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Abstract

We propose a differentiable sphere tracing algorithm to

bridge the gap between inverse graphics methods and the

recently proposed deep learning based implicit signed dis-

tance function. Due to the nature of the implicit function,

the rendering process requires tremendous function queries,

which is particularly problematic when the function is rep-

resented as a neural network. We optimize both the forward

and backward passes of our rendering layer to make it run

efficiently with affordable memory consumption on a com-

modity graphics card. Our rendering method is fully differ-

entiable such that losses can be directly computed on the

rendered 2D observations, and the gradients can be propa-

gated backwards to optimize the 3D geometry. We show that

our rendering method can effectively reconstruct accurate

3D shapes from various inputs, such as sparse depth and

multi-view images, through inverse optimization. With the

geometry based reasoning, our 3D shape prediction meth-

ods show excellent generalization capability and robustness

against various noises.

1. Introduction

Solving vision problem as an inverse graphics process is

one of the most fundamental approaches, where the solution

is the visual structure that best explains the given observa-

tions. In the realm of 3D geometry understanding, this ap-

proach has been used since the very early age [1, 35, 54]. As

a critical component to the inverse graphics based 3D geo-

metric reasoning process, an efficient renderer is required

to accurately simulate the observations, e.g., depth maps,

from an optimizable 3D structure, and also be differentiable

to back-propagate the error from the partial observation.

As a natural fit to the deep learning framework, differ-

entiable rendering techniques have drawn great interests re-
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Figure 1. Illustration of our proposed differentiable renderer for

continuous signed distance function. Our method enables geomet-

ric reasoning with strong generalization capability. With a ran-

dom shape code z0 initialized in the learned shape space, we can

acquire high-quality 3D shape prediction by performing iterative

optimization with various 2D supervisions.

cently. Various solutions for different 3D representations,

e.g., voxels, point clouds, meshes, have been proposed.

However, these 3D representations are all discretized up to

a certain resolution, leading to the loss of geometric details

and breaking the differentiable properties [23]. Recently,

the continuous implicit function has been used to represent

the signed distance field [34], which has premium capac-

ity to encode accurate geometry when combined with the

deep learning techniques. Given a latent code as the shape

representation, the function can produce a signed distance

value for any arbitrary point, and thus enable unlimited res-

olution and better preserved geometric details for render-

ing purpose. However, a differentiable rendering solution

for learning-based continuous signed distance function does

not exist yet.

In this paper, we propose a differentiable renderer for

continuous implicit signed distance functions (SDF) to fa-

cilitate the 3D shape understanding via geometric reason-

ing in a deep learning framework (Fig. 1). Our method

can render an implicit SDF represented by a neural network

from a latent code into various 2D observations, e.g., depth

images, surface normals, silhouettes, and other properties

encoded, from arbitrary camera viewpoints. The render-

ing process is fully differentiable, such that loss functions
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can be conveniently defined on the rendered images and the

observations, and the gradients can be propagated back to

the shape generator. As major applications, our differen-

tiable renderer can be applied to infer the 3D shape from

various inputs, e.g., multi-view images and single depth

image, through an inverse graphics process. Specifically,

given a pre-trained generative model, e.g., DeepSDF [34],

we search within the latent code space for the 3D shape

that produces the rendered images mostly consistent with

the observation. Extensive experiments show that our geo-

metric reasoning based approach exhibits significantly bet-

ter generalization capability than previous purely learning

based approaches, and consistently produce accurate 3D

shapes across datasets without finetuning.

Nevertheless, it is challenging to make differentiable ren-

dering work on a learning-based implicit SDF with compu-

tationally affordable resources. The main obstacle is that an

implicit function provides neither the exact location nor any

bound of the surface geometry as in other representations

like meshes, voxels, and point clouds.

Inspired by traditional ray-tracing based approaches, we

adopt the sphere tracing algorithm [13], which marches

along each pixel’s ray direction with the queried signed dis-

tance until the ray hits the surface, i.e., the signed distance

equals to zero (Fig. 2). However, this is not feasible in the

neural network based scenario where each query on the ray

would require a forward pass and recursive computational

graph for back-propagation, which is prohibitive in terms

of computation and memory.

To make it work efficiently on a commodity level GPU,

we optimize the full life-time of the rendering process for

both forward and backward propagations. In the forward

pass, i.e., the rendering process, we adopt a coarse-to-fine

approach to save computation at initial steps, an aggressive

strategy to speed up the ray marching, and a safe conver-

gence criteria to prevent unnecessary queries and maintain

resolution. In the backward propagation, we propose a gra-

dient approximation which empirically has negligible im-

pact on the training performance but dramatically reduces

the computation and memory consumption. By making the

rendering tractable, we show how producing 2D observa-

tions with the sphere tracing and interacting with camera

extrinsics can be done in differentiable ways.

To sum up, our major contribution is to enable ef-

ficient differentiable rendering on the implicit signed

distance function represented as a neural network. It

enables accurate 3D shape prediction via geometric rea-

soning in deep learning frameworks and exhibits promis-

ing generalization capability. The differentiable ren-

derer could also potentially benefit various vision prob-

lems thanks to the marriage of implicit SDF and inverse

graphics techniques. The code and data are available at

https://github.com/B1ueber2y/DIST-Renderer.

2. Related Work

3D Representation for Shape Learning. The study of 3D

representations for shape learning is one of the main fo-

cuses in 3D deep learning community. Early work quan-

tizes shapes into 3D voxels, where each voxel contains ei-

ther a binary occupancy status (occupied / not occupied)

[52, 6, 46, 39, 12] or a signed distance value [55, 9, 45].

While voxels are the most straightforward extension from

the 2D image domain into the 3D geometry domain for neu-

ral network operations, they normally require huge memory

overhead and result in relatively low resolutions. Meshes

are also proposed as a more memory efficient representation

for 3D shape learning [47, 11, 22, 20], but the topology of

meshes is normally fixed and simple. Many deep learning

methods also utilize point clouds as the 3D representation

[37, 38]; however, the point-based representation lacks the

topology information and thus makes it non-trivial to gen-

erate 3D meshes. Very recently, the implicit functions, e.g.,

continuous SDF and occupancy function, are exploited as

3D representations and show much promising performance

in terms of the high-frequency detail modeling and the high

resolution [34, 29, 30, 4]. Similar idea has also been used to

encode other information such as textures [33, 40] and 4D

dynamics [32]. Our work aims to design an efficient and

differentiable renderer for the implicit SDF-based represen-

tation.

Differentiable Rendering. With the success of deep learn-

ing, the differentiable rendering starts to draw more at-

tention as it is essential for end-to-end training, and solu-

tions have been proposed for various 3D representations.

Early works focus on 3D triangulated meshes and lever-

age standard rasterization [28]. Various approaches try to

solve the discontinuity issue near triangle boundaries by

smoothing the loss function or approximating the gradient

[21, 36, 25, 3]. Solutions for point clouds and 3D voxels are

also introduced [48, 17, 31] to work jointly with PointNet

[37] and 3D convolutional architectures. However, the dif-

ferentiable rendering for the implicit continuous function

representation does not exist yet. Some ray tracing based

approaches are related, while they are mostly proposed for

explicit representation, such as 3D voxels [27, 31, 43, 18]

or meshes [23], but not implicit functions. Liu et al. [26]

firstly propose to learn from 2D observations over occu-

pancy networks [29]. However, their methods make several

approximations and do not benefit from the efficiency of

rendering implicit SDF. Most related to our work, Sitzmann

et al. [44] propose a LSTM-based renderer for an implicit

scene representation to generate color images, while their

model focuses on simulating the rendering process with an

LSTM without clear geometric meaning. This method can

only generate low-resolution images due to the expensive

memory consumption. Alternatively, our method can di-

rectly render 3D geometry represented by an implicit SDF
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Figure 2. Illustration on the sphere tracing algorithm [13]. A ray

is initiated at each pixel and marching along the viewing direction.

The front end moves with a step size equals to the signed distance

value of the current location. The algorithm converges when the

current absolute SDF is smaller than a threshold, which indicates

that the surface has been found.

to produce high-resolution images. It can also be applied

without training to existing deep learning models.

3D Shape Prediction. 3D shape prediction from 2D obser-

vations is one of the fundamental vision problems. Early

works mainly focus on multi-view reconstruction using

multi-view stereo methods [41, 14, 42]. These purely

geometry-based methods suffer from degraded performance

on texture-less regions without prior knowledge [7]. With

progress of deep learning, 3D shapes can be recovered un-

der different settings. The simplest setting is to recover 3D

shape from a single image [6, 10, 51, 19]. These systems

rely heavily on priors, and are prone to weak generalization.

Deep learning based multi-view shape prediction methods

[53, 15, 16, 49, 50] further involve geometric constraints

across views in the deep learning framework, which shows

better generalization. Another thread of works [9, 8] take a

single depth image as input, and the problem is usually re-

ferred as shape completion. Given the shape prior encoded

in the neural network [34], our rendering method can ef-

fectively predict accurate 3D object shape from a random

initial shape code with various inputs, such as depth and

multi-view images, through geometric optimization.

3. Differentiable Sphere Tracing

In this section, we introduce our differentiable rendering

method for the implicit signed distance function represented

as a neural network, such as DeepSDF [34]. In DeepSDF, a

network takes a latent code and a 3D location as input, and

produces the corresponding signed distance value. Even

though such a network can deliver high quality geometry,

the explicit surface cannot be directly obtained and requires

dense sampling in the 3D space.

Our method is inspired by Sphere Tracing [13] designed

for rendering SDF volumes, where rays are shot from the

camera pinhole along the direction of each pixel to search

for the surface level set according to the signed distance

value. However, it is prohibitive to apply this method di-

rectly on the implicit signed distance function represented

as a neural network, since each tracing step needs a feed-

Algorithm 1 Naive sphere tracing algorithm for a camera

ray L : c+ dṽ over a signed distance fields f : N3 → R.

1: Initialize n = 0, d(0) = 0, p(0) = c.

2: while not converged do:

3: Take the corresponding SDF value b(n) = f(p(n))
of the location p

(n) and make update: d(n+1) = d(n) +
b(n).

4: p
(n+1) = c+ d(n+1)

ṽ, n = n+ 1.

5: Check convergence.

6: end while

forward neural network and the whole algorithm requires

unaffordable computational and memory resources. To

make this idea work in deep learning framework for in-

verse graphics, we optimize both the forward and backward

propagations for efficient training and test-time optimiza-

tion. The sphere traced results, i.e., the distance along the

ray, can be converted into many desired outputs, e.g., depth,

surface normal, silhouette, and hence losses can be conve-

niently applied in an end-to-end manner.

3.1. Preliminaries ­ Sphere Tracing

To be self-contained, we first briefly introduce the tra-

ditional sphere tracing algorithm [13]. Sphere tracing is a

conventional method specifically designed to render depth

from volumetric signed distance fields. For each pixel on

the image plane, as shown in Figure 2, a ray (L) is shot from

the camera center (c) and marches along the direction (ṽ)

with a step size that is equal to the queried signed distance

value (b). The ray marches iteratively until it hits or gets

sufficiently close to the surface (i.e. abs(SDF) < threshold).

A more detailed algorithm can be found in Algorithm 1.

3.2. Efficient Forward Propagation

Directly applying sphere tracing to an implicit SDF func-

tion represented by a neural network is prohibitively com-

putational expensive, because each query of f requires a

forward pass of a neural network with considerable capac-

ity. Naive parallelization is not sufficient since essentially

millions of network queries are required for a single render-

ing with VGA resolution (640 × 480). Therefore, we need

to cut off unnecessary marching steps and safely speed up

the marching process.

Initialization. Because all the 3D shapes represented by

DeepSDF are bounded within the unit sphere, we initialize

p
(0) to be the intersection between the camera ray and the

unit sphere for each pixel. Pixels with the camera rays that

do not intersect with the unit sphere are set as background

(i.e., infinite depth).

Coarse-to-fine Strategy. At the beginning of sphere trac-

ing, rays for different pixels are fairly close to each other,

which indicates that they will likely march in a similar way.

To leverage this nice property, we propose a coarse-to-fine
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(a) Coarse-to-fine Strategy (b) Aggressive Marching (c) Convergence Criteria

Figure 3. Strategies for our efficient forward propagation. (a) 1D illustration of our coarse-to-fine strategy, and for 2D cases, one ray will

be spitted into 4 rays; (b) Comparison of standard marching and our aggressive marching; (c) We stop the marching once the SDF value is

smaller than ǫ, where 2ǫ is the estimated minimal distance between the corresponding 3D points of two neighboring pixels.

sphere tracing strategy as shown in Fig. 3 (a). We start the

sphere tracing from an image with 1
4 of its original resolu-

tion, and split each ray into four after every three marching

steps, which is equivalent to doubling the resolution. After

six steps, each pixel in the full resolution has a correspond-

ing ray, which keeps marching until convergence.

Aggressive Marching. After the ray marching begins, we

apply an aggressive strategy (Fig. 3 (b)) to speed up the

marching process by updating the ray with α times of the

queried signed distance value, where α = 1.5 in our imple-

mentation. This aggressive sampling has several benefits.

First, it makes the ray march faster towards the surface, es-

pecially when it is far from surface. Second, it accelerates

the convergence for the ill-posed condition, where the angle

between the surface normal and the ray direction is small.

Third, the ray can pass through the surface such that space

in the back (i.e., SDF < 0) could be sampled. This is cru-

cially important to apply supervision on both sides of the

surface during optimization.

Dynamic Synchronized Inference. A naive parallelization

for speeding up sphere tracing is to batch rays together and

synchronously update the front end positions. However, de-

pending on the 3D shape, some rays may converge earlier

than others, thus leading to wasted computation. We main-

tain a dynamic unfinished mask indicating which rays re-

quire further marching to prevent unnecessary computation.

Convergence Criteria. Even with aggressive marching, the

ray movement can be extremely slow when close to the sur-

face since f is close to zero. We define a convergence cri-

teria to stop the marching when the accuracy is sufficiently

good and the gain is marginal (Fig. 3(c)). To fully main-

tain details supported by the 2D rendering resolution, it is

sufficiently safe to stop when the sampled signed distance

value does not confuse one pixel with its neighbors. For

an object with a smallest distance of 100mm captured by a

camera with 60mm focal length, 32mm sensor width, and a

resolution of 512× 512, the approximate minimal distance

between the corresponding 3D points of two neighboring

pixels is 10−4m (0.1mm). In practice, we set the conver-

gence threshold ǫ as 5× 10−5 for most of our experiments.

3.3. Rendering 2D Observations

After all rays converge, we can compute the distance

along each ray as the following:

d = α

N−1
∑

n=0

f(p(n)) + (1− α)f(p(N−1)) = d′ + e, (1)

where e = (1 − α)f(p(N−1)) is the residual term on the

last query. In the following part we will show how this com-

puted ray distance is converted into 2D observations.

Depth and Surface Normal. Suppose that we find the 3D

surface point p = c+dṽ for a pixel (x, y) in the image, we

can directly get the depth for each pixel as the following:

zc =
d

√

x̃2 + ỹ2 + 1
, (2)

where (x̃, ỹ, 1)⊤ = K−1(x, y, 1)⊤ is the normalized homo-

geneous coordinate.

The surface normal of the point p(x, y, z) can be com-

puted as the normalized gradient of the function f . Since f

is an implicit signed distance function, we take the approx-

imation of the gradient by sampling neighboring locations:

n =
1

2δ





f(x+ δ, y, z)− f(x− δ, y, z)
f(x, y + δ, z)− f(x, y − δ, z)
f(x, y, z + δ)− f(x, y, z − δ)



 , ñ =
n

|n|
. (3)

Silhouette. The silhouette is a commonly used supervision

for 3D shape prediction. To make the rendering of silhou-

ettes differentiable, we get the minimum absolute signed

distance value for each pixel along its ray and subtract it by

the convergence threshold ǫ. This produces a tight approx-

imation of the silhouette, where pixels with positive values

belong to the background, and vice versa. Note that directly

checking if ray marching stops at infinity can also generate

the silhouette but it is not differentiable.

Color and Semantics. Recently, it has been shown that tex-

ture can also be represented as an implicit function param-

eterized with a neural network [33]. Not only color, other

spatially varying properties, like semantics, material, etc,
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Method size #step #query time

Naive sphere tracing 5122 50 N/A N/A

+ practical grad. 5122 50 6.06M 1.6h

+ parallel 5122 50 6.06M 3.39s

+ dynamic 5122 50 1.99M 1.23s

+ aggressive 5122 50 1.43M 1.08s

+ coarse-to-fine 5122 50 887K 0.99s

+ coarse-to-fine 5122 100 898K 1.24s

Table 1. Ablation studies on the cost-efficient feedforward de-

sign of our method. The average time for each optimization step

was tested on a single NVIDIA GTX-1080Ti over the architec-

ture of DeepSDF [34]. Note that the number of initialized rays is

quadratic to the image size, and the numbers are reported for the

resolution of 512× 512.

can all be potentially learned by implicit functions. These

information can be rendered jointly with the implicit SDF

to produce corresponding 2D observations, and some ex-

amples are depicted in Fig. 8.

3.4. Approximated Gradient Back­Propagation

DeepSDF [34] uses the conditional implicit function to

represent a 3D shape as fθ(p, z), where θ is the network

parameters, and z is the latent code representing a certain

shape. As a result, each queried point p in the sphere tracing

process is determined by θ and the shape code z, which

requires to unroll the network for multiple times and costs

huge memory for back-propagation with respect to z:

∂d′

∂z
|z0 = α

N−1∑

i=0

∂fθ(p
(i)(z), z)

∂z
|z0

= α

N−1∑

i=0

(
∂fθ(p

(i)(z0), z)

∂z
+

∂fθ(p
(i)(z), z0)

∂p(i)(z)

∂p(i)(z0)

∂z
).

(4)

Practically, we ignore the gradients from the residual

term e in Equation (1). In order to make back-propagation

feasible, we define a loss for K samples with the minimum

absolute SDF value on the ray to encourage more signals

near the surface. For each sample, we calculate the gradi-

ent with only the first term in Equation (4) as the high-order

gradients empirically have less impact on the optimization

process. In this way, our differentiable renderer is particu-

larly useful to bridge the gap between this strong shape prior

and some partial observations. Given a certain observation,

we can search for the code that minimizes the difference

between the rendering from our network and the observa-

tion. This allows a number of applications which will be

introduced in the next section.

4. Experiments and Results

In this section, we first verify the efficacy of our dif-

ferentiable sphere tracing algorithm, and then show that

3D shape understanding can be achieved through geometry

based reasoning by our method.

parallel + dynamic + aggressive + coarse-to-fine

Figure 4. The surface normal rendered with different speed up

strategies turned on. Note that adding up these components does

not deteriorate the rendering quality.

Figure 5. Loss curves for 3D prediction from partial depth. Our

accelerated rendering does not impair the back-propagation. The

loss on the depth image is tightly correlated with the Chamfer dis-

tance on 3D shapes, which indicates effective back-propagation.

4.1. Rendering Efficiency and Quality

Run-time Efficiency. In this section, we evaluate the run-

time efficiency promoted by each design in our differen-

tiable sphere tracing algorithm. The number of queries and

runtime for both forward and backward passes at a resolu-

tion of 512 × 512 on a single NVIDIA GTX-1080Ti are

reported in Tab. 1, and the corresponding rendered surface

normal are shown in Fig. 4. We can see that the proposed

back-propagation prunes the graph and reduces the mem-

ory usage significantly, making the rendering tractable with

a standard graphics card. The dynamic synchronized in-

ference, aggressive marching and coarse-to-fine strategy all

speed up rendering. With all these designs, we can render

an image with only 887K query steps within 0.99s when

the maximum tracing step is set to 50. The number of query

steps only increases slightly when the maximum step is set

to 100, indicating that most of the pixels converge safely

within 50 steps. Note that related works usually render at a

much lower resolution [44].

Back-Propagation Effectiveness. We conduct sanity

checks to verify the effectiveness of the back-propagation

with our approximated gradient. We take a pre-trained

DeepSDF [34] model and run geometry based optimization

to recover the 3D shape and camera extrinsics separately us-

ing our differentiable renderer. We first assume camera pose

is known and optimize the latent code for 3D shape w.r.t the

given ground truth depth map, surface normal and silhou-

ette. As can be seen in Fig. 5 (left), the loss drops quickly,

and using acceleration strategies does not hurt the optimiza-

tion. Fig. 5 (right) shows the total loss on the 2D image

plane is highly correlated with the Chamfer distance on the

predicted 3D shape, indicating that the gradients originated

from the 2D observation are successfully back-propagated

to the shape. We then assume a known shape (fixed latent
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initial optimized

Figure 6. Illustration of the optimization process over the camera

extrinsic parameters. Our differentiable renderer is able to propa-

gate the error from the image plane to the camera. Top row: ren-

dered surface normal. Bottom row: error map on the silhouette.

ǫ = 5× 10−2 ǫ = 5× 10−4 ǫ = 5× 10−6 ǫ = 5× 10−8

Figure 7. Effects on choices of different convergence thresholds.

Under the same marching step, a very large threshold can incur

dilation around boundaries while a small threshold may lead to

erosion. We pick 5× 10−5 for all of our experiments.

code) and optimize the camera pose using a depth image

and a binary silhouette. Fig. 6 shows that a random initial

camera pose can be effectively optimized toward the ground

truth pose by minimizing the gradients on 2D observations.

Convergence Criteria. The convergence criteria, i.e., the

threshold on signed distance to stop the ray tracing, has a

direct impact on the rendering quality. Fig. 7 shows the ren-

dering result under different thresholds. As can be seen,

rendering with a large threshold will dilate the shape, which

lost boundary details. Using a small threshold, on the other

hand, may produces incomplete geometry. This parame-

ter can be tuned according to applications, but in practice

we found our threshold is effective in producing complete

shape with details up to the image resolution.

Rendering Other Properties. Not only the signed dis-

tance function for 3D shape, implicit functions can also en-

code other spatially variant information. As an example,

we train a network to predict both signed distance and color

for each 3D location, and this grants us the capability of

rendering color images. In Fig. 8, we show that with a

512-dim latent code learned from textured meshes as the

ground truth, color images can be rendered in arbitrary res-

olution, camera viewpoints, and illumination. Note that the

latent code size is significantly smaller than the mesh (ver-

tices+triangles+texture map), and thus can be potentially

used for model compression. Other per-vertex properties,

such as semantic segmentation and material, can also be

rendered in the same differentiable way.

4.2. 3D Shape Prediction

Our differentiable implicit SDF renderer builds up the

connection between 3D shape and 2D observations and en-

LR texture 32x HR texture HR Relighting HR 2nd View

Figure 8. Our method can render information encoded in the im-

plict function other than depth. With a pre-trained network encod-

ing textured meshes, we can render high resolution color images

under various resolution, camera viewpoints, and illumination.

ables geometry based reasoning. In this section, we show

results of 3D shape prediction from a single depth image,

or multi-view color images using DeepSDF as the shape

generator. On a high-level, we take a pre-trained DeepSDF

and fixed the decoder parameters. When given 2D observa-

tions, we define proper loss functions and propagate the gra-

dient back to the latent code, as introduced in Section 3.4,

to generate 3D shape. This method does not require any

additional training and only need to run optimization at test

time, which is intuitively less vulnerable to overfitting or

domain gap issues in pure learning based approach. In this

section, we specifically focus on evaluating the generaliza-

tion capability while maintaining high shape quality.

4.2.1 3D Shape Prediction from Single Depth Image

With the development of commodity range sensors, the

dense or sparse depth images can be easily acquired, and

several methods have been proposed to solve the problem of

3D shape prediction from a single depth image. DeepSDF

[34] has shown state-of-the-art performance for this task,

however requires an offline pre-processing to lift the input

2D depth map into 3D space in order to sample the SDF

values with the assistance of the surface normal. Our differ-

entiable render makes 3D shape prediction from a depth im-

age more convenient by directly rendering the depth image

given a latent code and comparing it with the given depth.

Moreover, with the silhouette calculated from the depth map

or provided from the rendering, our renderer can also lever-

age it as an additional supervision. Formally, we obtain the

complete 3D shape by solving the following optimization:

argmin
z

Ld(Rd(f(z)), Id) + Ls(Rs(f(z)), Is), (5)

where f(z) is the pre-trained neural network encoding

shape priors, Rd and Rs represent the rendering function

for the depth and silhouette respectively, Ld is the L1 loss

of depth observation, and Ls is the loss defined based on

the differentiably rendered silhouette. In our experiment,

the initial latent shape z0 is chosen as the mean shape.
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dense 50% 10% 100pts 50pts 20pts

sofa

DeepSDF 5.37 5.56 5.50 5.93 6.03 7.63

Ours 4.12 5.75 5.49 5.72 5.57 6.95

Ours (mask) 4.12 3.98 4.31 3.98 4.30 4.94

plane

DeepSDF 3.71 3.73 4.29 4.44 4.40 5.39

Ours 2.18 4.08 4.81 4.44 4.51 5.30

Ours (mask) 2.18 2.08 2.62 2.26 2.55 3.60

table

DeepSDF 12.93 12.78 11.67 12.87 13.76 15.77

Ours 5.37 12.05 11.42 11.70 13.76 15.83

Ours (mask) 5.37 5.15 5.16 5.26 6.33 7.62

Table 2. Quantitative comparison between our geometric optimiza-

tion with DeepSDF [34] for shape completion over partial dense

and sparse depth observation on ShapeNet dataset [2]. We re-

port the median Chamfer Distance on the first 200 instances of

the dataset of [6]. We give DeepSDF [34] the groundtruth normal

otherwise they could not be applied on the sparse depth.

We test our method and DeepSDF [34] on 200 models on

plane, sofa and table category respectively from ShapeNet

Core [2]. Specifically, for each model, we use the first cam-

era in the dataset of Choy et al. [6] to generate dense depth

images for testing. The comparison between DeepSDF and

our method is listed in Tab. 2. We can see that our method

with only depth supervision performs better than DeepSDF

[34] when dense depth image is given. This is probably be-

cause that DeepSDF samples the 3D space with pre-defined

rule (at fixed distances along the normal direction), which

may not necessarily sample correct location especially near

object boundary or thin structures. In contrast, our differen-

tiable sphere tracing algorithm samples the space adaptively

with the current estimation of shape.

Robustness against sparsity. The depth from laser scan-

ners can be very sparse, so we also study the robustness

of our method and DeepSDF against sparse depth. The re-

sults are shown in Tab. 2. Specifically, we randomly sam-

ple different percentages or fixed numbers of points from

the original dense depth for testing. To make a competi-

tive baseline, we provide DeepSDF ground truth normals

to sample SDF, since it cannot be reliably estimated from

sparse depth. From the table, we can see that even with

very sparse depth observations, our method still recovers

accurate shapes and gets consistently better performance

than DeepSDF with additional normal information. When

the silhouette is available, our method achieves significantly

better performance and robustness against the sparsity, in-

dicating that our rendering method can back-propagate gra-

dients effectively from the silhouette loss.

4.2.2 3D Shape Prediction from Multiple Images

Our differentiable renderer can also enable geometry based

reasoning for shape prediction from multi-view color im-

Video sequence Optimization process

Figure 9. Illustration of the optimization process under multi-view

setup. Our differentiable renderer is able to successfully recover

3D geometry from a random code with only the photometric loss.

Method car plane

PMO (original) 0.661 1.129

PMO (rand init) 1.187 6.124

Ours (rand init) 0.919 1.595

Table 3. Quantitative results on 3D shape prediction from multi-

view images under the metric of Chamfer Distance (only in the di-

rection of gt→pred for fair comparison). We randomly picked 50

instances from the PMO test set to perform the evaluation. 10000

points are sampled from meshes for evaluation.

ages by leveraging cross-view photometric consistency.

Specifically, we first initialize the latent code with a ran-

dom vector and render a depth image for each of the input

views. We then warp each color image to other input views

using the rendered depth image and the known camera pose.

The difference between the warped and input images are

then defined as the photometric loss, and the shape can be

predicted by minimizing this loss. To sum up, the optimiza-

tion problem is formulated as follows,

argmin
z

N−1
∑

i=0

∑

j∈Ni

‖Ii − Ij→i(R
i
d(f(z))‖, (6)

where Ri
d represents the rendered depth image at view i, Ni

are the neighboring images of Ii, and Ij→i is the warped

image from view j to view i using the rendered depth.

Note that no mask is required under the multi-view setup.

Fig. 9 shows an example of the optimization process of our

method. As can be seen, the shape is gradually improved

while the loss is being optimized.

We take PMO [24] as a competitive baseline, since they

also perform deep learning based geometric reasoning via

optimization over a pre-trained decoder, but use the triangu-

lar mesh representation. Their model first predicts an initial

mesh from a selected input view and improve the quality

via cross-view photo-consistency. Both the synthetic and

real datasets provided in [24] are used for evaluation.

In Tab. 3, we show quantitative comparison to PMO on

their synthetic test set. It can be seen that our method

achieves comparable results with PMO [24] from only ran-

dom initializations. Note that while PMO uses both the

encoder and decoder trained on the PMO training set, our

DeepSDF decoder was neither trained nor finetuned on it.

Besides, if the shape code for PMO, instead of being pre-

dicted from their trained image encoder, is also initialized

randomly, their performance decreases dramatically, which

indicates that with our rendering method, our geometric rea-
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Figure 10. Robustness of geometric reasoning via multi-view pho-

tometric optimization. (a) Performance w.r.t changes on camera

focal length. (b) Performance w.r.t noise in the initialization code.

Our model is robust against focal length change and not affected

by noise in the latent code since we start from random initializa-

tion. In contrast, PMO is very sensitive to both factors, and the

performance drops significantly when the testing images are dif-

ferent from the training set.

soning becomes more effective. Our method can be further

improved with good initialization.

Generalization Capability To further evaluate the gener-

alization capability, we compare to PMO on some unseen

data and initialization. We first evaluate both methods on

a testing set generated using different camera focal lengths,

and the quantitative comparison is in Fig. 10 (a). It clearly

shows that our method generalizes well to the new images,

while PMO suffers from overfitting or domain gap. To fur-

ther test the effectiveness of the geometric reasoning, we

also directly add random noise to the initial latent code.

The performance of PMO again drops significantly, while

our method is not affected since the initialization is ran-

domized (Fig. 10 (b)). Some qualitative results are shown in

Fig. 11. Our method produces accurate shapes with detailed

surfaces. In contrast, PMO suffers from two main issues: 1)

the low resolution mesh is not capable of maintaining geo-

metric details; 2) their geometric reasoning struggles with

the initialization from image encoder.

We further show comparison on real data in Fig. 12.

Following PMO, since the provided initial similarity trans-

formation is not accurate in some cases, we also optimize

over the similarity transformation in addition to the shape

code. As can be seen, both methods perform worse on

this challenging dataset. In comparison, our method pro-

duces shapes with higher quality and correct structures,

while PMO only produce very rough shapes. Overall, our

method shows better generalization capability and robust-

ness against domain change.

5. Conclusion

We propose a differentiable sphere tracing algorithm to

render 2D observations such as depth maps, normals, sil-

houettes, from implicit signed distance functions parameter-

ized as a neural network. This enables geometric reasoning

in 3D shape prediction from both single and multiple views

Video sequence PMO (rand init) PMO Ours

Figure 11. Comparison on 3D shape prediction from multi-view

images on the PMO test set. Our method maintains good surface

details, while PMO suffers from the mesh representation and may

not effectively optimize the shape.

Video sequence PMO Ours

Figure 12. Comparison on 3D shape prediction from multi-view

images on real-world dataset [5]. It is in general challenging for

shape prediction on real image. Comparatively, our method pro-

duces more reasonable results with correct structure.

in conjunction with the high capacity 3D neural representa-

tion. Extensive experiments show that our geometry based

optimization algorithm produces 3D shapes that are more

accurate than SOTA, generalizes well to new datasets, and is

robust to imperfect or partial observations. Promising direc-

tions to explore using our renderer include self-supervised

learning, recovering other properties jointly with geometry,

and neural image rendering.
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[12] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hi-

erarchical surface prediction for 3d object reconstruction. In

Proc. of International Conference on 3D Vision (3DV). IEEE,

2017. 2

[13] John C Hart. Sphere tracing: A geometric method for the

antialiased ray tracing of implicit surfaces. The Visual Com-

puter, 12(10), 1996. 2, 3

[14] Carlos Hernandez, George Vogiatzis, and Roberto Cipolla.

Multiview photometric stereo. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(3):548–554, 2008. 3

[15] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra

Ahuja, and Jia-Bin Huang. Deepmvs: Learning multi-view

stereopsis. In Proc. of Computer Vision and Pattern Recog-

nition (CVPR), pages 2821–2830, 2018. 3

[16] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So

Kweon. Dpsnet: end-to-end deep plane sweep stereo. In

Proc. of International Conference on Learning Representa-

tions (ICLR), 2019. 3

[17] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised

learning of shape and pose with differentiable point clouds.

In Proc. of Advances in Neural Information Processing Sys-

tems (NeurIPS), 2018. 2

[18] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.

Sdfdiff: Differentiable rendering of signed distance fields for

3d shape optimization. In Proc. of Computer Vision and Pat-

tern Recognition (CVPR), 2020. 2

[19] Adrian Johnston, Ravi Garg, Gustavo Carneiro, Ian Reid,

and Anton van den Hengel. Scaling cnns for high resolution

volumetric reconstruction from a single image. In Proc. of

International Conference on Computer Vision (ICCV), pages

939–948, 2017. 3

[20] Angjoo Kanazawa, Michael J Black, David W Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2018. 2

[21] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In Proc. of Computer Vision and Pat-

tern Recognition (CVPR), 2018. 2

[22] Chen Kong, Chen-Hsuan Lin, and Simon Lucey. Using lo-

cally corresponding cad models for dense 3d reconstructions

from a single image. In Proc. of Computer Vision and Pat-

tern Recognition (CVPR), 2017. 2

[23] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
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