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Dissociable electrophysiological 
measures of natural language 
processing reveal differences 
in speech comprehension strategy 
in healthy ageing
Michael P. Broderick1*, Giovanni M. Di Liberto2, Andrew J. Anderson3,4, Adrià Rofes5 & 
Edmund C. Lalor1,3,4

Healthy ageing leads to changes in the brain that impact upon sensory and cognitive processing. 
It is not fully clear how these changes affect the processing of everyday spoken language. 
Prediction is thought to play an important role in language comprehension, where information 
about upcoming words is pre-activated across multiple representational levels. However, evidence 
from electrophysiology suggests differences in how older and younger adults use context-based 
predictions, particularly at the level of semantic representation. We investigate these differences 
during natural speech comprehension by presenting older and younger subjects with continuous, 
narrative speech while recording their electroencephalogram. We use time-lagged linear regression 
to test how distinct computational measures of (1) semantic dissimilarity and (2) lexical surprisal are 
processed in the brains of both groups. Our results reveal dissociable neural correlates of these two 
measures that suggest differences in how younger and older adults successfully comprehend speech. 
Specifically, our results suggest that, while younger and older subjects both employ context-based 
lexical predictions, older subjects are significantly less likely to pre-activate the semantic features 
relating to upcoming words. Furthermore, across our group of older adults, we show that the weaker 
the neural signature of this semantic pre-activation mechanism, the lower a subject’s semantic verbal 
fluency score. We interpret these findings as prediction playing a generally reduced role at a semantic 
level in the brains of older listeners during speech comprehension and that these changes may be part 
of an overall strategy to successfully comprehend speech with reduced cognitive resources.

Healthy ageing is accompanied by a myriad of sensory and cognitive changes. This includes a decline in working 
 memory1 and episodic  memory2 as well as hearing  loss3 and a slowing in processing across cognitive  domains4. 
Given that spoken language comprehension is a multifaceted cognitive skill involving all these processes, it is 
remarkable that it remains relatively stable across a healthy adult’s lifespan. An interesting question, therefore, is 
whether the neural systems supporting successful language comprehension undergo a strategic shift with age to 
maintain preservation in the face of  decline5–7, resulting in measurable differences between younger and older 
adults engaged in comprehension tasks. Furthermore, a related question is whether such differences play into 
the reported extra difficulties that older adults experience in trying to follow everyday conversational speech, 
especially in challenging listening  environments8–10. Electrophysiology studies have indicated that age-related 
differences exist in the neural signatures relating higher level linguistic  processing11. This has been shown con-
sistently in studies examining the N400 component.
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The N400 component of the event-related potential (ERP) is most widely studied in relation to language 
 processing12,13. It is characterised by a centroparietal negativity that is elicited 200–600 ms after word-onset and 
is strongest for words that are incongruent with their preceding context (e.g., “I take my coffee with cream and 
socks”). Several contrasting theories have been advanced to account for the N400. These include suggestions 
that the N400 reflects analysis of the low-level (e.g., orthographic or phonological) attributes of the unexpected 
(read or heard) word before that word is actually  recognized14; that it represents the process of accessing the 
semantic meaning of the  word15; or that it represents the process of incorporating the meaning of the word into 
its preceding  context16. One idea that has the potential to unify several of these competing theories is that the 
N400 reflects the stimulus induced change in a multimodal neural network, wherein an implicit and probabilistic 
representation of sentence meaning is  held12,17. Importantly, the state of this internal network can be shaped by 
predictions, such that information can be partially or fully activated before the arrival of bottom-up  input18. This 
idea relies on the suggestion that listeners process speech predictively. In particular, it has been suggested that 
listeners use their internal representation of context to predictively pre-activate information at multiple represen-
tational levels during language  comprehension19. This includes the processing of semantic  categories18,20–23, event 
 structure18,24–26, syntactic  structure24,25,27–32, phonological  information33,34 and orthographic  information34,35. In 
addition at a lexical surface level, this could include the activation of representations of word  identity34,36, whereas 
a semantic level relates to the activation of an upcoming word’s semantic  features23,37. It is believed that this pre-
activation occurs in parallel across these distinct representational levels as part of an interactive network with 
reciprocal connections between each  level19,38,39.

Previous cognitive electrophysiology studies have consistently shown age-related differences in the amplitude 
and latency of the N400 component, indicating that changes do indeed occur in how older adults use context to 
facilitate the processing of  words40–46. An important study by Federmeier and colleagues found that, for younger 
adults, N400 responses showed a graded facilitation for words depending on their semantic relationship with 
some predicted target. For example the sentence “I take my coffee with cream and …”, showed the largest N400 
reduction for expected completions (sugar), but also showed reductions for unexpected but semantically related 
words (salt) compared to unexpected and unrelated words (socks)23,47. This was taken as strong evidence that the 
N400 component reflects, in part, the predictive preactivation of semantic features for upcoming  words37. Cru-
cially, older adults, as a group, showed weaker facilitation effects for unexpected but semantically related target 
words, although a cohort of older adults with higher verbal fluency scores showed more younger-like  responses47.

Several related N400 studies have similarly concluded that prediction plays an overall reduced role in language 
comprehension for older  adults11. This strikes somewhat of a discord with findings from cognitive  audiology48, 
 behaviour49–51 and eye-tracking52–54 literatures that have, in many cases, shown the preservation of prediction 
mechanisms or a higher reliance on context in the brains of older adults (recently reviewed by Payne and  Silcox55). 
However, as mentioned above, it is possible that the N400 reflects contributions from parallel predictive process-
ing at multiple linguistic levels. Therefore, the notion that the preactivation of information at distinct levels is 
differentially affected by ageing has the potential to reconcile these apparently contrasting literatures.

To explore this possibility, we leveraged a recent experimental framework to isolate neural correlates of 
prediction from these different levels in younger and older adults using natural, continuous speech and modern 
context-based language  modelling56,57. This approach includes the variations in predictability at different levels 
that come with natural speech and allows for the derivation of interpretable neural correlates for different aspects 
of predictive language processing according to the language models used in analysing the neural  data58–60. Fur-
thermore, the use of natural speech material (e.g., listening to a story vs an experimental paradigm with multiple 
sentences/questions) adds to the ecological validity of observed effects and is less taxing on the attention of 
participating subjects than experiments involving artificially constructed  sentences61. This seems important for 
reducing the potential confound of different levels of attentional engagement between older and younger subjects.

Given the differences in how the language models operate, we hypothesized that they could dissociate pre-
dictive processes at lexical and semantic representational levels in terms of how they contribute to the N400. 
Additionally, based on previous N400  literature47, we hypothesized that older participants would show a specific 
detrimental effect in their ability to preactivate semantic features of upcoming words, and that this effect would 
correlate with behavioural measures of verbal fluency—for example, the number of word of words they could 
produce belonging to a specific category in fixed amount of time.

Results
Two groups of 19 older (55–77 years, mean = 63.9) and 19 younger (19–38 years, mean = 26.8) subjects listened 
to the same 12-min long excerpt of narrative speech while their electrophysiological (EEG) signal was recorded. 
We first characterised the speech stimulus in terms of the predictive strength between each content and its pre-
ceding context at distinct linguistic levels. This was done using a recent modelling framework (Fig. 1) to tease 
apart neural correlates of predictive processing at the lexical and semantic level.

To model predictive processing at the lexical level, we estimated 5-g surprisal: an information theoretic 
measure of the inverse of the probability of encountering a word, given the ordered sequence of the 4 preceding 
 words62. High lexical surprisal values arise from improbable word sequences. The surprisal estimate itself captures 
nothing about what individual words mean, in the sense that it supplies no measure of whether cats and tigers 
are categorically similar, or whether either are domestic. However, word symbol sequences do in part reflect the 
structure of meaningful events in the real world (cats chase mice). They also reflect grammatical constraints on 
permissible symbol sequences (“The jumped the a cat” is nonsensical). Lexical surprisal is highly correlated with 
cloze probability and can predict word reading  times63,64.

To model predictive processing at the semantic level, we exploited a popular distributional semantic model-
ling approach that approximates word meaning, using numeric vectors of values reflecting how often each word 
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co-occurred with other words across a large body of  text65. Distributional modelling approaches like this support 
the construction of conceptual knowledge hierarchies, e.g., a dragonfly is an insect is an  animal66, and would be 
expected to capture similarities between words belonging to similar categories, such as sugar and salt, and their 
difference to, say, socks. In addition they have been used to model N400 effects of semantic  preactivation23,67 and 
have been shown to have a top-down influence on the early auditory encoding  speech68. Semantic dissimilarity 

Figure 1.  Computational models of predictive processing at lexical and semantic level. To illustrate the idea 
of prediction operating across multiple representational levels, consider the sentence I take my coffee with 
cream and… which ends with either an expected completion (sugar), an unexpected but semantically related 
completion (salt) or an unexpected and semantically unrelated completion (socks). At a lexical level, salt is 
unexpected because it is extremely rare that this sequence of words is heard or read. Processing of this word is 
therefore assumed to be no different from the processing of other unexpected words (i.e. socks). Conversely, at 
a higher semantic level, salt is relatively more likely, because sugar and salt share common features, both being 
powders and condiments; edible; white etc. We used two models of lexical surprisal and semantic dissimilarity 
to disentangle the contributions of prediction at lexical and semantic levels, respectively. Top: For the semantic 
dissimilarity model, vector representations of previous words in the sentence are averaged to form an estimation 
of the event context. The latent semantic features of the averaged vector converge on a representation similar to 
the predicted target “sugar” which, consequently, is more similar to words from the same category (e.g. “salt”) 
than different categories (e.g. “socks”). Bottom: Conversely, the lexical surprisal model does not distinguish 
between unexpected words based on their semantic category as it only reflects the probability of encountering 
either sequence of words in the training corpus, which is either rare or non-existent.
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between a word and its preceding context was computed by 1 minus the Pearson’s correlation between the current 
word vector and the averaged vectors of all previous content words in the same  sentence57.

In contrast to lexical surprisal, the semantic dissimilarity measure captures differences in the semantic cat-
egories that words belong to, and in the contexts that words appear in (cats and tigers are both felines, but tigers 
rarely occur in domestic contexts). Thus, semantic dissimilarity would predict a greater N400 for “I take my coffee 
with cream and socks”, than for “I take my coffee with cream and salt”67. In contrast, a 5-g surprisal model would 
likely regard salt and socks as being equally unexpected at the lexical level because their occurrences are both, 
presumably, non-existent in a text corpus. So, using this model, one might not expect to see much difference in 
the N400 for salt vs socks. (Fig. 1). We found that lexical surprisal and semantic dissimilarity were only weakly 
correlated (Pearson’s R = 0.14, p = 1.2 ×  10–5, n = 916, Fig. S1A), indicating that they captured distinct features of 
the stimulus. Figure S1B provides example sentences from the experimental stimulus with lexical surprisal and 
semantic dissimilarity values of the final word.

The neural tracking of these speech features was assessed using a time-lagged linear regression. Specifically, 
this method models neural responses to speech by estimating a temporal filter that optimally describes how the 
brain transforms a speech feature of interest into the corresponding recorded neural signal. The filter, known 
as the temporal response function (TRF), consists of learned weights at each recorded channel for a series of 
specified time-lags. The TRF has typically been used to measure the cortical tracking of acoustic and linguistic 
properties continuous  speech69–71. However, recent approaches using this method have sought to represent con-
tinuous speech beyond its low-level acoustic features, in terms of its higher-level lexical-semantic  properties57,68,72.

To fit the TRF, lexical surprisal and semantic dissimilarity were represented as vectors of impulses at the onset 
of each content word whose heights were scaled according to their surprisal or dissimilarity value. We regressed 
these vectors simultaneously to the recorded EEG signal of each individual participant. This produced separate 
TRF weights for surprisal and dissimilarity. Figure 2A shows the surprisal TRF weights for older and younger 
groups at midline parietal electrodes with scalp weight topographies at selected time windows (300 ms, 400 ms 
and 500 ms; window width of 50 ms) plotted above and below. Both groups show a prominent negative com-
ponent, characteristic of the classic N400 ERP. We found that the latency of this component was significantly 
delayed by 74 ms in the older group (T = 3.5, p < 0.005, 2 sample t-test, Cohen’s d = 1.13) and observed a cor-
relation between age and response peak latency within the older group (Pearson’s r = 0.46, p = 0.047). Figure 2B 
shows the TRF weights for the semantic dissimilarity feature in older and younger subjects. Younger subjects 

Figure 2.  TRF weights. (A) Lexical surprisal TRF weights averaged over parietal electrodes and across older 
(blue) and younger (red) subjects. Shaded areas show s.e.m. across subjects. Scalp weight topographies at 
selected time windows (300 ms, 400 ms and 500 ms; window width of 50 ms) plotted above and below the 
channel plots for older and younger groups, respectively. N400 components were seen in the TRF weights at 
later time-lags for both groups and the peak latency of this component was significantly delayed for the older 
group. (B) Semantic dissimilarity TRF weights averaged over parietal electrodes and across older (blue) and 
younger (red) subjects. Shaded areas show s.e.m. across subjects. Scalp weight topographies at selected time 
windows (300 ms, 400 ms and 500 ms; window width of 50 ms) plotted above and below the channel plots for 
older and younger groups, respectively. In contrast to lexical surprisal, semantic dissimilarity TRF weights were 
significantly weaker at later time lags for the older group compared to the younger group. (C) EEG Prediction 
Accuracy. Boxplots of EEG prediction accuracy corresponding to each linguistic feature (lexical surprisal and 
semantic dissimilarity) and age-group. Dots indicate individual subjects. Consistent with the feature weights of 
the TRF, there were no significant differences between the prediction accuracies for dissimilarity and surprisal 
over parietal channels for younger subjects. However, older subjects showed significantly higher prediction 
accuracy for surprisal compared to dissimilarity at these channels. (D) Topographical plots of prediction 
accuracy for both age groups and both models.
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showed comparable responses for dissimilarity and surprisal feature weights. In contrast, dissimilarity weights 
were significantly weaker than surprisal weights for older subjects (p < 0.05 running paired t-test, FDR corrected).

The performance of a model is also assessed by its ability to predict unseen neural data. Employing a cross 
validation procedure, we trained TRFs on a subset of each subject’s EEG data. This trained model was used to 
predict EEG that was compared with the remaining, held out EEG data. To test the predictive strength of surprisal 
and dissimilarity individually, we compared prediction accuracy of the full model (including dissimilarity and 
surprisal) with 5 null models where either surprisal or dissimilarity values were randomly permuted. Figure 2C 
shows the prediction accuracy (r) of each feature relative to the average null model predictions over midline 
parietal channels for younger and older subjects. Figure 2D shows the topographical distribution of r values. For 
both groups, surprisal and dissimilarity could significantly predict EEG above this baseline (Younger subjects: 
p = 0.0005 and p = 0.0011 for dissimilarity and surprisal, respectively; Wilcoxon signed-rank test. Older subjects: 
p = 0.022 and p = 0.0002, for dissimilarity and surprisal, respectively; Wilcoxon signed-rank test). Consistent with 
the feature weights of the TRF, there were no significant differences between the prediction accuracies for dis-
similarity and surprisal for younger subjects (p = 0.28, Wilcoxon signed-rank test). However, importantly, older 
subjects showed significantly higher prediction accuracy for surprisal compared to dissimilarity (p = 0.0048, Wil-
coxon signed-rank test). Younger subjects also showed significantly higher prediction accuracy for dissimilarity 
than older subjects (p = 0.033, Mann–Whitney U-test), whereas no significant age-related difference was found 
for lexical surprisal prediction accuracies (p = 0.91, Mann–Whitney U-test). 2 of the 19 subjects scored below 
25 (scores of 24 and 23) in a prior screening Montreal Cognitive Assessment (MOCA). Although 25 is typically 
set as the inclusion  criteria73, we chose to include these subjects in the main analysis because the MOCA is not a 
direct measure of language function. However, excluding these subjects did not affect the within group difference 
of semantic dissimilarity and lexical surprisal models in older adults (p = 0.015, Wilcoxon signed-rank test) or 
the between group difference for semantic dissimilarity (p = 0.043, Mann–Whitney U-test).

From these results it is evident that semantic dissimilarity is weaker at explaining the neural responses for 
older subjects compared to younger subjects. However, this difference in model performance could conceivably 
be due to the particular way in which we have computed semantic dissimilarity. For instance, it has been shown 
that older adults have reduced working memory  capacity1, and thus for older adults it may be more appropriate 
to compute dissimilarity using a smaller window of previous words. To safeguard against this possibility, we 
tested several semantic dissimilarity vectors, where dissimilarity was estimated by comparing a word with a fixed 
number of previous words. We used context window sizes of 3, 5, 7, 9 and 11 words. We found no differences 
between models with different context window sizes or the model with a sentence context window (p = 0.61 for 
the older group, p = 0.79, for the younger group, Kruskal–Wallis test), indicating that the difference in brain 
responses between younger and older participants was not the result of the selected parameters.

Finally, we investigated the low-level acoustic tracking of the speech envelope in both groups to check if 
our results might be explained based on differences in processes impacting in low-level encoding of the speech 
signal. Envelope tracking is sensitive to factors like attention or perceived speech  intelligibility74–77 and weaker 
tracking measures in the older group could indicate that these processes negatively impact subjects’ ability to 
preactivate semantic features of upcoming words. Consistent with previous  reports9,78, we found significantly 
stronger tracking of the speech envelope in older adults (Fig. S2), suggesting that low-level acoustic processing 
does not explain the between-group differences we see in semantic dissimilarity.

Previous work has indicated that older adults with higher verbal fluency scores were more likely to engage 
predictive processes at the level of semantics, resulting in N400 response patterns that were more similar to their 
younger  counterparts47. On this basis, we tested whether semantic dissimilarity model performance could predict 
verbal fluency in our older subjects. We found that, when controlling for age, model prediction accuracies were 
positively correlated with semantic fluency scores (i.e. the total number of words produced from a semantic 
category in 60 s) across subjects (Pearson’s R = 0.63, p = 0.005, Fig. 3). This reveals that semantic dissimilarity 
was more accurately modelled for older subjects with higher semantic fluency. The model accuracy for surprisal 
was not predictive of this measure (Pearson’s R = − 0.04, p = 0.88). In addition, model accuracies for surprisal and 
dissimilarity were not significantly correlated with letter fluency scores (R = − 0.12, p = 0.67; semantic dissimilar-
ity, R = − 0.44, p = 0.07; lexical surprisal). Although the sample of the correlation was relatively low (n = 19) and 
verbal fluency measures are typically more robust when more than one construct is assessed per  measurement79, 
this significant correlation represents a positive advance in the ability to acquire cognitive estimates from an 
individual’s neural signal under naturalistic listening conditions.

Discussion
The current article has revealed differences between younger and older adults’ electrophysiological responses 
to natural, narrative speech. In both young and old, a joint model capturing lexical surprisal and semantic dis-
similarity produced N400 component responses in its temporal weights. While the lexical surprisal measure 
was robust in older adults, its peak negativity was delayed, similar to previous reports based on the  N40043. In 
contrast, the semantic dissimilarity measure was much reduced in the older subjects. We interpret this as evidence 
for two distinct contributions to the N400 that reflects how information is predictively preactivated at lexical 
and semantic levels of linguistic representation. Furthermore, the pattern of results suggests that while older 
subjects maintain a robust ability to utilize lexical predictions during language processing, their ability to do so 
based on semantic representations appears to be impaired. Importantly, this interpretation was supported by the 
fact that the performance of the semantic dissimilarity model in older adults reflected a semantic behavioural 
measure of their categorical verbal fluency. These results extend basic scientific understanding of neurophysi-
ological changes that accompany ageing and could have implications for research into naturalistic measures of 
brain health, as we discuss below.
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Figure 3.  (A) Within the older subjects, semantic category fluency was positively correlated with the semantic 
dissimilarity model performance when controlling for age (R = 0.63 p = 0.005). (B) In contrast, semantic category 
fluency was uncorrelated with the lexical surprisal model performance when controlling for age (R = − 0.04 
p = 0.88).



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4963  | https://doi.org/10.1038/s41598-021-84597-9

www.nature.com/scientificreports/

The notion that our measures reflect dissociable neural processes contributing to the N400 fits with results 
from previous modelling studies on younger adults. Surprisal and dissimilarity measures were jointly modelled 
on both EEG and fMRI responses in younger adults during sentence reading and narrative speech comprehen-
sion  respectively58. The measures both produced similar N400 responses in the sentence reading EEG data, as 
they have done for the younger adults in our study (Fig. 2). However, the fMRI results provided evidence that 
distinct brain regions were involved in processing the two different aspects of the speech input. In particular, 
visual word form areas reflected surprisal (i.e., lexical processing) and areas of the semantic  network80 reflected 
dissimilarity (i.e., semantic processing). In that study, the distinct contributions of lexical and semantic processing 
were not dissociable in the N400 data because they were both strongly represented in younger adults. Our study 
goes beyond this, in 1) revealing that electrophysiological activity elicited in narrative speech comprehension 
reflects components of lexical surprisal and semantic dissimilarity; 2) demonstrating an age-related dissociation 
between the contribution of surprisal and dissimilarity, with the dissimilarity component being less pronounced 
in older people. Together, these findings provide convergent evidence that the N400 response reflects contribu-
tions from multiple processes relating to prediction at different levels of the linguistic processing  hierarchy19,81.

The idea that the N400 is affected by prediction at lexical and semantic levels also aligns well with previ-
ous N400 ERP literature. N400 ERP responses in younger adults were modulated for words that were not only 
unexpected in their context, but also belonged to a different semantic category to the expected  word23. This is 
consistent with semantic features of upcoming words being predictively preactivated by a comprehender’s inter-
nal representation of context in parallel with the preactivation of word form at a lexical level. Importantly, the 
relative contribution of lexical and semantic components to the N400 appears to change with age. Specifically, 
in older adults there is less sensitivity to an unexpected word’s semantic category, especially when the preceding 
context is highly constraining. These results are consistent with the idea of prediction playing a reduced role 
at a semantic level in the ageing  brain41,47. However, whereas N400 ERP paradigms propose that different sub 
processes contribute to the N400 based on how evoked responses vary as a function of sentence-ending, our 
approach has dissociated lexical surprisal and semantic dissimilarity in neural responses to a continuous stretch 
of narrative speech.

We show that prediction of upcoming lexical items is preserved with age. This was captured using a Markov 
model. Although Markov (lexical surprisal) models perform well at next word prediction tasks despite being 
a lot simpler than artificial neural networks, they suffer from an inability to  generalize82. For example, they are 
insensitive to the fact that sentences like I take my coffee with cream and sugar and I like my espresso milky and 
sweet mean similar things. Thus, they represent a more rigid probabilistic model of language that still works quite 
well. This model could correspond to a design feature of a lexical system, specialised to use meaningful context 
to predict upcoming word identity rather than more abstract linguistic information, such as a word’s semantic 
features. This lexical system operates similarly in younger and older adults whose accumulated knowledge of 
language is more crystalized; less  fluid50 and reflects the same rigidity as the Markov model. In contrast, ageing 
results in a lesser engagement in a semantic system that is specialised in the prediction of semantic information.

Hence, our modelling approach suggests that predictive processing is preserved with age and that older adults 
draw on their internal representation of context to facilitate the processing of incoming information. This aligns 
with findings from eye tracking, behaviour, and cognitive audiology literatures. However, the information that 
is preactivated represents a more rigid commitment to the identity of upcoming words. The preactivation of 
linguistic information that exists at semantic levels of representation, captured by semantic dissimilarity, that 
can generalize across words is much weaker in the brains of older listeners, although subjects with higher verbal 
fluency scores exhibited stronger preactivation. This could explain why word reading time context effects are 
preserved with age, as word reading times correlate with lexical  surprisal63, and not with semantic dissimilarity 
when surprisal is factored  out58. In contrast, both semantic dissimilarity and lexical surprisal can explain variance 
in N400 responses when controlling for one  another58. Based on the notion that the N400 reflects contributions 
from multiple distinct linguistic levels, this could explain why weaker N400 responses are consistently observed 
in older  adults11,40,41,43.

Older adults show remarkably preserved language comprehension skills despite experiencing an overall 
decline in sensory and cognitive  function83. A lesser reliance on predictions at a semantic level may be part of 
a strategy to successfully comprehend speech with reduced cognitive  resources84. This possibly highlights the 
putative value of high-level predictions to support speech comprehension in noisy environments, when the input 
is corrupted and where older adults often struggle to comprehend. Future work, presenting speech at different 
levels of signal-to-noise ratio could help our understanding of such phenomena.

We wish to further emphasize that the study was undertaken using a short, 12-min segment of natural con-
tinuous speech stimulus. Previous research into the electrophysiological changes in language processing in the 
ageing brain have leveraged ERP-based experimental protocols that rely on experimenter-configured stimulus 
sets to enable contrasts between different stimulus conditions (e.g. congruent and incongruent sentence word-
ings). However, the ERP approach constrains the breadth of linguistic stimuli that can be investigated to the 
subset of sentences configured into matched experimental pairs. Additionally, the degree of ecological validity of 
results generated from bespoke ERP setups is unclear because the experimental conditions are rarely experienced 
in everyday life. By examining electrophysiological responses elicited in audiobook comprehension, we have 
utilized a stimulus that is actually experienced in the wild, and the participant experiences an uninterrupted pro-
longed and cohesive discourse, that is likely to be more engaging than listening to disjoint experimental sentences.

In conclusion, we have revealed neural correlates of language prediction relating to distinct measures of lexical 
surprisal and semantic dissimilarity. We show how one of these forms of prediction becomes less effective with 
age and patterns with behavioural cognitive measures, enabling us to derive accurate estimates an individual’s 
verbal semantic fluency from their neural data alone. These findings open new possibilities to study language 
impairment in the elderly and detect the onset of neurodegenerative disorders.
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Materials and methods
Participants. Data from 38 individuals (19 younger (6 female), age 19–38 years, M = 26.8 years ± s.d. = 5 ye
ars; 19 older (12 female), age 55–77 years, M = 63.9 years ± s.d. = 6.7 years) were reanalysed for this study. Data 
from the 19 younger subjects was collected in previous  studies57,71 and in the current analysis only a portion of 
each subjects’ data was used (the first 12 min) in order to match the amount of recorded data for the older par-
ticipants. Data collected from the 19 older subjects had not been previously published. Both studies were under-
taken in accordance with the Declaration of Helsinki and were approved by the Ethics Committee of the School 
of Psychology at Trinity College Dublin. Each subject provided written informed consent. Subjects reported no 
history of hearing impairment or neurological disorder.

Stimuli and experimental procedure. The stimulus was an audio-book version of a popular mid-twen-
tieth century American work of fiction (The Old Man and the Sea, Hemingway, 1952), read by a single male 
American speaker. The first 12 min of the audiobook was divided into 4 trials, each 3 min in duration. The 
average speech rate was 190 words/minute. The mean length of each content word was 334 ms with standard 
deviation of 140 ms. Trials were presented chronologically to the story with no repeated trials. All stimuli were 
presented monophonically at a sampling rate of 44.1 kHz using Sennheiser HD650 headphones and Presenta-
tion software from Neurobehavioural Systems. Testing was carried out in a dark, sound attenuated room and 
subjects were instructed to maintain visual fixation on a crosshair centred on the screen for the duration of each 
trial, and to minimise eye blinking and all other motor activities. Procedural instructions did not differ between 
younger and older subject groups. Prior to the experiment, subjects were not questioned about their familiarity 
with the story, however no subject reported being overly familiar with the story upon hearing it.

Older participants were additionally tested with 2 verbal fluency (VF) tasks. Letter verbal fluency was meas-
ured by asking participants to name as many words beginning with the letter ‘F’ as they could in 60  s85. Similarly, 
semantic verbal fluency was measured by asking participants to name as many animals as they could in 60  s86. 
These measures have been shown as reliable indicators of verbal fluency in older  adults87,88. Audio recordings of 
participant responses were acquired and transcribed verbatim. Average subject letter fluency was 14.63 ± 4.27 
S.D. Average subject category fluency score was 20.7 ± 3.75 S.D.

Prior to the verbal fluency task, participants were screened using the Montreal Cognitive Assessment 
(MOCA). Mean MOCA score was 26.7 ± 1.9 S.D. Verbal fluency is usually assessed as part of MOCA using the 
letter fluency task. A point is added to the overall MOCA score if a subject correctly names 11 or more words 
beginning with ‘F’. To avoid potential repetition effects, subjects performed the letter fluency task only once and 
both MOCA and letter fluency scores were obtained from this task.

EEG acquisition and preprocessing. 128-channel EEG data were acquired at a rate of 512 Hz using an 
ActiveTwo system (BioSemi). Offline, the data were downsampled to 128 Hz and bandpass filtered between 0.5 
and 8 Hz using a zero-phase shift Butterworth  4th order filter. Previous studies investigating the cortical track-
ing of continuous speech have used similar cut-off frequencies when filtering the EEG  signal57,71,76. To identify 
channels with excessive noise, the standard deviation of the time series of each channel was compared with that 
of the surrounding channels. For each trial, a channel was identified as noisy if its standard deviation was more 
than 2.5 times the mean standard deviation of all other channels or less than the mean standard deviation of 
all other channels divided by 2.5. Channels contaminated by noise were recalculated by spline interpolating the 
surrounding clean channels. Data were then referenced to the average of the 2 mastoid channels.

Finally, we applied multiway canonical component analysis (MCCA) to denoise the data. MCCA is a tech-
nique that seeks to extract canonical components across  subjects89. Like CCA, which is applied to single subjects, 
it can be used to find linear components that are correlated between stimulus and response. However, rather than 
analysing the components directly, EEG can be denoised by projecting it to the overcomplete basis of canonical 
components, selecting a set of components and then projecting back to EEG space. We denoised each age-group 
separately, with the prior hypothesis that latency and morphology of the group responses would be different. For 
each group, we chose parameters of 40 principal components for the initial principal component analysis and 
then 110 canonical components. These chosen values were based on the parameters that were recommended 
for denoising speech related  EEG89; however, we tried several different parameter pairs and tested their effect 
on the prediction accuracy of EEG from the speech envelope. We found that the recommended parameters 
returned the optimal denoising for both groups as determined by prediction accuracy of EEG based on the 
speech envelope (Figure S2).

Semantic dissimilarity and surprisal estimation. Semantic dissimilarity. Distributed word embed-
dings were derived using  GloVe65. This method factorizes the word co-occurrence matrix of a large text corpus, 
in this case Common Crawl (https ://commo ncraw l.org/). The output is 300-dimensional vectors for each word, 
where each dimension can be thought to reflect some latent linguistic context. These word embeddings are used 
to calculate our semantic dissimilarity measure. This is an impulse vector, the same length as a presented trial, 
with impulses at the onset of each content word. The height of each impulse is 1 minus the Pearson’s correlation 
between that word’s vector and average of all preceding word vectors in the same sentence. Semantic dissimilar-
ity values have a mean of 0.48 ± s.d. = 0.17.

Surprisal. Surprisal values were calculated using a Markov model trained on the same corpus as GloVe (com-
mon crawl). These models, commonly referred to as n-grams, estimate the conditional probability of the next 
word in a sequence given the previous n-1 words. We applied a 5-g model that was produced using interpolated 
modified Kneser–Ney  smoothing62,90. Surprisal vectors were calculated as impulses at the onset of all words 

https://commoncrawl.org/
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whose heights were scaled according to the negative log of a word’s 5-g probability. Like the semantic dissimi-
larity vector, impulses for any non-content words were removed resulting in the removal of any impulses that 
were not common between dissimilarity and surprisal vectors. Surprisal values were normalised to match the 
distribution of dissimilarity values with a mean of 0.48 ± s.d. = 0.16.

Temporal response function. The forward encoding model or temporal response function (TRF) can 
be thought of as a filter that describes the brain’s linear mapping between continuous speech features, S(t), and 
continuous neural response, R(t).

where ‘*’ represents the convolution operator. The speech input can comprise of a single speech feature, i.e. uni-
variate, or multiple speech features, i.e. multivariate. Each feature produces a set temporal weights for a series of 
specified time lags. TRF weights are estimated using ridge regression.

where λ is the regularization parameter that controls for overfitting. The models are trained and tested using 
a fourfold cross-validation procedure. 3 of the 4 trials are used to train the TRF which predicts the EEG of the 
remaining trial, based on speech representation input. We train and test models based on the combined semantic 
dissimilarity and surprisal impulse vectors with the addition of an onset impulse vector with impulse height 
equal to the average dissimilarity and surprisal values across all words in the current trial. The onset vector acts 
as a nuisance regressor to capture variance relating to any acoustic onset responses. For testing, the prediction 
accuracy (R) of the model is calculated as the Pearson’s correlation between the predicted EEG and the actual 
EEG. A range of TRFs were constructed using different λ values between 0.1 and 1000. The λ value corresponding 
to the TRF that produced the highest EEG prediction accuracy, averaged across trials and channels, was selected 
as the regularisation parameter for all trials per subject. Previous analyses have linked similar regression-based 
methods with ERP  components60,91,92, providing a methodological baseline for our current analysis. In particular, 
these methods can yield N400 responses using cloze  probability60,91,93 and word  frequency94,95. These studies are 
based on the same time-lagged linear regression approach as ours but typically analyse EEG responses to discrete 
events, such as individual words at the end of sentences. Our analysis extends this work to more natural, continu-
ous stimuli. We do, of course, anticipate differences between the neural processing of discrete and continuous 
stimuli because, in the latter case, the context that accrues as the narrative progresses is coherent. Future work 
will seek to investigate these differences.

To test directly how well each feature accurately captured neural activity for each subject we measured 
the model’s ability to predict EEG based on the true feature representation above null feature representations. 
Specifically, the heights of the impulses for the semantic models were randomly shuffled to produce permuted 
dissimilarity or permuted surprisal vectors. In the testing phase of the cross-validation procedure, a trained 
TRF would attempt to predict the neural response to the permuted features, while all other features remained 
constant. This was repeated for 5 permutations of each stimulus feature. Hence, prediction accuracy for semantic 
features refers to the prediction accuracy difference between true speech feature and the average of the 5 null 
speech feature representations.

In addition, we extracted properties of the model weights themselves. N400 peak latency was calculated 
automatically for each subject as the time lag with the lowest peak weight within a window of 200–600 ms after 
a time-lag of zero. The response peak delay between groups was calculated as the difference between group 
averaged peak delays.

Statistical testing. For every statistical comparison, we first verified whether the distribution of the data 
violated normality and was outlier free. This was determined using the Anderson–Darling test for normality 
and 1.5 IQR criterion, respectively. We used parametric tests (t-test, paired t-test) for data which satisfied these 
constraints and non-parametric tests for data which violated them.

Data availability
Raw EEG data for the younger subjects is available to download from https ://doi.org/10.5061/dryad .070jc . Raw 
EEG data for the older subjects is available upon request.
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