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Abstract Performance on perceptual tasks improves with

practice. Most theories address only accuracy data and

tacitly assume that perceptual learning is a monolithic

phenomenon. The present study pioneers the use of

response time distributions in perceptual learning research.

The 27 observers practiced a visual motion-direction

discrimination task with filtered-noise textures for four

sessions with feedback. Session 5 tested whether the

learning effects transferred to the orthogonal direction.

The diffusion model (Ratcliff, Psychological Review, 85,

59–108, 1978) achieved good fits to the individual response

time distributions from each session and identified two

distinct learning mechanisms with markedly different

specificities. A stimulus-specific increase in the drift-rate

parameter indicated improved sensory input to the decision

process, and a stimulus-general decrease in nondecision

time variability suggested improved timing of the decision

process onset relative to stimulus onset (which was

preceded by a beep). A traditional d’ analysis would miss

the latter effect, but the diffusion-model analysis identified

it in the response time data.

Performance on perceptual tasks improves with practice.

This perceptual learning occurs in all sensory modalities

(Fahle & Poggio, 2002) and is of great theoretical interest

(Lu, Yu, Watanabe, Sagi, & Levi, 2009) and practical

importance (Polat, 2009). However, its mechanisms are still

poorly understood. The signature property of perceptual

learning is its stimulus specificity: The improvement is

(partially) restricted to stimuli similar to those used in

training (see, e.g., Ahissar & Hochstein, 1997). This

indicates that (part of) the neural substrate of the learning

effect resides in the early stages of the sensory processing

pathway (Karni & Sagi, 1991), which may involve changes

in the early sensory areas (see Gilbert, Sigman, & Crist,

2001, for a review) and/or the read-out connections to

decision areas (Dosher & Lu, 1998; Law & Gold, 2008;

Petrov, Dosher, & Lu, 2005).

Most perceptual learning studies use accuracy (or,

conversely, sensitivity) as their dependent variable (Fahle

& Poggio, 2002). Response times (RTs) are typically

ignored, or sometimes the mean RTs are analyzed but

errors are ignored (e.g., Ding, Song, Fan, Qu, & Chen,

2003). Either approach neglects the well-known speed–

accuracy trade-off (Pachella, 1974). Also, such analyses use

only one data point per block per stimulus type. This

restricted empirical base tends to give rise to restrictive

theoretical accounts that attribute all learning to one cortical

site (e.g., Karni & Sagi, 1991) or to one learning rule

operating at task-dependent levels of the processing

hierarchy (Ahissar & Hochstein, 2004).

It seems highly unlikely, however, that perceptual

learning is a monolithic phenomenon. Rather, even the

simplest task engages multiple brain systems, and the

overall behavioral improvement arises from multiple con-

tributions. Univariate data tend to obscure this heterogene-

ity, whereas richer data sets reveal it. For example,

dissociable learning mechanisms have been identified using

event-related potentials (Ding et al., 2003), fMRI (Li,

Mayhew, & Kourtzi, 2009; Vaina, Belliveau, des Roziers,
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& Zeffiro, 1998), and external-noise manipulations (Dosher

& Lu, 1998).

The present study pioneers the use of RT distributions

for studying perceptual learning. A typical RT distribution

can be described approximately by five quantiles (Ratcliff,

1979) that divide the probability mass into six bins. This

makes 12 bins in total, for correct and error responses.

Since the total mass is fixed, there are 11 degrees of

freedom per block. Obviously, this carries much more

information than does accuracy alone, but it presents an

analytic challenge. We use the diffusion model (DM;

Ratcliff, 1978) to analyze such data. This is analogous to

the use of signal detection theory (Macmillan & Creelman,

2005) to convert hits and false alarms into theoretically

motivated estimates of discriminability and bias. Analo-

gously, DM converts hits, false alarms, and RT distribution

statistics into estimated parameters of various processing

components.

DM characterizes the process of making simple two-

choice decisions (see Ratcliff & McKoon, 2008, for a

review). The core of the model is a diffusion process that

describes the stochastic accumulation of evidence for two

competing responses (Fig. 1). The process terminates when

the accumulated evidence reaches one of two decision

boundaries (or criteria). The better the information about

the stimulus, the larger the drift rate v in the correct

direction. Due to within-trial variability in evidence

accumulation, processes with the same mean drift rate

terminate at different times (producing RT distributions)

and sometimes at the wrong boundary (producing errors).

The model has seven free parameters: mean drift rate v,

across-trial variability η in drift rate, boundary separation a,

mean starting point z between the boundaries (0 < z < a),

across-trial range sz in starting point, mean nondecision

time Ter, and across-trial range st in nondecision time. The

first five parameters affect both accuracy and speed in the

model. For example, increased drift rate produces higher

accuracy and faster RTs, whereas increased boundary

separation produces higher accuracy but slower RTs, all

else being equal. The two nondecision parameters (Ter and

st) affect the RTs only. They describe the combined duration

of processes such as stimulus encoding, memory access,

and response execution. All parameters are estimated

simultaneously by fitting the model to behavioral data.

DM is tightly constrained, particularly in experimental

designs involving stimuli at multiple difficulty levels. The

proportions correct and the shapes of all RT distributions

across all difficulty levels must be accounted for with a

fixed parameter set within a block. Only the drift rate v is

allowed to vary as a function of difficulty. DM has been

tested and validated extensively. For instance, speed-related

instructions affect the boundary separation parameter,

whereas stimulus manipulations affect the drift rate (see

Ratcliff & McKoon, 2008, for a review). However, the

effects of practice have been studied relatively little (Dutilh,

Krypotos, & Wagenmakers, in press; Dutilh, Vandekerck-

hove, Tuerlinckx, & Wagenmakers, 2009; Ratcliff, Thapar,

& McKoon, 2006), and the effects of perceptual learning

are largely unknown.

Various perceptual learning mechanisms can be identi-

fied using the DM framework. First and foremost, the drift

rates are expected to improve with practice (Dutilh et al.,

2009; Ratcliff et al., 2006). The drift rates in perceptual

tasks measure the quality of the sensory input to the

decision process. Most theories of perceptual learning (e.g.,

Ahissar & Hochstein, 2004; Karni & Sagi, 1991; Petrov et

al., 2005) predict a drift-rate increase. This increase affects

both accuracy and RT. The diffusion analysis captures both

effects in a single measure, and thus can detect weaker

learning effects. It can also estimate the variability

attributable to speed–accuracy trade-offs across observers

and across sessions. Removing this variability from the

Fig. 1 Schematic illustration of the decision process in the diffusion

model. Three stochastic paths result in a fast correct response, a slow

correct response, and an error response. Because of the positive drift

rate v, the correct (upper) boundary is reached more often than the

incorrect (lower) boundary. RT, response time; a, boundary separation

parameter; z, starting point parameter

Fig. 2 The stimuli were filtered-noise textures moving behind a

circular aperture. The direction of motion could take four possible

values relative to an implicit reference direction (dashed line). The

angles are exaggerated for visibility
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error term improves the power of the analysis still further

(Liu & Watanabe, 2010).

The DM framework also allows us to study the temporal

aspects of perceptual learning. Our hypothesis is that

observers may learn to deploy attention during the critical

period of the trial sequence. Attention plays an important

role in perceptual learning (Ahissar & Hochstein, 2002) and

in learning more generally (Kruschke, 2003). Though

relatively neglected in the literature, the temporal aspects

of attention are as important as its spatial aspects (Large &

Jones, 1999). In particular, the decision mechanism must be

timed relative to the stimulus onset (Purcell et al., 2010;

Ratcliff & Smith, 2010). If triggered before sensory

evidence becomes available, the diffusion process merely

accumulates noise. If triggered too late, valuable evidence

can be lost. Therefore, one way to improve performance is

to calibrate the onset of the decision process. To test this

synchronization hypothesis, we conducted an experiment in
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Fig. 3 Learning profiles for the group-averaged discriminability (a)

and mean response times (b) in the raw data, and for various

parameters of the diffusion model (c–f). The observers practiced

motion-direction discrimination for eight blocks (black symbols) and

then were tested on the same task with motion in the orthogonal

direction (open symbols). The error bars are 90% within-subjects

confidence intervals. Shaded areas mark two additional sessions of

motion aftereffect measurements.
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which a beep reliably preceded the stimulus onset. The

critical prediction was that the variability of nondecision

times would be high at first and decrease significantly with

practice. Moreover, this decrease should transfer across

stimuli as long as the temporal structure remains the same

on each trial. In contrast, the improvement in drift rates was

expected to be partially stimulus specific. The experiment

included a transfer test to assess the specificity of learning.

The task was a visual motion-direction discrimination.

Method

Participants

A total of 27 university students with normal or corrected-

to-normal vision were paid $6/h plus a bonus contingent on

their accuracy.

Stimuli and apparatus

The stimuli were filtered-noise textures moving behind a

circular aperture (see Fig. 2; diameter 10°, speed 12°/s).

The filter had a Gaussian cross-section along the frequency

axis in the Fourier domain (peak frequency 3 cycles/deg at

all orientations, full width at half height 4 octaves). On each

trial, the filter was applied to a fresh sample of independent,

identically distributed Gaussian noise. All stimuli were

generated in MATLAB and presented on a 21-in. NEC

Accusync 120 color CRT (96 frames/s, mean luminance

16.6 cd/m2, chinrest at 93 cm, free viewing in a darkened

room). Each trial began with a brief beep. The texture

appeared 500 ms later, moved for 397 ms, and then

disappeared. The beep onset always preceded the texture

onset by exactly 500 ms, and thus could serve as a reliable

attentional cue.

Task and procedure

The direction discrimination task was defined with respect

to a reference direction θ. The actual motion direction took

four possible values: (θ − 3.5), (θ − 2), (θ+2), and (θ+3.5)

degrees from vertical. Each block randomly presented 120

stimuli of each kind. The instructions designated the first

two as “counterclockwise” and the other two as “clock-

wise.” The observers pressed a key with their left hand to

respond “counterclockwise,” and another key with their

right hand to respond “clockwise.” We used four stimuli in

a binary task in order to prevent same–different compar-

isons with the previous trial and to constrain the DM.

Since the task was quite monotonous, many students

from our participant pool tended to sacrifice accuracy for

speed. To prevent guessing and keep the observers

engaged, the procedure rewarded accuracy and penalized

excessively fast RTs. The reward for each correct response

was a bonus point. The penalty for each error was the loss

of a bonus point, an unpleasant beep, and the addition of

250 ms to the 800-ms intertrial interval. The cumulative

bonus was displayed prominently at all times. The penalty

for excessively fast (<250 ms) RTs was a “slow down”

message that forced the participant to wait for 1,500 ms.

RTs between 250 and 500 ms incurred a silent penalty of 2*

(500– RT) ms. Thus, the fastest way to complete a trial was

to produce a correct response in exactly 500 ms.

Each participant completed a total of 4,800 discrimina-

tion trials in 10 blocks across five sessions. Two additional

sessions—before Block 1 and after Block 8—measured the

motion aftereffect (MAE;Mather, Verstraten, &Anstis, 1998) in

the trained, test, and two control directions.1 Fourteen

participants trained with θ = −50° on Blocks 1–8 and on a

Learning Specificity Linear Trend Quadratic

Variable Index LI Index SI F ηp
2 F ηp

2

Easy discriminability d1’ .55±.08 .55±.09 152*** .74 24.6*** .30

Difficult discriminability d2’ .65±.10 .66±.12 165*** .75 23.6*** .29

Mean discriminability d’ .55±.08 .60±.10 202*** .79 29.7*** .35

Mean reaction time RT −.27±.03 .37±.08 251*** .82 19.0*** .25

Easy drift rate v1 0.96±0.23 .66±.10 91*** .62 10.0** .14

Difficult drift rate v2 1.05±0.25 .72±.09 95*** .64 10.2** .14

Mean drift rate v 0.99±0.23 .68±.09 98*** .64 10.7** .15

Mean nondecision time Ter −.20±.04 .22±.10 62*** .53 4.32* .06

Nondecision time range st −.56±.06 .00±.08 161*** .75 28.0*** .33

Boundary separation a −.09±.07 n/a 7.32** .10 0.68 .00

Drift variability η .37±.21 n/a 6.00* .08 2.04 .02

Starting point range sz −.03±.25 n/a 0.37 .00 0.20 .00

Table 1 Descriptive statistics of

the discriminability d’ for easy

and difficult stimulus pairs and

for all diffusion-model parameters

The learning and specificity

indices were calculated from

group-averaged data (±80%

bootstrap confidence interval;

see note 2 for details). The trend

analyses were performed on the

individual data using orthogonal

contrasts (linear and quadratic).

The error term had df = 182 in

all ANOVAs. ηp
2
= partial effect

size = variance of the contrast

relative to itself plus the error.
* p < .100. ** p < .010. *** p < .001

1 The MAE sessions do not affect the interpretation of the present

results. See the online supplement for details.
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“mini-block” consisting of the first 120 discrimination trials on

the last session. These participants then tested with θ = +40° on

Blocks 9 and 10. The other 13 participants followed the same

schedule but trained on θ = +40° and tested on θ = −50°.

Data analysis

The data for clockwise and counterclockwise stimuli were

pooled because this distinction had no statistically signif-

icant effects. The discriminability (d’) was calculated for

the easy (Δ = 7°) and difficult (Δ = 4°) pairs in each block.

Seven DM parameters (easy v, difficult v, a, Ter, st, η, and sz;

z = a/2) were estimated for each observer in each block. An

iterative algorithm minimized the χ2 discrepancy between

the predicted and observed quantile RTs (Ratcliff &

Tuerlinckx, 2002).

We used trend analysis to test the statistical significance

of the learning effects during Blocks 1–8. We also

calculated two quantitative indices: The learning index

LI ¼ðX8 � X1Þ=X1 for a variable X quantified the improve-

ment by the end of training relative to the initial

performance (Fine & Jacobs, 2002). The specificity index

SI ¼ ðX8 � X9Þ=ðX8 � X1Þ quantified the disruption caused

by the switch to the orthogonal direction in Test Block 9

(Ahissar & Hochstein, 1997).

Results

Both discriminability and mean RT improved with practice

(Fig. 3) and showed highly significant linear and quadratic

trends (Table 1). The d’ profiles for easy and difficult

discriminations were approximately proportional to each

other (d
0

ez � kd
0

diff with k = 1.65±0.13), in agreement with

published data (Petrov et al., 2005). The learning effects

were partially specific to the trained reference direction,

although the degree of specificity differed significantly for

the two dependent measures. The specificity index was2 SI =

.60±.10 for d’ and .37±.08 for the mean RT.

The DM achieved good fits, evident in the quantile

probability plots in Fig. 4 and the scatterplots in Fig. 5. The

former show the proportions of correct and error responses

(on the x-axis) and the corresponding RT distributions

(summarized by the .1, .3, .5, .7, and .9 quantiles on the y-

axis). The model (circles) tracks the data (×’s) well.3 The scatterplots show that the model can reconstruct the data for

each individual on each block to a good approximation.

The quality of the fit, coupled with past research (Ratcliff &

McKoon, 2008) validating the DM in conditions similar to

ours, suggests that the DM parameters offer a concise

characterization of the underlying cognitive processes.

There were statistically significant learning effects for all

DM parameters except the starting point variability sz
(Table 1). The twofold improvement in drift rate (Fig. 3c)

2 All indices throughout the text and in Table 1 are reported as I±CI,

where I is the index calculated from the group-averaged data in

Figure 3, and ±CI is the 80% bootstrap confidence interval. We

estimated the variance of the group-level indices by resampling the

participants with replacement into 1,000 “groups” and repeating the

calculation for each group.
3 The quantitative measure (χ2) of goodness of fit confirms this. See

the online supplement for details.

Fig. 4 Quantile probability plots illustrating the wealth of data and

the quality of the fit. Each panel has 22 empirical degrees of freedom:

the proportions of errors and correct responses for the easy and

difficult discriminations (plotted on the x-axis) and the .1, .3, .5, .7,

and .9 quantiles of the corresponding response time distributions

(stacked vertically on the y-axis). For example, the x-coordinate of the

leftmost, bottommost data point in the top panel indicates the initial

error rate (.18) for easy stimuli. The y-coordinate indicates the leading

edge (.1 quantile≈530 ms) of the corresponding RT distribution. After

4 days of training (middle panel), the performance improves on both

measures (.08 rate and 480 ms, respectively). This illustration is based

on group-averaged data; the analyses in the text (and the predictions in

Fig. 5) are based on model fits to individual data

494 Psychon Bull Rev (2011) 18:490–497



indicates that the quality of the sensory input to the decision

process increases with practice. The learning index for the

drift rate v (LI = 0.99±0.23) was significantly4 higher than

the d’ learning index (.55±.08). This is because v reflects

learning in both accuracy and speed. The improvement was

largely (but not entirely) specific to the trained reference

direction (SI = .68±.09).

The parameters describing the distribution of nondecision

times across trials also improved significantly. The mean

nondecision time Ter decreased by 20% on average (Fig. 3d).

The specificity index for Ter (.22±.10) was significantly5

lower than that for the mean overall RT (.37±.08). This is

because the improvement in overall RT stems in part from

the stimulus-specific increase in drift rate.

The nondecision variability st is of particular interest. As

predicted by the synchronization hypothesis, it was high at

first (283 ms during Block 1, Fig. 3f) and decreased steeply

to 120 ms by the end of training. Moreover, the

improvement transferred fully to the orthogonal direction

of motion (SI = .00±.08).

There was a small but statistically significant decreasing

linear trend in the boundary separation parameter a (Table 1).

This suggests a slight adjustment in the speed–accuracy trade-

off. The drift-rate increase apparently offset this adjustment

and prevented a drop in accuracy. Finally, there was a

marginally significant decrease in the across-trial variability

in drift rate (η) but no significant changes in the variability in

starting point (sz). See the online supplement for details.

Fig. 5 Scatterplots illustrating

the quality of the fit to individ-

ual data. The diffusion model

was fit separately in each block

(297 fits = 27 observers × 11

blocks). Each panel contains

594 points (= 297×2 difficulty

levels). RT, response time

4 Paired-samples bootstrap z = 2.8, p < .01.
5 Paired-samples bootstrap z = 2.5, p < .013.
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Discussion

This article makes two contributions: methodological and

substantive. The methodological one is to demonstrate the

applicability of the diffusion model to perceptual learning

research. This research typically involves simple two-choice

tasks, RTs faster than 1 s, and thousands of trials—precisely

the conditions that DM is best suited for. The model

accounted for all behavioral data—22 measurements per

block in our experiment—with seven parameters. Figure 5

demonstrates that this reduction occurs with little loss of

information. Moreover, the DM parameters have theoreti-

cally motivated and empirically validated interpretations in

terms of component processes (see Ratcliff & McKoon,

2008, for a review). Neurophysiological correlates of several

such processes have been found, narrowing the gap between

brain and behavior (see Gold & Shadlen, 2007, for a

review).

The DM analysis confers several advantages, all of

which stem from its access to more detailed data. First, the

drift-rate parameter v is sensitive to improvements in both

accuracy and speed. This produces stronger learning

effects, manifested here in the high learning index for v.

Second, DM accounts for speed–accuracy trade-offs (Dutilh

et al., 2009; Ratcliff et al., 2006). The associated variability

can be partialed out of the error term (Liu & Watanabe,

2010). The third and most important advantage is that DM

reveals phenomena that cannot be reached by traditional

methods. This leads to the substantive contribution of this

article.

We identified two distinct learning mechanisms with

markedly different specificities. The first mechanism

improves the quality of the sensory input to the decision

process, and manifests itself in increased drift rates. This

improvement is partially stimulus specific and is compat-

ible with most theories of perceptual learning, including

representation modification (Gilbert et al., 2001; Karni &

Sagi, 1991) and selective reweighting (Dosher & Lu, 1998;

Law & Gold, 2008; Petrov et al., 2005). The second

mechanism manifests itself in decreased and less variable

nondecision times.

As discussed in the introduction, triggering the decision

process too early or too late impairs performance. Recent

theoretical work has suggested that the diffusion process

can be gated (Purcell et al., 2010) or disinhibited (Ratcliff

& Smith, 2010) at the time in which usable sensory

evidence becomes available at the decision-making areas.

One intriguing interpretation of our data is that the

observers improved the timing of this internal gating

operation. We speculate that during the first session, this

timing was good on some trials but too slow on others. This

inflated the nondecision time variability and degraded the

mean drift rates. Apparently, the slow nondecision times

were eliminated with practice. Under this synchronization

hypothesis, the nondecision time variability st decreased as

the observers learned the temporal relationship between the

beep and the stimulus onset. Because this relationship was

independent of motion direction, the st decrease transferred

fully to new stimuli.

The nondecision time in the DM covers the combined

duration of stimulus encoding and response execution.

Probably both improved with practice. Although the present

data cannot differentiate their relative contributions, it

seems unlikely that the speed-up can be attributed entirely

to motor factors. The drop in Ter (Fig. 3d) was partially

stimulus specific, and the 160-ms drop in st (Fig. 3f) seems

too large relative to the duration of simple RTs (Luce,

1986).

We used a combination of bonuses and “slow down”

messages to prevent fast guessing. Pilot data indicated that

without such incentives, some students from our participant

pool tended to respond so quickly that their accuracy was

barely above chance. Not surprisingly, there was little

improvement with practice. Our procedure minimized this

behavior and produced robust learning effects. Still, it must

be acknowledged that our results may not generalize well to

less motivated observers.

In conclusion, perceptual learning is not a monolithic

phenomenon. Two learning mechanisms with different

properties seem to be at work in our study and can be

dissociated with the aid of the diffusion model.
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