk +1 − tjk
) �= 0

and all subsystems of (1) are asymptotically zero-state de-
tectable, then, the origin is globally asymptotically stabilizable
by output feedback ui = −hi.

Proof: Stability follows from Theorem 3.7. The proof of
global attractiveness is outlined as follows. We first define
a function h̃j (t) that equals hj (x(t)) on infinite many inter-
vals of length no smaller than some positive constant. Then,
we show by passivity that h̃j (t) → 0 as t → ∞. Finally,
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we show that x(t) → 0 as t → ∞ by asymptotic zero-state
detectability.

Substituting the output feedback ui = −hi into the passivity
inequality (17) gives rise to

Sik
(x(t)) − Sik

(x(s))

≤ −ζik

∫ t

s

‖hik
(x(t))‖2dt, tk ≤ s ≤ t < tk+1 (45)

with ζi = 1 + δi + εi , or equivalently,

ζik

∫ t

s

‖hik
(x(t))‖2 dt

≤ Sik
(x(s)) − Sik

(x(t)), tk ≤ s ≤ t < tk+1 . (46)

For the integer j satisfying

lim
k→∞

(tjk +1 − tjk
) �= 0

we can select δ > 0 such that the set

Λ = {k | tjk +1 − tjk
≥ δ}

is infinite. Define a function

h̃j (t) =




hj (x(t)), t ∈
⋃
k∈Λ

[tjk
, tjk +1)

0, otherwise.
(47)

For any t > 0, if tjk
≤ t < tjk +1 for some k ∈ Λ, (46) gives

ζj

∫ t

t0

h̃T
j (t)h̃j (t) dt

= ζj

∫
[t0 ,t]

⋂⋃
p ∈Λ

[tj p ,tj p + 1 )
h̃T

j (t)h̃j (t) dt

= ζj

∑
p∈Λ ,p<k

∫ tj p + 1

tj p

hT
j (x(t))hj (x(t)) dt

+ ζj

∫ t

tj k

hT
j (x(t))hj (x(t)) dt

≤ ζj

k−1∑
p=1

∫ tj p + 1

tj p

hT
j (x(t))hj (x(t)) dt

+ ζj

∫ t

tj k

hT
j (x(t))hj (x(t)) dt

≤
k−1∑
p=1

(
Sj (x(tjp

)) − Sj (x(tjp +1))
)

+ Sj (x(tjk
)) − Sj (x(t))

≤
k∑

p=1

(
Sj (x(tjp

)) − Sj (x(tjp +1))
)

= Sj (x(tj1 )) − Sj (tjk +1)

+
k−1∑
p=1

(
Sj (x(tjp + 1 )) − Sj (x(tjp +1))

)
. (48)

It can be easily derived that

Sj (x(tjp + 1 )) − Sj (x(tjp +1))

=
jp + 1 −jp −1∑

λ=1

(
Sj (x(tjp +1+λ)) − Sj (x(tjp +λ))

)

≤
jp + 1 −jp −1∑

λ=1∫ t
j p + 1 + λ

t
j p + λ

(ω
i
j p + λ

j (x(t), ui
j p + λ

(t), hi
j p + λ

(x(t)), t)) dt

≤
jp + 1 −jp −1∑

λ=1

∫ t
j p + 1 + λ

t
j p + λ

φ
i
j p + λ

j (t) dt. (49)

Therefore,

k−1∑
p=1

(Sj (x(tjp + 1 )) − Sj (x(tjp +1))

≤
k−1∑
p=1

˜
jp + 1 −jp −1∑

λ=1

∫ t
j p + 1 + λ

t
j p + λ

φ
i
j p + λ

j (t) dt

=
jp + 1 −jp −1∑

λ=1

k−1∑
p=1

∫ t
j p + 1 + λ

t
j p + λ

φ
i
j p + λ

j (t) dt

≤
m∑

i=1,i �=j

∫
t0

∞
φi

j (t) dt

< ∞. (50)

If t /∈ [tjk
, tjk +1) for any k ∈ Λ, then there exists k ∈ Λ such

that t ≥ tjk +1 and t < tjq
for any q ∈ Λ and q > k. In this case,

we have

h̃j (s) ≡ 0, s ∈ [tjk +1 , t]

and (48) still holds. It follows from (48) and (50) that∫ ∞
t0

h̃T
j (t)h̃j (t) dt is finite. Now, we show h̃j (t) → 0 as t → ∞.

Suppose this is false; then there exist ε > 0 and a sequence of
time t, say,

q1 , q2 , . . . , qk → ∞
satisfying

h̃T
j (qi)h̃j (qi) ≥ ε, ∀i.

Note that (45) and Condition ii) in Definition 3.3 guarantee the
boundedness of x(t), and

ẋ(t) = fσ (x(t))

is also bounded. Hence, h̃j (t) is uniformly continuous over⋃
k∈Λ

[tjk
, tjk +1).

In view of

tjk +1 − tjk
≥ δ, k ∈ Λ



950 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 4, MAY 2008

Fig. 3. Feedback interconnection.

we have ∫ ∞

t0

h̃T
j (t)h̃j (t)dt = ∞,

which contradicts the fact that
∫ ∞

t0
h̃T

j (t)h̃j (t)dt is finite. There-

fore, h̃j (t) → 0. So, x(tjk
) → 0 as k → ∞ and k ∈ Λ follows

from the asymptotic zero-state detectability of the jth subsys-
tem. This, in turn, implies x(t) → 0 as t → ∞ due to stability
of the closed-loop system and continuity of x(t).

Remark 4.6: The control ui can be chosen as output feedback
of the form ui = −ξi(hi) satisfying ξT

i (y)y > 0 for any y.
Remark 4.7: If the system (1) is strict output passive, global

asymptotic stability follows for ui = 0. The proof is similar.

C. Feedback Interconnection

From the nonswitched system theory [17], [40], passivity is
expected to be preserved under feedback interconnection. This
property is very useful in stability analysis of interconnected
systems. In this section, we give the feedback interconnection
theorem for passive switched systems.

Consider the switched systems

H1 :
ẋ1 = f 1

σ1

(
x1 , u1

σ1

)
y1 = h1

σ1
(x1)

(51)

with x1 ∈ Rn1 and the switching signal σ1 , and

H2 :
ẋ2 = f 2

σ2

(
x2 , u2

σ2

)
y2 = h2

σ2
(x2)

(52)

with x2 ∈ Rn2 and the switching signal σ2 . We assume that fi
σi

and hi
σi

are continuous. The feedback interconnection of H1
and H2 is depicted in Fig. 3.

Theorem 4.8: Suppose that the switched systems H1 and H2
are passive. Then, the feedback interconnected system shown
in Fig. 3 is again a passive switched system as long as the
corresponding interconnected subsystems are compatible in the
sense of dimensions, i.e., at any time t, it must hold that

dim r1
σ1

= dim h2
σ2

= dim u1
σ1

dim r2
σ2

= dim h1
σ1

= dim u2
σ2

.

Furthermore, if both H1 and H2 are strictly output passive, then
the interconnected system is also strictly output passive.

Proof: Similar to the nonswitched case [39], it is therefore,
omitted here.

V. L2-GAIN

As another useful form of dissipativity, we study L2-gain of
switched systems in this section.

Definition 5.1: The system (1) is said to have L2-gain γ > 0
if it is dissipative with respect to

ωi
i =

1
2
γ2uT

i ui −
1
2
hT

i hi, i = 1, 2, · · · ,m.

Similarly to the definition of passivity, we do not specify the
form of cross-supply rates ωj

i , i �= j.

A. Switched Hamilton–Jacobi Inequalities

We now look for conditions under which the system (1) has
L2-gain. Again, in this section, we focus on the smooth affine-
switched system (39) with cross-supply rates of the form

ωi
j (x, ui, hi, t) = ϕi

j (x)ωi
i (ui, hi)

=
1
2
ϕi

j (x)
(
γ2uT

i ui − hT
i hi

)
(53)

for some positive continuous functions ϕi
j (x). Similarly to (41),

Conditions i) and ii) in Definition 3.3 can be written into a unified
form

Sj (x(t)) − Sj (x(s))

≤ 1
2

∫ t

s

ϕik
j (x(τ))

× (γ2uT
ik

(τ)uik
(τ) − hik

(x(τ))T hik
(x(τ)))dτ

∀j, k, tk ≤ s ≤ t < tk+1 (54)

with ϕi
i(x) = 1. Following a similar way as in [39], we have the

switched Hamilton–Jacobi inequalities, respectively, for time-
dependent switching and state-dependent switching as

Lfi k
Sj +

1
2ϕik

j γ2
(Lgi k

Sj )(Lgi k
Sj )

T +
1
2
ϕik

j hT
ik

hik

≤ 0, t ∈ [tk , tk+1) (55)

and

Lfi
Sj +

1
2ϕi

j γ
2 (Lgi

Sj )(Lgi
Sj )T +

1
2
ϕi

jh
T
i hi

≤ 0, x ∈ Ωi . (56)

Equations (55) and (56) are localized forms of the Hamilton–
Jacobi inequalities that generalize those used in nonswitched
systems [18], [39].

B. Stabilization

As in nonswitched systems, L2-gain can produce stability for
a certain class of control signals. Again, we only consider the
nontrivial case of infinite switching.
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Theorem 5.2: If the system (1) has L2-gain γ, then the origin
is stabilized by any control ui(t) satisfying

‖ ui(t) ‖2≤ (1 − ζ2
i )

γ2 ‖ hi(t) ‖2 (57)

for some ζi, 0 ≤ ζi ≤ 1. If in addition, 0 < ζi ≤ 1, all Si are
globally defined radially unbounded, there exists at least one j
such that

lim
k→∞

(tjk +1 − tjk
) �= 0

and all subsystems of the system (1) are asymptotically
zero-state detectable, then the origin is globally asymptotically
stabilized.

Proof: Similar to the proof of Theorem 4.5.

C. Small-Gain Theorem

This section establishes a small-gain theorem for switched
systems.

Suppose we have two switched systems:

H1 :
ẋ = fσ1 (x, uσ1 )

y = hσ1 (x)
(58)

and

H2 :
ż = gσ2 (z, vσ2 )

w = lσ2 (z)
(59)

where

σi : R+ → Mi = {1, 2, . . . ,mi}, i = 1, 2.

The meaning of other variables are the same as those in the
system (1). Without loss of generality, we assume that the two
switched systems have the same switching time sequence

{t0 , t1 , . . . , tk , . . .}.

When t ∈ [tk , tk+1), the i1k th and i2k th subsystems of H1 and
H2 are active, respectively.

Theorem 5.3: Suppose that H1 has L2-gain γ1 with storage
functions S1i and cross-supply rates ωi

1j , and H2 has L2-gain
γ2 with storage functions S2i and cross-supply rates ωi

2j , re-
spectively. If γ1γ2 < 1, and

ωi
1j (x(t), ui(t), hi(x(t)), t)

≤ 1
2
C(t)

(
γ2

1 uT
i (t)ui(t) − hT

i (x(t))hi(x(t))
)

+ ϕi
1j (t)

ωi
2j (z(t), vi(t), li(x(t)), t)

≤ 1
2
C(t)

(
γ2

2 vT
i (t)vi(t) − lTi (z(t))li(z(t))

)
+ ϕi

2j (t) (60)

for some nonnegative function C(t), functions ϕi
1j (t), ϕ

i
2j ∈

L+
1 [0,∞), then, the feedback-interconnected system of H1 and

H2 with

uσ1 = −lσ2 (z), vσ2 = hσ1 (x) (61)

is stable. If in addition, all S1i , S2i are globally defined ra-
dially unbounded, there exists at least one interconnection of

subsystems having infinite active time intervals with positive
dwell time, and all subsystems of H1 and H2 are asymptotically
zero state detectable, then the feedback interconnected system
is globally asymptotically stable.

Proof: The conclusion can be proven by applying the method
in [19] and [39].

Remark 5.4: It is not surprising that in addition to the usual
small-gain condition γ1γ2 < 1, we still need the condition (60),
which is a constraint on cross-supply rates. This constraint can
be regarded as a generalization of the small-gain condition be-
tween inactive coupled subsystems. In particular, when cross-
supply rates are the same as supply rates, this condition is auto-
matically satisfied. In general, the cross-supply rates are allowed
to take any form.

VI. CONCLUDING REMARK

We have established a framework of dissipativity theory for
switched systems. Multiple storage functions and multiple sup-
ply rates are adopted to describe dissipativity. When a subsystem
is active, the dissipativity property is consistent with the classi-
cal notion of dissipativity for continuous systems. For inactive
subsystems, the change of associated storage functions, viewed
as “exchanged energy” from the active subsystem to inactive
subsystems, is measured by cross-supply rates. Stability is as-
sured by dissipativity. For passivity, we localize the passivity
(or Kalman–Yacubovitch–Popov) condition and derive a prop-
erty of invariance under feedback interconnection. For L2-gain,
we give a local version of the Hamilton–Jacobi inequalities and
study the small-gain property.

The introduction of cross-supply rates relates the active sub-
system and inactive subsystems. As in the classic notion of
dissipativity, where the supply rate may represent abstract en-
ergy, cross-supply rates in dissipativity of switched systems
are abstract “exchanged energy.” Therefore, we do not limit
the form of cross-supply rates in the description of dissipa-
tivity, passivity, and L2-gain in order to cover more general
situations. In particular, cross-supply rates are allowed to be
positive even though it must be possible for all supply rates to
be negative, which completely differs from the classical dis-
sipativity property. Moreover, a storage function is allowed to
grow on the “switched ON” time sequence of the corresponding
subsystem. This feature makes the dissipativity theory estab-
lished here different from the Branicky’s theory of multiple
Lyapunov functions [2], in which the nonincreasing condition
of a Lyapunov function on the “switched ON” time sequence
is a key prerequisite. It is worthwhile pointing out that some-
times the general cross-supply rates may “weaken” the results.
For example, the L2-gain property only describes the input–
output gain over the active time intervals. In order to have the
input–output gain over the infinite time domain, which is re-
lated to H∞ control, certain constraints must be imposed on
the cross-supply rates. This will be considered in our separate
papers.

An important research problem is dissipation via feedback.
The general form of cross-supply rates provides more possibil-
ity for dissipation. A potential application of the dissipativity
theory proposed in this paper is to stabilize continuous-time
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nonlinear systems via controller switching. This needs fur-
ther research. Other results will more fully generalize the the-
ory for nonswitched systems, e.g., feedback passivity theorems
[19].
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