
HAL Id: hal-01257709
https://hal.archives-ouvertes.fr/hal-01257709

Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dissolution–precipitation processes governing the
carbonation and silicification of the serpentinite sole of

the New Caledonia ophiolite
Marc Ulrich, Manuel Muñoz, Stéphane Guillot, Michel Cathelineau, Christian

Picard, Benoit Quesnel, Philippe Boulvais, Clément Couteau

To cite this version:
Marc Ulrich, Manuel Muñoz, Stéphane Guillot, Michel Cathelineau, Christian Picard, et al..
Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite
sole of the New Caledonia ophiolite. Contributions to Mineralogy and Petrology, Springer Verlag,
2014, 197, pp.Art. n°952. 10.1007/s00410-013-0952-8. hal-01257709

https://hal.archives-ouvertes.fr/hal-01257709
https://hal.archives-ouvertes.fr


1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33

Dissolution-precipitation processes governing the carbonation and silicification 

of the serpentinite sole of the New Caledonia Ophiolite 

Marc Ulrich1,2,#,*, Manuel Muñoz2, Stéphane Guillot2, Michel Cathelineau1, Christian Picard3, 

Benoit Quesnel4, Philippe Boulvais4, Clément Couteau5. 

1 Laboratoire Géoressources, CNRS, UMR 7566 , Université de Lorraine, France.  

2 Institut des Sciences de la Terre, CNRS, UMR 5275, Université de Grenoble 1, France. 
3 Laboratoire Chrono-environnement, UMR 6249, Université de Franche-Comté, France. 
4 Géosciences Rennes, CNRS, UMR 6118, Université de Rennes 1, France. 
5 Service géologique, Koniambo Nickel SAS, Nouvelle Calédonie. 

# present location: IPGS-EOST, UMR 7516, Université de Strasbourg, France  

* corresponding author: mulrich@unistra.fr 

ABSTRACT 

The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly 

to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are 

widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically 

associated with magnesite. It is commonly admitted that Mg and Si are released during the 

laterization of overlying peridotites. Thus the occurrence of these veins is generally attributed to a 

per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved 

atmospheric CO2. In this study we investigate serpentinite carbonation processes, and related 

silicification, based on a detailed petrographic and crystal-chemical study of serpentinites. The 

relationships between serpentine and alteration products are described using an original method for 

the analysis of µ-XRF images performed at the centimeter scale. 

Our investigations highlight a carbonation mechanism, together with precipitation of 

amorphous silica and sepiolite, based on a dissolution-precipitation process. In contrast with the per 

descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution-

precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively 

preserved, this process extends more widely into the rock, and may represent a major part of total 

carbonation of the ophiolite. 

Keywords: Serpentine, magnesite, carbonation, silicification, New Caledonia ophiolite 
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INTRODUCTION 

Carbon dioxide is currently one of the primary greenhouse gases having an impact on global 

warming. Therefore, numerous recent studies have focused on the potential of sequestration of CO2 

by mineral carbonation, either through ex situ (e.g. Bobicki et al., 2011; Power et al., 2011; 

Renforth et al., 2011; Badlucan and Dlugogorski, 2013; Harrison et al., 2013) or in situ processes 

(e.g. Cipolli et al., 2004; Hansen et al., 2005; Teir et al., 2007; 2009; Andreani et al., 2009; Rudge 

et al., 2010; Kelemen et al., 2011; Klein and Garrido, 2011). Among the various mineral species 

that may undergo carbonation reaction, Mg-bearing minerals (as well as Ca-carbonates) are of a 

great interest as they are very common at Earth surface and thus represent an important reservoir for 

CO2. In addition, magnesite (MgCO3) has a long term stability, contrarily to alkali carbonates, 

which are readily soluble in water (Lackner et al., 1995). Basically, magnesite is formed by the 

reaction between a Mg-rich source and CO2-rich fluids (Bain, 1924) and can integrate variable 

amount of cations (mainly divalent, e.g. Ca and Fe) by substituting Mg in the crystal structure. 

Based on the study of numerous magnesite deposits, Abu-Jaber and Kimberley (1992b) 

distinguished vein-type and massive-type magnesite, the second type forming deeper than the 

former. Numerous other parameters play a role in magnesite formation, such as temperature, the 

origin of the components or the mechanisms of precipitation. The temperature of magnesite 

formation extends from ambient to ~400°C (Halls and Zhao, 1995; Wilson et al., 2009; Klein and 

Garrido, 2011). The origin of CO2 is variable as it may be related to either weathering (atmospheric 

CO2), metamorphic (deep seated CO2) or magmatic (magmatic CO2) sources (Abu-Jaber and 

Kimberley, 1992b). The source of magnesium is usually local at the outcrop scale but can also be 

distant, e.g. coming from the weathering of magnesian rocks at the Earth surface and transported 

downward by meteoric water infiltration (Podwojewski, 1995; Jurković et al., 2012). Mechanisms 

of magnesite precipitation are also variable. Abu-Jaber and Kimberley (1992b) reported two main 

ways of magnesite precipitation: i) precipitation through a reaction that involves CO2-rich fluid and 

Mg-rich rock, or alternatively Mg-rich fluids and CO2-rich rock (i.e. the most common way to form 

magnesite); ii) the oversaturation of the fluid with respect to magnesite may be enhanced by the 

fluid evaporation and/or degassing (Dabitzias, 1980; Fallick et al., 1991; Zedef et al., 2000; 

Ghoneim et al., 2003). In both cases, hydrated Mg-carbonate species may precipitate alternatively  

or in association to magnesite (e.g. Zedef et al., 2000; Beinlich and Austrheim, 2012) Detailed 

studies of the precipitation mechanisms can thus provide major clues for the understanding of 

natural CO2 sequestration.  
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Among the various rocks that have the potential to react with CO2, ultramafic rocks, and 

particularly serpentinites, are probably the most efficient feedstock material for long-time storage 

through the formation of magnesite (Dabitzias, 1980; Jedrysek and Halas, 1990; Pohl, 1990; Fallick 

et al., 1991; Abu-Jaber and Kimberley, 1992b; Sherlock and Logan, 1995; Goff and Lackner, 1998; 

Gerdemann et al., 2003; Ghoneim et al., 2003; Cipolli et al., 2004; Schulze et al., 2004; Hansen et 

al., 2005; Teir et al., 2007, 2009; Kelemen and Matter, 2008; Rudge et al., 2010; Klein and Garrido, 

2011; Jurković et al., 2012). Serpentine carbonation onsets by the dissolution of atmospheric CO2 

into water, where CO2 forms different species as a function of pH. At pH < 6.5, carbonic acid 

(H2CO3) dominates, at pH between 6.5 and 10.5, bicarbonate (HCO3
-) dominates and at higher pH, 

carbonate anion (CO3
2-) dominates. Serpentine dissolution and magnesite precipitation are also pH-

dependent (Klein and Langmuir, 1987; Guthrie et al., 2001; Tneir et al., 2007; Prigiobbe et al., 

2009; Teir et al., 2009; Krevor and Lackner, 2011). Experimentally, Teir et al. (2007) have shown 

that the best efficiency for serpentine to carbonate conversion is obtained in the pH range of 8-11, 

with an optimum at pH 9. Roughly similar pH conditions were measured for the optimum 

carbonation of olivine (Prigiobbe et al., 2009). At pH > 8, bicarbonate starts to dissociate into H+ 

and CO3
2- ions: 

HCO3
- → H+ + CO3

2- (1) 

Interaction between CO2-rich water and serpentine gives rise to the exchange of H+ and Mg2+ 

cations on the mineral surface. This reaction produces silica and water, while free Mg2+ cations 

react with CO3
2- anions to form magnesite: 

Mg3Si2O5(OH)4 + 6H+ → 3Mg2+ + 2H4SiO4 + H2O (2) 

 Mg2+ + CO3
2- → MgCO3 (3) 

The overall reaction can be summarized as follow: 

Mg3Si2O5(OH)4 + 3(2H+ + CO3
2-) → 3MgCO3 + 2SiO2 + 5H2O (4) 

Serpentine + CO2(aq) → Magnesite + Silica(aq) + Water 
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Worldwide, carbonation of serpentinite commonly leads to the formation of magnesite 

deposits in association with ophiolitic bodies, e.g. in California (Bodenlos, 1950; Sherlock and 

Logan, 1995), Egypt (Ghoneim et al., 2003), Greece (Dabitzias, 1980), Italy (Cipolli et al., 2004), 

Norway (Beinlich et al., 2012) or Oman (Kelemen and Matter, 2008). In New Caledonia, similar 

magnesite deposits have been described in the serpentine sole of the ophiolite, but few studies have 

focused on the origin of this magnesite (Glasser, 1904; Trescases, 1973; Ulrich, 2010; Quesnel et 

al., 2013). Quesnel et al. (2013) propose that magnesite veins in the serpentinite sole formed 

tectonically, at temperatures between 40 and 80°C. On the basis of stable isotope analyses (O and 

C), these authors propose that the fluid from which magnesite formed was originally meteoric water 

and that the carbon source is mostly atmospheric, with a possible biogenic contribution. They also 

suggest that magnesium originated from the dissolution of the peridotite at the top of the ophiolite 

during laterization and was transferred down to the sole by the infiltration of meteoric waters under 

tectonically active conditions. The per descensum model is largely invoked to explain magnesite 

deposits in lateritic environments (Dabitzias, 1980; Pefrov et al., 1980; Pohl, 1990; Abu-Jaber and 

Kimberley, 1992a; 1992b; Foster et al., 2002; Jurković et al., 2012; Oskierski et al., 2012). It 

requires a well-drained system where meteoric waters, charged with atmospheric CO2, dissolve 

serpentine (and other Mg-silicates), a process that releases magnesium and silicon into solution. 

Meteoric waters then percolate downward thanks to a microfracturing permeability system, thus 

dissolving more magnesium. Within this frame, precipitation of magnesite is due to supersaturation 

of fluids, which are generated by the neutralization of carbonic acid by serpentine dissolution, as 

shown by reactions (2) and (3) (Bodenlos, 1950; Pohl, 1990; Fallick et al., 1991; Abu-Jaber and 

Kimberley, 1992b; Giammar et al., 2005; Kelemen et al., 2011). Alternatively, the ultramafic pile 

may become a partially closed system, and therefore limit the exchange between atmospheric CO2 

and meteoric water (Jurković et al., 2012). Progressive dissolution of serpentine during the fluid 

migration downwards consumes H+ ions, as shown by reaction (3). As CO2 is not freely available 

anymore, such consumption of H+ ions causes the increase of pH, enhancing magnesite 

precipitation (Jurković et al., 2012). 

Considering the origin of magnesium as deriving from the laterization rises the question about 

the mechanism of magnesite precipitation in New Caledonia. In such a case, and similarly to 

magnesite deposits from Euboea (Greece, Boydell, 1921), magnesite formation may be the result of 

direct precipitation from the fluids without interacting with hosted rocks of the deposit site. This 

hypothesis was favored by the composition of New Caledonia waters passing through peridotites 
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and serpentinites (sampled in la Coulée river, Mont-Dore), showing that they are enriched in 

magnesium and CO3
2- ions (Barnes et al., 1978). Alternatively, field investigations highlight a close 

relationship between serpentinite, magnesite and silica, suggesting that the two latter phases may 

originate from the dissolution of the former. In this case, magnesite would precipitate by in situ 

replacement of the serpentine, using magnesium released during the serpentine dissolution. In this 

study we provide evidences of magnesite formation through such a process on the basis of mineral 

characterization using an original analytical method for the interpretation of micro-X-Ray 

Fluorescence (µ-XRF) images. We particularly focus on the formation process of magnesite veins 

coupled to intense silicification observed in the serpentinite sole of the New Caledonia ophiolite. 

1. GEOLOGICAL SETTINGS AND SAMPLE DESCRIPTIONS 

New Caledonia is located in the SW Pacific, 2000 km east of the Australian coasts (Figure 1). 

It is composed of several islands that belong to the Norfolk ridge (La Grande Terre, Island of Pines, 

Belep Islands) and to the Loyalty ridge (Loyalty Islands). The main island, la Grande Terre, consists 

of a patchwork of terranes reflecting the geodynamic evolution of the SW Pacific region from late 

Permien to Eocene (e.g. Cluzel and Meffre, 2002; Cluzel et al., 2001; 2012). Among these terranes, 

the ophiolite is the most prominent as it covers more than 25% of the island. The so-called 

Peridotite Nappe is composed of a large and continuous massif located south of the island and some 

isolated klippes widespread along the west coast (Figure 1). The ophiolite was formed between 83 

Ma with the opening of the South Loyalty Basin and its subsequent closing at 34 Ma, timing of its 

obduction on the Norfolk continental basement (Cluzel et al., 2001; Crawford et al., 2003; Schellart 

et al., 2006; Whattam et al., 2008; Whattam, 2009; Ulrich et al., 2010; Cluzel et al., 2012). Since its 

emergence, the uppermost part of the Peridotite Nappe has undergone an intense laterization. This 

led to the development of a thick laterite bed (up to 60 m thick; Sévin et al., 2012) that owns ~30% 

of the world nickel resources. The whole ophiolite is formed of upper mantle rocks (mainly 

harzburgites) with minor cumulates (Prinzofher, 1981). Peridotites are highly serpentinized, 

particularly at the base of the ophiolite which is made of a thick (up to 400 m thick, Audet, 2010; 

Ulrich et al., 2010) and silicified serpentinite sole where large amount of magnesite veins have 

crystallized (Quesnel et al., 2013).  

Samples presented in this study were collected in the serpentinite sole of the Koniambo 

massif (Figure 1). Similar outcrops occur on the serpentinite sole from other peridotite massifs in 
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New Caledonia (Ulrich, 2010). In the field, the whole sole is highly deformed, finely schistose and/

or intensely brecciated, and has recorded multiple serpentinization events (Ulrich, 2010): Massive 

serpentinization, which is of a typical bottle-green color in the field (Figure 2), is cross-cutted by 

light-green colored serpentine veins. The latter is associated with black magnetite impregnations 

and micro-cracks filled by fibrous serpentine (chrysotile). Magnesite occurs as millimeter to multi-

decimeter stock-work veins with a typical cauliflower-like texture, cross-cutting serpentinites 

(Figure 2). The magnesite is mainly snow-white colored, but can also appear greenish depending of 

the amount of intergrown serpentine. On the basis of structural observations, Quesnel et al. (2013) 

distinguished two types of veins. The first type of veins is observed along and/or within the margins 

of top to the SW-centimeter shallow dipping shear zones. The second type of veins corresponds to 

steeper veins occasionally crosscut by the low-dipping shear zones. Magnesite can also develop 

pervasively by precipitating in large and massive serpentine blocks (Figure 2 a, b, c). In this case, 

the magnesite seems to develop first at the expense of the light-green colored serpentine to 

progressively extend to bottle-green serpentine, a relationship that is not clear when magnesite fills 

the main shear zones, as described by Quesnel et al. (2013). 

2. ANALYTICAL METHODS 

1. X-Ray Diffraction 

Analyzes were performed at the Institut des Sciences de la Terre (ISTerre, Grenoble, France) 

on sample powders obtained after the crushing of separated magnesite veins and serpentinite host 

rock mineral fractions. X-ray diffraction (XRD) patterns were recorded with a Bruker D5000 

powder diffractometer equipped with a Kevex Si(Li) solid state detector using CuKα1+2 radiation. 

Intensities were recorded at 0.02° 2θ step intervals from 5 to 80°, with a 6 seconds counting time 

per step. Size of the divergence slit was 0.298°. 

2. Raman Spectroscopy 

Raman spectroscopy measurements were performed at the Ecole Normale Superieure of Lyon 

and at GéoRessources Nancy, France, in both cases using a Horiba Jobin-Yvon LabRam HR800 

spectrometer and a visible ionized argon laser source with a wavelength of 514 nm. Output laser 

power was 100 mW, and measurements were performed using an Olympus lens of x100 to focus the 
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laser beam onto an area that was 1 µm in diameter. Analyzes were done on macroscopic samples 

and on thin sections. Spectra result from the average of 5 acquisitions of 10 s to 20 s to optimize the 

signal/noise ratio. Two regions of the Raman spectra were investigated: 150-1250 cm-1 for structural 

bonding characterization and 2800-3900 cm-1 for the characterization of the hydroxyl groups. 

3. Micro-X-ray Fluorescence 

Micro-X-ray Fluorescence (µ-XRF) analyses were performed on a 5 mm-thick rock section 

(Figure 2d) using EDAX Eagle III spectrometer at ISTerre (Grenoble, France). The X-ray tube 

consists of a Rh anode operating at 250 µA with an acceleration voltage of 40 kV. Polycapillary 

lenses were used to focus the X-ray beam down to 40 µm full-width-at-half-maximum at the sample 

surface. An energy dispersive X-ray detector with resolution of 140 eV was used to measure 

fluorescence spectra. Chemical maps were recorded with a matrix of 256 x 200 pixels, a 40 µm step 

interval in both directions, and a dwell time of 1 s per pixel. For each map, the grey-scale 

corresponds to the intensity of the Kα-lines of the different elements (Si, Mg, Fe, Al, Ni, Ti, Mn, Cr, 

Ca, K) calculated from the integration of a specified region of interest (ROI) of the energy-range of 

XRF spectra. Then, ROI maps (see electronic supplements, Figure S4) are used to calculate phase 

maps thanks to a new routine, specially developed Matlab©-based code, following the same 

approach than that successfully applied first to the computing of mineral-phase maps from 

hyperspectral µ-XANES mapping (Muñoz et al., 2008). In the case of hyperspectral µ-XRF maps, 

the phase map calculation consists first of determining pure mineral phases that are expected to be 

present in the sample, in order to create standard spectra (or “pure” spectra). Then for each pixel of 

the map, a linear combination of the different standard spectra is performed in order to fit each 

single spectrum. Results provide quantitative phase maps showing the distribution of minerals 

previously identified in the sample (e.g., based on XRD and/or Raman analyses). This approach is 

particularly useful to highlight relationships between minerals, especially for the characterization of 

finely-divided mineral assemblages, i.e. when the beam is larger than grain size (such as here, 

typically below 1 micron). Concentration maps (in wt.%) are finally recalculated on the basis of 

phase distribution maps considering the chemical composition of standards (Table 1) 

4. RESULTS 

1. Mineralogy and chemical compositions 
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a. Bulk mineralogical compositions 

Figure 3 shows the X-ray diffraction patterns obtained on separated fractions of serpentinite 

and magnesite. The serpentinite mainly consists of serpentine with minor amount of magnetite and 

chromite. Serpentine occurs as lizardite and chrysotile. The occurrence of chrysotile is consistent 

with the presence of fibrous serpentine in microcracks as described above. Despite a careful 

separation, small peaks of magnesite and silica are present in the diffraction pattern of the 

serpentinite, suggesting that both minerals also occur at the micrometer scale within the hosted 

rock. 

XRD pattern of magnesite powder shows that the carbonate exhibits its most characteristic 

reflections at the following d values (in Å, arranged according to decreasing intensities): 2.74, 2.10, 

1.70, 2.50, and 1.94 (Figure 3). In addition, the diffraction pattern shows that magnesite  

systematically integrates small amounts of sepiolite (Mg4Si6O15(OH)2•6(H2O)), a mineral that is 

frequently described in association with carbonate in ultramafic environments (e.g. Birsoy, 2002; 

Yaliçin and Bozkaya, 2004; Boschetti and Toscani, 2008). On the basis on this XRD pattern, 

magnesite is the only carbonate to crystallize. Neither dolomite nor calcite are formed, contrarily to 

numerous magnesite deposits previously described in the literature (Griffis, 1972; Dabitzias, 1980; 

Jedrysek and Halas, 1990; Fallick et al., 1991; Abu-Jaber and Kimberley, 1992b; Lugli et al., 2000; 

Zedef et al., 2000; Ghoneim et al., 2003; Jurković et al., 2012). 

b. Optical microscopy 

Figure 4 shows the typical mineralogical textures of carbonated serpentinites composing the 

sole of the New Caledonia ophiolite. In thin section, the serpentinite does not exhibit any relic of 

primary minerals (i.e. olivine and pyroxene). However, the habits of grains and original textures of 

primary minerals (e.g. cleavage planes of orthopyroxene) have been preserved (typical 

pseudomorphic “mesh” texture, Figure 4a, b) and indicate that the parent rock was a harzburgite. As 

highlighted by XRD analyzes, opaque minerals associated with the serpentine are small grains of 

magnetite and chromite disseminated in the mesh. In these rocks, magnesite occurs as finely 

disseminate grains (i.e. cryptocrystalline texture) that developed both at the rim and in cracks 

affecting serpentine grains (Figure 4b, d). These grains progressively aggregate to form larger zones 

with a typical granular texture (Figure 4a-c). The sepiolite, identified by XRD and optical 

microscopy, occurs as brown fibers interstitially to the magnesite nodules (Figure 4c). Silica also 

occurs close to magnesite. Microscopic observations show that the nature of the silica is variable: it 
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occurs as an amorphous solid (gel-like) surrounding magnesite aggregates and serpentine grains in 

area where magnesite dominates (Figure 4a, c, d). Where serpentine is dominant, silica consists of 

crystalline to fine grains, forming vugs with a typical colloform texture propagating in the 

serpentine mesh (Figure 4e, f). In this case, the nature of silica ranges from amorphous-like near the 

rim of the vug to quartz-like at the center (Figure 4c, e, f). 

c. Raman spectroscopy 

Raman analyses were performed to further identify minerals that compose the serpentinite. 

This technique is complementary to XRD, since it is particularly efficient to distinguish among the 

different varieties of serpentine (e.g. Lemaire, 2000; Auzende et al., 2004) as well as silica 

polymorphs (e.g. Götze et al., 1998; Pop et al., 2004). Figure 5 shows Raman spectra collected on 

carbonated serpentinites. Results show that lizardite is the dominant serpentine variety that occurs 

as individual grains and in the mesh, and corresponds to the bottle-green colored serpentine 

described in the macroscopic observations. Chrysotile (not shown in Figure 5) has also been 

detected, as already highlighted by XRD. In addition, light green serpentine was identified as 

polygonal serpentine. It shows quite similar patterns to those of the lizardite at low wavenumbers, 

but strongly differs at high wavenumbers (from 3500 to 3800 cm-1, corresponding to OH group), 

where the polygonal serpentine is characterized by a large peak composed by two bands centered at 

3689 and 3700 cm-1 (e.g. Lemaire, 2000; Auzende et al., 2004). 

The Raman spectrum of magnesite is characterized by four distinct bands located at 209, 327, 

737 and 1094 cm-1 (Figure 5), consistently with the work of Krishnamurti (1956). The lack of bands 

at 3448 and 3648 cm-1 (i.e., in the OH region; typical of hydromagnesite) shows that magnesite is 

anhydrous. 

Silica polymorphs are clearly identified using Raman spectroscopy. Vug rims consist of opal-

CT (Silica #1, Figure 4e) while brown coronas (Silica #2, Figure 4e) and white fine grains (Silica 

#3, Figure 4e) inside of the vugs are identified as chalcedony (Figure 5). Although significantly 

different in microscopic observations (Figure 4e, f), both chalcedonies display very similar Raman 

spectra, except on the intensity of the band located at 501 cm-1 which is significantly higher in the 

white chalcedony (electronic supplements, Figure S1). Notice that in all silica polymorphs, the large 

bands observed between 3100 and 3900 cm-1 indicate the presence of molecular water. 

d. XRF mapping 
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The elemental distribution, expressed in weight percent, in a typical serpentinite texture 

surrounded by magnesite is shown in Figure 6. On the basis of chemical measurements, it was not 

possible to discriminate lizardite from polygonal serpentine, both having very similar compositions. 

Therefore, we only refer to serpentine in the followings, focusing on the nature of processes that 

preferentially affect the serpentine grains or the mesh. The distribution maps of MgO and SiO2 

highlight serpentine grains (s) as well as mesh texture (m). The chemical composition of these 

grains is consistent with the stoichiometry of serpentine minerals, with about 43 wt.% for both MgO

+Fe2O3 and SiO2. However, SiO2 concentration in the mesh is significantly higher, and can reach up 

to 65 wt.%. To better understand such differences in chemical compositions, we calculated the 

phase distribution maps according to the minerals that are expected to be present in this sample 

(Figure 7 and electronic supplements, Figure S4). Phase distribution reveals that the central zone of 

the mapped area mainly consists of serpentine minerals. The amount of serpentine is at least 50 % 

in the mesh and close to 100 % in grains. Silica distribution is relatively homogeneous in the mesh, 

with about 30 % silica, but shows peculiarities close to the magnesite, where the silica content 

reaches about 100 %. In contrast, the amount of silica in serpentine grains is well below 5 %. 

Finally, the calculation of phase distribution maps was obtained with about 20 % of magnesite in 

the serpentinite texture (i.e. the central area). 

Figure 8 shows density correlation diagrams between serpentine, magnesite and silica based 

on the phase distribution maps for the two regions delimited by squares in Figure 7. These diagrams  

statistically illustrate the description made above on the phase maps and reveal two distinct 

processes. In the region 1, the diagrams show a clear anticorrelation between silica and serpentine, 

corroborating that a great part of the pixels of this region corresponds to "silicified serpentine". At 

the opposite, the relationships between magnesite and serpentine on one hand and those between 

silica and magnesite on the other hand are less straightforward. To better understand these two 

diagrams, the region 2 (dashed square in Figure 7) was delimited around a heterogeneous serpentine 

grain that appears partially altered (Figure 9). This alteration occurs around fractures in the grain 

and is expressed by a lighter color of the serpentine in microscopic view. Considering this grain, a 

statistical analysis shows that silica and magnesite are correlated to each other, whereas they are 

both anticorrelated to serpentine (Figure 8, region 2). This point is particularly interesting since the 

phase maps clearly highlight here a process of replacement of serpentine by an assemblage of 

magnesite and silica. Even if silica and serpentine are anticorrelated in both regions, carbonation 

and silicification processes do not follow rigorously the same trend. On the basis of our specific 

treatment of the XRF maps, we demonstrate here that the serpentinite is affected by two distinct 
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weathering processes: while the mesh texture is mainly affected by a silicification process, the 

serpentine grains are mainly affected by the crystallization of a magnesite + amorphous silica 

assemblage. 

5. DISCUSSION 

Serpentinite carbonation in New Caledonia has a supergene origin, following a per descensum 

model (Glasser, 1904; Trescases, 1973; Ulrich, 2010; Quesnel et al., 2013). The atmospheric carbon 

dioxide is first dissolved in meteoric water. The CO2-enriched fluids then circulate through the 

lateritic cover, dissolve the residual Mg-rich minerals before driving to the precipitation of 

magnesite in fractures and to a porosity reduction in the serpentinite, within the serpentinite sole. 

This carbonation process leads to the formation of clusters of magnesite, potentially very large, and 

usually very localized to the serpentine rich fractures or volumes. Although this process is most 

easily observed in the field, our results show that the serpentine dissolution leads to the local 

crystallization of magnesite and silica. This diffuse process is potentially the main mechanism of 

carbonation of the serpentinite sole. 

1. Carbonation after serpentine dissolution 

On the basis of our results of our mineralogical investigations, several features provide 

evidence that magnesite precipitation occurs through serpentine dissolution. First, the development 

of magnesite along the edges of adjacent serpentine grains is a characteristic of carbonation by in 

situ replacement of the serpentine (Figures 4b, 4d and 9). When serpentine grains are preserved, 

carbonation is limited to the rims, the core remaining unaffected. At the opposite, the dissolution 

and replacement of the serpentine are more efficient in case of fractured grains (Figure 9). This 

observation is consistent with experimental studies showing that intense grain fracturing is required 

to ensure complete carbonation (e.g. Haug et al., 2011; Kelemen et al., 2011; Hövelmann et al., 

2012; van Noort et al., 2013). Another way to illustrate the progressive serpentine carbonation is 

given by Figure S2 (in electronic supplements). Here, the RGB map (for Red, Green, Blue, see the 

figure caption for more details) shows that magnesite is ubiquitous, formed by the replacement of 

the serpentine grains, and that only a few of the latter are preserved from the carbonation process. In 

addition, considering the stoichiometry and the molar volumes of the mineral species involved in 

reaction (4), volumes of magnesite and silica produced by the dissolution of 1 mole of serpentine 
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(108 cm3) are respectively 85 cm3 and 58 cm3 (VMgs/VSilica ~1.45), leading to a volume increase of 

about 30 %. Statistics calculated on the serpentine grain presented in Figure 9 (corresponding to the 

region 2, Figure 7) show that the assemblage consists of about 62 vol.% of serpentine, 21 vol.% of 

magnesite and 15 vol.% of silica (VMgs/VSilica ~1.4; Figure 8). This assemblage compares well with 

the result of dissolution of 38 vol.% of serpentine, which leads to the formation of ~22 vol.% of 

magnesite and ~15 vol.% of silica. These estimates testify that results given in the phase maps are 

in good agreement with the stoichiometry of reaction (4). Second, carbonation by serpentine 

dissolution is also evidenced by the precipitation of an amorphous silica layer at the grain rims 

(Figure 4d). This observation is consistent with the previous studies that systematically reported the 

formation of a Si-rich layer after Mg-bearing mineral breakdown (e.g. Luce et al., 1972; Lin and 

Clemency, 1981; Guthrie et al., 2001; Schulze et al., 2004; Giammar et al., 2005; Bearat et al., 

2006; Sipilä et al., 2008; Andreani et al., 2009; Daval et al., 2011; King et al., 2011, Hövelmann et 

al., 2011; 2012). Third, sepiolite, which is described in our samples in association with magnesite 

(Figures 3 and 4c), also formed subsequently to the dissolution of serpentine (e.g. Jones and Galàn, 

1988; Birsoy, 2002; Yaliçin and Bozkaya, 2004; Andreani et al., 2009). Similar occurrences of 

sepiolite have been reported during natural (Yaliçin and Bozkaya, 2004) and experimental 

(Andreani et al., 2009) carbonation of Mg-bearing minerals (serpentine and olivine). Actually, 

sepiolite may form in different ways: 

2Mg3Si2O5(OH)4 + 2(2H+ + CO3
2-) + 2H4SiO4 → 2MgCO3 + Mg4Si6O15(OH)2.6H2O + 3H2O (5) 

Serpentine + CO2(aq) + Silica(aq) → Magnesite + Sepiolite + Water 

3Mg3Si2O5(OH)4 + 5(2H+ + CO3
2-) → 5MgCO3 + Mg4Si6O15(OH)2.6H2O + 4H2O (6) 

Serpentine + CO2(aq) → Magnesite + Sepiolite + Water 

Mg3Si2O5(OH)4 + 2.5(2H+ + CO3
2-) → 2.5MgCO3 + 0.125Mg4Si6O15(OH)2.6H2O + 1.25H4SiO4 + 1.125H2O (7) 

Serpentine + CO2(aq) → Magnesite + Sepiolite + Silica(aq) + Water 

All these reactions contribute to form magnesite, but they differ as reactions (5) and (6) conserve all 

Mg and Si in solids and are characterized by a volume gain (~60% and ~30%, respectively) while 

reaction (7) is balanced on volume. In addition, Eq. (5) consumes silica while Eq. (7) produces it. 

Only on the basis of cm-scale maps, it is difficult to estimate which reaction occured: in our sample, 

sepiolite represents less than 1 vol.% (see electronic supplements, Figure S4). Among the reactions 
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written above, Eq. (7) is the one that produces the smallest amount of sepiolite, regarding the 

amount of magnesite that stoichiometrically precipitates. In contrast, Birsoy (2002) demonstrated 

that sepiolite formation is much more favored in the presence of Si-rich solution. In that case, 

sepiolite in our sample may derive from Eq. (5). 

The fact that some serpentine grains are only partially transformed into magnesite indicates 

that the carbonation process was not completed. The reason why the reaction does not go to 

completion may be due to (1) silica precipitation, (2) pH increase and/or (3) porosity decrease. 

Numerous studies proposed that the formation of a Si-rich layer at the rims of serpentine grain 

during the first steps of dissolution might inhibit further Mg diffusion, potentially retarding or even 

stopping the process of carbonation (Gerdemann et al., 2003; Schulze et al., 2004; Alexander et al., 

2007; Daval et al., 2011). Although Si-rich layer effectively reduces the accessibility of fluids to the 

reactive surface of minerals, recent investigations demonstrate that some permeability is maintained 

as carbonation remains active even after its development (Béarat et al., 2006; Andreani et al., 2009; 

Hövelmann et al., 2012). Thus, it is not obvious that precipitation of Si-rich layer led the serpentine 

carbonation to stop. Alternatively, following reaction (4), the dissolution of serpentine consumes 2 

moles of H+ for 1 mole of CO3
2-, leading to a progressive increase of fluid pH. According to Barnes 

et al. (1978), fluids reacting with serpentinite in New Caledonia have pH ranging from 9 to 11. At 

pH 9, HCO3
- dominates over CO3

2-, making the serpentine dissolution possible following reactions 

(1) and (2). At pH 10.5, CO3
2- species become dominant and at pH 10.8, HCO3

- represent less than 

20% of the carbonate species in the fluid. In these conditions, magnesite precipitation is favored, 

but serpentine dissolution is scarce due to the lack of H+ ions (e.g. Teir et al., 2007). Thus, intensive 

exchange between H+ ions and Mg2+ cations on the serpentine surface leads to a progressive 

increase of pH that may inhibit further serpentine dissolution and subsequent carbonation. There is 

no evidence to argue against such process in New Caledonia, but it requires that atmospheric CO2 is 

not freely available and thus a roughly closed system (Jurković et al., 2012). A third explanation 

may account for the inhibition of carbonation. Hövelmann et al. (2012) recently investigated the 

microstructure and porosity evolution as a function of carbonation reaction progress in natural 

peridotite. On the basis of their experimental results, they reported that a carbonation extend of ~10 

% leads to a closure of 50 % of the initial porosity. They demonstrated that magnesite precipitation 

in fracture pore space reduces the permeability and progressively stops the fluid pathway, 

preventing further reaction between the fluid and the silicate surface and ultimately ends the 

carbonation process. Contrarily to serpentinization, which is able to propagate through a reaction-
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induced fracturing mechanism (e.g. Plümper et al., 2012), carbonation is self-limited as the reaction 

will be inhibited due to magnesite growing that ultimately clogs the system. This implies that no 

volume gain occurs at the rock-scale (Beinlich et al., 2012). Numerous studies highlight the 

necessity of active fracturing to ensure complete carbonation (e.g., Kelemen and Matter, 2008; 

Kelemen et al., 2011; Boschi et al., 2012). In our samples, no evidence of carbonation-induced 

fracturing has been observed so far, even if Quesnel et al. (2013) show the syn-kinematic character 

of magnesite veins at the outcrop scale. At the millimetric scale, volume gain associated with 

reaction (4) may have inhibited the complete carbonation of serpentinite by clogging the reacting 

zone. Such a process may prevent the infiltration of additional fluids, resulting in the partial 

carbonation of serpentine grains as illustrated by Figure 7 (see also electronic supplements, Figure 

S2). 

2. Redox conditions during magnesite precipitation 

The behavior of iron during carbonation has been poorly investigated. Such information 

would be indicative of redox conditions during magnesite precipitation. In serpentinite, iron is 

mainly hosted by iron oxides (magnetite, Fe3O4) surrounding serpentine grains or disseminated in 

the mesh texture (see electronic supplement, Figure S5). Iron content in serpentine is ~2 wt.% 

(expressed as FeO, Table 1). It substitutes Mg2+ cations in octahedral sites (O'Hanley, 1996). During 

serpentine dissolution, iron is released from the mineral structure and may subsequently form Fe-Si-

rich layer that progressively evolves into magnetite at the interface between serpentine and aqueous 

fluid (Fallick et al., 1991; Alexander et al., 2007; Andreani et al., 2009, Saldi et al., 2013). 

Alternatively, it may precipitate as siderite (FeCO3) under rather high pCO2 and specific pH range 

from 5.5 to 7.5 (Ohmoto et al., 2004) or be integrated in magnesite by substituting Mg2+ cations 

(Abu-Jaber and Kimberley, 1992b; Hansen et al., 2005). In each of these minerals, iron oxidation is 

expected to differ according to oxidizing conditions: it is mostly oxidized in magnetite (i.e. 2/3 of 

iron is ferric iron) while it is in ferrous state in siderite or magnesite. In our sample, XRF analyzes 

show that the iron content in magnesite is very low (Table 1), suggesting that its integration into the 

structure of the magnesite was very scarce. In addition, we never identified siderite in our samples 

so far. As stated above, siderite precipitates at pH conditions that are significantly lower than those 

of New Caledonia waters, so it is likely that pH was too high to make siderite precipitate. Magnetite 

is ubiquitous in our sample. Therefore, discriminating magnetite grains related to prior 

serpentinization events to those potentially derived from carbonation is not obvious. However, 
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microscopic observations show that numerous magnetite grains have precipitated inside of partially 

carbonated serpentine grains (Figures 4d and 9) while magnetite related to serpentinization 

generally forms outside of serpentine grains. Schematic representation in Figure 9 highlights the 

systematic association of magnetite with cracks in the serpentine grain. According to Andreani et al. 

(2009), such grain fracturing may be considered as zones of localized fluid flow that favor the 

precipitation of magnetite during the first step of mineral dissolution. In contrast, their experiments 

show that carbonation initiates in domains of reduced fluid flow zones (fractures of a smaller size) 

where chemical gradient are small and thus facilitate local supersaturation, high pH and more 

reducing conditions. These results indicate that magnetite associated with the carbonation process 

may be used as a proxy to estimate the fluid flow rate at the serpentine grain scale: Fractures filled 

by magnetite correspond to high fluid flow zones characterized by more oxidizing conditions. In 

these regions, dissolution occurs but not magnesite precipitation (Andréani et al., 2009). 

Magnesium migrates to zones of reduced fluid flow, corresponding to regions dominated by 

magnesite or partially carbonated serpentine (Figures 9. 10). In these areas magnesite precipitates 

due to local supersaturation under more reducing conditions. This underlies that redox gradients 

occur even at grain scale.  

3. Serpentine mesh silicification 

a. Silica mobilization and precipitation 

Intense silicification of the serpentine mesh was revealed during this study based on XRF 

measurements and Raman spectroscopy (Figures 6-8, electronic supplements, Figures S2 and S3). 

For instance, the region 1 (Figure 7) is composed of 62 vol.% of serpentine, 24 vol.% of silica and 7 

vol.% of magnesite in average. The precipitation of 7 vol.% of magnesite consumes 12 vol.% of 

serpentine and forms 5 vol.% of silica, on the basis of reaction (4). Such excess of silica necessarily 

involves a contribution of silica from outside of the region 1. Phase maps show that pure silica 

mainly occurs in gaps between magnesite aggregates (left-side of the map, Figure 7 and electronic 

supplements, Figure S2). However, when aggregates agglomerate subsequently to magnesite 

growth (right-side of the map, Figure 7 and electronic supplements, Figure S2), silica is expelled 

from the magnesite. Numerous experimental studies indicate the progressive migration of silica 

rather than being rejected from the growing magnesite (Schulze et al., 2004; Hövelmann et al., 

2011; 2012). As stated above, the first steps of serpentine dissolution release silica that immediately 

precipitates as a Si-rich layer. As carbonation reaction proceeds, the released silicon may feed the 
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growth of the Si-rich layer, but Hövelmann et al. (2012) reported that such inward growth is 

limited. This limitation is mainly associated with pH increase of fluid during the carbonation 

process. At pH>9, magnesite precipitates while silica is solubilized and is therefore able to migrate 

away from the solid-fluid interface. Occurrence of water within silica is demonstrated by the Raman 

spectrum measured in the region of high frequencies (Figure 5), which exhibits a typical spectrum 

of molecular water. As illustrated by XRF mapping, fluids enriched in silica subsequently to 

serpentine dissolution, propagates in the serpentine meshwork. Similar observations have been 

reported in serpentinites from the Oman and the Ligurian ophiolites (Stanger, 1985; Boschi et al., 

2009; Lacinska and Styles, 2012). According to Lacinska and Styles (2012), the well-preserved 

mesh texture (as observed in our samples) induces a combination of iso-volumetric processes of 

slow rate dissolution of the mesh serpentine and immediate local precipitation of silica. They also 

argue that precipitation of silica is favored at near-neutral pH conditions. Such conditions differ 

from those we assume in our system (high alkali pH). However, Williams and Crerar (1985) 

attributed the precipitation of amorphous silica phases in nature due to the formation of dense 

colloids in supersaturate alkaline aqueous solutions. In addition, progressive dissolution of silica 

causes pH of the solution to drop (Williams and Crerar, 1985; Williams et al., 1985). Following 

these observations, we infer that such process may favor the dissolution of the serpentine mesh and 

the subsequent grain-by-grain replacement by amorphous silica phases, as postulated by Lacinska 

and Styles (2012). Such a process involves the removal of substantial amount of magnesium. As 

shown above, serpentine grain carbonation occurs stoichiometrically, i.e. magnesium released after 

serpentine grain dissolution, then immediately precipitates as magnesite. Thus, it is likely that the 

magnesium released during serpentine mesh silicification migrates out of the reaction zone. This 

assumption is consistent with the study of Boschi et al. (2009) that reported similar magnesium 

mobilization after serpentine dissolution and silica precipitation. 

b. Silica evolution 

Raman spectroscopy shows that silica formed in response to serpentine carbonation 

crystallizes as opal-CT and chalcedony (Figure 5). Such silica polymorphs are commonly described 

in association with magnesite and are consistent with formation at low temperature conditions 

(Boydell, 1921; Bodenlos, 1950; Dabitzias, 1980; Pohl, 1990; Abu-Jaber and Kimberley, 1992b; 

Klein and Garrido, 2011). According to Lacinska and Styles (2012), the formation of opal-CT 

indicates precipitation from supersaturated fluids. Williams et al. (1985) and Williams and Crerar 

(1985) show that the precipitation of silica polymorphs is driven by multiple steps of dissolution-
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precipitation. Systematically, studies made on the silica diagenesis report that saturated silica 

solutions do not form opal-CT directly, but follow a sequential crystallization with first the 

precipitation of amorphous opal-A (Graetsch et al., 1985; Williams et al., 1985; Williams and 

Crerar, 1985; Heaney, 1993; Lacinska and Styles, 2012). Opal-A then evolves by means of 

dissolution–precipitation with concurrent ordering of the structure and removal of water, forming a 

pathway as follow: opal-A (amorphous) ⟶ opal-CT (cristobalite-tridymite assemblage)⟶ 

chalcedony ⟶ quartz. According to Williams et al. (1985), the relationship between solubility and 

surface area or particle size is sufficient to explain such evolution. In our samples, only opal-CT and 

chalcedony have been identified so far. One possible explanation to account for the absence of opal-

A is the complete replacement by opal-CT. The association with magnesite supports this hypothesis, 

since carbonates are thought to enhance the formation of opal-CT (Williams and Crerar, 1985). 

Quartz has never been described associated with serpentinite in New Caledonia, so it is likely that 

the transition chalcedony to quartz does not occur. This reaction is very slow and is more likely to 

occur in a closed system, from the precipitation of fluids undersaturated in silica with respect to 

opal-A, opal-CT or chalcedony (Lund, 1960 and references therein; Williams et al., 1985; Williams 

and Crerar, 1985). In our samples, vugs containing chalcedony are systematically characterized by 

the presence of a hole on its center (Figure 4). Similar observations were reported by Lund (1960) 

from silicified corals where both chalcedony and quartz precipitated. This author concluded that the 

hole served as a conduit for the continuous circulation of dissolved silica, resulting in the 

precipitation of chalcedony. At the opposite, when no hole was observed, chalcedony was 

completely replaced by quartz. 

As an example, the concurrent reordering that occurs during the diagenetic pathway of silica 

is illustrated by the behavior of chalcedony (Figures 4 and electronic supplement, Figure S1). 

Chalcedony, as many of the microcrystalline SiO2 varieties, consists of an intimately intergrowth of 

α-quartz and moganite. Moganite is a silica polymorph that typically contains up to 3 wt.% of water 

which is not a constituent of the structure. Using Raman spectroscopy, Pop et al. (2004) showed 

that during the opal-CT to chalcedony transition, moganite starts growing after α-quartz and 

preferentially in the most crystallized areas. It can be used as a proxy to evaluate the ordering of the 

chalcedony during its transition from opal CT to quartz (Götze et al., 1998; Rodgers and Cressey, 

2001; Pop et al., 2004). In Figure 4c, both silica #2 and silica #3 have been identified as chalcedony 

but differ in microscopic observation by their colors. In Raman spectroscopy, silica #2 and silica #3 

almost display the same patterns, except the intensity of the band at 501 cm-1 (moganite) that is 

higher in the white chalcedony (electronic supplement, Figure S1). The moganite content (in wt.%) 
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of chalcedony can be calculated using the Raman band integral ratios I(501)/I(465) (i.e. moganite/

quartz) and applying the calibration curve proposed by Götze et al. (1998). We find that both 

chalcedonies are dominated by moganite, which represents 77 wt.% in brown chalcedony (silica #2, 

Figure 4c) and 81 wt.% in white chalcedony. The enrichment of moganite traduces the progressive 

ordering of chalcedony which ultimately transforms in quartz given sufficient time (Williams and 

Crerar, 1985; Heaney and Post, 1992; Rodgers and Cressey, 2001; Lynne et al., 2007). 

4. Coupled carbonation-silicification in dissolution-precipitation processes: a summary 

Based on our results and those from previous experimental studies, we infer that serpentine 

carbonation occurred due to the circulation of high pH meteoric waters dissolving the serpentine. 

Serpentine dissolution started at grain boundaries and in large grain fractures that correspond to 

regions where the fluid flow is the highest (Figure 10a). In these regions, intensive exchanges 

between H+ and Mg2+ ions led to the development of a Si-rich layer and the precipitation of 

magnetite at the mineral/water interface (Figure 10b). In contrast, magnesite precipitation was not 

favored in these zones of high fluid flow, which are characterized by strong chemical gradients and 

local oxidizing conditions (Andreani et al., 2009). Released magnesium therefore migrated to 

regions of reduced fluid flow, where magnesite nucleated at the expense of serpentine surfaces by a 

process of dissolution-precipitation due to local supersaturation and more reducing conditions 

(Figure 10b-c). Here, the growth of magnesite was mainly fed by magnesium coming from the 

dissolution of adjacent serpentine grain. Potentially, distal contributions may have occurred (i.e. 

coming from the laterization, Barnes et al., 1978), since magnesite incorporate calcium while this 

element is not concentrated in serpentine (Table 1). Silica released during the carbonation process 

may first have precipitated in situ as amorphous silica (opal A/CT), but progressive pH increase 

during the reaction facilitates the silicon solubilization and subsequent migration away from the 

fluid-solid interface (Figure 13c; Schulze et al., 2004; Andreani et al., 2009; Hövelmann et al., 

2011; 2012). Silica was then able to propagate in the serpentine mesh, silicifying the latter by 

precipitating first as an amorphous gel that progressively orders its crystalline structure to 

ultimately evolve as quartz if given sufficient time (Figure 10c; Williams and Crerar, 1985; Heaney 

and Post, 1992; Rodgers and Cressey, 2001; Lynne et al., 2007). Magnesium leached during the 

serpentine mesh carbonation migrated out from its original reacting zone and potentially fed larger 

magnesite deposits in syn-tectonic fractures, as previously proposed by Boschi et al. (2009) in the 

Ligurian ophiolite. Carbonation process ended when the overall serpentine was converted into an 
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assemblage of magnesite + silica or, alternatively, when magnesite precipitation induced closure of 

the initial porosity (Figure 10d, Hövelmann et al., 2012).  

In agreement with recent studies from Andreani et al. (2009), Boschi et al. (2009), or 

Hövelmann et al. (2011; 2012), our study demonstrates the importance of active fracturing in the 

idea of in situ CO2 sequestration. Although the volume extend expected during serpentine 

carbonation may lead to the system clogging, serpentine mesh silicification involves substantial 

removal of magnesium. This magnesium may migrate out of the reaction zone and subsequently 

precipitates as massive magnesite veins along the main structural discontinuities such as those 

described in New Caledonia by Quesnel et al. (2013). As previously underlined by Boschi et al. 

(2009), such a process may be considered as an alternative, efficient way for CO2 sequestration. 
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Figure captions 

Figure 1: Localization of the main ophiolitic occurrences composing the Peridotite Nappe. 

Simplified geological map of the Koniambo massif is modified from Maurizot et al. (2002). 

Figure 2: a, b, c) Snow-white colored magnesite veins crystallized in massive serpentinite 

blocs, Koniambo massif. Magnesite show a typical cauliflower texture and is closely associated 

with silica veins (in brown). d) Typical sample of carbonated serpentinite. Orange dashed line 

square localizes the mapped area by µ-XRF presented in Figures 6 to 8 and in Figures S2 and S3. 

Figure 3: Typical XRD patterns of serpentinite and magnesite. Liz: Lizardite; Chr: Chromite; 

Opl: Opal; Mgs: Magnesite; Mgt: Magnetite; Ctl: Chrysotile. Numbers upon the magnesite peaks 

correspond to d values, given in Å. 

Figure 4: a) Microphotography under polarized light illustrating the development of 

magnesite and silica in serpentinite. b) Microphotography under crossed-polarized light showing 

the development of magnesite along the rims of serpentine grains (indicated by the red arrows). 

Notice that the serpentinization also affects the orthopyroxene c) Magnesite grain aggregates 

surrounded by colloform amorphous silica gel. Associated brown and fibrous mineral corresponds 

to sepiolite (observation under polarized light). d) Nucleation of magnesite grain on serpentine 

surface surrounded by colloform amorphous silica gel. Black dots inside of the serpentine grain 

correspond to magnetite (observation under crossed-polarized light). e) Microtextures of a silica 

vein under polarized light (mesh: serpentine mesh; #1: opal-CT, #2 and #3: Chalcedony; 

identifications made by raman spectroscopy, see Figure 5). e) Same as e) under crossed-polarized 

light. Mineral abbreviations: Mgs: magnesite; Mgt: Magnetite; Opx: Orthopyroxene; Sep: sepiolite; 

Srp: serpentine 

Figure 5: Typical Raman spectra observed for serpentine (lizardite and polygonal), 

chalcedony, opal-CT and magnesite composing the serpentinite sole of the New Caledonia 

ophiolite. 
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Figure 6: Quantitative chemical maps of MgO, SiO2 and Fe2O3 (in wt.%) calculated on the 

basis of µ-XRF measurements (EDAX Eagle III). Complete procedure for the map calculation is 

detailed in the text. 

Figure 7: Spatial repartition and quantification of mineral phases (in %) calculated on each 

pixel of the mapped area (Figure 2d), based on µ-XRF measurements (EDAX Eagle III). Square-

delimited regions correspond to areas used to construct correlation diagrams in Figure 8.  

Figure 8: Correlation diagrams (represented as density fields) between serpentine, magnesite 

and silica based on the phase distribution maps for the two square-delimited regions in Figure 8. n 

corresponds to the total number of pixels composing each region. Colorbar values correspond to the 

number of pixels in one grid cell of a size of 5% by 5%. 

Figure 9: Microphotography under polarized light and schematic representation of the 

partially carbonated serpentine grain (corresponding to the Region 2 in Figure 7). 

Figure 10: Schematic sketch of coupled carbonation-silicification in dissolution-precipitation 

processes. a) High pH meteoric waters (yellow arrows) percolating in serpentinite porosity start to 

dissolve the serpentine. b) In zones of high fluid flow (see the text for more details), dissolution of 

the serpentine surface releases Mg2+ cations (white arrows) that migrate to zones of reduced fluid 

flow, leaving behind a Si-rich layer. Iron released during this dissolution step immediately 

precipitates as magnetite due to local oxidizing conditions favored by the constant renewal of water 

that characterizes zones of high fluid flow (Andreani et al., 2009). c) Magnesite precipitates at the 

expense of serpentine surface in zones of reduced fluid flow due to local supersaturation and more 

reducing conditions. Released silica may precipitate as amorphous silica interstitially to magnesite 

aggregates, but increasing pH as the carbonation proceeds leads to its solubilization and subsequent 

migration in the serpentine mesh (orange dashed arrows). d) Silica, in aqueous form, propagates in 

the serpentine mesh and finally precipitates in amorphous opal A subsequently evolving to opal CT, 

chalcedony and ultimately quartz. Complete serpentine replacement in a magnesite+silica 

assemblage may occur. Alternatively, the growing of magnesite may lead to the closure of initial 

porosity, preventing additional fluid circulations and thus ending the carbonation process before 

going to completion (Hövelmann et al., 2012). 
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Table 

Table 1: In situ concentration measurements by µ-XRF for serpentine, magnesite, silica, 

sepiolite, magnetite and chromite used for the calculation of quantitative maps shown in Figure 6 

(see also electronic supplements, Figure S6). 

Supplementary figure captions 

Figure S1: Raman spectra of brown chalcedony (Silica #2, Figure 4) and white chalcedony 

(Silica #3, Figure 4). Both only differ by the intensity of the moganite band (501) which is 

significantly higher in the white chalcedony. 

Figure S2: RGB (for Red-Green-Blue) map calculated by the superposition of the three phase 

maps shown in Figure 7. One color is attributed to each phase (Red: Magnesite; Green: Serpentine; 

Blue: Silica), in order to highlight the relationship between mineral phases. Pixels characterized by 

a mix of green and blue show the progressive silicification of the serpentine mesh. Greenish to 

brownish pixels (mix of red and green) correspond to partially carbonated serpentine grains. 

Figure S3: Progressive silicification of the serpentine mesh illustrated by Raman 

spectroscopy. 

Elements Serpentine Magnesite Silica Magnetite Sepiolite Chromite

MgO 40.25 46.84 - - 24.72 12.34

Al2O3 0.41 - - - 0.46 23.22

SiO2 43.60 0.39 100.00 - 62.66 0.08

K2O - - - - 0.01 0.01

CaO - 0.54 - - 0.2 0.07

TiO2 0.01 - - - 0.02 -

Cr2O3 0.02 - - - 0.02 48.20

MnO 0.03 - - - 0.67 0.20

FeO 2.51 0.02 - 100.00 0.55 15.82

NiO 0.17 - - - 0.11 0.06

CO2 - 52.21 - - - -

H2O 13.00 - - - 10.58 -

Total 100.00 100.00 100.00 100.00 100.00 100.00
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Figure S4: µ-XRF maps of elemental concentrations based on ROI (region of interest) 

measurement at element K-edge. These maps correspond to raw data used for the calculation of 

mineral phase maps (in %) shown in Figure 6 and Figure S5, and quantitative maps shown in Figure 

6 and Figure S6. 

Figure S5: Maps of mineral phases calculated calculated on the basis of µ-XRF 

measurements (EDAX Eagle III). The «Total» map corresponds to the sum of phase maps and is 

used to verify the consistency of the calculation (each pixel of the map have to be close to 100 %).  

Figure S6: Quantitative maps (in wt.%) calculated on the basis of µ-XRF measurements 

(EDAX Eagle III). The «Total» map corresponds to the sum of quantitative maps. Map of H2O

+CO2, elements that cannot be measured by µ-XRF, is calculated by subtracting the Total map to 

100.
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