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Abstract

Behavior may be generated on the basis of many different kinds of learned contingencies. For instance, responses could be

guided by the direct association between a stimulus and response, or by sequential stimulus–stimulus relationships (as in

model-based reinforcement learning or goal-directed actions). However, the neural architecture underlying sequential predictive

learning is not well understood, in part because it is difficult to isolate its effect on choice behavior. To track such learning

more directly, we examined reaction times (RTs) in a probabilistic sequential picture identification task in healthy individuals.

We used computational learning models to isolate trial-by-trial effects of two distinct learning processes in behavior, and used

these as signatures to analyse the separate neural substrates of each process. RTs were best explained via the combination

of two delta rule learning processes with different learning rates. To examine neural manifestations of these learning

processes, we used functional magnetic resonance imaging to seek correlates of time-series related to expectancy or surprise.

We observed such correlates in two regions, hippocampus and striatum. By estimating the learning rates best explaining each

signal, we verified that they were uniquely associated with one of the two distinct processes identified behaviorally. These

differential correlates suggest that complementary anticipatory functions drive each region’s effect on behavior. Our results

provide novel insights as to the quantitative computational distinctions between medial temporal and basal ganglia learning

networks and enable experiments that exploit trial-by-trial measurement of the unique contributions of both hippocampus and

striatum to response behavior.

Introduction

Although a behavior may appear to stem from unitary processes, a
primary thrust of cognitive neuroscience has been to fractionate its
neural causes. In the case of memory, it is clear that different forms are
subserved by separate systems (Packard et al., 1989 Knowlton et al.,
1994; Knowlton et al., 1996a,b); similarly, different networks relying
on distinct representations appear to support distinct strategies for
learned decision-making (Dickinson & Balleine, 2002; Niv et al.,
2006; Bornstein & Daw, 2011).

In particular, whereas much work has examined the brain’s
mechanisms for ‘model-free’ reinforcement learning (RL) of action
policies (Houk et al., 1995; Montague et al., 1996), decisions may
also be evaluated by anticipating their consequences using learned
predictive associations among non-rewarding states or events, as for
locations in a cognitive map (Doya, 1999; Daw et al., 2005; Rangel
et al., 2008; Redish et al., 2008; Fermin et al., 2010). The psycho-
logical, computational and neural processes supporting such ‘model-
based’ RL are comparatively poorly understood and under intensive
current study (Balleine et al., 2008; Daw et al., 2011; McDannald

et al., 2011; Simon & Daw, 2011). However, in RL tasks, it has been
difficult to disentangle the contributions of either strategy to choices
(both, after all, ultimately seek reward). Here, we extended methods
previously used for the study of RL to examine more directly the
learning of sequential, non-rewarded predictive representations, an
important subcomponent of model-based RL.
We used reaction times (RTs) as a trial-by-trial index of predictive

learning in a serial RT task requiring human subjects to identify
images presented in a probabilistic sequence. Predictive learning was
demonstrated by facilitated RTs for more probable images (Bahrick,
1954; Harrison et al., 2006; Bestmann et al. 2008; den Ouden et al.,
2010).
The trial-by-trial pattern by which RTs depended on experience was

consistent with learning by a delta rule: a gradually decaying
influence, on average, of images observed on previous trials (cf.
Corrado et al., 2005; Lau & Glimcher, 2005). A key feature of such a
process is the learning rate: how much weight the system places on
new information, relative to previous experience. Suggestively, RTs
were best explained as resulting from a combination of two such
processes, each with different learning rates. Such multiplicity might
reflect multiple predictive representations supporting the behavior, e.g.
response–response sequencing (procedural learning) and stimulus–
stimulus associations (relational learning). Of these two sorts of
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hypothetical representations, only the second might support model-
based RL. Although our experimental design cannot explicitly
distinguish between the two, we can use our behavioral signatures
to uniquely identify neural correlates in regions suggestive of one type
of mapping or the other.
We reasoned that if two distinct neural systems underlay this

apparently dual-process estimation, then a computational analysis of
functional magnetic resonance imaging (fMRI) data could dissociate
their activity via this parameter (Gläscher & Büchel, 2005). We
used a computational model of learning to analyse the fMRI data
(O’Doherty et al., 2007), seeking correlates of predictive learning
and estimating the implied learning rates. Studies using related tasks
have identified a distributed network of regions, including hippo-
campus and striatum, involved in contingency estimation (Strange
et al., 2005; Harrison et al., 2006). Here, we decompose this
apparently unitary network into separable subnetworks, each dis-
playing a learning rate that corresponds uniquely to one of those
estimated behaviorally. This approach allows us to dissociate the
individual contributions of hippocampus and striatum to trial-by-trial
response behavior, and, consequently, measure neural activity
reflecting sequential predictive learning specific to each of these
structures.

Methods

Participants

Twenty right-handed individuals (nine female; ages 18–32 years,
mean 25) participated in the study. All had normal or corrected-to-
normal vision. Participants received a fixed fee, unrelated to perfor-
mance, for their participation. Participants were recruited from the
New York University community as well as the surrounding area and
gave informed consent in accordance with procedures approved by the
New York University Committee on Activities Involving Human
Subjects.

Exclusion criteria

Data from two participants were excluded due to failure to demon-
strate learning of the sequential contingencies embedded in the task.
Failure to learn was identified when a regression model with only
nuisance regressors (the ‘constant’ model) proved a statistically
superior explanation of participant RTs than any of the other models
considered here, which each include regressors of interest specifying
the estimated conditional probability of images (see Analysis, below).
Statistical superiority was measured by the Bayesian information
criterion (BIC; Schwarz, 1978), used to correct likelihood scores when
comparing models with different numbers of parameters.

Task design

Participants performed a serial reaction time (SRT) task in which
they observed a sequence of image presentations and were instructed
solely to respond to each image using a pre-trained key-press
assigned to that image. The stimulus set consisted of four grayscale
photographs of natural landscapes that were matched for size,
contrast and luminance (Wittmann et al., 2008). Each participant
viewed the same four images. During behavioral training, the keys
corresponded to the innermost fingers on the home keys of a
standard USA-layout keyboard (D, F, J, K). For the MRI sessions,
the same finger keys were used on two MR-compatible button boxes
(Fig. 1A). Participants were instructed to learn the responses as

linking a finger and an image, rather than a key and an image (e.g.
left index finger, rather than ‘F’). The mappings between the four
images and four keys were one-to-one, pseudorandomly generated
for each participant prior to their training session, trained to the
criterion prior to the fMRI session, and maintained constant during
the experiment. The experiment was controlled by a script written in
Matlab (Mathworks, Natick, MA, USA), using the Psychophysics
Toolbox (Brainard, 1997).
At each trial, one of the pictures was presented in the center of the

screen, where it remained for 2 s, plus or minus a small, pseudoran-
dom amount of jitter time, up to 220 ms in increments of 55 ms.
Participants were instructed to continue pressing keys until they
responded correctly or ran out of time. Correct responses triggered a
gray bounding box which appeared around the image for the lesser of
300 ms or the remaining trial time (Fig. 1B). Thus, each image
presentation occurred for the programmed amount of time, regardless
of participant response. The inter-trial interval consisted of 220 ms of
blank screen.
The training phase of the experiment was conducted outside of the

scanner, seated upright, with responses provided on a standard PC
keyboard. During this phase, participants were trained to a criterion
level of accuracy, defined as 75 correct first responses out of at most
the previous 100 presentations.
A second practice session of 150 presentations was conducted

inside the scanner, to ensure that participants attained reasonable
comfort and proficiency with the magnet-safe button boxes used to
collect responses. Neuroimaging data were not collected during this
practice session. The finger-to-image response mappings generated for
the training session were preserved for the scanner session.
The test phase of the scanning session proceeded with four blocks

of 249 presentations. The first three blocks were followed by a rest
period of participant-controlled length. During the rest period the
participants were presented with a color image of a natural scene not
among the study set, and a text reminder to pause and rest before
beginning the next run. Scan blocks after the first were initiated
manually by the operator only after the participant pressed any of the
relevant keys twice to alert the operator that they were prepared to
continue the task. Total experiment time – inclusive of training,
practice and test – was approximately 1.5 h.

Stimulus sequence

For training, the sequence of images was selected pseudorandomly
according to a uniform distribution. Participants were instructed to
emphasize learning the mappings between image and finger, disre-
garding speed of response in favor of correctly identifying the image
on the screen.
During the test phase of the experiment, the sequence of images was

generated pseudorandomly according to a first-order Markov process,
meaning that the probability of viewing a particular image was solely
dependent on the identity of the previous image (Fig. 1C). Thus, the
statistical structure of the sequence is fully specified by a 4 · 4 array
containing the conditional probabilities that each picture would be
followed by the others. Self-transitions were allowed. Participants
were not informed of the existence of sequential structure in the task
design.
To encourage continual learning, and to sample responses across a

wide range of conditional probabilities, the transition matrices were
changed twice, at evenly spaced intervals during the experimental
session. Despite this, the program offered no explicit indication of the
shift to a different transition matrix, nor were changes of matrix
aligned with the onset of rest periods. Time to first keypress was
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recorded and used as our dependent behavioral variable. Participants
were not informed that their RTs were being recorded, and no
information was provided as to overall accuracy or speed either during
or after the experiment. Trials on which the first keypress was
incorrect were discarded from behavioral analysis.

Three transition matrices were generated pseudorandomly for each
subject, in a manner designed to balance two priorities: (i) to equalize
the overall presentation frequencies for each image over the long and
medium term, while (ii) examining response properties across a wide
sample of conditional image transition probabilities. Detailed infor-
mation on the procedure used to generate matrices satisfying these
constraints is available in the Supporting Information (Transition
Matrix Generation).

Analysis

We employed a series of multiple linear regressions to investigate
whether RTs reflected learning of the stimulus–stimulus conditional
probabilities, and, subsequently, to examine the form of this learning.
In particular, each participant’s trial-by-trial RTs for correct identifi-
cations were regressed on explanatory variables including the
estimated conditional probability of the picture currently being viewed
given its predecessor, and the entropy of the distribution of conditional
probabilities leading to this picture – defined, in separate models
(described below), in a number of different ways representing different
accounts of learning – together with several effects of no interest.

Trials on which the first keypress was not correct were excluded from
behavioral analysis. Effects of no interest included stimulus-self
transitions, image-identity effects and a linear effect of trial number.
These effects were identical across models – thus, each model-based
analysis was uniquely identified by a proposed form for conditional
probability estimates.
In our initial analysis, the conditional probabilities (and pursuant

entropies) were specified as the ground-truth contingencies – the
contingencies actually encoded in the transition matrix. Having
established that RT reflected such learning by demonstrating a
significant correlation with these asymptotic values (Fig. 2A) of
probability (though not entropy, see Results), subsequent analyses
used computational models to generate a timeseries of probability
estimates such as would be produced by different learning rules with
the same experience history as the participant (see Computational
Models). These rules involved additional free parameters controlling
the learning process (e.g. learning rates), which were jointly estimated
together with the regression weights by maximum likelihood. For
behavioral analysis, models were fit and parameters were estimated
separately for each participant. At the group level, regression weights
were tested for significance using a t-test on the individual estimates
across participants (Holmes & Friston, 1998).
To generate regressors for fMRI analysis (below) we refitted the

behavioral model to estimate a single set of the parameters that
optimized the RT likelihoods aggregated over all participants (i.e.
treating the behavioral parameters as fixed effects). This approach

Image

Response

A B

C D

Fig. 1. Task design. (A) Training. Participants were first trained to deterministically associate each of four buttons with one of the stimulus images. Training
proceeded until participants reached a fixed accuracy criterion. The associations between stimuli and responses were not varied during the course of the task.
(B) Test. Images were presented one at a time for a fixed 2000 ms, regardless of the keypress response. At the first correct keypress, a gray bounding box appears
around the image and remains displayed for 300 ms, or until the end of the fixed trial time, whichever is less. Reaction time was recorded to the first keypress.
(C,D) Transition structure. Successive images were chosen according to a first-order transition structure, the existence of which was not instructed to the participants.
This structure changed abruptly at two points during the task, unaligned to rest periods and with no visual or other notification.
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allowed us separately to characterize baseline learning-related activity
and individual variation in neurally implied learning rates relative to
this common baseline. For the former, in our experience (Daw et al.,
2006, 2011; Schoenberg et al., 2007, 2010; Gershman et al., 2009;
Daw, 2010), enforcing common model parameters provides a simple

regularization that improves the reliability of population-level neural
results. To capture individual between-subjects variation in the
learning rate parameter, over this baseline, we add, as an additional
random effect across participants, the partial derivatives of the
regressors of interest with respect to the learning rate (see Learning
rate analysis, below).

Computational models

First, to investigate the contribution of past experience to expectation
about the current stimulus, while making relatively few assumptions
about the form of this dependence, we entered the past events
themselves as explanatory variables in the analysis (Corrado et al.,
2005; Lau & Glimcher, 2005). In particular, we used a similar multiple
linear regression to the above, but replaced the conditional probability
regressor with ten regressors, each a timeseries of binary indicator
variables. If I(t) is the image displayed on trial t, then the indicator
variables at trial t represented, for each of the ten most recent
presentations of the preceding image I(t – 1), whether on that
presentation it had or had not been followed by image I(t). The logic
for this assignment is that the expectation of image I(t), conditional on
having viewed image I(t – 1), should depend on previous experience
with how often image I(t) has in the past followed the predecessor
image I(t – 1). Because error-driven learning algorithms such as the
Rescorla & Wagner (1972) model predict that the coefficients for these
indicators should decline exponentially with the number of image
presentations into the past (Bayer & Glimcher, 2005), we fitted
exponential functions to the regression weights.
Following up on the results of this analysis, we considered a more

constrained learning rule – again, of the form proposed by Rescorla &
Wagner (1972; see also Gläscher et al., 2010) – which updates entries
in a 4 · 4 stimulus–stimulus conditional probability matrix in light of
each trial’s experience. The appropriate estimate from this matrix at
each step was then used as an explanatory variable for the RTs in place
of the ground-truth probabilities or binary indicator regressors.
Formally, at each trial the transition matrix was updated according
to the following rule, for each image i:

P ðijIðt � 1ÞÞ ¼ PðijIðt � 1ÞÞ þ að1� P ðijIðt � 1ÞÞÞ i ¼ IðtÞ ð1Þ

P ðijIðt � 1ÞÞ ¼ P ðijIðt � 1ÞÞ þ að0� P ðijIðt � 1ÞÞÞ i 6¼ IðtÞ

where I(t) is the identity of the image observed at trial t and a is a free
learning-rate parameter. This rule preserves the normalization of the
estimated conditional distribution.
In addition, we examined the possibility that behavior may reflect

the contributions of two parallel learning processes, by examining the
fit of a transition matrix resulting from a weighted combination of two
Rescorla–Wagner processes, each with different values of the learning
rate parameter a. Each process updated its matrix as above, but
the behaviorally expressed estimate of conditional probability was
computed by combining the output of each process according to a
weighted average with weight (a free parameter) p:

p� P1ðIðtÞjIðt � 1ÞÞ þ ð1� pÞ � P2ðIðtÞjIðt � 1ÞÞ: ð2Þ

As the models considered here differ in the number of free
parameters, we compared their fit to the reaction time data using Bayes
factors (Kass & Raftery, 1995; the ratio of posterior probabilities of
the model given the data) to correct for the number of free parameters
fit. We approximated the log Bayes factor using the difference

A

B

C

Fig. 2. Sequential learning. (A) Despite the fact that they were unaware of
task structure, participant reaction times reflected the probabilities as designed –
response time was commensurately lower as conditional likelihood of the
image increased. (B) An analysis of the influence of prior responses on reaction
time on the current trial shows a decaying effect of previous experience, with
significant contributions from the seven most recent presentations of the current
image. Reaction time for a given image–image transition was lowered by more
recent experience with that transition; this effect showed an exponential
relationship between recency of experience and reaction time. This pattern
excludes models that do not incorporate forgetting of past experience.
*P < 0.05. Error bars are SEM. (C) Model comparison. Individual log Bayes
factors in favor of a model using two learning processes, vs. a single process.
The two-process model is decisively favored for 14 of 18 subjects, and was a
significantly better fit across the population (summed log Bayes factor 145,
P < 5 · 10)5 by likelihood ratio test).
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between scores assigned to each model via the Laplace approximation
to the model evidence, assuming a uniform prior probability for values
of the free parameters between zero and one. In participants for whom
the Laplace approximation was not estimable for any model (due to a
non-positive definite value of the Hessian of the likelihood function
with respect to parameters) the BIC was used for all models. Model
comparisons were computed both per individual, and on the log Bayes
factors aggregated across the population.

Finally, to evaluate the relative contribution of each process to
explaining RTs, we report standardized regression coefficients for the
slow and fast conditional probability estimates, e.g.

bp1std ¼ bp1 � SDðP1Þ=SD(RT): ð3Þ

fMRI methods

Acquisition

Imaging was performed on the 3T Siemens Allegra head-only scanner
at the NYU Center for Brain Imaging, using a Nova Medical
(Wakefield, MA, USA) NM011 head coil. For functional imaging, 33
T2*-weighted axial slices of 3 mm thickness and 3 mm in-plane
resolution were acquired using a gradient-echo EPI sequence
(TR = 2.0 s). Acquisition was tilted in an oblique orientation at 30�
to the AC–PC line, consistent with previous efforts to minimize signal
loss in orbitofrontal cortex and medial temporal lobe (e.g. Hampton
et al. 2006). This prescription obtained coverage from the base of the
orbitofrontal cortex and medial temporal lobes to the superior border
of the dorsal anterior cingulate cortex. Four scans of 300 acquisitions
each were collected, with the first four volumes (8 s) discarded to
allow for T1 equilibration effects. We also obtained a T1-weighted,
high-resolution anatomical image (MPRAGE, 1 · 1 · 1 mm) for
normalization and localizing functional activations.

Imaging analysis

Preprocessing and data analysis were performed using Statistical
Parametric Mapping software version 5 (SPM5; Wellcome Depart-
ment of Imaging Neuroscience, London, UK), and version 8 for final
multiple comparison correction. EPI images were realigned to the first
volume to compensate for participant motion, co-registered to a higher
resolution field map with the anatomical image, and, to facilitate group
analysis, spatially normalized to atlas space using a transformation
estimated by warping the subject’s anatomical image to match a
template (SPM5 segment and normalize). To ensure that the original
sampling resolution was preserved in the normalized space, images
were resampled to 2 · 2 · 2-mm voxels in the normalized space.
Finally, they were smoothed using a 6-mm full-width at half-
maximum Gaussian filter. For statistical analysis, data were scaled to
their global mean intensity and high-pass filtered with a cutoff period
of 128 s. Volumes on which instantaneous motion was > 0.25 mm in
any direction were excluded from analysis. Data from two participants
were excluded due to excessive motion on a large percentage of
volumes.

Statistical analysis

Statistical analyses of functional time-series were conducted using
general linear models, and coefficient estimates from each individual
were used to compute random-effects group statistics. Delta-function
onsets were specified at the beginning of each stimulus presentation,
and – to control for lateralization effects – duplicate nuisance onsets
were specified for presentations on which right-handed responses
were required. This had the effect of mean-correcting these trials

separately. All further regressors were defined as parametric modu-
lators over the initial, two-handed stimulus presentation onsets. All
regressors were convolved with SPM’s canonical hemodynamic
response function.
The remaining regressors were constructed as follows. First, to

control for non-specific effects of RT (which, as demonstrated by
our behavioral results, was correlated with our primary regressor of
interest, the conditional probability), each trial’s RT was entered
into the design matrix as a parametric nuisance effect. We took
advantage of the serial orthogonalization implicit in SPM’s
parametric regressor construction by placing this regressor first in
the set of parametric modulators. As a result, all subsequent
regressors, including all regressors of interest, were orthogonalized
against this variable, ensuring that it accounted for any shared
variance. We next included regressors of interest specifying the
conditional probability and conditional entropy associated with the
current image, and their partial derivatives with respect to the
learning rate (see Learning rate analysis below). Finally, variance
due to the effects of missed trials (those in which the participant
did not press any keys in the allotted time) and error trials was
modeled with additional nuisance regressors, entered last in
orthogonalization priority.
Our regressors of interest were derived from the time-series of

transition matrices estimated by the best-fitting behavioral model, the
two-learning rate model of Eqns 1 and 2. In particular, we include the
probability of the image I(t) displayed at each trial t, conditional on its
predecessor – P(I(t) | I(t – 1)), and in addition the entropy of the
distribution over the subsequent stimulus, given the image I(t)
currently viewed:

HðIðt þ 1ÞÞ ¼ �RIðtþ1Þ½logðP ðIðt þ 1ÞjIðtÞÞÞ�P ðIðt þ 1ÞjIðtÞÞ� ð4Þ

where I(t) denotes the image actually displayed on trial t, but
the sum is over all four possible identities of the as-yet-unrevealed
subsequent image, I(t + 1). Whereas the conditional probability
measures how ‘surprising’ is the current stimulus, this quantity,
which we refer to as the ‘forward entropy,’ measures the ‘expected
surprise’ for the next stimulus conditional on the current one, i.e.
the uniformity of the conditional probability distribution. Because
of the temporal dissociation between probability of the current stim-
ulus and entropy of the distribution of ensuing stimuli, there was
no inherent confound between these two regressors. However, as
the entropy regressor was orthogonalized against probability, any
shared variance was attributed to conditional probability.
In all analyses, unless otherwise stated, activations are reported

for areas where we had a prior anatomical hypothesis at a threshold
of P < 0.05, corrected for family-wise error (FWE) in a small
volume defined by constructing an anatomical mask, comprising the
regions of a priori interest, over the population average of
normalized structural images. These are, bilaterally, hippocampus
as defined by the Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002), and anterior ventral striatum
(caudate and putamen), defined (after Drevets et al., 2001) by
taking the portion of the relevant AAL masks below the ventral-
most extent of the lateral ventricles [in Montreal Neurological
Institute (MNI) coordinates, Z < 1], and anterior to the anterior
commissure (Y > 5). This area corresponds, functionally, to the
regions most often observed to reflect learning-related update
signals in fMRI studies of reward learning tasks (Delgado et al.,
2000; Knutson et al., 2001; O’Doherty et al., 2003; McClure et al.,
2004). Activations outside regions of prior interest are reported if
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they exceed a threshold of P < 0.05, whole-brain corrected for
FWE. All voxel locations are reported in MNI coordinates, and
results are displayed overlaid on the average over participants’
normalized anatomical scans.

Learning rate analysis

In the best-fitting behavioral model, the learned transition matrix arises
from two modeled learning processes each with a free parameter for its
learning rate. We used three separate fMRI analyses (and, reported in
the Supporting Information, two more specifications) to investigate
this multiplicity of potential effects. First, seeking correlates for each
of these two subprocesses hypothesized on the basis of the behavior
separately, we conducted two generalized linear model (GLM)
analyses, each using as regressors of interest the probability and
entropy regressors constructed from one of the single learning rates
identified from the behavior. These two analyses were conducted in
separate GLMs due to correlation between regressors generated using
different values of the learning rate parameter. Our third GLM
addressed the problem of correlation between signals more directly
with a single design that formally investigated the possibility that
learning rates expressed across regions of the brain differed from one
another. To this end, we employed a GLM that included additional
regressors quantifying the effect of changes in the modeled learning
rate on the regressors of interest. A detailed description of this analysis
is available in the Supporting Information (Learning rate analysis).

Results

Behavioral results

Participants performed an SRT task, in which they were instructed to
label each of a continuous sequence of image stimuli (Fig. 1B)
according to a predetermined one-to-one mapping of each of four keys
to each of four natural scene images (Wittmann et al., 2008).
Participants were first trained to map fingerpress responses to images
(Fig. 1A) at a criterion level of performance (75 correct out of at most
the 100 preceding trials). During this training phase, the mean number
of trials to criterion was 102.4 [standard deviation (SD) 45.6]. The
mean time to correct response was 889.9 ms (SD 443.2 ms).
The main experiment consisted of a sequence of image labeling

trials. Images on each trial were selected according to a first-order
Markov process, i.e. with a conditional probability determined by the
identity of the previous image (see Methods). Participants were not
instructed about the existence of sequential structure in the task.
During the testing phase, errors – defined as trials in which the first
keypress did not correspond to the presented image – were few (mean
2.6%, SD 1.5%), while the mean time to correct response fell relative
to training, to 692.7 ms (SD 268 ms).

Ground-truth probability

Figure 2A shows the relationship between RT on correct trials and the
ground-truth conditional probability of the image being identified,
across the population. Here, for each participant, RTs were first
corrected for the mean RT and a number of nuisance effects –
estimated using a linear regression containing only these effects as
explanatory variables and computing the residual RTs. Of the nuisance
regressors, only the self-transition effect was significant across the
population (P < 1 · 10)7; all others P > 0.15).
The impression that RTs are faster for conditionally more probable

images is confirmed by repeating the regressions with the ground-truth

conditional probability included as an additional explanatory variable.
Across participants (i.e. treating the regression weight as a random
effect that might vary between individuals), the regression weight for
this quantity was indeed significantly negative (one-sample t-test,
P < 2 · 10)7; mean effect size 0.76 ms RT per percentage conditional
probability) and, at an individual level, reached significance (at
P < 0.05) for 15 of 20 participants. This analysis contained a second
regressor of interest – the entropy of the conditional distribution
leading to the current image. Although entropy has previously been
shown to impact RTs (Strange et al., 2005), the conditional entropy
effect did not reach significance here either across the population
(P > 0.2) or for any participant individually, and thus was discarded
from further behavioral analyses.
This analysis indicates that participant responses were prepared in a

manner reflecting some approximation of the programmed transition
probabilities. As the probabilities were not instructed, we inferred that
these quantities were estimated incrementally by learning from
experience. The remainder of our analysis of behavior attempted to
characterize the nature of this learning (den Ouden et al., 2010).

Learning analysis

To test the general structure of a learning model, we first examined the
contribution of past experience to current expectations, while making
few assumptions about the form of this dependence. To this end, we
employed a regression model in which previous events were explicitly
included as explanatory variables for RT (Lau & Glimcher, 2005). In
particular, for each trial, in which some image Y was presented having
been preceded by some image X, we included explanatory variables
corresponding to each of the last ten previous presentations of X,
defined as 1 if that presentation was also followed by Y, and 0
otherwise. The resulting regression weights measure to what extent the
RT to Y following X is affected by recent experience with the image
pair X fi Y, relative to other pairs X fi Z. In Fig. 2B, the fitted
regression weights, up to one more than the most remote to reach
significance, are averaged across participants and plotted as a function
of the lag into the past, counted as the number of presentations of X.
Consistent with experience-driven learning of conditional probabil-

ities, recent experiences with the image pair X fi Y predict faster
responding. This dependence appears to decay rapidly, although it
continues to contribute to current expectations for several presenta-
tions – regression weights are significantly non-zero across subjects
through roughly the seventh previous observation of X (one sample
t-tests – at lag 5 P = 0.11, all others from 1 to 7 P < 0.04; at lag 8
P > 0.8). As any image occurs, as expected, every four trials, this
suggests that the experience of a transition has a detectable effect over
an average window of some 16–28 trials.
This regression characterizes the form of RT dependence on past

experiences as a weighted running average, here appearing reasonably
exponential. Exponentially decaying weights are characteristic (Bayer
& Glimcher, 2005; Corrado et al., 2005; Lau & Glimcher, 2005) of an
error-driven learning procedure for estimating conditional probabili-
ties (Rescorla and Wagner 1972; here, Eqn 1), with the free learning
rate parameter, a, determining the time constant (1–a) of the decay.
Thus, the learning rate is equivalent to a ‘forgetting’, or ‘decay’ rate
(Rubin & Wenzel, 1996; Rubin et al., 1999). The same equations also
characterize the average decay behavior for models that update at
varying rates or only sporadically (Behrens et al., 2007). However,
other sorts of learning rules predict qualitatively different weightings.
For instance, because of exchangeability, ideal Bayesian estimation of
a static transition matrix (Harrison et al., 2006) or indeed a simple all-
trials running average predict equal coefficients at all time lags. On the
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basis of these results, we do not consider such models further
(although the superiority of the Rescorla–Wagner model was also
verified by directly comparing these models’ fits to the RTs; analyses
not reported).

However, in the domain of decision-making, it has previously been
noted that the effects of lagged experiences on choices are better
described by the weighted sum of two exponentials with different time
constants, a pattern that was suggested to result from the superposition
of two underlying processes learning at different rates (Corrado et al.,
2005). This is also true of the averaged regression weights in Fig. 2B
(likelihood ratio test comparing one- and two-exponential fits,
P = 0.0024).

Altogether, then, the form of the regression weights suggests that
RTs superimpose conditional probability estimates learned using two
error-driven learning processes with different learning rates. To verify
that this appearance did not arise from the averaging over subjects in
Fig. 2B, and to quantify the hypothesis directly in terms of its fit to
RTs (rather than parameter estimates from an intermediate analysis),
we considered the fit of one- and two-learning rate Rescorla–Wagner
models to each participant’s RT data, essentially equivalent to refitting
the regression model while constraining each participant’s weights to
follow a one- or two-exponential form.

Figure 2C shows the difference in log Bayes factor between these
two models. The two-learning rate model was favored over the one-
learning rate model for 17 of 18 participants. Aggregated over
subjects, the two-learning rate model was favored by a log Bayes
factor of 145. The conditional probabilities learned by the two-
learning rate Rescorla–Wagner model also explained the RTs
considerably better than the ‘ground truth’ programmed probabilities
(log Bayes factor 308.9 aggregated, and favoring the two-process
model for 17 of 18 participants individually). For this two-learning
rate model, the mean effect size implied by the regression weights was
1.06 ms RT per percentage point of combined conditional probability.
Finally, we measured the relative contribution of each probability
estimate to RT, by computing each effect’s regression coefficients
normalized for variance in each probability time-series. The resulting
standardized coefficients were –0.075 for the slow regressor and
)0.071 for the fast regressor (both means across the population, with
standard error of the mean of 0.01). Thus, the probabilities learned by
slower and faster learning rates appear to contribute roughly equally to
explaining RTs.

For the purpose of conducting fMRI analyses measuring
individual variations in neurally implied learning rate estimates
relative to a common baseline (see Methods for an in-depth
justification of this approach), we re-estimated the two-process
model parameters as single, fixed effects across participants. The
best-fit learning-rate parameters were 0.5499 and 0.0138, weighted
at 0.4018 to the slow parameter. Additionally, we computed the
population median of the random-effects learning rates (0.6054 and
0.008) and weight (0.35 to the slow parameter), and observed that
they did not significantly differ from the best-fit fixed-effects values
(all P > 0.1).

Together, these data suggest that participants learn predictions of
conditional probability from experience by an error-driven learning
process, and that the data are best explained by the superposition of
two such processes learning in parallel.

fMRI results

We next sought signatures in neural activity of the two learning
processes suggested by our behavioral analyses. On the basis of

previous work on multiple systems involved in sequential learning
(e.g. Poldrack et al., 2001; Nomura et al., 2007), we focused on the
hippocampus and the anterior ventral striatum as areas of prior
anatomical interest. We hypothesized that activity in these two areas
might reflect learning at different rates, matching the two processes we
inferred from behavior (Gläscher & Buchel, 2005).
We used a strategy of model-based fMRI analysis (Gläscher &

O’Doherty, 2010), analogous to an approach often used with reward-
related learning. In short, we exploited the fact that the models we
fitted to behavior define internal variables – here, the learned
transition matrices – hypothesized to underlie behavior – here, the
RTs. The time-series of these variables from the fitted behavioral
models may serve as signatures for ongoing neural processes related to
the computations and thus provide quantitative tests for the hypoth-
esized dynamics of these processes. This approach appears well suited
to our study, in which the behavioral results suggest two parallel
learning processes specifying distinct time-series of values for these
internal variables. Analogous work in RL tasks often seeks both
anticipatory (future value) and reactive (prediction error) measures of
reward prediction; here, we define analogous regressors for stimulus
predictions using the forward entropy (cf. Strange et al., 2005;
Harrison et al., 2006) of the predicted stimulus distribution, and the
conditional probability of an observed stimulus. We adopt the latter
regressor rather than its log (a traditional measure of surprise in
information-theoretic work), because of its relationship to the
prediction error (Eqn 1; Gläscher et al., 2010).
However, simply seeking the correlates of these time-series in a

GLM (Tanaka et al., 2004; Gläscher & Buchel, 2005) is statistically
inefficient because the versions of our variables of interest calculated
at different values of a are highly correlated (average correlation
across participants between slow and fast learning rate processes,
R = 0.52 for probability, 0.31 for entropy). We instead separately
studied the regressors from the slow and fast learning rate processes,
in distinct GLMs, to form an initial impression of how this activity may
fractionate according to processes operating at different learning rates.
Next, to formally answer questions about whether the learning

process that best explains blood oxygen-level dependent (BOLD)
activity differs between areas, we measured the degree to which
BOLD activity in a region reflects a value of the learning rate
parameter a that was different from the one tested. In particular, we
first identified areas with learning-related activity by assuming a value
of the learning rate intermediate between those observed behaviorally,
and then analysed residual activity explained by additional, orthog-
onal regressors representing how the modeled signal would change if
the parameter that produced these regressors was increased or
decreased.

Forward entropy

Our primary analysis sought regions where activity suggested
anticipatory processing, operationalized by the uncertainty about the
identity of the next stimulus conditional on the current one (forward
entropy; cf. Strange et al., 2005; Harrison et al., 2006). BOLD signals
correlating with this time-series may reflect spreading activation
among (anticipatory retrieval of) multiple representations in an
autoassociative memory network, or, similarly, simulation of future
events using a forward model (Niv et al., 2006).
When the regressors were computed according to the slow LR

process, correlates emerged in the hippocampus. Activity correlated
with the slow process is illustrated in Fig. 3B. In particular, a cluster
of significantly correlating activity was identified in left anterior
hippocampus ()26, )10, )18; peak FWE P < 0.02 small-volume
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corrected for FWE due to multiple comparisons over our mask of a
priori regions of interest, cluster FWE P < 0.04).
For regressors computed according to the fast LR process, we

observed no activity positively correlated with forward entropy at our
threshold. However, a significant cluster of negatively correlated
activity – possibly reflecting a lower degree of response preparation
for the upcoming trial – was identified in right putamen (18, 6, )6;
peak marginal at P < 0.06 small-volume corrected for FWE, but
cluster FWE P < 0.04).
Outside our areas of interest, correlates of fast LR forward entropy

were also observed in left anterior insula ()40, 14, )4; peak P < 0.05
when corrected for FWE over a mask of the whole brain) and inferior
frontal gyrus (36, 16, )4; peak P < 0.05 by whole-brain FWE
correction; not shown). A complete list of clusters correlating with
forward entropy can be found in Supporting Information Tables S1
and S2.
Together, these results suggest that anticipatory activity reflecting

learned transition contingencies is visible across a number of brain
regions. The distinct difference in activations observable in the SPMs
from each process further suggests that distinct networks which
include either hippocampus or striatum might be associated, respec-
tively, with slow and fast LR estimates of sequential contingencies,
and further correlated in opposing directions with the same measure,
forward entropy, extracted from each process. In the Supporting
Information, we also report results from analyses using probability and
entropy regressors derived from the combined process rather than
either separately. Correlates there do not reach similar levels of
statistical significance, consistent with our interpretation that activity is
related to either process separately.
However, it is important to stress that an apparent difference

between thresholded statistical maps does not constitute formal
demonstration that a difference exists (‘the imager’s fallacy’; Henson,
2005). Furthermore, the results presented thus far do not directly
compare the two processes in a single GLM. Supporting Information
Fig. S1 shows that qualitatively similar activations were observed
only at a lower statistical threshold (as expected due to correlation

between the regressors), when regressors from both processes were
estimated within a single GLM. We report a different strategy to allow
a more direct and statistically powerful investigation of this issue
under Divergent learning rates, below.

Conditional probability

Next we sought regions with reactive rather than anticipatory activity,
specifically those where BOLD signal correlated with the probability
of the presently viewed image, conditional on the identity of the
preceding image. Such activity might reflect the degree of expectation
or response preparation, or (in the case of negative correlations)
surprise or prediction error, which is decreasing in the predicted
probability of the observed image (Gläscher et al., 2010). Note that
although the conditional probability was shown to correlate with RT in
the behavioral analyses above, RT effects do not confound the fMRI
analyses presented here, as all regressors of interest were first
orthogonalized against RT.
When regressors were computed from the fast LR process,

activation correlating with this time-series was observed in right
putamen (18, 14, )4; P < 0.04 peak FWE corrected over small
volume) (Fig. 4).
In the slow LR process, no activity correlating with conditional

probability was observed in our regions of interest, and those clusters
above our observation threshold did not survive whole-brain correc-
tion.
A complete list of clusters correlating with conditional probability

can be found in Supporting Information Table S3.

Divergent learning rates

Our results to this point suggest distinct neural processes operating at
different learning rates, but we have not yet provided statistical
evidence explicitly supporting the claim that these rates are different.
We now quantitatively evaluate the claims that activity in these
regions is (i) best explained by different rates and (ii) these rates are
uniquely consistent with one of each identified in our behavioral
analysis.
Here, again, we consider time-series drawn from a single process

learning at a single rate, and pose questions about neural activity,
relative to that rate. The dependence of the modeled learning-related
activity (conditional probability or entropy time-series) on the learning
rate parameter is non-linear. We adopt a linear approximation to this
dependence so as to pose statistical questions about the learning rate
that would best explain the neural activity in terms of a standard
random-effects GLM. Specifically, having generated regressors for our
variables of interest according to a baseline learning rate (the midpoint
of the behavioral rates), we estimated weights for additional regres-
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Fig. 3. Areas where the BOLD signal correlated with the entropy over the
distribution of upcoming stimuli, generated at each of our analysed learning
rates. Images are thresholded at P < 0.001, uncorrected, for display purposes.
(A) Activation observed in the fast process GLM, with clusters of negative
correlation in ventral striatum and anterior insula. (B) Activation observed in
the slow process GLM, a positively correlated cluster in anterior hippocampus.
The activation visible in posterior parahippocampal cortex did not survive
correction for multiple comparisons.
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Fig. 4. Areas where the BOLD signal correlated with the conditional
probability of the current stimulus, generated at each of our analysed learning
rates. Images are thresholded at P < 0.001, uncorrected, for display purposes.
Using the fast process GLM, significant activation was observed in ventral
striatum. No clusters significantly correlated with conditional probability were
observed in the slow process GLM.
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sors, representing the change in each variable that would result from a
change in learning rate – formally, this is the partial derivative, with
respect to learning rate, of the variable (Friston et al., 1998). A
positive beta value estimated for this regressor in a given voxel would
imply that the activity in that voxel is best explained by a time-series
generated using a higher learning rate than the one used as a baseline,
and a negative beta value would imply a lower value for this best-fit
learning rate. For a detailed description of the analysis, see Supporting
Information, Learning rate derivatives.

To allow comparison between regions, we first identified voxels
displaying learning activity in either region. For this, we performed a
whole-brain regression using regressors of interest generated from a
baseline learning rate parameter set to the midpoint of the fast and
slow rate values identified in behavior, so chosen to have a symmetric
chance of detecting activity related to either putative process. We then
selected the peak active voxels in our two a priori regions of interest
for the regressors that elicited significant activity in our previous
analyses – forward entropy in hippocampus and conditional proba-
bility and forward entropy in ventral striatum – and examined the beta
weights estimated for the corresponding derivative regressors. Before
testing, these were scaled by the main effect of the regressor of interest
to produce an estimate with units of learning rate.

Figure 5 displays the pattern of results. Comparing weights between
areas, the activity in hippocampus related to forward entropy was best
explained by a smaller learning rate, as assessed by the partial
derivative regressor, than that in striatum related either to entropy
(paired two-sample, two-tailed t-test across subjects, P = 0.023) or
probability (P = 0.0251). These tests support the conclusion that
activity in each region is described by incremental learning processes
with distinctly different dynamics.

To clarify the unique association of each region with our
behaviorally obtained learning rates, we additionally compared the

parameter implied by the responses measured in each neural structure
to the fast and slow rates identified behaviorally, and also to the
average used to select voxels, a0. Compared with a0, the implied
aBOLD in hippocampus was significantly lower (one-sample, two-
tailed t-tests across subjects, P = 0.049), while activity in striatum
implied a value that trended towards being significantly higher than a0
for entropy (P = 0.058), but not for probability (P = 0.37). The rate
implied by activity in striatum was significantly higher than the slow
rate for entropy (P < 5 · 10)8) and probability (P = 0.007); neither
was significantly different from the fast rate (entropy, P = 0.53;
probability, P = 0.86). Symmetrically, the aBOLD estimated for
hippocampus was significantly lower than the fast rate (P = 0.017)
but not significantly different from the slow rate (P = 0.56).
Taken together, these results suggest that learning-related activity in

the hippocampus and striatum was, respectively, consistent with the
slow and fast LR processes hypothesized on the basis of our
behavioral model fits.

Discussion

We provide evidence that learned expectations expressed in serial
response behavior comprise dissociable contributions from anatomi-
cally distinct networks learning at different rates. Effects of serial
expectation on RTs (Bahrick, 1954) and BOLD responses (Huettel
et al., 2002; Harrison et al., 2006; Schendan et al. 2003) are well
established; we exploit these effects to study how participants learned
expectations trial-by-trial. Thus our approach parallels recent work in
reward learning and decision-making (O’Doherty et al., 2003;
Barraclough et al., 2004; Samejima et al., 2005; Lohrenz et al.,
2007), but we apply these methods to investigate behavior that results
from sequential contingency learning, while minimizing the influence
of reinforcement. As feedback about correctness was downplayed and
the response behavior was well practised and maintained near ceiling,
the RT effects and associated neural modulations are likely to reflect
fluctuating serial contingency predictions and are not explicable in
terms of differential reward expectations. Such behavior appears well
described by a weighted combination of two error-driven learning
processes.
It is possible that the two-process nature of our results may be

rooted in the fact that a serial RT task confounds both response–
response and stimulus–stimulus sequencing. For instance, the long-
lasting effects of transitions on hippocampal activity might reflect
learning there of stimulus–stimulus predictive relations – a key
building block for model-based RL (Gläscher et al., 2010) – while the
faster decaying effects in striatum might reflect more transitory
learning of response–response biases, with both affecting RTs.
Directly testing this suggestion would require a different task that
separately manipulated these two sorts of contingencies.
Similar distinctions in the timescale over which expectations are

drawn have been observed between disparate brain structures
processing common information, for example between subcortical
and cortical association structures (Gläscher & Buchel, 2005), and
between different parts of the sensory cortex (Hassan et al., 2008), and
even between different neurons within an area (Bernacchia et al.,
2011). However, this dissociation has not previously been drawn
between hippocampus and striatum, and in none of these cases were
the neural timescales linked to dissociable effects on behavior (see
Kable & Glimcher, 2007; for a discussion of the importance of
connecting putatively separate neural processes to distinct behavioral
influences). In contrast, the most prominent issue addressed using SRT
tasks like ours has been the status of learning as explicit or implicit
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Fig. 5. Comparison of learning rates implied by activity in our primary
regions of interest. These values were computed by first identifying voxels in
our a priori regions of interest (hippocampus and ventral striatum) which were
maximally responsive to our model regressors (probability and entropy) when
generated at the midpoint of our behaviorally obtained learning rates (black
dotted line), then estimating best-fitting learning rates by deviations from this
baseline (see Supporting Information). Bars represent the average implied
learning rate across subjects, at a single voxel for each combination of region
and regressor: left hippocampus ()26, )14, 24) and right ventral striatum
(entropy 18, 16, )6; probability 20, 6, )2). Error bars represent the positive and
negative confidence intervals, across subjects.
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(e.g. Nissen et al., 1989). In examining this distinction, researchers
have explored the proposal that multiple processes underlie learning.
A recent model (Keele et al., 2003) proposes that sequential learning
involves the parallel operation of two cognitive systems, each
constructing distinct representations – a multidimensional representa-
tion in one, entrained by the unidimensional representations of the
other. Although it is unclear whether this hierarchical arrangement
results in different timescales of integration (which would be reflected
by different learning rates), the proposal that these systems correspond
to ventral and dorsal networks, containing hippocampus and basal
ganglia, respectively, is broadly consistent with our results. Even more
closely matching our conclusions, Davis & Staddon (1990) advance a
dual-system, two-learning-rate architecture to explain pigeons’ choices
on a reversal learning task, which display both long- and short-
timescale dependencies on experience.
Finally, neuropsychological and animal lesion studies have repeat-

edly observed that removal or damage to the hippocampus does not
impair gross sequential RT effects in similar tasks (e.g. Curran, 1997).
Our results are consistent with these observations, in that either
system’s predictions may encourage responses, although our model
predicts a quantitative difference in trial-by-trial adjustments in RTs.
Crucially, two studies on a serial RT task resembling the one
employed in the present experiment observed that lesions to the dorsal
hippocampus of rodents actually improved performance (Eckart et al.
2011) – i.e. producing a steeper learning curve – while striatal lesions
severely diminished the rate of learning (Eckart et al. 2011); this
pattern is consistent with slow and fast contingency learning in
hippocampus and striatum, respectively.

Model-based simulation

One interpretation of the hippocampal activity in the present study is
that it is driven by retrieval, which is ubiquitous, rather than encoding,
which (as we discuss below) may be rare. For instance, if hippocam-
pus retrieves likely subsequent pictures at each step, then more
widespread activation would occur on trials with higher forward
entropy, i.e. those in which activation spreads more evenly among
more potential successors.
The suggestion that our hippocampal BOLD effects reflect prepa-

ratory ‘prefetching’ of the anticipated next elements in the sequence
coincides with observations of ‘preplay’ activity in this structure in
rodents (Ferbinteanu & Shapiro, 2003; Diba & Buszáki, 2007;
Johnson & Redish, 2007). Such activity has been suggested to support
decision-making by evaluating the anticipated consequences of
candidate actions, a strategy formalized by model-based reinforcement
learning (Doya, 1999; Daw et al., 2005; Niv et al., 2006; Johnson and
Redish 2005; Rangel et al., 2008; Balleine et al., 2008; Doll et al.,
2009) and also known as constructive episodic simulation (Tulving &
Thomson, 1971; Schacter & Addis, 2007). Our results indicate that
signals reflecting this activity may be parametrically modulated by a
measure of the associative complexity of the trace being constructed or
simulated.
The model-based approach contrasts with the model-free algorithms

for reinforcement learning prominently associated with striatum and
its dopaminergic afferents (Houk et al., 1995; Schultz et al., 1997).
Note that, due to the minimal involvement of rewards (or errors) in our
task, our striatal results are unlikely to relate to the reward prediction
errors posited by these models (Delgado et al., 2000; Knutson et al.,
2001; O’Doherty et al., 2003; McClure et al., 2004; Hare et al.,
2008), but could relate to other non-reward correlates in striatum (Zink
et al., 2006; Wittmann et al., 2008).

Arbitration between multiple systems in learning and control

Lesions in rodents support a dissociation between decision strategies
along the lines of model-based vs model-free learning, supported by
distinct networks neurally (Balleine & Dickinson, 1998; Gerlai, 1998;
Corbit & Balleine, 2000; Balleine et al., 2008). However, the neural
basis of the dissociation is, as yet, far clear in humans, and some work
even seems to suggest overlapping substrates (Valentin et al., 2007;
Frank et al., 2009; Gläscher et al., 2010; Tricomi et al. 2010; Simon
& Daw, 2011; Daw et al., 2011), perhaps because model-based and
model-free evaluations of reward expectancy (and thus their antici-
pated BOLD correlates) are typically quite similar. To the extent that
our two processes do indeed map differentially to stimulus–stimulus
and response–response associations, our study suggests an additional
difference between the systems, in their timescale of learning. This
difference may allow their predictions in a reinforcement learning
context to be more easily distinguished. Thus, a potentially fruitful
avenue for further research is to use the tools provided herein to
identify the use of either system’s learned predictions in the service of
reward-guided decision-making.
The nature of competition or collaboration between these systems in

the control of behavior has been a topic of much empirical (Poldrack
et al., 2001) and theoretical (Daw et al., 2005) inquiry. Our results
suggest that activity in both hippocampus and striatum is mediated by
the uncertainty (i.e. entropy) about anticipated ensuing stimuli, and
that this activity may differently drive fluctuating signals in each area
– positively in hippocampus, negatively in striatum. Such activity may
reflect differential engagement of either system under different
conditions of uncertainty (Daw et al., 2005). In a traditional response
or choice task with fixed contingencies, the overall trend would be
towards sharper expectations (lower uncertainty) over time, giving rise
to a decrease in hippocampal and commensurate increase in striatal
activity. Indeed, such a pattern bears strong similarity to that
repeatedly observed in probabilistic association learning tasks (Pold-
rack et al., 2001; Poldrack & Packard, 2003).

Learning rates and associative representations

So far, we have stressed differences in the timescales over which neural
activity reflects past events. However, in the error-driven learning
model (Eqn 1), as indeed in estimation more generally, encoding is
also forgetting. Thus, a long-timescale dependence of learned predic-
tions on events (slow decay, high 1–a) goes hand in hand with slow,
incremental encoding (a small learning rate a). Viewed from this
perspective, perhaps the most surprising aspect of our data is that we
measure faster learning rates in striatum than hippocampus, given the
traditional association of hippocampus with fast, single-shot episodic
encoding (McClelland et al., 1995), and striatum with more incre-
mental procedural learning (Knowlton et al., 1996a).
There are at least two possible answers to this question. One is that

a fundamental hippocampal function in learning relations (Cohen &
Eichenbaum, 1993) comprises not only relating events occurring
simultaneously in an episode – a fast-timescale encoding – but also
discovering event relations obtained stochastically between temporally
separated events (Shohamy et al., 2009; Hales & Brewer, 2010), as
with state transition contingencies in model-based RL. If so, different
tasks or task variants might induce learning over different timescales,
depending on the relations involved (Komorowski et al., 2009). In
particular, learning a probabilistic transition structure, such as
imputing the equivalence relationships in Shohamy et al. (2009)
acquired equivalence task, requires integrating events across time
rather than within an episode.
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A second interpretation of the hippocampal result, suggested by the
episodic learning literature, is that the slow learning rate we measure
for representations in hippocampus reflects not continual, incremental
updating, but instead the average rate of learning over trials in which
associations might be formed rapidly but only sporadically. In
particular, the Rescorla–Wagner equation also describes the expected
update for the predictions under sporadic encoding (e.g. on a given
trial, the probability a of fully re-encoding a categorical stimulus–
stimulus link, with no learning otherwise), or more generally some in-
between process where a modulates over some fraction of trials. For
simplicity and to enable comparing many sorts of learning in a single
framework, we operationalized the distinction between the systems in
terms of a nominally constant learning rate. If updates are sporadic or
step sizes are time-varying, the fit parameter value will instead
characterize their average rate (Behrens et al., 2007). Our learning rule
thus comprises (at least in expectation) a spectrum of possibilities
between incremental learning of a probabilistic relation and sporadic
encoding of a categorical relation, the latter similar to discrete state
space models that have previously been applied to hippocampal
function (Law et al., 2005; Prerau et al., 2008; Wirth et al., 2009).

This hypothesis that our task produces sporadic hippocampal
encoding is supported by work suggesting that hippocampus forms
associations preferentially at the detection of sufficiently large
deviations from expected input (Tulving et al., 1996; Lisman &
Grace, 2005; Bakker et al., 2008), or when task demands enhance the
motivational salience of expectancy violations (Duncan et al., 2009).

This interpretation of the current result is difficult to test directly
using the present data set and methods, particularly because it is
technically challenging to test the fit of such a model without a specific
hypothesis about which trials may have encouraged encoding or not. A
more direct approach would be to manipulate factors expected to impact
the tendency to form new episodes (Behrens et al., 2007; Bakker et al.,
2008; Duncan et al., 2009; Nassar et al., 2010; Wilson et al., 2010),
and seek an effect on the measured hippocampal learning rate. For
instance, in environments with largely stationary associative structure,
as in our task, learning may appear ‘slow’ on average. However, tasks
with more frequent changes may produce a correspondingly larger
value of the hippocampal learning rate. This prediction parallels
previous work demonstrating that humans (Behrens et al., 2007;
Speekenbrink & Shanks, 2010) and animals (Dayan et al., 2000;
Courville et al., 2006; Preuschoff & Bossaerts, 2007) modulate their
learning rates in response to the volatility of changes in associational
structure. The exact response of each individual system to environ-
mental volatility is a potentially fruitful avenue for future research.

Representations in the model-based system

The question of whether sequential predictions are categorical or
graded bears directly on how they would support decisions. In
computational RL, state–state world models are probabilistic
(to support exact computations of expected future value in stochastic
Markov decision tasks) but more psychological accounts of deliber-
ative processing, to which model-based RL might correspond, often
take their representations to be rule-based or categorical, in contrast to
more graded representations learned in an incremental fashion by
(model-free) procedural systems (Packard & Knowlton, 2002; Mad-
dox & Ashby, 2004). A similar binary view is taken in ‘state space’
models (Lau & Glimcher, 2005) that have been applied to hippocam-
pal associative representations.

However, the above considerations notwithstanding, the extreme
case of a process in which hippocampus learns only categorical

predictive associations seems unlikely to explain our observations,
because neural activity here is seen to relate to forward entropy (see
also Strange et al., 2005; Harrison et al., 2006). Although the
Rescorla–Wagner rule describes the expected time-course for the
stimulus predictions even under sporadic encoding, the time-course of
their entropy in this case is not the same as the entropy of the expected
predictions, as the entropy is a non-linear function of the predictions.
More concretely, if the neural representation over the next stimulus
were always fully categorical (i.e. as a probability distribution,
deterministic, although undergoing sporadic stepwise changes) then
the implied entropy would be always minimal and never modulate,
unlike the hippocampal signal we detect. It is possible that our
observations could be produced by a process of learning graded
predictions via sporadic yet still incremental changes, at a learning rate
that is a multiple of that measured here.
Either way, our data invite an interpretation in which hippocampal

representations reflect the statistics of the environment in graded form, a
view more conducive to model-based RL and also consistent with
research on its involvement in learning of statistical task structure (Gluck
and Myers 1993; Courville et al. 2004; Gershman and Niv 2009).
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