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Dissociative ionization of ICl studied by ion imaging spectroscopy
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The speed and angular distributions of I1 ions, produced when ICl molecules were exposed to both

ultraviolet and visible radiation at 3041608 nm, 3551608 nm, and 3041532 nm, were measured

by velocity map imaging. An intense central feature in the I1 images was observed to be very

sensitive to the polarization of the ultraviolet light and is attributed to a dissociative ionization

mechanism involving three-body fragmentation: ICl1hv ~visible!13hv ~ultraviolet!→I1
1Cl

1e2. The effect of varying the delay between the visible and ultraviolet radiation on the I1 images

suggests that an intermediate gateway state of ICl reached by absorption of one photon of visible

light mediates the transition to the superexcited dissociative ionization state. © 2002 American

Institute of Physics. @DOI: 10.1063/1.1484106#

I. INTRODUCTION

In conventional studies of photodissociation employing

weak visible ~VIS! or ultraviolet ~UV! radiation, a molecule,

AB, absorbs a single photon and dissociates on the lowest

potential energy surface accessible within the Franck-

Condon widow. If the photon is sufficiently energetic, how-

ever, the molecule may be excited to a neutral superexcited

state, AB**, which can then decay either by predissociation,

AB1hv→AB**→A1B*, ~1!

or by autoionization,

AB1hv→AB**→AB1
1e2. ~2!

At energies close to ionization, excitation to ion-pair states

may also be important,1 i.e.,

AB1hv→AB**→A1
1B2, ~3!

and if the ionic state is unbound, dissociative ionization ~DI!
may occur;

AB1hv→AB**→A1
1B1e2. ~4!

The competition between photoionization and photodissocia-

tion is inherently interesting because it is typically a multi-

electron and multi-continuum process.2

Photoionization studies displaying these phenomena

have been reported recently for I2,
3 C6H5I,

4 H3,
5 NO2,

6 and

CF3I.
7 In the I2 experiment3 velocity map images of I1 pro-

duced with VIS radiation between 556 and 576 nm displayed

discrete anisotropic rings and a continuous central peak that

were attributed to a multiphoton DI mechanism. The recoil

energy associated with the discrete rings was independent of

wavelength, indicating that the electron removed a variable

amount of kinetic energy, leaving the nuclei on the same

point of the repulsive potential energy curves for different

initial excitation energies. At some wavelengths the aniso-

tropy of the rings was diminished, and the recoil energy

shifted to slightly larger values. Both of these effects could

be explained by the presence of low-lying resonances or

‘‘gateway’’ states accessed by absorption of several VIS pho-

tons. The C6H5I experiment4 was performed also using the

velocity map imaging method, with radiation between 266

and 609 nm. Discrete rings and an hour-glass-shaped central

feature were observed, and a multiphoton DI mechanism was

proposed. Electron images produced at 532 nm are compat-

ible with this mechanism; however, the complexity of the

phenyl ring precludes an unequivocal interpretation of the

data. A DI mechanism has also been proposed by Bakker

et al.5 for the single-photon ionization of the E,F states of

H2. From the angular distribution of the H1 ions, they as-

signed the electronic transitions to the states that are respon-

sible for the DI process.

The diatomic interhalogen molecules have been a sub-

ject of great interest from both experimental and theoretical

points of view, not least because of the many curve crossings

and avoided crossings among the excited state potential en-

ergy curves.8 The rich manifold of low-lying electronic states

is likely to play an important role in multiphoton processes

including DI. We report here the results of a two-color, pho-

tofragment ion imaging study of the DI of iodine monochlo-

ride ~ICl!. One or more VIS photons excite an intermediate

‘‘gateway’’ state, and several UV photons access the ioniza-

tion continuum. The use of two independent excitation

sources allows us to separate the roles played by the inter-

mediate state and the superexcited DI state. Variation of the

time delay between the two sources as well as their polariza-

tions allows us to obtain a more detailed understanding of

the DI mechanism.

a!Author to whom correspondence should be addressed. Electronic mail:

mkawasa7@ip.media.kyoto-u.ac.jp
b!Electronic mail: rjgordon@uic.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 3 15 JULY 2002

11300021-9606/2002/117(3)/1130/9/$19.00 © 2002 American Institute of Physics

Downloaded 05 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



II. EXPERIMENT

We have used the velocity map imaging technique to

measure both the speed and angular distributions of atomic

iodine ions.9,10 Linearly polarized UV and/or VIS lasers were

used to irradiate a molecular beam of ICl seeded in 1 atm of

Ar gas and pulsed at 10 Hz ~General Valve, 0.8 mm orifice

diameter!. The VIS laser radiation near 608 nm and the UV

radiation near 304 nm were provided by a Nd:YAG-pumped

dye laser ~Rhodamine B/Lambda Physik ScanMate 2EC, 6

ns pulse duration! and its second harmonic generated in a

KDP crystal, respectively. Some additional measurements in-

volving a one-color pump-and-probe scheme employed UV

laser radiation at 304.02 nm, which was used both to photol-

yse the ICl molecules and also to probe the resulting

I*(2P1/2) fragment atoms by ~211! resonance-enhanced

multiphoton ionization ~REMPI!. In the time-delay experi-

ments, the second and third harmonics of a Nd:YAG laser

~Spectra Physics, LAB-130, 5–7 ns pulse duration, 10 Hz!
provided radiation at 532 and 355 nm, respectively. The laser

beam was focused with a 20 cm focal length lens into the

reaction chamber. The pump and probe lasers were generally

counter-propagated, except for the 3041608 nm experi-

ments, where they were co-propagated. For each wavelength,

the pulse energies measured before the lens were 0.5 and 15

mJ in the UV and VIS, respectively, unless otherwise noted.

The delay time between two YAG laser pulses was controlled

by a pulse generator ~Stanford Research, DG535! and could

be extended to as long as 62 ms with a jitter of a few ns. The

molecular beam was directed along the axis of a 60 cm long

Wiley-McLaren time-of-flight mass spectrometer operated

under velocity-sensitive conditions.9 The skimmed molecular

beam source, the ionization chamber, and the flight tube were

each differentially pumped.

The laser beams were linearly polarized perpendicular

and/or parallel to the flight axis and focused onto the mo-

lecular beam between the repeller and extractor electrodes.

Ions were accelerated by an electrostatic lens and focused

onto a microchannel plate ~MCP! detector mounted at the

end of the flight tube. The electrode voltages were typically

2.5 kV for the repeller and 1.7 kV for the extractor. Typical

voltages used for the MCP were 0 V ~front face! and 1.2 kV

~rear of the MCP pair!, with 3.3 kV applied to the phosphor

screen. The image produced on the phosphor screen by

each laser shot was captured by a frame grabber connected

to a CCD camera with a time-gated image intensifier

~Hamamatsu, C4347! and accumulated in a laboratory com-

puter. Typically, 20 000 laser shots were summed to produce

a single two-dimensional ~2-D! map of the transverse recoil

velocity of the I1 ions ~selected by appropriate choice of

time gate on the image intensifier!. The images of the full

three-dimensional velocity distribution were calculated from

the 2-D maps by an inversion procedure developed by Mat-

sumi et al.11

III. RESULTS

A. Excitation spectra of I¿ in one- and two-color
experiments

Figure 1 shows the I1 excitation spectrum of ICl in the

two-color experiments using VIS laser light scanned from

l5607 to 609 nm and its second harmonic, l/25303.5 to

304.5 nm ~solid curve!. The time delay, Dt , between the VIS

~l! and UV ~l/2! beams was zero in this case. The solid

curve shows the integrated I1 signal intensity, i.e., the appro-

priate time-gated total current from the MCP, which was

monitored as a function of the laser wavelength. The dashed

curve in Fig. 1 shows the I1 spectrum obtained in the one-

color UV experiment, in which the two sharp resonances are

due to the ~211! REMPI of I* (2P1/2) and I(2P3/2) atoms

produced by one-photon UV dissociation of ICl.12 The two-

color spectrum of I1 clearly shows the two-photon reso-

nances at 304.02 and 303.69 nm evident in the one-color

experiment, superimposed on a continuous broad back-

ground. At this UV intensity, no I1 signal was observed in

the one-color experiment when the UV radiation was tuned

off-resonance.

Figure 2 shows I1 excitation spectra in two-color experi-

ments with different combinations of VIS and UV laser

wavelengths. Figure 2~a! was obtained by scanning the VIS

wavelength, l, with the UV radiation fixed at 355 nm,

whereas Fig. 2~b! was obtained by scanning the UV wave-

length, l/2, with the VIS radiation fixed at 532 nm. In both

spectra Dt was set at zero. The nonresonant two-color I1

spectrum in Fig. 2~a! shows a broad feature for l.608 nm,

whereas Fig. 2~b! shows four sharp peaks that are due to

~211! REMPI of I and I* produced by one-photon dissocia-

tion of ICl. The transitions of these REMPI peaks are given

FIG. 1. The I1 spectra from ICl in the two-color experiment with nonreso-

nant ultraviolet plus visible laser light ~solid curve! and in the one-color

experiment with ultraviolet laser radiation only ~broken curve!. Vibrational

assignments for the A 3P1(v8)←X 1S1(v9) transitions of I35Cl and I37Cl

are discussed in Sec. IV C. The arrow indicates the wavelength at which the

images shown in Fig. 4 were measured.
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by Jung et al.12 Importantly, under the all our experimental

conditions, no I1 signal was observed at any wavelength

when the UV radiation ~355 nm or l/2! was absent.

B. 2-D velocity imaging maps and the kinetic energy
distributions of I¿ photofragments near 304 nm,
with and without 608 nm radiation

Figure 3 shows I1 images obtained at 304.02 nm with

only UV radiation present, corresponding to the sharp feature

shown by the broken curve in Fig. 1. This image resulted

from ~211! REMPI of I* atoms produced by one-photon UV

photodissociation of ICl. The single discrete ring displayed

in Fig. 3 is explained by a single-photon dissociation mecha-

nism, as discussed in Sec. IV B. Figure 4 shows I1 images

corresponding to the broad feature in the solid curve of Fig.

1, produced with both UV ~l/25304.40 nm! and VIS ~l
5608.80 nm, 12 mJ/pulse! radiation. Seen here is a central

feature not present in the single-color image of Fig. 3. Both

the central feature and the faint outer ring are produced by a

DI process, as explained in Sec. IV B. The images in the

various panels of Fig. 4 were taken with different polariza-

tion geometries. In the upper panels of Fig. 4, the UV polar-

ization vector, EUV , was aligned parallel to the flight axis,

whereas in the middle panels it was perpendicular to the axis.

The polarization vector of the VIS radiation, EVIS , was per-

pendicular to the flight axis in the left images of Fig. 4 and

parallel to the axis in the right images. It is apparent that the

properties of the images are very sensitive to the alignment

of EUV and insensitive to EVIS .

The images in Fig. 3 and the middle panels of Fig. 4 are

all anisotropic. The angular distributions are fitted well by a

Legendre series truncated after the second term,

I~u !}11bP2~cos u !, ~5!

where I(u) is the normalized intensity of the photofragment,

u is the angle between the velocity of the fragment and the

electric vector of the dissociation laser beam, and b is the

one-photon angular anisotropy parameter. The fitted values

of b are plotted in Fig. 5~a!. The b value derived for the ring

in Fig. 3 has the limiting value of 2, and those in Fig. 4 are

approximately 0.7.

The center-of-mass translational energy distribution de-

rived from the I1 images shown in Figs. 3 and 4 are dis-

played in Fig. 5~b!. The peaks labeled A and B in Fig. 5

correspond to the main features evident in the resonant one-

color ion image and the two-color, off-resonance image

~Figs. 3 and 4!, respectively. The kinetic energy distribution

FIG. 2. The I1 spectra from ICl in the two-color experiments, with ~a! the

ultraviolet ~UV! wavelength fixed at 355 nm while the visible wavelength

was scanned, and with ~b! the visible wavelength fixed at 532 nm and UV

wavelength scanned. Vibrational assignments for the A 3P1(v8)

←X1S1(v9) transitions of I35Cl and I37Cl are discussed in Sec. IV C. The

arrows indicate the wavelength at which the images shown in Fig. 6~a! were

measured. I and I* denote the UV two-photon resonance-enhanced multi-

photon signals for I(2P3/2) and I(2P1/2), respectively. Assignments of these

transitions are given in Ref. 12.

FIG. 3. Two-dimensional ~2-D! images of the I1 ions obtained from ICl by

resonant one-color excitation at 304.02 nm, using the second harmonic of a

dye laser tuned to a ~211! REMPI transition of I*(2P1/2). The image was

taken with the ultraviolet polarization (EUV) aligned perpendicular to the

detection axis. The lower panel shows the velocity distribution of I*(2P1/2)

calculated from the upper image.
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of the I1 fragments obtained with the UV laser only, tuned to

the two-photon resonance of I* ~Fig. 3!, shows a sharp peak

centered at 22.2 kcal/mol displayed in Fig. 5~b! A.

The images obtained in the two-color nonresonant ex-

periment ~Fig. 4! display an outer ring and a central peak.

The ratio of the integrated I1 relative intensity of the outer

ring to that of the central peak in the two-color nonresonant

experiments was found to be independent of UV pulse en-

ergy between 0.5 and 3.5 mJ/pulse at 304.40 nm, with the

608.80 nm pulse energy fixed at 12 mJ/pulse.

C. 2-D velocity imaging maps of I¿ from two-color
experiments with 355¿608 nm and 304¿532 nm

Figures 6~a! and 6~b! show the velocity image maps ob-

tained with two different sets of UV and VIS wavelengths,

namely ~a! 3551608.04 nm and ~b! 304.401532 nm. Images

were taken with both sets of wavelengths with EUV aligned

either parallel ~upper panels! or perpendicular ~lower panels!

to the flight axis. In these images Dt was set at zero. As in

the 3041608 nm experiment discussed previously ~Fig. 4!,

the images were very sensitive to the alignment of EUV and

independent of that of EVIS . ~The effect of varying EVIS

polarization is not shown in Fig. 6.! The peak translational

energy calculated from the velocity distribution is as small as

2.0 kcal/mol for 3551608.04 nm.

D. Time-delay experiments

Figure 7 shows the integrated I1 signal intensity versus

Dt in the two-color experiments. Panel ~a! corresponds to

3551608.04 nm, and panel ~b! corresponds to 304.401532

nm. A negative time delay in these figures means that the

VIS pulse precedes the UV pulse. Figure 7~a! shows that the

I1 signal intensity increases in this case with the delay be-

tween the VIS and US pulses, reaching an asymptotic value

at long delays. In Fig. 7~b!, however, the I1 signal was ob-

served only when the UV and VIS pulses were temporarily

overlapped within 10 ns.

IV. DISCUSSION

Our previous studies identified several identifying char-

acteristics of dissociative ionization.3,4 These include ~1! the

production of ionic fragments with nonresonant radiation and

the appearance of fragment ions with kinetic energy distribu-

tions that are ~2! continuous, ~3! peaked near zero, and ~4!
have maxima that are independent of the excitation energy. A

further property of multiphoton DI is ~5! the involvement of

FIG. 4. Two-dimensional ~2-D! images of the I1 ions obtained from ICl in

the nonresonant two-color experiments using wavelengths of 304.40 and

608.80 nm. The image was taken with the ultraviolet polarization (EUV)

aligned parallel ~upper panel! and perpendicular ~middle panel! to the de-

tection axis, respectively. The polarization vector of the visible laser light

(EVIS) is perpendicular and parallel to the detection axis in both images on

the left and right sides, respectively. The lower panels show the velocity

distributions of I* calculated from the middle images.

FIG. 5. ~a! The angular anisotropy parameter ~b! and ~b! the c.m. transla-

tional energy distributions of the I* photofragment extracted from the im-

ages of Figs. 3 and 4 ~left!. In panel ~a!, the open squares ~A! were obtained

by one-color ultraviolet photodissociation to yield Cl1I*(2P1/2), using the

second harmonic of a dye laser tuned to the 211 REMPI transition of

I*(2P1/2) at 304.02 nm, whereas the filled squares ~B! were obtained by

two-color dissociative ionization to yield I*1Cl1e2, using 304.40 and

608.80 nm. The distributions shown in panel ~b! correspond to ~A! one-color

experiments at 304.02 nm ~thin curve! and to ~B! two-color experiments at

304.40 and 608.80 nm ~thick curve!, respectively. The arrows indicate the

maximum available kinetic energies for each dissociation channel of ICl into

I*(3P0,1,2)1Cl(2P), induced by absorption of three ultraviolet photons and

one visible photon.
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intermediate gateway states that access the superexcited DI

states. For diatomic molecules, property ~2! necessarily im-

plies that a third body ~i.e., an electron! carries away a con-

tinuous amount of energy. Property ~4! is also indicative of a

continuous sink for energy. The present article reveals the

presence of several of these effects in ICl, and, in particular,

explores the role of intermediate states in property ~5!.
The outline of this discussion is as follows: In Sec. A we

briefly review the electronic properties of ICl that are rel-

evant to this study. In Sec. B we interpret the data obtained at

3041608 nm in light of a DI mechanism. Similarities and

differences observed at 3551608 and 3041532 nm are ex-

plored in Secs. C and D.

A. Electronic properties of ICl

The visible absorption spectrum of ICl contains many

closely spaced bands assigned to transitions to the A 3P1

~565–700 nm!,13 B 3P01 ~562–576 nm!,14 and B8
3P01

~566–571 nm! states.14 A continuum band between 370 and

550 nm is assigned to dissociation via the B state, and a

second continuum between 220 and 300 nm is assigned to

dissociation via higher V501 and 1 states.15,16

The photodissociation dynamics of ICl have been inves-

tigated by state-selective photofragment translational spec-

troscopy at various wavelengths between 235 and 248 nm,16

at 304 nm,17 and in the 490–590 nm region.18,19 In particular,

the branching ratio and angular anisotropies of ground state

and spin orbit-excited I and Cl were measured.

Yabushita and co-workers16,20 calculated the adiabatic

potential energy curves for the ground and first few excited

states of ICl. Some of the relevant states and their diabatic

dissociation products are shown schematically in Fig. 8. A

high-resolution threshold photoelectron spectroscopic study

FIG. 7. Time-resolved I1 signal intensity produced from ICl with nonreso-

nant two-color radiation using wavelengths of ~a! 355 and 608.04 nm and

~b! 304.40 and 532 nm. The horizontal axis is the delay time between the

visible and ultraviolet laser pulses, where a negative delay time means that

the visible pulse precedes the ultraviolet pulse.

FIG. 8. Diabatic correlation diagram for possible dissociative ionization

mechanisms of ICl ~after Refs. 16, 17, 20, and 21!. Not shown are several

V51 states lying above the A 3P1 state. The solid arrows indicate the tran-

sition induced by the ultraviolet laser, and the open arrow shows the transi-

tion induced by the visible laser. The bound and repulsive states excited by

the visible photon are the gateway for excitation by the UV photons to the

upper electronic states. The symbols I, I*, Cl and Cl* denote the fragments

I(2P3/2), I(2P1/2), Cl(2P3/2), and Cl(2P1/2), respectively.

FIG. 6. Two-dimensional ~2-D! images of the I1 ions obtained from ICl

with nonresonant two-color radiation, using wavelengths of ~a! 355 and

608.04 nm and ~b! 304.40 and 532 nm. The ultraviolet polarization (EUV)

was aligned either parallel ~upper two panels! or perpendicular ~middle pan-

els! to the detection axis. The polarization vector of the visible laser light

~EVIS) was perpendicular to the detection axis in all images. The lower

panels show the velocity distribution of I* calculated from the middle im-

ages.
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of ICl above the valence ionization region was performed

using synchrotron radiation.21 The adiabatic (v
1

50) ioniza-

tion potentials for formation of the X 2P3/2 , A 2P and

B 2P1 states of the ICl1 ions are 10.07660.002, 12.5, and

;14 eV, respectively. ~See Fig. 8.! The dissociation limit for

I1(3P2)1Cl(2P3/2) is 12.604 eV. The formation of the

higher spin-orbit states of I1(3PJ) needs an excess energy of

0.88 eV for J51 and 0.80 eV for J50, respectively. Ex-

tended vibrational structures seen in the photoelectron spec-

tra for both the X and A band systems were assigned to

resonant autoionization of Rydberg states and also to ion-pair

states, especially in the energy region of the A state of ICl1.

In the present study, the DI process can occur through these

excitation processes.

B. 304 and 608 nm

The discrete ring observed in the one-color image ~Fig.

3! and the partially resolved double peaks at 20.7 and 22.2

kcal/mol in the recoil energy distribution @curve A in Fig.

5~b!# were obtained with the UV radiation tuned to an iodine

resonance. These features correspond to the peaks reported

previously by Jung et al.17 at 20.0 and 22.0 kcal/mol, and are

attributable to one-photon dissociation of ICl at 304.02 nm to

produce I*1Cl* and I*1Cl fragments, followed by ~211!
REMPI of the I* atoms,

ICl1hn~UV!→I*1Cl/I*1Cl*, ~6a!

I*13hv~UV!→I1
1e2. ~6b!

The b value for the ring in Fig. 3 has the limiting value of 2,

which indicates a parallel electronic transition (DV50).

This finding is consistent with a transition from the X1S1

~2440! ground state of ICl to primarily the B8
3P01. ~2341!

state, followed by a nonadiabatic transition to the 3S
01

2

~2422! state to form I*1Cl products.17,22 ~As shown in Fig.

8, the diabatic products of the 3S
01

2
states are I*1Cl,

whereas those of the 21S1 state are I*1Cl*.!
The two-color images shown in Fig. 4 were obtained

with the UV radiation tuned off-resonance. The outer ring in

these images is not attributable to nonresonant multiphoton

ionization of I* by UV ~304.40 nm! laser light @produced by

reaction ~6a!#, even though it has nearly the same energy as

that in Fig. 3, because the dashed curve in Fig. 1 shows no I1

signal produced by nonresonant UV radiation, and also be-

cause its b value of 0.7 is much smaller than the limiting

value of 2 observed for resonant excitation.

The velocity map images of I* ions produced by off-

resonant two-color irradiation of ICl at 304.40 and 608.80

nm display an intense central feature ~Fig. 4!, which is ex-

plained by a DI mechanism. In a DI process, the electron can

carry away a continuous amount of kinetic energy, so that the

recoiling ion-neutral pair displays a continuous distribution

of kinetic energies that may be peaked near zero. The central

feature observed in the I1 images of Fig. 4 resembles those

observed in earlier studies of DI.3–6,23,24 Previously it was

proposed that DI mechanisms contribute to the photoinduced

dynamics of I2,
3 C6H5I,

4 NO2,
6 CF3I,

7 C3H8,
23 and D2.

24 In

the absence of collisions and dressed state effects, continu-

ous structure in the fragment recoil kinetic energy distribu-

tions for a diatomic molecule can arise only if a third body

~i.e., an electron! carried away the excess energy.

Dissociative ionization occurs when a molecule is ex-

cited to a superexcited neutral state that can decay either by

dissociating into excited neutral fragments or by autoionizing

to a dissociative ionic state. The distribution of kinetic ener-

gies of the recoiling nuclei is determined by the competition

between ionization and dissociation. The distribution may be

peaked near zero kinetic energy if the dissociative ionic state

is less repulsive than the superexcited neutral state. ~See Fig.

4 of Ref. 3.! If the molecule autoionizes near the repulsive

wall of the neutral state, where the nuclear kinetic energy is

zero and the transition moment is likely to be large, then the

electron will carry away most of the available energy and

angular momentum. The longer the molecule survives in the

neutral state, the greater the amount of potential energy that

is converted into nuclear recoil energy. The detailed shape of

the kinetic energy distribution function is determined by the

neutral and ionic potential energy curves and by the radial

dependence of the transition moment.

Both the central feature and the outer ring are explained

by DI processes. The low energy peak is attributed to disso-

ciation of the molecular ion on a weakly bound potential

energy curve, whereas the outer ring may be explained by

direct ionization on a repulsive ionic curve. Both mecha-

nisms were observed for the I2 molecule. ~See Fig. 4 of Ref.

3.! Strong evidence for the mechanism producing the dis-

crete ring in I2 is that the recoil energy of the rings varied

very weakly with photon energy. A similar mechanism may

also be responsible for the outer ring observed for

iodobenzene.4

Clearly, a key step in DI is the transition to the superex-

cited state, AB** in reaction ~1!. For single-photon excita-

tion, the transition probability is determined by the electronic

transition dipole moment and the Franck–Condon overlap

integral. For multiphoton excitation, however, the mecha-

nism may be complicated by the presence of intermediate

electronic states. The present experiments demonstrate that a

transition to such a gateway state, AB*, induced by absorp-

tion of one VIS photon, is a necessary condition for DI of

ICl. The transition from the gateway to the superexcited state

is induced by absorption of several UV photons, and the

angular distribution of the nuclear fragments is determined

by the polarization vector of the UV laser. The overall pro-

posed mechanism is therefore as follows:

ICl1hv~VIS!→ICl*, ~7a!

ICl*1nhv~UV!→ICl**, ~7b!

ICl**→ICl1*1e2, ~7c!

ICl1*→I1
1Cl. ~7d!

As discussed in the following section, a plausible candidate

for ICl* in step ~7a! is the A 3P1 state. In our experiment,

the energy required for step ~7b! corresponds to n53. Poten-

tial energy is removed from the nuclei in step ~7c!, and

nuclear recoil energy is released in step ~7d!. The A 2P and

B 2S1 states of ICl1 are possible candidates for ICl1*, as

shown in Fig. 8.
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The total energy, Eavl , available to the recoiling nuclei in

the overall process

ICl1hv~VIS!13h~UV!→I1~3P j!1Cl1e2 ~8!

may be calculated from the dissociation energy17 of ICl and

the ionization potential of I(2P3/2). For 304.401608.80 nm,

Eavl538.2 kcal/mol for J52, 19.7 kcal/mol for J50, and

17.9 kcal/mol for J51. The formation of three different J

states of I1(3P j) can explain the observed kinetic energy

distribution shown in Fig. 5~b! B, where the maximum avail-

able translational energies for the three J levels are indicated

by the arrows. The translational energy distribution of I1 is

consistent with these threshold energies, suggesting that at

least two different J states of I1(3P j) are formed. The maxi-

mum observed kinetic energy exceeds the available energy

for J52 by ;2 kcal/mol, suggesting a hot-band mechanism

from ICl ~X1S1, v952, E
v
52.2 kcal/mol!. The popula-

tion of v952 at room temperature is 2.5%, and hot bands of

ICl were in fact observed in the photoelectron spectra re-

ported by Yencha et al.21 and in the absorption spectra re-

ported by Hulthén et al.14

The angular distribution of I1 is well represented by Eq.

~5! with only the P2 term included in the series. It is well

known that for an n-photon photodissociation with no bound

intermediate states, the angular distribution includes even or-

der Legendre polynomials up to order 2n .4,25,26 Here, the

absence of terms higher than n52 could be explained if the

three-photon dissociation of ICl* involves a bound interme-

diate state, so that the anisotropy is determined entirely by

the last photon to be absorbed.25 Possible explanations of the

small b values @b>0.7 in Fig. 5~a! B# include ~a! a long

dissociative lifetime of ICl1* in step ~7d!, ~b! mixing of

several excited electronic states with different symmetries in

step ~7d!, caused by strong nonadiabatic interactions of the

accessible states, and ~c! removal of angular momentum by

the electron emitted in step ~7c!. Mechanism ~a! is possible if

the potential energy curve for ICl1* is flat or weakly bound.

In the latter case, ICl1* must be initially formed with suffi-

cient energy to dissociate. Mechanism ~b! is possible because

there exist as many as five possible final ionic states

(X2P1/2,3/2 , A 2P1/2,3/2 , and B 2S1!.21 Mechanism ~c! is

plausible because angular momentum carried away by the

electron reduces the angular anisotropy of the recoiling nu-

clei. This is true especially for p- or d-wave electrons, which

remove most of the angular momentum supplied by the pho-

ton. In the case of H2 photoionization, where the intermedi-

ate rovibrational level is completely defined, Bakker et al.5

were able to calculate the expected b value using angular

momentum algebra. In the present case, where the electronic

character and rotational angular momentum of the interme-

diate states are not well defined and their coupling matrix

elements are unknown, such a calculation would be much

more difficult.

We note that ion-pair states, analogous to zero kinetic

energy electron ~ZEKE! Rydberg states, could conceivably

be responsible for the features seen in our images. Such ion-

pair states have recently been observed in a multiphoton

spectrum of ICl between 8.99 and 9.08 eV in the presence of

a 1.25 kV/cm dc field.1 The asymptotic dissociation limit is

8.98 eV for the ion-pair state, I1
1Cl2. For the 304.40

1608.80 nm experiment, however, a sharp peak correspond-

ing to the total translational energy of 28 kcal/mol is absent

in Fig. 5~b! B. Likewise, the asymptotic dissociation limit is

12.1 eV for the ion-pair state, I2
1Cl1. Our failure to ob-

serve a Cl1 signal is a further indication that the ion-pair

state is not formed.

C. 355¿608 nm

The velocity map image of I1 ions produced by two-

color irradiation of ICl at 3551608.04 nm displays only a

central anisotropic feature, shown in the middle panel of Fig.

6~a!. This feature corresponds to a translational energy dis-

tribution peaked at 2.0 kcal/mol. The I1 ion images shown in

Fig. 6~a! are found to depend on the alignment of EUV , in

good agreement with the observations for 304.401608.80

nm excitation. In the time-delay experiment, the I1 signal for

3551608.04 nm is observed only when the VIS pulse pre-

cedes the UV pulse @Fig. 7~a!#. This effect is attributed to a

transition to a bound gateway state of ICl with one VIS pho-

ton @reaction ~7a!#. An ICl molecule in the bound gateway

state is then ionized by absorption of several UV photons.

We note that the threshold for dissociation of ICl to ground

state atoms is 576 nm. The A 3P1 state of ICl, however, is

accessible by a one-photon transition with VIS laser light

around 608 nm,20

ICl~X 1S1!1hv~VIS!→ICl~A 3P1!, ~9a!

ICl~A 3P1!13hv~UV!→I1~3P2!1Cl1e2. ~9b!

For 3551608 nm, this reaction is endoergic by 2 kcal/mol.

As before, the energy defect may be explained by the pres-

ence of vibrationally excited molecules in the molecular

beam.

The nonresonant two-color I1 spectrum in Fig. 2~a!
shows a broad feature for l.608 nm, which is similar to the

structure observed near 608 nm in the two-color spectrum of

I1 shown in Fig. 1 ~solid line!. The similarity of these spectra

suggests that the feature near 608 nm in Fig. 1 is produced

by the absorption of a VIS photon. These features in Figs. 1

and 2~a! are assigned to four overlapping transitions peaked

at 608 nm, A(3P1 ,v8)←X(1S1,v9) with (v8,v9)

5(17,0),(21,1),(28,2) for I35Cl and ~28,2! for I37Cl. The

peak at 609 nm may be assigned to the transition

A(3P1 ,v8521)←X(1S1,v951) for I37Cl. The transition

energies were calculated using the isotopic term values for

the A state listed in Ref. 14 and the molecular constants of

the X state listed in Ref. 27. Because vibrational cooling in a

jet expansion is much less efficient than rotational cooling,

the vibrationally excited ICl may survive in the free jet

while the rotational temperature is very low.28 The photo-

dissociation mechanism in Eq. ~9! is energetically accessible

for a hot-band transition from ICl(X 1S1,v952, E
v

52.2 kcal/mol!.
The structures around 607.9–608.3 nm shown in Fig. 1

~solid line! correspond to the rotational population of ICl

(X1S1,v950,1,2,J9) with a Boltzmann temperature of ;20

K. These features are the signature of the gateway transitions

present in the two-color DI mechanism. On the other hand,
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some of the structures overlapping the continuum band

around 608.3–608.9 nm in Fig. 1 ~solid line! are not seen in

Fig. 2~a! and cannot be assigned to the A – X transition.

Those structures should be independent of the wavelength of

the VIS photon and thus reflect the transition from ICl~A! to

a higher electronic state induced by the UV photons.

This proposed mechanism is consistent with all of the

experimental observations. For example, without VIS laser

light, no I1 signal was observed. As shown in Fig. 6~a!,the

angular distributions of I1 depend sensitively on the direc-

tion of EUV , but not of EVIS . @The effect of varying EVIS

polarization is not shown in Fig. 6~a!.# The two-color experi-

ments with 3041608 nm and 3551608 nm utilize the same

VIS laser wavelength and thus access the same gateway state

of ICl. We therefore expect that the results of the time-delay

experiment performed for 3551608.04 nm should apply to

304.401608.80 nm as well. We note that the outer ring

present at 3041608 nm is absent at 3551608 nm. In the

former case we argued that the outer ring is caused by direct

DI on a repulsive ionic curve, which is clearly the case for

I2.
3 The absence of the ring at 3551608 nm may be simply

the result of a much weaker transition to this state at longer

wavelengths. This mechanism may also explain the vanish-

ing of the outer ring in iodobenzene as the wavelength is

increased.4

It is instructive to compare our results with those re-

ported by Parker et al.29 for the single-color multiphoton dis-

sociation and ionization of Cl2. In their case a highly struc-

tured kinetic energy distribution was observed for both Cl1

and e2. Their proposed mechanism is a two-photon excita-

tion of a discrete Rydberg state followed by one-photon ex-

citation of the core to produce a superexcited neutral state,

which either autoionizes to produce the molecular ion or

dissociates to yield excited Cl atoms. The observed kinetic

energy distribution of Cl1 results form either photodissocia-

tion of Cl2
1 or nonresonant ionization of excited Cl.

These observations are in striking contrast with the

present results. The absence of structure in the recoil energy

distribution of I1 and the low peak energy are indicative of a

DI mechanism. Although the time-delay experiment indi-

cates that the intermediate state is long-lived, removal of a

continuous amount of kinetic energy by the departing elec-

tron results in a structureless kinetic energy distribution for

the ion.

D. 304¿532 nm

Figure 6~b! shows the velocity image maps obtained in a

two-color experiment with 304.401532 nm. Again a central

feature characteristic of a DI mechanism is present. As in the

previous two-color experiments, the properties of the image

are sensitive to the alignment of EUV and are independent of

EVIS . In the time-delay experiment, the central feature was

observed only when the UV and VIS pulses were temporarily

overlapped within 10 ns, as shown in Fig. 7~b!. This finding

indicates that in this case DI of ICl utilizes an unbound gate-

way state. A single gateway, which explains both sets of

time-delay data in Fig. 7, is the A 3P1 state. Below its dis-

sociation threshold ~2.153 eV, or 576 nm!, the very long

lifetime of this state ~100 ms at 607 nm!30 explains the per-

sistence of the DI signal when the VIS pulse arrives before

the UV pulse, whereas its short lifetime above the dissocia-

tion threshold requires that the pulses be temporally over-

lapped.

A possible competing mechanism at these wavelengths

is the 1VIS12UV photoionization of ICl, followed by

single-photon UV photodissociation of ICl1. If this were the

case, however, the translational energy of I1 would be

greater than 35 kcal/mol. The absence of such high energy

ions indicates that this is not the main mechanism.

V. CONCLUSIONS

Velocity map imaging has been used to explore the pho-

toexcitation dynamics of ICl induced by two-color radiation.

Experiments were performed with three pairs of visible

~VIS! and ultraviolet ~UV! laser pulses ~3041608 nm, 355

1608 nm, and 3041532 nm!. All the velocity map images of

I1 produced by nonresonant bichromatic excitation of ICl

displayed a low velocity feature that is characteristic of a

dissociative ionization ~DI! mechanism.3,4 Nonresonant

photo-induced dynamics of ICl to form I1 ions is thus shown

to proceed via three-body DI processes, in which the electron

carries off a continuous amount of kinetic energy. Time-

delay measurements show that an intermediate gateway state

~or states! resonant at the VIS photon energy enhances the DI

processes. It is suggested that this gateway is the A 3P1 state,

which is reached with a single VIS photon. Subsequent ab-

sorption of three UV photons leads to a superexcited DI

state. The kinetic energy distribution of the recoiling nuclear

fragments is determined by the competition between disso-

ciation and autoionization of the DI state.
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