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Abstract
Signals related to uncertainty are frequently observed in regions of the cognitive control network, including anterior cingu-
late/medial prefrontal cortex (ACC/mPFC), dorsolateral prefrontal cortex (dlPFC), and anterior insular cortex. Uncertainty 
generally refers to conditions in which decision variables may assume multiple possible values and can arise at multiple 
points in the perception-action cycle, including sensory input, inferred states of the environment, and the consequences 
of actions. These sources of uncertainty are frequently correlated: noisy input can lead to unreliable estimates of the state 
of the environment, with consequential influences on action selection. Given this correlation amongst various sources of 
uncertainty, dissociating the neural structures underlying their estimation presents an ongoing issue: a region associated with 
uncertainty related to outcomes may estimate outcome uncertainty itself, or it may reflect a cascade effect of state uncertainty 
on outcome estimates. In this study, we derive signals of state and outcome uncertainty from mathematical models of risk 
and observe regions in the cognitive control network whose activity is best explained by signals related to state uncertainty 
(anterior insula), outcome uncertainty (dlPFC), as well as regions that appear to integrate the two (ACC/mPFC).
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Studies investigating brain function during cognitive control 
frequently observe activity in a constellation of regions in 
the cognitive control network (Cole and Schneider, 2007), 
including anterior cingulate cortex and surrounding medial 
prefrontal cortex (ACC/mPFC), dorsolateral prefrontal 
cortex (dlPFC), and anterior insular cortex. Activity in 
these regions is highly correlated (Dosenbach et al., 2006; 

Hutchison et al., 2012; Seeley et al., 2007) and often fol-
lows salient sensory and behavioral events, especially those 
related to processing behavioral error and task-related feed-
back. The cognitive control network is densely intercon-
nected, with each region sending and receiving projections 
from other regions in the network (Augustine, 1996; Barbas 
and Pandya, 1989; Vogt and Pandya, 1987). Given the high 
degree of connectivity, and the attendant correlation of acti-
vation during behavior, it remains an open question how 
each of these regions contributes to signaling the need for 
and deploying control.

The function of all three of these regions has been exten-
sively linked to uncertainty in various forms. ACC activity 
has been interpreted as indexing response conflict or choice 
difficulty (Botvinick et al., 2001; Shenhav et al., 2013), 
tracking the volatility of the environment (Behrens et al., 
2007), estimating error likelihood (Brown and Braver, 2005), 
and predicting the possible outcomes of actions (Alexan-
der and Brown, 2011), all of which correlate with levels 
of uncertainty. DLPFC function has been associated with 
learning hierarchical task structure (Badre and D’Esposito, 
2009), particularly when learning such structure can reduce 
uncertainty regarding behavior (Koechlin et  al., 2003). 
Recent theoretical and computational accounts place dlPFC 
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within the framework of predictive coding (Alexander and 
Brown, 2015, 2018), with dlPFC learning an estimate of 
the variance around predicted outcomes. Activity in ante-
rior insula has been observed to correlate with outcome risk 
prediction and risk prediction errors (Preuschoff et al., 2008; 
Rudorf et al., 2012), and the region has been implicated in 
categorization (Grinband et al., 2006; Mack et al., 2013) 
and selective attention tasks when it is necessary to resolve 
ambiguity in external stimuli (Bach et al., 2009; Deary et al., 
2004). These findings point to uncertainty as a primary fac-
tor underlying the function of the cognitive control network 
during behavior.

While it is clear that quantities related to uncertainty are 
central to brain function, uncertainty is itself an imprecise 
term (Ellsberg, 1961). One taxonomy of uncertainty organ-
izes uncertainty according to the epistemological status of 
the underlying probabilities: in risk or expected uncertainty 
(Huettel et al., 2006; Yu and Dayan, 2005), outcomes are 
probabilistic, but the probabilities of outcomes are known, 
or at least knowable, whereas in ambiguity or unexpected 
uncertainty, outcomes are probabilistic and the probabili-
ties are unknown. Another taxonomy organizes uncertainty 
according to the variables to which uncertainty applies, 
regardless of whether the probabilities of a variable having 
a particular value are known or unknown (Bach and Dolan, 
2012). In this classification scheme, multiple decision vari-
ables in the perception-action cycle (Fuster, 2001) are sub-
ject to uncertainty. Generally, in the framework of machine 
learning and reinforcement learning (Kaelbling et al., 1998), 
external stimuli entering the system are used to estimate 
the current state of the environment, and based on this state 
estimate, a response can be planned and executed, with con-
sequent outcomes that can be used as the basis of further 
behavior. Stimulus uncertainty can arise from degraded or 
occluded input to the system, state uncertainty can result 
from ambiguity in the estimate of the current status of the 
environment, and outcome uncertainty reflects the inherent 
probabilistic nature of a stochastic world. These types of 
uncertainty are frequently correlated due to cascade effects 
(Fig. 1): outcome uncertainty may reflect uncertainty in the 
underlying contingencies of the environment; however, it 
may be due to uncertainty regarding the current state of the 
environment; if the context in which a decision maker is 
operating is not completely known, the outcomes that may 
be observed also are less certain. Similarly, state uncertainty 
may be the product of perfect sensory information that none-
theless indicates multiple possible environmental states, or 
it may be the downstream consequent of noisy input that 
renders estimates of the state of the environment unreliable. 
Cascade effects of this sort represent potential confounds on 
efforts to identify regions of the brain that underlie processes 
meant to indicate and compensate for various sources of 
uncertainty in behavior. Although recent work has attempted 

to identify how state uncertainty influences downstream var-
iables (e.g., dopamine reward prediction errors (Babayan 
et al., 2018; Mikhael et al., 2022; Starkweather et al., 2018), 
less is known about how and where state uncertainty may 
be represented.

In this study, we attempt to dissociate neural signatures in 
the cognitive control network specifically related to state and 
outcome uncertainty. Of the types of uncertainty described 
above, state uncertainty remains one of the least well-studied 
(Bach and Dolan, 2012), possibly due to its confound with 
both stimulus-related and outcome-related uncertainty. To 
address these possible confounds, we adapt a multistage, 
gambling task previously used to investigate the neural 
correlates of outcome uncertainty (Preuschoff et al., 2008; 
Rudorf et al., 2012). For each trial, subjects are shown cards 
from one of two possible decks, which constitute an unob-
served state of the environment that may be inferred based 
on the identity of cards revealed during the trial. Because 
no effort is made to degrade or mask the cards, we assume 
that stimulus uncertainty is minimal. To dissociate state and 
outcome uncertainty, our experimental design uses a pre-
viously described mathematical model of risk (Preuschoff 
et al., 2008). Hence, we are able to identify signals in the 
cognitive control network related specifically to changes in 
the level of one source of uncertainty while controlling for 
the other source.

Methods

Subjects

Twenty-two healthy, right-handed volunteers participated in 
this experiment (8 males). Experimental procedures were 
approved the UZ Gent Ethics Committee, and all partici-
pants gave informed consent and completed safety check-
lists before entering the scanner to exclude contraindications 
for participation. Inclusion criteria consisted of normal or 
correctable-to-normal color vision, and no current use of 
prescription psychoactive medication. Mean participant age 
was 23 years (min 20, max 27, standard deviation = 2).

Behavioral task

Subjects performed a gambling task adapted from Preuschoff 
et al. (2008) (Fig. 2A). For each trial of the task, subjects were 
shown two cards in sequence, separated by a delay. Before 
observing the first card, subjects were asked to guess whether 
the second card would be higher or lower than the first. 
Because subjects had no information on which to base their 
guess, the probability of guessing correctly on a trial was 0.5.

Subjects were informed that there were two decks (red 
and blue) used in the experiment. Each deck contained 
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five cards: the red deck contained cards ace through 5, 
and the blue deck cards 3 through 7. Subjects were addi-
tionally informed that on each trial, only one of the two 
decks would be used, that both cards shown during the trial 
would be drawn from that deck, and that, based on the cards 
shown, they may be able to determine the identity of the 
deck from which they were shown cards on a given trial. 
The experiment was arranged such that on one third of the 
trials, card number 4 would be the first card displayed (with 
a 50% chance the card was drawn from either the red or 
the blue deck). For the remaining trials, each card had an 
equal chance of being displayed first. Because there was an 
equal chance of observing each card (besides card number 
4), effects of novelty or salience were excluded as possible 
causes of differences in activity.

After indicating whether they thought the second card 
would be higher or lower than the first, subjects were shown 
the first card, followed by the second after a randomly jittered 
interval (3,000-5,000 ms). Subjects then received feedback 
indicating whether their guess was correct or incorrect, as 
well as the number of points won (+1,000) or lost (−1,000), 
respectively. After subjects received feedback, they were then 
asked to identify which deck they had received cards from 
during the trial. If subjects correctly identified the deck, the 
number of points they lost (if they guessed incorrectly) was 
reduced by 500. If subjects incorrectly identified the deck, 
the number of points subjects won (if they had guessed cor-
rectly) was decreased by 500. Following feedback indicating 
the final number of points won or lost, the next trial began 
after a jittered interval (3,000-5,000 ms).

Fig. 1  Cascades of uncertainty. Uncertainty may be introduced at multi-
ple points in the perception-action cycle. Given an environment that may 
be in one of two possible states (upper left frame) and an experimental 
task to judge whether subsequent values will be lower or higher than an 

observed value, uncertainty introduced early in the form of stimulus noise 
(upper right frame) reduces precision in subsequent estimates of the cur-
rent state of the environment (lower right frame), which in turn leads to 
increased uncertainty regarding future outcomes (lower left frame)
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fMRI data acquisition

While performing the behavioral task described above, subjects 
underwent functional MRI scanning in a Siemens 3T Magnetom 
Trio MRI Scanner with a 32-channel, radiofrequency head coil. 
Both structural (T1-weighted MPRAGE sequence, 176 high-
resolution slices, TR = 1550ms, TE = 2.39, voxel size = 0.9 mm 
X 0.9 mm X 0.9 mm, FOV = 220 mm, flip angle = 9°), and 
functional (T2-weighted EPI sequence, 33 slices, TR = 2,000 ms, 
TE = 30 ms, voxel size = 3 mm X 3 mm X 3 mm, FOV = 192 
mm, flip angle = 80°). Approximately 1,400 volumes per subject 
were collected over 50 minutes while subjects performed the task.

fMRI data preprocessing

Data were analyzed using SPM12 (http:// www. fil. ion. ucl. 
ac. uk/ spm). Scanning sessions were divided into 4 runs, 

and the first 4 volumes of each functional run were dis-
carded to allow for a steady-state magnetization. Functional 
images were aligned to the first image of the run, and the 
T1-weighted image was co-registered to the functional mean 
image for normalization, performed through SPM12’s uni-
fied segmentation and nonlinear warping approach. Images 
were aligned to the MNI template (Montreal Neurological 
Institute) and were smoothed by using a Gaussian kernel 
(8-mm FWHM).

fMRI analysis

A total of five GLMs (GLMs 1-5; Table 1) were created to 
conduct model-based analysis of fMRI data. The first two 
GLMs looked specifically at effects of Outcome and State 
risk prediction errors (Risk PE) alone. Each of these GLMs 
contained 108 regressors (27 regressors for each run); the 
regressors for each run included 24 movement regressors 
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Fig. 2  A) Experimental task. Subjects were asked to guess whether 
the second of two successively-presented cards would be higher or 
lower than the first. Card numbers ranged from 1 to 7 and could be 
drawn from one of two possible decks on each trial. Cards drawn 
from the Red deck were numbered 1 to 5, and cards drawn from 
the Blue deck were numbered 3 to 7. Based on the cards observed 
during the trial, subjects could infer which deck was used on each 
trial, and they were asked to identify the deck at the end of each 
trial. B) Outcome and State Uncertainty Signals. Our mathemati-

cal model of state and outcome risk, derived from Preuschoff et al. 
(2008), suggests how Risk Prediction Error (Risk PE) signals fol-
lowing the presentation of the first card might be dissociated for 
Outcome and State Risk. Outcome Risk PEs (top frame) are 
equivalent following the presentation of cards 2, 3, 5, and 6; how-
ever, for cards 3 & 5, the identity of the deck cannot be inferred, 
whereas for cards 2 and 6, deck identity can be inferred. For equal 
Outcome Risk PEs, the risk model predicts differing levels of State 
Risk PE (bottom frame)
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(Power et al., 2014) (pitch, yaw, roll, and X, Y, & Z trans-
lation, scan-to-scan differences, and the squared values of 
each), and 1 block-wise regressor. Each trial, aligned to the 
presentation of the first card in the sequence, was modeled as 
a single regressor (duration = 0 ms), which was parametri-
cally modulated by values obtained from a mathematical 
model of risk for outcome and state uncertainty (see below). 
The delay between presentation of the first and second cards 
was jittered, and we did not expect effects from the second 
card presentation to have an influence on effects related to 
the presentation of the first card; for this reason, the second 
card presentation was not modeled in our GLMs. For the first 
GLM (GLM1), values for the parametric modulator were 
Risk PEs from a risk model in which the deck identity (red/
blue) of the trial was to be predicted. For the second GLM 
(GLM2) while the values of the parametric modulator were 
Risk PEs from the risk model in which the outcome (win/
lose) was predicted.

Parametric modulators modulate an event 
Regressor modeling the onset of the first 
card in each trial

The purpose of including a single parametric modulator in 
GLM1 and in GLM2 was to identify which regions, if any, 
significantly correlated with both forms of Risk PE, allow-
ing comparison of the contributions of deck identity and 
outcome Risk PE modulators. The values for both types of 
Risk PE are correlated, being minimal when the first card 
delivers no information about deck or outcome identity 
(i.e., when card 4 is presented), and maximal when pres-
entation of the first card indicates the outcome and deck 
identity with perfect certainty (i.e., cards 1 and 7). Given 
this correlation it is possible that, when considered alone, 
each form of Risk could correlate with activity in similar 
regions of the brain, with attendant implications for studies 
in which only outcome or state risk alone are considered.

In GLM 3, both State and Risk PEs are included as 
parametric modulators. By default, SPM 12 serially 
orthogonalizes modulators, leading to potential issues with 

interpretation (Erdeniz et al., 2013; Mumford et al., 2015). 
To avoid this, serial orthogonalization was disabled in our 
analyses—each parametric modulator “competed” with the 
others to explain variance. Where GLMs 1 and 2 effectively 
assigned all variance possible to either the State or Outcome 
Risk PE modulators, in GLM 3 the variance assigned to each 
modulator is only that which can be uniquely accounted for 
by that modulator.

To investigate possible effects of reward (as opposed to 
risk) prediction errors on activity in the regions identified 
by GLM 1-3, two additional GLMs were created which 
included reward prediction error (eq. 2 below) as a para-
metric modulator. GLM4 was identical to GLM3 above, 
except that it included reward prediction error as a third 
parametric modulator, for a total of 116 regressors. GLM 
5 directly tested whether activity in any brain region was 
related specifically to signed reward predictions errors ver-
sus outcome Risk PEs, and was identical to GLM1 above, 
except that the State Risk PE modulator was replaced by a 
reward prediction error modulator.

Mathematical models of risk

Preuschoff et al. (2008) introduced a mathematical model 
of risk, based on reward prediction, that we adapt to com-
pute changes in state uncertainty. The Preuschoff model 
begins with an estimate of the probability of winning 
or losing on each trial. At the beginning of each trial, 
subjects make guesses without any information, leading 
to an equal likelihood of guessing correctly or incor-
rectly. In our experiment, the final outcome of a trial 
depends both on whether the subject correctly guessed 
if the second card would be higher or lower than the first 
but also on the subject’s ability to correctly identify the 
deck from which cards were drawn: correctly identify-
ing a deck on a losing trial reduces the number of points 
lost from −1,000 to −500, while incorrectly identifying 
a deck on a winning trial reduces the number of points 
won (+1,000 to +500).

We assume that when subjects observe a card that unam-
biguously indicates one deck or another (i.e., cards 1, 2, 
6, and 7) that they will always correctly identify the deck. 
Conversely, when the cards presented do not indicate one 
deck or the other, we assume that subjects guess each deck 
equiprobably.

Following the presentation of the first card, expected 
value may be updated depending on new information: 
observing the ace or the seven, for example, eliminates all 
uncertainty, and the expected value is now either the value 

(1)
EV

0
=

(

P
win

× Value
win

− P
incorrect

× Value
incorrect

)

+

(

P
lose

× Value
lose

− P
correct

× Value
correct

)

Table 1  General linear models

Order of parametric 
modulators
Modulator 1 Modulator 2 Modulator 3

GLM1 State Risk PE N/A N/A
GLM2 Outcome Risk PE N/A N/A
GLM3 State Risk PE Outcome Risk PE N/A
GLM4 State Risk PE Outcome Risk PE Reward PE
GLM5 Outcome Risk PE Reward PE N/A
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of winning or losing, depending on the subject’s guess. The 
change in expected value produces a reward prediction 
error:

Risk prediction values build from reward predictions 
and reward prediction errors. While the expected value 
of a trial, before observing any cards, is always equal to 0 
in this experiment, observation of the first card produces 
a number of different new expected values, along with 
attendant reward prediction errors. Risk prediction in the 
model is defined as the expected squared reward predic-
tion error. Hence, before any cards are observed, the risk 
prediction is

Risk prediction errors are calculated as the difference 
between the squared reward prediction error (Eq. 2) and the 
expected squared reward prediction error (Preuschoff et al., 
2008)

The above equations formalize a mathematical model of 
risk as it relates to outcomes. Reward and risk prediction 
signals are defined in terms of the expected value (number of 
points) and changes in the expected value as it evolves over 
the course of a trial. The above equations can be adapted 
to the case of state (as opposed to outcome) prediction by 
substituting the predicted identity of the deck being used in 
place of value:

where 1 and −1 code for deck identity. At the beginning of 
each trial, each deck is equally likely, and the expected state 
has a value of 0. Following the observation of the first card, 
a state prediction error is calculated as in Eq. 2, as well as 
state risk and state risk prediction error (Eqs. 3 and 4).

When applied to the contingencies of our experiment, 
the mathematical models of outcome and state risk yield 
predictions regarding the pattern of neural signals associated 
with State and Outcome Risk PE following presentation of 
the first card (Fig. 2B). Specifically, for both state and out-
come risk, Risk PEs are expected to be lowest following the 
presentation of card number 4, which carries no information 
regarding deck identity, nor does it change the probability 
of a guess being correct or incorrect. Similarly, the model 
predicts that activity will be highest following presentations 
of cards 1 and 7, both of which are diagnostic with respect to 
deck identity as well as the correctness of the subjects guess. 
Critically, prediction errors for outcome risk and state risk 
diverge following presentation of cards 2/6 and cards 3/5.

(2)PErew = EV
1
− EV

0

(3)ER
0
=

∑7

n=1
P(n) ×

[(

EV
1
|n
)

− EV
0

]2

(4)PErisk = PE2

rew
− ER

0

(5)Expected State = Pred × 1 + Pblue × −1

Results

Behavioral results

In our task, subjects were required to make two behavioral 
responses: 1) they were asked to guess whether the sec-
ond of two cards would be higher or lower than the first, 
and 2) they were asked to identify the deck (red or blue) 
from which they received cards on each trial. Overall, sub-
jects performed as expected. Although specific correct/
incorrect outcomes rates were not enforced, average accu-
racy for high/low guesses was at chance over all subjects 
(P(correct) = 0.49), and subjects were able to identify the 
deck with high accuracy on those trials in which the deck ID 
was identifiable (P(correctID) = 0.99). The median number 
of points earned for the entire session was 45,500. Analy-
sis of individual performance suggested that, while as a 
group, subjects performed as expected, some individuals 
performed substantially below chance levels. A binomial 
test on high/low choice accuracy revealed three subjects 
whose performance was significantly lower than chance 
(p < 0.025). These subjects were excluded from our fMRI 
analyses. A fourth subject ended the scanning session early, 
and the incomplete data collected from this subject was also 
not included in our analyses. A total of 18 subjects were 
therefore used in our fMRI analyses.

Model‑based results

Our analysis of fMRI data attempted to answer three ques-
tions of increasing specificity. Our first goal was to identify 
regions of the brain that correlated with Risk PEs irrespec-
tive of whether this correlation related specifically to Out-
come or State Risk PE. Second, we sought to test whether 
State or Outcome Risk PEs explained brain activity in any 
region after accounting for effects unique to the other Risk 
PE, as well as the variance explained by both. Finally, we 
tested whether any region showed effects specific to either 
State or Outcome Risk PEs. Whereas our second question 
asks whether effects unique to State or Outcome Risk PEs 
explain additional variance in the BOLD signal, our third 
questions asks whether State (Outcome) Risk PEs explains 
significantly more variance than Outcome (State) Risk PEs. 
Another way to state this is that our second question exam-
ines whether State/Outcome Risk PE effects are different 
from 0, whereas our third question examines whether State 
and Outcome Risk PE effects are different from each other. 
Because our experimental design is derived explicitly from 
previous studies observing Outcome Risk PE-related activity 
in bilateral anterior insula (Preuschoff et al., 2008; Rudorf 
et al., 2012), we have a strong a priori hypothesis that Risk 
PE-related activity will be observed in those areas.
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Risk PE values from the models of Outcome and State 
risk were regressed against BOLD activity time-locked to 
the onset of the first card displayed in each trial. In the Out-
come model, reward and risk prediction errors derive from 
updates in the expected number of points to be gained or 
lost at the conclusion of the trial. Conversely, in the State 
model, predictions and prediction errors are due to changes 
in the ability of the subject to divine the current state, here 
conceived as the identity of the deck from which the sub-
ject is shown cards on each trial. Hence, the two models 
suggest different but partially correlated patterns of activity 
that may be observed following the presentation of the first 
card (Fig. 1B).

With GLMs 1 and 2 (Table 1),we first investigated regions 
of the brain whose activity correlated with Outcome and 
State Risk PEs without regard for whether these effects are 
specific to one or the other. These results (Table 2) reveal a 
set of regions associated with the cognitive control network 
(Fig. 3), showing a positive linear relationship with Outcome 
and State Risk PE modulators. These regions include bilat-
eral anterior insula and ACC/mPFC. Additionally, regions 
in bilateral rostral dlPFC (BA 46/47) and right caudal dlPFC 
(BA9) passed whole-brain cluster-level correction (voxel 
threshold p < 0.001, cluster-level FWE threshold < 0.05) 
only for the Outcome Risk PE modulator from GLM2, pro-
viding an early indication that these regions may code spe-
cifically for Outcome Risk PEs.

We then investigated whether activity in any of these 
regions could be explained by State or Outcome Risk PEs 
after accounting for shared effects by including both values 
in the same GLM (GLM 3). By default, SPM12 orthogo-
nalizes successive parametric modulators with respect to 
previous modulators, potentially introducing problems with 
interpretation. To avoid this, we disabled serial orthogonali-
zation in our analyses; effects observed were related only 
to the variance each parametric modulator could uniquely 
account for. We observed a subset of the clusters from the 
previous analysis that positively relate to the Outcome Risk 
PE modulator (Fig. 4A; Table 3; bilateral BA46/47, right BA 
9). Conversely, we observed significant clusters in bilateral 
anterior insula that were positively related to State Risk PE. 
Notably, only Outcome Risk PE effects were observed ACC/
mPFC.

Finally, we tested whether State or Outcome Risk PEs 
were specific (State Risk PE > Outcome Risk PE or Out-
come Risk PE > State Risk PE) to any region by perform-
ing a paired t-test on the average (across runs) beta param-
eters estimated for each subject for the State and Outcome 
Risk PE modulators (Table 4). At the whole-brain level, 
only visual cortex was significant for a unique effect 
of State Risk PE over Outcome Risk PE. We observed 
activity correlating with Outcome Risk PEs in regions 
in the right hemisphere, including BA 46/47, right BA 
9, and parietal cortex, significant after cluster correction 

Table 2  Individual modulators

*p(FWE) < 0.05, whole-brain correction

Region Peak coords Peak Voxel t-stat
(df = 17)

Cluster statistics

X Y Z P(FWE) P(FDR) Extent

State Risk PE (GLM1)
 Right anterior insula 34 18 -6 8.63* <0.001 <0.001 863
 ACC/mPFC 4 22 48 6.54* <0.001 <0.001 659
 Left anterior insula -32 20 10 7.40* <0.001 <0.001 517
 Posterior cingulate 0 -28 34 6.19* 0.001 <0.001 251
 Right parietal 44 -68 42 5.02 <0.001 <0.001 288
 Left parietal -56 -44 46 4.94 0.002 0.001 216
 Precuneus 10 -56 38 5.25 <0.001 <0.001 578

Outcome Risk PE (GLM2)
 Right anterior insula 36 18 -6 8.45* <0.001 <0.001 593
 Left anterior insula -30 20 10 6.86* <0.001 <0.001 390
 Right caudal DLPFC 42 10 52 7.51* <0.001 <0.001 480
 Right rostral LPFC 44 52 0 7.44* <0.001 <0.001 449
 Left rostral LPFC -44 50 -6 5.55 <0.001 <0.001 239
 ACC/mPFC 4 24 50 6.41* <0.001 <0.001 647
 Right parietal 54 -50 46 6.83* <0.001 <0.001 794
 Left parietal -56 -44 46 6.06* <0.001 <0.001 367
 Left mid DLPFC -50 40 26 5.43 0.0004 0.005 96
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(p(FWE) < 0.05, voxel threshold p < 0.001), suggesting 
that these regions uniquely encode uncertainty related to 
outcomes.

To test for an interaction of Risk PE type and region, 
we defined six ROIs based on the overlap between regions 
in the cognitive control network with activity correlat-
ing with either Outcome or State Risk PEs (GLMs 1 and 
2). We entered the beta values for each subject averaged 
across each ROI for State and Outcome Risk PEs from 
GLM3 in a two-way ANOVA (Risk Type x ROI). Results 
showed a main effect of condition (Outcome > State; 
F(1,216) = 15.91, p = 0.0001), as well as a significant 
interaction between region and risk type (F(5,216) = 4.78, 
p = 0.0004). Pairwise comparisons (Fig. 4B) suggest that 
this interaction was driven by right DLPFC—activity 
associated with Outcome Risk PEs was greater that State 
Risk PEs for both rostral (t(17) = 2.208, p = 0.011) and 
caudal (t(17) = 2.21, p = 0.040) DLPFC.

Anterior insula and outcome uncertainty

Signals corresponding both to State Risk and Outcome Risk 
PEs passed whole-brain corrections within right anterior 
insula. However, after applying whole brain corrections, no 
voxels appeared to uniquely encode either type of Risk PE 
(i.e., for no voxel was the effect of State Risk PE greater 
than Outcome Risk PE or vice versa). Because the design of 
our experiment derives explicitly from previous studies that 
observed Outcome Risk PE signals in anterior insula, we 
conducted additional analyses exclusively in anterior insula 
to further assess possible differences in signaling state or 
outcome risk. We defined an anatomical volume for bilateral 
anterior insula (wfupickatlas, dilation = 2, bounded at the 
posterior extent of the central sulcus of the insula (Mutschler 
et al., 2013)). Within this volume, we tested for differences 
between State and Outcome Risk PEs by conducting a paired 
t-test of the averaged beta values for State and Outcome 
Risk PEs from GLM3. No significant voxels or clusters were 
observed for the Outcome Risk PE > State Risk PE compari-
son. For the State Risk PE > Outcome Risk PE comparison, 
we observed a cluster of voxels in right insula (Fig. 4, green/
yellow) whose activity was better explained by the State 
Risk PEs than Outcome Risk PEs at a significance threshold 
of p < 0.001 (peak voxel MNI Coordiantes 38, 14, 12, t(17) 
= 5.3, p(FWE) = 0.025, cluster-level p(FWE) = 0.006, voxel 
extent = 74). These results suggest that, although Outcome 
Risk PEs can explain activity in subregions of anterior insula 
beyond that explained by State Risk PEs, no voxels appeared 
to uniquely code for Outcome Risk PEs Fig. 5.

State and outcome risk PEs in anterior cingulate

In our first analysis (GLMs 1 and 2), a cluster of voxels in 
ACC/mPFC correlating with both (uncontrolled) State and 
Outcome Risk PE) was observed (Fig. 3). A related cluster 
was observed for Outcome Risk PEs in this region (Table 3) 
even after State Risk PEs were considered (GLM 3). How-
ever, no regions within mPFC exhibited unique effects of 
either State or Outcome Risk PEs, i.e., activity associated 
with Outcome Risk PEs was not significantly different from 
activity associated with State Risk PEs. One possibility 
is that activity in this cluster reflects a reward prediction 
error, as distinct from errors in risk prediction. In order to 
test this possibility, we created an additional GLM which 
included reward prediction error as a parametric modula-
tor in addition to State and Outcome Risk PEs (GLM 4) 
and another GLM in which only Outcome Risk PEs and 
reward PEs were included (GLM 5). Analysis within the 
ACC ROI (cluster-corrected, voxel threshold p < 0.001) 
revealed no significantly active voxels for either positive or 
negative effects of reward prediction errors, nor were any 
voxels observed for a more lenient threshold of p < 0.01. 

Fig. 3  Risk Prediction Error in the Cognitive Control Network. Val-
ues derived from the mathematical model of risk for State and Out-
come Risk PEs correlate with activity in regions commonly associ-
ated with cognitive control and decision-making. Blue indicates 
voxels correlating with State Risk PE (GLM 1), red with Outcome 
Risk PE (GLM 2), and green the overlap for voxels surviving an 
uncorrected threshold of p < 0.001 for both State and Outcome Risk 
PE. Regions observed to correlate with both types of Risk PE include 
ACC/mPFC, anterior insula, parietal, and right caudal dlPFC (BA 9). 
Outcome Risk PE selectively correlated with bilateral rostral dlPFC, 
as well as left BA 9, although this latter result did not survive FWE (p 
< 0.05) correction at the cluster level
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Fig. 4  Outcome Risk PE-specific activity. A) Activity in regions in 
bilateral rostral lPFC and caudal dlPFC corresponded to Outcome 
Risk PE signals derived from the mathematical model of risk. The 
number of voxels surviving threshold (uncorrected p < 0.001) was 
greater for comparisons of Outcome Risk PE versus State Risk PE 
than for comparison of Outcome Risk PE versus 0, indicating the 

State Risk PEs were slightly anti-correlated with activity in these 
regions. This is especially apparent in left caudal dlPFC, in which 
activity is more in line with a negative State Risk PE signal than for 
Outcome Risk PEs. B) Significant interaction between Risk Type and 
Region appears to be driven by increased activity associated with 
Outcome Risk PEs in right lateral PFC

Table 3  GLM3

Region Peak coords Peak Voxel t-stat
(df = 17)

Cluster statistics

X Y Z P(FWE) P(FDR) Extent

State Risk PE
 Right anterior Insula 34 18 4 5.09 0.001 0.002 215
 Precuneus 2 -78 40 4.99 0.033 0.021 106
 Left anterior insula -34 18 10 5.30 0.045 0.021 97

Outcome Risk P
 Left rostral LPFC -38 48 2 4.64 0.003 0.002 193
 Right rostral LPFC 44 50 0 5.74* <0.001 <0.001 641
 Right caudal DLPFC 40 12 48 6.27* <0.001 <0.001 430
 Right parietal 50 -66 38 5.54 <0.001 <0.001 669
 Dorsal mPFC 8 26 52 4.94 <0.001 <0.001 261
 Right anterior insula 34 20 -4 4.54 0.012 0.008 138
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Together, the results of GLM4 and GLM5 suggest that the 
cluster observed in ACC/mPFC is not specific to State Risk 
PE, Outcome Risk PE, nor reward prediction errors.

Discussion

The results of this study suggest how uncertainty about 
different task variables is represented and integrated in 
the cognitive control network. Uncertainty can arise at 
multiple points in the neural processing stream (Bach 
and Dolan, 2012): external input to the system may be 
noisy (stimulus uncertainty), the operating context in 
which an agent makes decisions may be unknown (state 

uncertainty), and the outcomes of decisions may be proba-
bilistic rather than deterministic (outcome uncertainty). 
Uncertainty at early points in the stream can have cascade 
effects that contribute to uncertainty at later points, result-
ing in a confound amongst various types of uncertainty 
(Fig. 1). Given this possibility, controls are needed in 
order to disentangle the neural regions involved processing 
uncertainty related to different decision variables. In this 
study, we minimize stimulus uncertainty—task-relevant 
stimuli are presented clearly without degradation or mask-
ing, while dissociating state and outcome uncertainty. By 
dissociating state and outcome uncertainty, we sought to 
identify brain regions predominantly involved in process-
ing one form of uncertainty over the other.

Table 4  Comparison of modulators

Region Peak coords Peak Voxel t-stat
(df = 17)

Cluster statistics

X Y Z P(FWE) P(FDR) Extent

State Risk PE > Outcome 
Risk PE

 Visual cortex 4 -84 14 7.07 <0.001 <0.001 1759
Outcome Risk PE > State 

Risk PE
 Right parietal 16 -26 50 5.95 <0.001 <0.001 526
 Right caudal DLPFC 34 8 46 5.72 <0.001 0.001 318
 Right rostral DLPFC 44 48 -2 4.76 0.004 0.011 179

Fig. 5  State risk prediction errors in right anterior insula. Sig-
nals corresponding uniquely to State Risk PEs (green/yellow) 
were observed in right dorsal anterior insula cortex (small vol-
ume correction p(FWE) < 0.05). Signals related to Outcome 
Risk PEs (blue) were also observed ventrally to State Risk PEs 

(voxel threshold < 0.001), consistent with previous observations 
(Preuschoff et  al., 2008; Rudorf et  al., 2012); however these sig-
nals were not uniquely explained by Outcome Risk PEs, and 
overlapped regions in anterior insula whose activity was also 
explained by State Risk PEs (magenta)
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Processing of state uncertainty in this study appears to 
primarily involve right anterior insula, a region frequently 
implicated in cognitive tasks, such as categorization (Grin-
band et al., 2006; Mack et al., 2013), resolving stimulus 
ambiguity (Bach et al., 2009; Deary et al., 2004; Ho et al., 
2009), salience (Menon and Uddin, 2010; Seeley et al., 
2007; Wiech et al., 2010), and allocating attention (Downar 
et al., 2002; Eckert et al., 2009; Nelson et al., 2010). Our 
findings do not directly contradict these previous results 
but offer a complementary interpretation. Considering that 
stimulus uncertainty can have downstream effects on state 
and outcome uncertainty, the activation of anterior insula 
in response to noisy or ambiguous stimuli can be viewed 
as a consequence of uncertainty in state induced by stim-
ulus-related uncertainty. Similarly, our results provide an 
additional perspective on studies that observed activity in 
insula correlated to Outcome Risk PEs (Preuschoff et al., 
2008; Rudorf et al., 2012). In those studies, the only type 
of uncertainty investigated related specifically to outcomes 
(win/lose), while state uncertainty was not explicitly manip-
ulated. In this study, we observe signals related to Outcome 
Risk PE in anterior insula as well as signals related to State 
Risk PE. One possibility is that the processing of state and 
outcome uncertainty is not unique to any specific region 
(Eisenreich et al., 2017) but that regions involved in pro-
cessing uncertainty do so for multiple types of uncertainty, 
albeit weighted toward one type over another. In the absence 
of a source of state uncertainty in previous studies, then, it 
may be that signals related to outcome uncertainty are the 
principal component of activity in anterior insula. A second 
possibility is that states and outcomes are not cleanly sepa-
rable concepts. In our experiment, state was conceived as the 
identity of the deck from which cards were drawn; however, 
state might also be thought of as an estimate of the condi-
tion of the deck before any information being revealed, e.g., 
whether the environment is in a state such that the second 
card will be higher than the first or vice versa. Under this 
notion of state, then, successive card presentations allow for 
more refined estimates of the initial state of the environment. 
These estimates may be indistinguishable from estimates of 
the eventual outcome of the trial.

Outcome Risk PEs, considered on their own, engaged 
regions in lateral PFC, including bilateral BA 46/47 and 
right BA 9. A large body of literature has associated these 
regions, and dlPFC more generally, with working memory 
and representing hierarchical task structure (Alexander and 
Brown, 2015; Badre, 2008; Badre and D’Esposito, 2007, 
2009; Koechlin et al., 2003). Considering our experiment 
incorporated two levels of uncertainty related to state and 
outcome, a reasonable a priori hypothesis would be that 
activity in lPFC may have followed a hierarchical gradient, 
with changes in more abstract (i.e., state) uncertainty acti-
vating more rostral aspects of lPFC, and concrete (outcome) 

uncertainty changes activating more caudal aspects. In stud-
ies investigating the hierarchical organization of prefrontal 
cortex, it is frequently the case that hierarchically-structured 
information is successively integrated to govern future 
behavior: context cues govern how cues related to rules and 
task-sets are interpreted, and these in turn influence pro-
cessing of concrete response cues (Collins and Frank, 2013; 
Koechlin et al., 2003; Nee et al., 2013; Nee and D’Esposito, 
2016). Information is therefore, in a sense, updated proac-
tively, with the purpose of contextualizing subsequent cues 
and behavior. In this study, in contrast, subjects are informed 
that a single deck is selected for use in each trial, and infor-
mation gained following the presentation of cards can be 
used to discern which deck is in use. In this case, informa-
tion gained following the presentation of each card may not 
be exclusively used for proactive updates of expectations, 
but also to update retroactively the estimates of state iden-
tity. Our finding that State Risk PE signals correlated only 
with activity in insula (while Outcome Risk PE signals were 
observed in lPFC as well as insula) may therefore relate 
to the distinction of ventral control pathways involved in 
reactive information integration and dorsal control path-
ways involved in proactive prediction and behavior (Tops 
and Boksem, 2012).

When activity associated with Outcome Risk PEs was 
compared with State Risk PE activity, we observed signifi-
cant regions exclusively in the right hemisphere of the brain, 
including lateral PFC and parietal cortex. Similarly, we 
observed activity uniquely related to State Risk PEs in right 
anterior insula. Lateralization of attentional processes in the 
right hemisphere has been reported in humans and monkeys 
(de Schotten et al., 2011), and may be related to executive 
processes underlying the control of attention (Spagna et al., 
2020). While the present results do not offer new perspec-
tives on why control effects may be right-lateralized, they 
may suggest that representation of control-relevant variables 
may be more precise in right hemisphere. That is, although 
regions in both hemispheres coded for State and Outcome 
Risk PEs to some extent, representations of one or the other 
were only distinguishable in right hemisphere.

Finally, although ACC/mPFC activity correlated with 
risk prediction errors, it favored neither state- nor out-
come-related signals, nor signals related to reward pre-
diction errors. Instead, activity in the region appeared to 
broadly integrate Outcome and State Risk PEs. While the 
BOLD signal recovered from ACC/mPFC appears to be 
a composite of different types of Risk PE signals, it is 
not necessarily, nor even likely, the case that the activity 
of individual neurons reflects the composite signal. First, 
it is a frequent observation that neurons with drastically 
different activity profiles exist in an interdigitated fash-
ion in ACC (Sallet et al., 2007), and the co-activation of 
these neurons during behavioral episodes can give rise to 
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ensemble activation that does not reflect underlying neural 
computations (Alexander and Brown, 2011, 2014; Botvin-
ick et al., 2001; Stuphorn and Schall, 2006). Second, it is 
unclear what the functional import of a signal composit-
ing different types of uncertainty would be. Absent any 
compelling rationale for such a combined signal, these 
findings are broadly consistent with models of ACC/mPFC 
that suggest that individual neurons in the region code 
for discrepancies between expected and observed events 
(Alexander and Brown, 2011).

Although we did not restrict our analyses to specific brain 
areas a priori, we observed activity correlated with State or 
Outcome Risk PEs primarily in regions typically associated 
with the cognitive control network. However, as noted in the 
Introduction, state and outcome uncertainty are only two 
possible dimensions along which uncertainty-related brain 
activity might be decomposed. We specifically note stimu-
lus and response uncertainty (Fig. 1A) as additional sources 
of uncertainty that might be tracked by the brain. A strong 
possibility is that brain regions implicated in signaling pre-
diction errors, which we do not observe here, may instead 
respond to prediction errors along these alternate dimen-
sions. However, future work controlling for these additional 
forms of risk prediction errors will be needed.

While we characterize the brain areas observed in this 
study as belonging to the “cognitive control” network (Cole 
and Schneider, 2007), other work has identified these regions 
as belonging to, variously, the salience network (Seeley 
et al., 2007), the task-positive network (Fox et al., 2005), the 
frontoparietal network (Vincent et al., 2008), or the multiple-
demand network (Camilleri et al., 2018). In our view, the 
specific nomenclature used matters less than understanding 
how the regions that make up these networks respond dif-
ferentially to various forms of uncertainty. That said, state 
and outcome uncertainty may nonetheless correlate with 
alternative interpretations of the regions we observe in this 
study. For example, activity in ACC/mPFC is frequently 
interpreted as indexing conflict (Botvinick et al., 2001) or 
choice difficulty (Shenhav et al., 2013), quantities that are 
maximal when uncertainty about future outcomes is highest. 
Similarly, discrimination difficulty has been found to elicit 
activity in parietal cortex (Hagen et al., 2006). Although 
there is considerable overlap in the formalization of such 
alternative interpretations, we believe that uncertainty pro-
vides a convenient way of formalizing the activity of the 
various regions we observe under a common framework.

Activity across the regions we report in this study is 
frequently correlated, especially following salient, behavio-
rally relevant events, such as behavioral error (Bastin et al., 
2017; Dosenbach et al., 2007; Gläscher et al., 2012; Ham 
et al., 2013; Hester et al., 2004; Hutchison et al., 2012; 
Seeley et al., 2007). Due to this ubiquitous co-activity, 
determining the contribution of each region to cognition 

and behavior remains a significant challenge for cognitive 
neuroscience (Cieslik et al., 2013; Dosenbach et al., 2007; 
Gläscher et al., 2012; MacDonald et al., 2000), particu-
larly with regard to anterior insula and ACC (Craig, 2009; 
Critchley et al., 2004; Gu et al., 2010). Recent evidence 
from intracerebral EEG recordings in human suggest a 
causal role of error signals in anterior insula on activ-
ity in ACC/mPFC (Bastin et al., 2017), while recordings 
from monkey PFC (Stoll et al., 2016) indicate that feed-
back-related activity in mPFC precedes activity in lateral 
PFC, suggesting a potential causal influence of ACC/
mPFC activity on dlPFC activity. This possible causal 
chain of feedback processing (anterior insula →ACC/
mPFC→dlPFC) echoes the cascade of uncertainty in the 
perception-action cycle (Fig. 1) and the regions observed 
in this study. Our results are broadly consistent with recent 
proposals that anterior insula serves as a “gatekeeper’ to 
the cognitive control network (Molnar-Szakacs and Uddin, 
2022). By representing and updating state uncertainty 
estimates, anterior insula might contribute to downstream 
updates in outcome uncertainty estimates represented in 
dlPFC, with ACC/mPFC serving as a critical hub mediat-
ing this interaction (Alexander et al., 2017).
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