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In this article we present new algorithms for rasterizing implicit curves, i.e., curves represented

as level sets of functions of two variables. Considering tbe pixels as square regions of tbe plane, a

“correct” algorithm should paint those pixels whose centers lie at less than half the desired line

width from the curve, A straightforward implementation, scanning the display array evaluating

the Euclidean distance from the center of each pixel to the curve, is impractical, and a standard

quad-tree-)ikc rccursivc subdivision scheme is used instead. Then we attack the problem of

testing whether or not the Euclidean distance from a point to an implicit curve is less than a

given threshold For the most gcnernl case, when the implicit function is only required to have

continuous first-order derivatives, we show how tn reformulate tbe test as an unconstrained

global root-finding problem in a circular domain. For implicit functions with continuous deriv-

ativesup to order k we introduce an approximate distance of order k. The approximate distance of

order k from a po]nt to an implicit curve is asymptotically equivalent to the Euclidean distance

and provides a suff]cicnt tw+t for a polynomial of degree h not to have roots inside a circle. This is

the main contribution of the article, By replacing the Euclidean distance test with one of these

approximate distance tests, we obtain a practical rendering algorithm, proven to be correct for

algebraic curves. To speed up the computation we also introduce heuristics, which used in

conjunction with low-order approximate distances almost always produce equivalent results. Tbe

behavior of the algorithms is an[ilyzcd, both near regular and singular points, and several

possible extensions and applications are discussed.

(’categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Genera-

tion display algorithms; 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling CUFLV,.sarfacr, ,so/IJ, L.TId object rvpr(,sen ta tions; ,J.6 [Computer Applications]:

(’omputer-Aided Engineering (wmpu frr-aidd design
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1. INTRODUCTION

Planar curves can be represented parametrically or implicitly. A parametric

curve is the image set of a two dimensional vector function of one variable

{(x(t), y(i )): t G R}, while an implicit curve is the set of zeros of a function of

two variables 2( /’) = {(x, y) : /1x, y) = O). Parametric curves are very popu-

lar in the graphics and CAD literature, and very efllcient methods exist to
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4. Gabriel Taubin

render several families of parametric curves. On the other hand, implicit

curves are not easy to render.

Since the implicit-function theorem insures that a local parameterization

always exists in a neighborhood of a regular point of an implicit curve, i.e., a

point p such that f(p) = O and Vf( p) # O, one approach that several re-

searchers follow is to approximately parametrize the implicit curve and then

render it using the methods for parametric curves [Abhyankar and Bajaj

1987a; 1987b; 1987c; 1988; Mountaudouin 1991; Hobby 1990; Jordan et al.

1973; Van Aken and Novack 1985]. The basic difficulty with this method lies

in the fact that implicit curves can be multiply connected and ofien have

singular points, where they intersect themselves, or split into several

branches. To render the curve correctly, the singular points and the con-

nected components must be identified [Arnon 1983; Bajaj et al. 1987]. The

problem with this approach is that the algorithms are intrinsically complex

and computationally expensive.

In this article we present algorithms for rendering implicit curves on raster

devices. Since the pixels form a regular grid, except for very particular cases,

almost none of the centers of the pixels will lie exactly on the curve. Our

algorithms are based on finding the pixels whose centers lie at less than half

the desired line width from the curve. In order to obtain practical algorithms,

we first reduce the complexity by using a fairly standard quad-tree-like

recursive space subdivision scheme [Geisow 1983], but the main problem is to

determine whether the Euclidean distance from a point to an implicit curve is

less than a threshold or not. We show that in the case of general implicit

curves, the test can be reduced to a global unconstrained optimization

problem in a circular domain. In the algebraic case, when the defining

function is a polynomial, a combination of symbolic and numerical methods

can be used to measure the distance [Kriegman and Ponce 1990; Ponce et al.

1992] or just to decide whether or not a polynomial has roots in a circle or

square [Milne 1990; Pedersen 1991 b]. But these methods are known to be

practical only for low-degree polynomials, computationally expensive, and

sometimes numerically unstable. Nevertheless, new numerical methods in

elimination theory look promising in this area [Manocha 1992; Manocha and

Canny 1992]. We then introduce a computationally inexpensive approximate

test based on a first-order approximation of the Euclidean distance from a

point to an implicit curve, which only requires the evaluation of the function

and its first-order derivatives at the point. This first-order distance approxi-

mation is not new though; it has been used in the past for algebraic curve and

surface fitting [Pratt 1987; Sampson 1982; Taubin 1988; 1991; Taubin et al.

1992; 1993]. The local behavior of this first-order approximate distance near

the curve ensures that the rendered curve will have approximately constant

width, but it sometimes overestimates the Euclidean distance resulting in

missing regions in the rendered curve. Then, and this is the main contribu-

tion of the article, we solve the problem for algebraic curves by introducing a

family of higher-order approximations to the Euclidean distance from a point

to an implicit curve. The approximate distance of order k involves all the

partial derivatives of order s k of the function at the point; it behaves like

the Euclidean distance close to the regular points of the curve; and if the

ACM Transactions on Graphics, Vol. 13, No. 1, January 1994.



Rasterizing Implicit Curves . 5

function is a polynomial of degree s k, it is a lower bound for the Euclidean

distance. This lower bound provides a eufflcient condition for rejecting re-

gions which are not cut by the curve. The approximate distance of order k is

more expensive to evaluate than the first-order approximate distance, but

ensures a correctly rendered algebraic curve without missing points. Combin-

ing the first-order approximate distance, the higher-order approximate dis-

tances, and some heuristics, we end up with eficient, robust, and correct

algorithms for rendering planar algebraic curves. Although now correct, the

algorithm is sometimes computationally expensive, particularly for high-

er-degree algebraic curves. To solve this problem we then introduce two heur-

istics, which used in conjunction with a low-order approximate distance,

usually second order, produces almost equivalent results at substantially less

computational cost. There is a tradeoff between accuracy and speed here, and

this heuristic approach improves the performance most of the times. When

the accuracy of the result is more important, the algorithm based cm the

higher distance approximations should be used. In a certain sense our

algorithms resemble the box-bisection methods for root finding [Baker Kear-

fott 1987; Eiger et al. 1984; Morgan and Shapiro 1987] and, loosely, the

methods based on piecewise linear approximations [Allgower and Georg 1980;

Allgower and Schmidt 1985; Bloomenthal 1988; Dobkin et al. 1990].

The article is organized as follows. In Section 2 we define a “correct”

algorithm and show how to reduce the complexity of such an algorithm by

recursive space subdivision. In Section 3 we describe methods to compute the

Euclidean distance from a point to an implicit curve. In Section 4 we

introduce the first-order approximate distance; we show that it is asymptoti-

cally equivalent to the Euclidean distance in the neighborhood of every

regular point and point out its disadvantages. In Section 5 we introduce the

higher-order approximate distances; we show that they all behave like the

first-order approximate distance in the neighborhood of a regular point and

that the approximate distance of order k is a lower bound for the Euclidean

distance for polynomials of degree < k, providing a sufficient condition to

safely discard empty pixels (in a sequel to this article [Taubin 1993] we have

improved this algorithm correcting its behavior near singular points as well).

Since low-order approximate distances are much less expensive to evaluate

than the higher-order approximate distances, in Section 6 we introduce

heuristics, which combined with low-order approximate distances, usually

order one or two, reduce the number of evaluations of the higher-order

approximate distances, but still preserve the correctness of the algorithm in

most practical cases. In Section 7 we study the behavior of the algorithms

near singular points. In Section 8 we present some experimental results, and

in Section 9 we discuss several extensions and applications of these methods.

Finally, for those readers who would like to reproduce the results, in Ap-

pendix A we give all the data necessary to recreate the pictures with the

algorithms described in the article.

2. AN IDEAL ALGORITHM

Figure 1 describes an ideal algorithm for rendering the implicit curve 2(f) =

{( .x, .Y): f( X, .Y) = O} in the square of side n pixels centered at ( XO,ye). The

ACM Transactions on Graphics, Vol 13. No. 1, .January 1994



6. Gabriel Taubin

procedure IdealPaint Zeros (j, zO,yo,n)

for z * ZO– n/2+ 1/2 to zO+n/2– 1/2 step 1 do

for y + yo – nJ2+ 1/2 to yo+nj2– 1/2 step 1 do

if 6((z, y), Z(j)) < hti-line-width

PaintPixel (z, y)

Fig. 1. Ideal algorithm ta render the curve 2(f) in a square grid of n x n pixels centered at

( XO,y, ). IS((x, y ), 2( f)) denotes the Euclidean distance from the point ( x, y) to the curve 2(f).

square is scanned, and only those pixels which are cut by the neighborhood of

the desired line width of the curve are painted. First of all, the desired line

width cannot be smaller than the length of the diagonal of a pixel, which we

will assume equal to W. Otherwise, the rasterized version of the curve will

probably have gaps. The condition for a pixel to be painted is equivalent to

say that the curve must cut the circle of radius half-line-width centered at the

center of the pixel, or that the distance from the center of the pixel to the

curve is less than half-line-width.

We call this algorithm ideal because every “correct” algorithm should paint

exactly the same pixels, but it is impractical. If n is the number of pixels on a

side of the square in device space, it requires n2 distance evaluations, but

since in general it will be rendering a smooth curve on a planar region, the

number of pixels it is expected to paint is only O(n). We must look for a more

efNcient algorithm. In fact, there are two issues to look at. The first one is

how to reduce the computational complexity of the number of distance

evaluations. The second issue is how to efficiently evaluate, or approximate,

the distance from a point to an implicit curve. We will discuss the first issue

in this section, while subsequent sections will be devoted to the second issue.

The number of distance evaluations can be easily reduced using a quad-

tree-like recursive space subdivision scheme described in Figure 2, where n is

assumed to be a power of 2. The rationale behind this algorithm is very

simple. It starts by considering the initial square region as a single pixel.

Then, every square region which had previously satisfied the distance test for

its resolution is divided into four equal-size square regions, which are then

tested. The squares which pass the distance test are kept into a stack. The

size of the squares is divided by two at each iteration; and when the square

regions become single pixels, the iteration stops, and the pixels are painted.

Note that as it is described in Figure 2, a block of n X n pixels is pushed

onto the stack, i.e., it is not discarded, if the distance from the center of the

block to the curve is less than n times the desired line width for the final

result. In fact, as suggested by one of the reviewers, a tighter threshold can

be used, producing exactly the same final result, and saving some computa-

tion at lower resolutions. For the tighter threshold,

6(( xi, Yi), 2( f)) < half-line-width “n

should be replaced by

n–1
6(( xi, yi ) 2( f)) < ~ + half-line-width

ACM Transactions on Graphics, Vol. 13, No. 1, January 1994



Rasterizing Implicit Curves . 7

procedure RecursivePaintZeros (j, ZO,yo, n)

input-stack - 0

output-stack e 0

Push ((zO, ye), input-stack)

while n > 1 do

n t n/2

while input-stack + 0 do

(z,, yo) - Pop(input-stack)

(Z,, y,)

W(:)@

. .
I

n

. .

(Z,, yl) (X,, y,)

fort= lto4stepldo

if 6((z,, y,), Z(f)) < half-line-width

Push((z,, y,), output-stack)

input-stack - output-stack

output-stack e 0
while input-stack # 0 do

(z, y) + Pop (input-stack)

PaintPixel (z, y)

Fig. 2. Improved rendering algorithm.

M( x, y), 2( f)) is the Euclidean distance

from the point (x, y) to the curve Zff).

n

in Figure 2 and in all the other subdivision algorithms in the rest of the

article. A block of n x n pixels should be kept in the processing stack if

the distance from the center of the block to the curve is at most equal to the

distance from the center of the block to a corner pixel, (n – 1)/ @, plus the

distance from a corner pixel to the curve, half-line-width.

Implicitly, this algorithm uses a quad-tree data structure, where the root is

the initial square; each node has at most four children; and the leaves are the

pixels (for suweys on applications of quad-trees, and other related data

structures to graphics, see Overmars [1988] and Samet [ 1988]). However,

since no operation needs to be performed among neighboring squares, it is

sufllcient to keep the coordinates of the centers of the squares in a list. And

since the order in which squares of the same size are processed is not

important either, stacks suffice for the implementation. The algorithm of

Figure 2 traverses the quad-tree in breath-first order, but if storage limits are

important factors, a depth-first traversal can be implemented using recur-

sion. In practice, a mixed strategy is more appropriate, traversing the tree in

breath-first order up to a certain resolution, and then in depth-first order,

painting in sequence all the pixels in each block. Clearly, if more than one

processor is available, the work can be easily divided among them based on

these ideas, but we will not elaborate on the subject.

3. EUCLIDEAN DISTANCE

The next problem that we have to deal with is how to answer whether the

distance from a certain point p = (u, u) to the set 2(f) of zeros of the

function f:R2-+R is below a certain positive threshold or not. The distance

from a point p = (u, u) to the zero set 2(f) of a function f: IR2+ R is defined

ACM Transactions on Graphics, Vol. 13, No. 1, January 1994.



8. Gabriel Taubin

as the minimum of the distances from p to points in the zero set

8(p, Z(f)) = min{llp – qll:f(q) = O). (3.1)

In this section we show that in the general case we will need to explicitly

compute the distance using numerical methods, but in the algebraic case

(when f{ x, y) is a polynomial of low degree) different combinations of sym-

bolic and numerical methods can be used to solve the problem. However,

since even in the algebraic case the decision procedure based on the Eu-

clidean distance is computationally expensive, and sometimes numerically

unstable, in following sections we study different alternatives to overcome

these problems.

3.1 Computing the Euclidean Distance

The problem with computing the Euclidean distance from a point to the zero

set of a function, which in this section will be assumed to have continuous

first-order partial derivatives (%’1), is that, as the definition (3.1) shows, it is

a constrained minimization problem. We describe below how to transform it

into an unconstrained minimization problem, for which many well-estab-

lished numerical methods are available [Dennis and Shnabel 1983; Eiger

et al. 1984; Mor6 et al. 1980].

Since the function is ‘%1, a necessary condition for the point @ to minimize

IIP – qllz constrained by f(q) = O is that the two vectors p - Q and Vf(~) be
aligned (Lagrange multipliers theorem; see for example Thorpe [1979, Chap-

ter 4] for a geometric interpretation). This condition can be rewritten as

d = (f, ~) being a zero of the function

f’(x, y) = (x - U)fy(x, y) - (y -U) fx(x, y), (3.2)

where f= and fydenote the two first-order partial derivatives of f. If we set

f = (f’, f )T, every minimizer @ of the distance from p to 2(f) is a zero of the

map f: R2 -+ R2. The converse is clearly not true, because not only the

minimizers of the distance from p to 2(f) satisfy (3.2). For example, the

singular points of 2(f), i.e., the points where not only the function but also

the two first-order partial derivatives vanish, are zeros off. In the general

case, we can only say that the zeros off are the critical points of the distance

from p restricted to 2(f), but very often the set of zeros off is finite. Even in

the algebraic case the analysis of when the set of zeros of f is finite is

complex, but based on Bezout’s theorem [Walker 1950], it can be reduced to

find necessary and sufficient conditions for the polynomials f and ~’ not to

have nontrivial common factors. For example, on one extreme is the case of

polynomials which are radial at p. We say that a polynomial f is radial at

P = (u, V) if there exists a univariate polynomial +(t), such that f(x, Y) =

4(( x – U)2 + (y – U)2). If f is radial at p, then f’ is identically zero, and the

distance from p to 2(f) is equal to the square root of the smallest positive

root of @ (if any). Also, if the polynomial f has a multiple factor g, i.e.,

f= g 2- h for a certain other polynomial h, then g also divides f’ = g(2g’ ~h

+ g . h’ ), and so Z(g) c Z(f). Since in general the set of zeros of g is infinite,
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Rasterizing Implicit Curves . 9

so is the set of zeros off. We have decided not to present the analysis of the

general case here, because it is long and tedious and will not be used in the

rest of the article. Besides, for algebraic curves, a better solution is presented

in the next section. When the number of zeros is finite, a method to compute

the distance from p to Z(f) is to find all the zeros of f in the region of

interest (global unconstrained optimization), and then, if more than one is

found, choose the one closer to p. In our case, since we only need to determine

whether the distance 8( p, Z(f)) is below the threshold or not, the search

region should be the circle of center p and radius equal to the threshold.

Unless more constraints are imposed on the family of implicit functions, this

is the best that we can do. We can do better if the functions are polynomials.

3.2 Euclidean Distance for Algebraic Curves

As shown in Kriegman and Ponce [ 1990] and Ponce et al. [1992], when the

function is a polynomial of low degree, elimination theory can be used to

transform the multidimensional minimization problem described in the previ-

ous section into a one-dimensional polynomial root-finding problem. Since the

points p and G and the distance 6 = 8( p, Z(f)) satisfy the following system

of algebraic equations

[

f(x,y)=o

f’(x, y) = o (3.3)

(x–u)2+(y-u)2–32=o

where f is the polynomial previously defined in Equation (3.2), the variables

x and y can be eliminated among these three equations, yielding a single

equation

D(fi)=o,

where D is a polynomial in the distance 6, with coefficients polynomials in

the coordinates (u, u) of the point p, and the coefficients of f (for other

applications of elimination theory to graphics and CAD, see Sederberg et al.

[1984; 1985] and Canny [ 1988] and Manocha and Canny [1992] for multidi-

mensional resultants). The distance 8 is the minimum positive root of this

polynomial, and it can be found by some numerical root-finding algorithm. In

our case, where we need to test whether 8( p, Z(f)) is less than a threshold or

not, we can just apply Sturm’s theorem [Bochnak et al. 1987, Theorem 1.2.8]

to the univariate polynomial D(6) to count the number of real zeros it has in

the interval [0, threshold]. That is, we look at both the coefficients of the

polynomial f( x, y) and the coordinates of the point p = (u, u) not as vari-

ables, but as constants, and consider the polynomials in (3.3) as functions of

three variables x, y, and 8. The two variables x, y must be eliminated at

every point though, yielding the polynomial D(6) in a single variable 8.

Although efficient and robust methods to evaluate multidimensional resul-

tants have been developed lately [Manocha and Canny 1992], the amount of

computation involved in this approach is still impractical for our purposes.

Finally, let us mention that other researchers have developed numerical-sym-
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10 . Gabriel Taubin

bolic methods to count the number of zeros that a polynomial, or system of

polynomials, has inside a square [Milne 1990], circle, or a more general

semialgebraic region [Pedersen 1991 b], but all these methods suffer from the

same kind of problems: they are either computationally expensive or numeri-

cally unstable.

4. A FIRST-ORDER APPROXIMATE DISTANCE

Since the test based on evaluating the Euclidean distance is computationally

expensive, even in the algebraic case because the resultant D is usually a

polynomial of high degree, or numerically unstable, we seek alternatives.

We will first perform a less computationally expensive test. This test is to

be based on a simple first-order approximation to the Euclidean distance and

is asymptotically equivalent to the Euclidean distance test. However, since

this first-order approximate-distance test can (and often does) reject regions

that otherwise would be accepted by the Euclidean distance test, more

expensive tests based on higher-order approximations to the Euclidean dis-

tance will be introduced in Section 5. The approximate distance of order h

will be shown to be a lower bound to the Euclidean distance for curves

defined by polynomials of degree s k, and so, for these curves a test based on

this approximation never rejects a region that would otherwise be accepted

by the Euclidean distance test. Also, the approximate-distance test of order k

will provide a sufficient condition for a polynomial of degree < k not to have

roots inside a circle of given radius. To minimize the computation, the

first-order approximate-distance test will always be applied first, and the

more expensive higher-order distance tests will be applied only to regions

previously rejected by the first-order approximate-distance test of this sec-

tion.

The first-order approximate-distance test is based on replacing the Eu-

clidean distance from a point to a zero set of a smooth function by a

first-order approximation, an approximation that has successfully been used

in the past within algebraic curve- and surface-fitting algorithms [Pratt 1987;

Sampson 1982; Taubin 1988; 1991]. This is a generalization of the update

step of the Newton method for root finding [Dennis and Shnabel 1983], and

although it can be extended to higher dimensions, as for example the case of

surface-surface intersections (briefly discussed in Section 9), here we restrict

our derivation only to the case of interest, i.e., the two-dimensional case.

Let p be a point such that IIV~( p)[l # O, and let us expand ~(q) in Taylor

series up to first order in a neighborhood of p

f(q) =f(p) + vflp)T(q -p)+ O(llq -pll’).

We now truncate the series after the linear terms, apply the triangular

inequality, and then the Cauchy–Schwarz inequality to obtain

If(q) = If(p) + w-(p)%? -p)l 2 If(p)l - lvf(pr(q -PM

2 If(p)l – Illvf(p)ll Il(q –PM.
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Rasterizing Implicit Curves . 11

We now define the first-order approximate distance from p tA Z(f) as the

value of IIq – p IIthat annihilates the expression on the right side

If(p)l
a~(p, z(f)) =

Ilvf(p)ll”
(4.1)

For rendering curves of approximately constant width based on the space

subdivision scheme of Figure 2, an approximation to the Euclidean distance

should be a first-order approximation in a neighborhood of every regular

point of the curve (a point p = F?z such that f(p) = O but \lVf(p)ll > O). That

is, at sufficiently high resolution, the set of pixels which lie at approximate

distance not larger than half the desired line width from the curve must be

perceived as a curve of approximately constant width. Indeed, besides the fact

that it can be computed very fast in constant time, requiring only the

evaluation of the function and its first-order partial derivatives, the approxi-

mation defined by Equation (4.1) is a first-order approximation to the Eu-

clidean distance.

LEMMA 1. Let f: R n * R be a function with continuous derivatives up to

second order, in a neighborhood of a regular point p. of Z( f ). Let w be a unit

length normal vector to Z(f) at pO, and let Pt = p<) + tw, for t G R. Then

PROOF. In the first place, under the current hypotheses, there exists a

neighborhood of pt) within which the Euclidean distance from the point PI to

the curve Z(f) is exactly equal to ItI

ii(pf, z(f)) =Ilp, –pull = Itl

(see for example Thorpe [ 1979, Chapter 16]). Also, since PO is a regular point

of Z( f), we have llT’f(pO)ll > 0, and by continuity of the partial derivatives,

l/11’?f( p, )/1is bounded for small Itl.Thus, we can divide by IIVf(Pt )11without

remorse. And since w is a unit length normal vector, Vf( p{)) = t llVf( P())ll w.

Finally, by continuity of the second-order partial derivatives, and by the

previous facts, we obtain

Vf(p, ) = Vf(po) + O(llp, – poll) = +Ilvf(po)llw + O(ltl)

and

O= f(p,, ) =f(p, ) +Vf(p, )%lo- p,) +O(IIPO-PJ2)

= f(p, ) + Ilvf(pl)llt+ O(ltl’).
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Q
(a):16x16 (b):32x32 (c):64x64

(d):128x128

(g):16x16

F

M

(j):128x128

(c):256x256

I

(k):256x256

(f):512x512

m
I

(i):64x64

T_’y//
) .*.

(1):512x512

Fig. 3. Rendering a fourth-degree and a tenth-degree regular algebraic curves with the algo-

rithm RecursivePaintZeros, and the first-order approximate distance instead of the Euclidean

distance. The squares in the higher-resolution pictures enclose some regions erroneously dis-

carded at lower resolutions.

Moving ~( pl ) to the other member, dividing by llVf( p, )Illt 1, and taking

absolute value, we obtain

~,(p,, z(f)) = lf(pf)l = 1 + ()(ltl),

a(p,, z(f)) Ilvf(pt)ll Itl

which finishes the proof. ❑
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61(P, Z(f))

az(f) .’ p

\’” /
i(p, Z(f )) I

I

6(p,z(f)) I

J2Lz(f) P/ /
Fig. 4. The first-order approximate distance either overestimates or underestimates the exact

distance.

We can now replace the exact distance by the approximate distance in the

algorithm RecursivePaintZeros (Figure 2). As can be appreciated in Figure

3, the results are not very satisfactory. The sets of rendered pixels clearly

represent curves of constant width, but large blocks of pixels are missing.

As it can be seen already in the one-dimensional case in Figure 4, the

approximate distance either underestimates or overestimates the exact dis-

tance. Underestimation is not a problem for the algorithm described above,

because large blocks of pixels will not be erroneously discarded at early

stages of the computation, and the error will be corrected at later stages at

the expense of more approximate-distance evaluations. But overestimation is

a real problem, particularly at low resolution when large blocks of pixel can

be discarded at early stages of the algorithm. It is not difficult to find

examples where the four blocks of pixels are discarded at the initial first-order

approximate-distance evaluation. For example, the zero set of the polynomial

f(x, y) = (x’ +y’ -- I)z is a circumference of radius 1, but the gradient of f

is zero at the origin; and so, the first-order approximate distance from the

origin to Z(f) is X. The results are the gaps that can be appreciated in the

higher-resolution pictures of Figure 3. For algebraic curves the higher-order

approximate distances of Section 5 solve the problem. For a curve defined by

a polynomial of degree k the solution will be, as we mentioned above, to first

perform the first-order approximate-distance test to minimize the computa-

tion, and if a block is discarded, then perform the approximate-distance test

of order k, to be sure that no block is erroneously discarded. It is important to

observe that, except for this problem, the algorithm based on the first-order

approximate distance does a good job.

5. HIGHER-ORDER APPROXIMATE DISTANCES

As we mentioned before, the main disadvantage of the first-order approxi-

mate distance is that it sometimes overestimates the Euclidean distance,

resulting in regions erroneously rejected, particularly at early stages of the

space subdivision scheme. In this section we derive a family of approximate

distances. The first-order approximate distance involves the value of the
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function and the first-order partial derivatives at the point. This will be the

simplest member of our family. In general, the approximate distance of order

k will involve all the partial derivatives of order s k at the point, and for a

polynomial f of degree s k, will prove to be a lower bound for the Euclidean

distance from the point to the algebraic curve Z(f). That is, we will introduce

an algorithm to compute a function ~~( p, 2(f)) of the coordinates of the

point, and the partial derivatives of order s k of the function f at the point

p, satisf~ng the following inequality

0< I$k(p, z(f)) s Np, z(f))

when ~ is a polynomial of degree < k. Since all the approximate distances

will be shown to be asymptotically equivalent to the Euclidean distance near

regular points, by replacing the Euclidean distance with the approximate

distance of order k in our space subdivision schemes we will obtain correct

and practical algorithms for rasterizing curves defined by polynomials of

degree s k.

5.1 Approximate Distance of Order k

In the rest of this section, we will assume (1) that the function f has

continuous partial derivatives up to order k + 1 in a neighborhood of the

point p = (u, u) and (2) that ~(p) # O, because otherwise the Euclidean

distance from p to Z(~) is zero. Taylor’s formula affirms that in such a case

we can write

f(q) = z f;j(x - ‘)’(J’ - ‘)j + O(llq ‘pll’”),
Osi, j,i+JSk

where q = (x, y), and

In the case of polynomials, Homer’s algorithm can be used to compute these

coefficients stably and efficiently [Borodin and Munro 1975], and even paral-

lel algorithms exist to do so [Dowling 1990] (we describe Homer’s algorithm

and other implementation details below in Section 5.3). Now we truncate the

series after the terms of degree k, and we end up with a polynomial of degree
< k, which we will denote Tk fP. Remember that T~ fP(q ) s f(q) for h > k, if

f is a polynomial of degree < k. We want to find a lower bound for the

distance from p to the set Z(Tk fP) = {q : Tk fP(q) = O). We first rewrite the

polynomial as a sum of forms, i.e., polynomials with all the terms of the same

degree

Pfp(q) = :
{ }

~ flj(X - U)’(Y - V)j = ~ f~(q)> (5.1)
h=O i+j=h h=o

ACM Transactions on Graphics, Vol. 13, No. 1, January 1994
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and apply the triangle inequality

k

(5.2)L@fp(q)l 2 If;l - h;llf)(d.

We now consider each one of the forms individually, and show upper bounds

for them. For this we need to recall the binomial formula

(( X- U)’+ (Y-U)’)’ = ~ (:)(x -u)’’(y -u)’’ =llxhl,’,
L+J=h

{()h
],/2

where Xl, is the vector of monomials

}
(x-u) ’(y–u)’:i+j=h ,

i

and II. IIis the Euclidean norm in lk!~‘ 1. Now we can write the form f: as an

inner product in R ~’‘ ]

,,,=,(/./(!j1’2)((:]1’2(x-u)’(Y-u)’) =,;,F:X,,
(i’’fP(q) = ~ f

(IHh
1,/’2

}

with F,, the vector of normalized coefficients fi, i : i + j = h , and

F(, = f: = f,),) = f(O, O), and apply the Cauchy-Schwarz inequality

tf; (q)t = F:Xh s /tFhll IIXhll = llFh113h,

where 8= ~(x - u)”+ (y - U)2 . Now we can return to Equation (5.2) and

obtain

lT’fP(q)l > If;l - i If;(q)l > IFOI - ~&llFh118h.
h=l

Note that since it attains the positive value IFOI = If( p )1 at 8 = O, and it is

monotonically decreasing for 8 > 0, the polynomial F)(6) = IFOI –

Xi , IIF12II8‘1 has a unique positive root ~k. This number, ~k, is a lower bound
for the Euclidean distance from p to Z{ Tk fP ), because for 8< fik, we have

lThfP(q)l > lFOl - ~ llFh118h>0,
h=l

i.e., if q = (x, y) is a point of Z(Tk f~) which minimizes the distance from p,

then 6> 8~. If f is a polynomial of degree < k, we have f(q) - TkfP(q), and

so Sk is a lower bound for the Euclidean distance from p to Z(f).

For our application, where we need to know whether or not a certain given

value of 6 is larger or smaller than dk, we do not compute the value of 6&.,we

ACM Transactions on Graphics, Vol. 13. No. 1, January 1994
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just evaluate the polynomial F;(8) and determine the sign of the result. If

F)(6) >0 then the distance from p to Z(Tk fP ) is larger than 8, and in the

case of polynomials of degree s k, this means that the circle of radius 8

centered at p can be safely discarded, because the curve 2(f) does not cut it.

If the value of 8k was needed for a different application, due to the

monotonicity of the polynomial F~ ( IS) and the uniqueness of the positive root,

any univariate root-finding algorithm will converge very quickly to ~~. In

particular, a Newton-based algorithm will converge in a few iterations. But in

order to make such an algorithm work, we need a practical method to

compute an initial point or to bracket the root. Since we already have a lower

bound ( 8 = O), we only need to show an upper bound for ~k. For this, note

that

F;(8) = [Fol – ~ llFA118hs IFOI– ‘ihllah =F; -1(8)
h=l h=l

for every 620, and so tik < 8h_ ~. Also note that /il is nothing but the

first-order approximate distance of Section 4 because [IFIII= l[Vf( p)l[, i.e., the

approximate distance 8k is also a lower bound for the first-order approximate

distance 81. If IIF2II# O, a tighter upper bound for 8k is &. The polynomial

F2( 8 ) has two roots, one positive and one negative. The positive root is

/

IW’,112 IFOI IIF,II
62= —

411F2112‘~-— 211F211‘
(5.3)

which satisfies the inequality O s C3ks 82 s al. Replacing the Euclidean

distance with this second-order approximate distance very often solves the

problems of the first-order approximate distance, as Figure 5 shows, because

although it is quite common to hit a point where both first-order derivatives

vanish, it is not so easy to hit a point where all the first- and second-order

derivatives vanish.

If f(p) # O, but all the partial derivatives of f of order < k are zero at p,

but at least one partial derivative of f of order k is nonzero at p, we have

dl= ““” =6k.l=~ and

(–)
IFOI “k

ak= IIFkl/ ‘

because IFOI# O, IIFIII= -“. = llFk. ,11= 0, and llFkll + 0. h general, if ll~kll
# O, from the inequality

IFOI– I lll’hll@ s IFOI– llFk118k
h=l
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(a):16x16

(d):128x128

r

.,

(e\:256x256

(j):128x 128

Fiti. 5. Rendering a fourth-degree

1 1

(k):256x256

1 1

(c):64x64

(f):512x512

(1):512x512

and a tenth-degree regular algebraic curves correctly with the.
algorithm RecursivePaintZeros, and tbe second-order approximate distance instead of the

Euclidean distance. Compare with Figure 3.

we obtain a new upper bound for the approximate distance of order k:

5.2 Asymptotic Behavior

In this section we show that the asymptotic behavior of all the approximate

distances near regular points are determined by the behavior of the first-order

approximate distance, i.e., the first-order approximate distance.
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LEMMA 2. Let f: R 2- R’ be a function with continuous partial derivatives

up to order k + 1, in a neighborhood of a regular point p. of Z( f ). Let w be a

unit length normal vector to Z(f) at p., and let Pt = PO + tw, for t E R. Then

PROOF. Since the case k = 1 was the subject of Lemma 1, let us assume

that k > 1. For every value of t,let us denote 8~(t) the approximate distance

of order k from pf to Z( ~), i.e., d~(t ) is the unique positive number which

satisfies the following equation

o = lFo(t)l – $ Ilq(t)llcsk(t)h,
h=l

where here the coefficients are continuous functions of t,because they are

continuous functions of the partial derivatives of f evaluated at p,. Since for

small tlFo(t)l= If(pf)l + O (t # O) and llFl(t)ll = llVf(pt)/l # O, we can divide

by IFO(t )1 and by IIFJ t )11.Remembering that the first-order approximate
distance is ~l(t ) = II’o( t )//1/Fl(t )/1,we can rewrite the previous equation as

follows:

t$~(t) Sk(t)

(
k llFh(t)ll

l–—=—
C$l(t)

E
al(t) ~=.2llFJt)ll }

8k(t)h-2 ak(t).

Now we observe that the three factors on the right side are positive; the first

factor is bounded by 1 because O < 8k(t) s ~,(t);the second factor is bounded

by

k IIFh(t)ll
x

~=~ llF,(t)ll

for 81(t)< 1, which is continuous at t = O, and so bounded for t ~ O, and the

last factor is bounded by C31(t).That is, we have shown that

ah(t)
— = 1 + o(a~(t))
al(t)

which based on Lemma 1 finishes the proof. ❑

5.3 The Approximate-Distance Test

As we explained above, the approximate-distance test of order k provides a

sufficient condition for the distance from a point p to the set Z(Tk fP) to be

larger than a certain threshold. The procedure ApproxDistanceTest

(p, f, k, ●) should return the value FALSE if ~k(p, Z( f )) < ~, and TRUE
otherwise. Since ~~ is a lower bound for 8( p, Z(Tk fP)), if i3~ is larger than

the threshold, then so is 6( p, Z(T~ fP)). So, the circular region of radius 8

centered at p will be discarded when ~~ > ●, or equivalently when F;(c) >0.

Now, in order not to discard a region, it might not be necessary to evaluate
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procedure ApproxDistanceTest (p, ~, k, A)

forh+Otokstepldo

for d + degree(~) – 1 to h step -1 do

fora+Otohstepldo

j,,.d-,-l t j,,d-, -, + u f,,d-,

forit-htodstepldo

f$,d-$-l - ft,d-, -l + V ft,d-t

IIF,II . J=”

ifh=O

F:(f) + If(p)l
else

P(c) + F;-i(c) – 111’hl[6~

if F}(c) <0

return FALSE

return TRUE

Fig. 6, Practical implementation of the

approximate-distance test ( p = (u, L))).

3“(E). Since F;(e) <F: l(E)< “.. < F;(E), if for certain h < k we have

F}(E) <0, we certainly have F;(•) <0. In order to save computation we can

evaluate in sequence F;( ~), F;(•), . . . . F}( E). If F;(6) <0 for a certain value

of h, it is not necessary to continue. Also, FP’( c ) can be easily computed from

FPh 1(E) by subtracting l\FhII~h, and the elements of the coefficient vector Fh

can be computed recursively as well, using Homer’s rule. Figure 6 describes a

practical implementation of this approximate-distance test. The inner two

loops correspond to Homer’s algorithm. And if f is a polynomial, for a correct

rendering k should be equal to the degree of f in the calling statement.

6. HEURISTICS

In this section we introduce simple heuristics to reduce even further the

number of times that the test based on a higher-order approximate distance

needs to be performed.

As we have noted above, the basic problem with replacing the exact

distance with the first-order approximate distance is that at low resolution,

the first-order approximate distance often overestimates the exact distance,

and large blocks of pixels are discarded at early stages of the algorithm. A

simple heuristic to try to solve this problem is described in Figure 7. A pixel

block is not discarded if it does not pass the distance test, unless its father

did not pass the distance test either. With this simple heuristic, pixels stay

longer in the processing queues, and very often the curves are correctly

rendered. Figure 8 shows the same curves of Figure 3, but rendered with this

modified algorithm. The gray areas represent the pixels which do not pass

the distance test at the current resolution, but are kept in the processing

queues because their fathers did pass the distance test. The first curve is

drawn correctly, but the second one still has a missing block of pixels. The

main advantage of this heuristic is that it is as simple to implement as the

algorithm RecursivePaintZeros. The disadvantage is clearly that, although

in a lesser degree, it still produces errors. In our experience, the algorithm

works very well. It is difllcult to find examples where it fails to render all the

points, but nevertheless, examples exist, as Figure 8 shows.
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procedure KeepOnePaintZeros (~, ZO,yo, n)

input-stack + 0

output-stack - 0

while n> 1 dp

Push ((mo, yo, accepted), input-stack)

n * n/2

while input-stack + 0 do

(z,, yo, status-father ) + P~!~ut-stack)

X3*Y3

p~~ . .
I

n

. .

(z,, y,) J ~ (~2)Y1)

fori=lto4stepldo

if 6k((z,, y,), Z(f)) < half-line-width n

Push((z,, y,, [ ccceptedl), output-stack)

Ielse if n >1 and status-father= accepted I

IPush((z,, y,, r-ejected),output-stack)]

input-stack t output-stack

output-stack - 0

while input-stack # 0 do

(z, y) ~ Pop(input-stack)

PaintPixel (z, y)

Fig. 7. First approximate rendering algorithm, Differences with the algorithm Recursive-

PaintZeros are enclosed in boxes.

To understand why this heuristic fails, look at the gray areas in the

pictures of Figure 8. These areas can be seen as safety neighborhoods of the

rendered (black) pixels. In order to be sure that no pixel is erroneously

discarded, pixels in these safety neighborhoods are also tested at the next

higher resolution. What is apparent from the pictures is that the neighbor-

hoods are not balanced around the rendered pixels. Some discarded pixels are

not separated from the rendered pixels by the safety neighborhoods, and

those are exactly the cases where low-resolution pixels are erroneously

discarded. The next heuristic involves keeping the neighborhoods balanced.

This effect can be achieved by applying a dilation operation [Serra 1982] at

the beginning of each subdivision level, as described in Figures 9 and 10. For

every pixel currently accepted, the four nearest neighbors (4NN) in the

vertical and horizontal directions are included as the safety neighborhood, if

not yet in the processing queues. The main advantage of this heuristic is that

it works better than the previous one. The disadvantages are two. First of all,

the data structures must become more complex. We have to represent two-di-

mensional sets, be able to test membership, and be able to efficiently locate

the four nearest neighbors of a pixel. The second disadvantage is that,

because of the dependencies on the neighboring pixels, it can only be applied

to the breath-first version of the subdivision algorithms. The simplest data

structure for representing a two-dimensional grid and for testing neighbor
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(a):16x16 (b):32x32 

D 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(c):64x64 

(g):16x 16 

~ 

I 

(j):128x 128 (k):256x256 (1):512x512 

Fig. 8., Rendering the curves of Figure 3 with the algorithm KeepOnePaintZeros: No missing 

points in the first case. In the second case the quality has improved, but it still has some missing 

points. The gray areas represent the pixels which have been rejected at the current resolution, 

but kept in the processing queues. 

membership is a two-dimensional array, with which the required operations 

can be executed in constant time, but requiring O(n2) storage. The alterna- 

tive is to use an explicit quad-tree structure, for which membership requires 

log,(depth) + 1 operations, and the expected time for testing membership of 

the four nearest neighbors of a member of the set is constant [Samet 19881. 
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procedure DilateStack4FJN (input-stack, n, clipping-region)

set h q

for (zO,yO)E input-stack do

set + set U {(zo, ye)}

output-Etack * 0

while input-stack + O do

(eO,yO) + Pop(input-stack)

Push((zO, y.), output-stack)

*

(20, Yo) ● (z,, V,)

(Z,, yt) . ● . (Z,, yl)

(Z,, y,) ●

for i = 1 step 1 until a = 5 do

if (z,, y,) @ set and (z,, yi ) E clipping-region

set t set U {(z,, yi)}

Push((z,, Y,), output-stack)

return output-stack

Fig. 9. Simple 4-NN dilation procedure

procedure RecursivePaint Zeros4NN ( f, ZO,YO,n)

$:ryg’i: ; EEEmsq’-de
output-stack ~ 0

Push ((zO, YO),input-stack)

while n > 1 do

input-stack - DilateStack4NN (input-stack, n, clipping-region)

n * n/2

while input-stack # O do

(zo, y,) e(z~;~ut-stack)

❑“@y)n

(Z,, y,) (X,, y,)

fori=ltoi=4stepldo

if 6~((z,, Vi), Z(f)) < half-line-width . n

Push((z,, Y,), output-stack)

n * n/2

input-stack ~ output-stack

output-stack - 0

while input-stack# 0 do
(z~) + Pop (input-stack)
PaintPixel (z, y)

Fig. 10. Approximate rendering algorithm based on the 4-NN dilation heuristic. Differences

with the algorithm RecursivePaintZeros are enclosed in boxes.
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(b’):32x32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c):64x64 

(g):16x16 

l--liF 
I 

(j):128x 128 

(e):256x256 

(h):32x32 (i):64x64 

(k):256x256 (1):512x512 

Fig. 11. The curve of Figure 3 correctly rendered with the algorithm RecursivePaint- 

Zeros4NN. The gray areas represent the pixels included by the procedure DilateStacMNN. 

However, since usually even the display array can be used for this purpose, it 

is practical to use the two-dimensional array. In the case of a very high-reso- 

lution output device, the initial square region can be divided into blocks of 

manageable size and then process them one by one. Figure 11 shows the 

same two curves of Figures 3 and 8 correctly rendered by this algorithm. 

If we picture the set of different resolution pictures as a pyramid, the first 

heuristic applies vertically and the second one horizontally. Since neither one 
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of the two heuristics described in this section precludes the application of the

other one, and although the last heuristic works very well in practice, in

certain cases it might be necessary to apply both of them.

7. BEHAVIOR NEAR SINGULAR POINTS

So far, we have talked about regular curves. That is, the gradient Vf of the

function ~ is never zero on 2(f). Lemma 1 and Lemma 2 show that in this

case, the algorithms described above will render a curve of approximately

constant width. But implicit curves very often have singularities, and our

algorithms have to deal with them. In this section we study the behavior of

the algorithms described above near singular points. We show that in most

cases, they correctly render curves with singular points without modification;

we identi~ those cases where they do not; and we propose solutions to these

problems.

7.1 Multiple Points and Tangent Lines

In order not to clutter the exposition with unnecessary details, we will

assume in what follows that the function ~( x, y) has as many continuous

partial derivatives as needed. The multiplicity of a point p as a zero of the

function f is the minimum index h such that at least one partial derivative

of f of order h is not identically zero at p

m(p; f) = min(h:f~ X 0],

where the form f} was introduced in Equation (5.1) above or ~ if all the

partial derivatives of f are identically zero at p. Since f; is a constant, and

equal to the function itself evaluated at the point p, the set 2(~) is exactly

the set of points with positive multiplicity

z(f) ={p=R2:m(p; f)> o}.

A point p of multiplicity one is called a simple, or regular, point of 2( f ). If

m( p; f) > 1, p is called a multiple, or singular, point of 2(f).

Lemma 1 described the behavior of the first-order approximate distance al

in the vicinity of a simple point, while Lemma 2 did the same for the

higher-order approximate distance ~k. The behavior near a multiple point

depends not only on the multiplicity of the point itself, but also on the

structure of the tangent space at the point. At every simple point p, the curve

2(f) has a unique tangent, whose implicit equation is given by

(q e R2:vf(p)T(q –p) =f;(q) = o}.

A multiple point has multiple tangents. According to Taylor’s formula, if

m(p; f) = k > 1, then

f(q) = f)(q)+ O(llq -Pllh+ ’). (7.1)

Since fj is a k th degree form in two variables, it can be factorized as a

product of some quadratic forms without nontrivial roots SI, ..., s, and some
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Fig. 12. Tangent lines ancl transversal lines at a singular point.

linear forms l,+ l,... ,lh , [Walker 1950], all of these with real coefhcients:

f;(q) = fis,(q -p)” l:~r,lt(q -p).
~=1

(7.2)

In the complex domain, each quadratic factor s, also splits into two linear

forms 1, and j,, now with complex coefficients. Each linear factor defines a

tangent line to Z(f) at p. Each quadratic factor determines a pair of

conjugate “imaginary” tangent lines, two tangent lines in the complex do-

main which cannot be observed in the real domain, except for increasing the

multiplicity of p. Note that both the quadratic and the linear factors can be

repeated, in which case we can talk about multiplicity of tangent lines. If

1(q – p ) is a linear form, either with real or complex coefficients, and not

necessarily one of the 1, above or one of the complex factors of the s,, its

multiplicity at p is defined as the exponent of l(q – p ) in the product (7.2),

and it is denoted mP( l; f). Tangent lines, either real or imaginary, correspond

to forms with positive multiplicity. Forms with mP(l; f) = O are called “trans-

versal” to Z( f) at p. Look at Figure 12 for an illustration.

7.2 The Approximate Distance Near Multiple Points

Now we can go back to analyzing the behavior of our algorithms in the

vicinity of singular points. Since there are many cases to consider, instead of

enunciating and proving a detailed proposition, we will show and analyze

typical cases.

Figure 13 shows examples of implicit curves, algebraic in all the cases, with

isolated singular points. In (a), (b), (c), (f), (g), (h), and (i), the origin p = (O, O)

is the only singular point. It is a double point, i.e., m( p; f) = 2, in (a), (b), (c),

and (i); a quadruple point in (f), and a sextuple point in (g) and (h). In (d)

there are four double points, all intersections of pairs of lines. And in (e) there

are four double points, two triple points, and two quadruple points. In (i), the

origin is isolated as an element of Z(f), but still a double point. In (a) and (b)

the origin has two simple tangents. In (c) the origin has one double tangent, a

“cusp.” In (d) the four singular points have two simple tangents each, which

are contained in the the curve itself. In (e) the two double points and the two

triple points have simple tangents, but the two quadruple points have one
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H
(s3)

2!id
(4 ,

$i!F
1

(d

(e) ,

I

(c)

!3
(f)

❑
(i)

Fig. 13. Examples of algebraic curves with singular points rendered in a grid of 512 x 512

pixels with the algorithm RecuraivePaintZeros4NN. Almost identical results are obtained

using the second-order approximate-distance test instead of the Euclidean distance test in the

algorithm RecuraivePaintZeros.

double and two simple tangents each. The origin has a quadruple tangent in

(0 and three double tangents in (g). In (h) the origin has one double and four

imaginary tangents, and in (i) the origin is an isolated point of 2(f); and so,

the two tangents are imaginary.

As we said before, these are typical cases. The algorithm Recursive-

PaintZero4NN was used to render them, but the behavior near singular

points is the same for the other algorithms as well. We can see in the pictures

that multiple points with simple real tangents are rendered correctly, as well

as some of the cases of multiple tangents. However, where the multiplicity of

the tangenta increase, or when imaginary tangents are also present, as in (h)

the approximate distance seems to underestimate the exact distance produc-

ing thicker lines.

If p is a point of multiplicity k of ~, according to Equation (7.1), the

behavior of the tinction f in the neighborhood of p is governed by the form
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(d)

(d

(e)

1 I
(h)

Fig. 14. Closeups of curves In Figure 13

pixels.

ft. With a reasoning similar to the

W
(c)

H1 ,
(f)

near singular points.

proof of Lemma 1,

(i)

Neighborhoods of 128 ~ 128

we can show that

If(q)l If;(q)l + o(llq –P112)

‘i’(q’z (f)) = Ilvf(q)l[ = Ilvf)(q)ll

for every point q such that f;(q) # O. But from Euler’s theorem [Walker

1950], since fj is a form of degree k, we have

f)(q) = ;Vf)(qf”((l-p),

and applying the Cauchy–Schwarz inequality, we obtain

If)(q)l 1

Ilvf)(q)l[ < i“q ‘p””

This inequality explains the behavior of the first-order approximate distance

near an isolated singular point, because in that case IIq – p II eventually
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(a)
Ez

(b) (c)

Fig. 15. An isolated sextuple point with three imaginary double tangents. The regions inside

the squares in (a) and (b) are rendered at four times the resolution in (b) and (c), respectively.

(a)

Fig, 16. Zooming up on a part of the curve that falls below the resolution of the picture, The

regions inside the squares in (a) and (b) are rendered at four times the resolution in (b) and (c),

respective y.

becomes equal to the exact distance from q to 2(~). It also explains the

behavior of the higher-order approximate distances near an isolated singular

point, because O < ~~ <81 for every value of h. Figure 15 shows an example

of isolated multiple point, sextuple in this case, where the neighborhood of

the singular point is rendered at three different resolutions.

In Figure 13h we have a related case. The singular point is not isolated

here, but the curve still shows similar behavior near to the origin. In Figure

16 we can see an example of a curve with a singular point at the origin, which

seems to be showing the same behavior at low resolution, but we discover

that it is not the case when we increase the resolution near the singularity.

Although we have explained the behavior of the first-order approximate

distance near an isolated singular point, no general result can be established

about when it overestimates or underestimates the exact distance near an

arbitrary singular point. For the simplest example, let us consider the

2 2 for certain constant A The set 2(f) is thepolynomial f(x, y) = y2 – A x ,

union of two lines. Figure 17 shows this curve for three different values of A.

A simple algebraic computation shows that the relation between the first-

order approximate distance and the exact distance from a point p = (O, y) on
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Fig. 17. The set Z(y2 a2.t-2) for three different values of a: (a) A = 1, (b) A = 3, (c) A = 10,

3

2.5

2

1.5

1

0.5

n
o 50 100 150 200 250

i

4

Pw-1
300 350 400

Fig. 18. Plot of the ratio of the approximate distance over the exact distance from a point

p = (CM{ t ), sin(t )) to the curve 2( y2 – a2 X2 ) for three different values of A.

the vertical axis is given by the following expression

a,(p, z(f)) JiTF

t?(p, z(f)) = 2 “

Depending on the value of the constant a, this ratio goes from 1/2 to Z. It is

important to note though, that even when the value of a is large, the region

where the ratio is larger than 1 is limited to a small neighborhood of the

vertical axis, as can be seen in Figure 18, which shows a plot of the ratio as a

function of the angular parameter t, for p = (cos(t), sin(t)), and three differ-

ent values of the parameter A (since the ratio is a homogeneous function of

zeroeth order, for a general point p = (x, y ) it on] y depends on the angle

t = arctan( y/x)).

8. EXI?ERIMENTS

We have seen that replacing the Euclidean distance test with the first-order

approximate-distance test in the algorithm RecursivePaintZeros does not
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L I
(a):128x128

1

~~
(b):256x256.,

13i3
[e):256 x 256

(k):256x256

(c):512x512

EBB
(f):512x512

1 1
(i):512x512

I 1
(1):512x512

Fig. 19. Examples ofalgebraic cuwesof de~&8tith 45coeficienk (tip row), de~&l8tith

190 coefficients (second row), degree 32 with 561 coefficients (third row), and degree 50 with

1326 coefficients (bottom row), correctly rendered with the algorithm RecursivePaintZeros,

and the second-order approximate-distance test instead of the Euclidean distance test, at three

different resolutions.

produce correct algorithms, not even using the heuristics introduced above.

Although for algebraic curves the algorithm based on the approximate-dis-

tance test of the same order as the degree of the polynomial is correct, it is

very often too expensive to evaluate. The algorithm based on the second-order

approximate-distance test, maybe with the addition of the heuristics de-
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EEl
(a):128x128

(d):128x 128
I 1

(g):128x128

~L—_————
fb):256x256 (c):512x512

EfB
(c):256x256

(h):256x256

(k):256x256

I!El
(f):512x512

(i):512x512

>
(1):512x512

Fi~. 20. The same curves of Figure 19 correctlv rendered with the algorithm Recursive-

P~intZeros, and the approximate-distance test of the same order as the degree of the polyno-

mial instead of the Euclidean distance test.

scribed above, has been able to render correctly all the examples of algebraic

curves presented in the article, and with significantly less computation. We

even know when such an algorithm fails. It rejects a region centered at a

point p if the function value is nonzero at the point, but all the first and

second derivatives vanish, or are very close to zero, at the point. In general

this is very unlikely to happen, but in any case it can be tested; and a
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I 128 X 128 I 256 X 256 ] 512 X 512 ] 1024 X 1024 I

Degree 8 ] 1.5 2.5 4.6 9.0

Degree 18 13.6 15.5 41.3 69.0

Degree 32 38.6 135.7 225.8 366.6

Degree 50 81.5 345.2 757.1 1,294.0

Fig.21. Execution times for the pictures in F@re 19.

~

128 X 128 256 X 256 512 X 512 1024 X 1024

Fig. 22. Execution times for the pictures in Figure 20.

higher-order approximate distance be used instead. The algorithm

the third-order approximate-distance test will solve the problem

practical cases. Depending on the application, either correctness is

based on

for most

the most

serious concern or speed. If correctness is more important, then algebraic

curves must be rendered using the test of the same order as the degree of the

polynomial. Otherwise, we recommend to use the algorithm based on the

second or third approximate distance and either (or both) heuristics.

To push these algorithms to their limits we will first compare execution

times for curves of different degrees. Figures 19 and 20 show four different

curves of degree 8 (45 coefilcients), 18 (190 coefficients), 32 (561 coefficients),

and 50 (1326 coe~cients) composed of different numbers of circumferences of

the same radius located in a regular fashion. Figure 19 shows these four

curves rendered at three different resolutions with the algorithm based on

the second-order approximate-distance test, and no heuristic, while Figure 20

shows the same curves rendered with the correct algorithm based on the

approximate-distance of the same degree as the polynomial, at the same

three different resolutions. No major difference can be observed at the

highest resolution, with the correct algorithm being more conservative at

lower resolutions as expected.

The execution times are very different though. Figures 21 and 22 show the

timing results for Figures 19 and 20 respectively, and at an extra higher

resolution. The figures are in seconds and a decimal fraction of a second.

These timing results correspond to actual running times in a lightly loaded

IBM RS/6000 model 930 workstation, including 1/0 time and system over-

head. The improvement in running time is more obvious at higher degrees. In

general, we can observe that running times initially grow quadratically with

the resolution, but at a certain point they start to grow linearly, as expected.

So that, doubling the resolution, approximately doubles the running time.

Running times for reasonably low-degree curves are not as high as those

quoted for these high-degree examples. Figures 23 and 24 show the corre-
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128 X 128 256 X 256 512 X 512 1024 X 1024

(a) 0.2 0.4 1.1 3.6

(b) 0.4 0.7 1.6 4.0

(c) 0.3 0.6 1.3 3.5

(d) 0.6 1.3 2.7 5.8

(e) 6.4 13.1 24.9 46.5

(f) 3.0 5.6 10.3 20.0

(s) 3.1 6.0 11.5 22.6

(h) 2.8 4.6 7.8 14.3

(i) 0.2 0.3 0.9 2.9

Fig. 23. Execution times for the curves in Figure 13 at four different sizes, using the approxi-

mate distance of the same order as the polynomial in algorithm RecursivePaintZeros instead

of the Euclidean distance.

128 X 128 256 X 256 512 X 512 1024 X 1024

(a) 0.2 0.4 1.0 3.5 ‘

(b) 0.3 0.6 1.4 3.7

(c) 0.3 0.5 1,2 3.2

(d) 0.5 1.1 2.3 5.1

(e) 3.3 6.6 12.5 23.9

(f) 1.7 3.2 6.1 12.7

(g) 1.8 3.5 6.9 14.0

(h) 1.5 2.5 4.6 9.2

(i) 0.1 0.3 0.9 2.9

Fig, 24. Execution times for the curves in Figure 13 at four different sizes, using the approxi-

mate distance of order two in algorithm RecursivePaintZeros instead of the Euclidean

distance

spending timing results for the nine curves of Figure 13, rendered again with

the algorithm based on the second-order approximate distance and the

approximate distance of the same order as the polynomial. Since the addition

of any one of the two heuristics to the algorithm based on the second-order

approximate-distance test do not significantly increase the running times, we

have decided not to show the timings for these cases. In general, for low

degree the rate is already appropriate for interactive devices and clearly

practical for noninteractive rendering devices such as laser printers.

9. EXTENSIONS AND APPLICATIONS

In this section we briefly discuss several extensions and applications of the

algorithms introduced in this article. These extensions and applications are

the subject of our current research.

9.1 Union of Planar Curves

Let us consider rendering the union of two implicit curves Z(h) and Z(g),

where h( x, y) and g( x, y ) are two functions of two variables with at least
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continuous first-order partial derivatives, and let f = g. h. Since

f(x, y)=o=g(x, y)=o or h(x, y)=O,

we have 2(f) = Z(gh) = Z(g) u 2(h). We can clearly use the algorithms

discussed above to render 2(f), but if the two factors g and h are available,

or can be easily computed, this does not make sense from the computational

point of view. There are two computationally effective approaches to this

problem. The first one is to render Z(g) and Z(h) independently, and in two

different memory arrays, and then take the logical “or” of the two two-dimen-

sional arrays as the rasterized version of 2(f). This approach clearly mini-

mizes the evaluation time, but maximizes memory usage. The second ap-

proach is based on the following fact

r$(p, Z(g) u Z(h)) = min{8(p, Z(g)), 8(p, Z(h))}.

Only one array will be used, and in principle the two distances must be

evaluated to decide whether to discard a square region or not. However, if

information about which one of the two distances was small for the father is

kept, and the same distance is evaluated first for the four children of a

region, most of the painted pixels will eventually require only one distance

evaluation, and all the rejected pixels will require two. In the case of

polynomials, we can do even better. If g is a polynomial of degree k, and the

approximate distance of order k is evaluated at a point p during the

execution of the algorithm, no pixel inside the circle of radius 8& minus the

desired line width centered at p will be part of the rasterized version of Z(g),

and only the approximate distance to 2(h) needs to be evaluated inside this

region.

Clearly, the union of more than two curves can be handled in a similar way.

9.2 Intersection of Planar Curves

Now, let us consider rendering the intersection of two implicit curves Z(h)

and Z(g), where h( x, y) and g( x, y) are again two functions of two variables

with at least continuous first-order partial derivatives. Aa in the previous

case, we can use the algorithms discussed above to render the curves Z(g)

and Z(h) independently, and in two different memory arrays, and then take

the logical “and of the two two-dimensional arrays as the rasterized version

of Z(g) n Z(h). This approach clearly maximizes both evaluation time and

memory usage. A better approach can be based on the following inequality

i3(p, Z(g) n Z(h)) > max{8(p, Z(g)), 8(p, Z(h))}.

That is, if one of the two distances is large, the distance to the intersection is

large. The idea is to measure the two distances and discard the region only if

one of them is larger than the threshold. In the algebraic case, and with the

same bookkeeping discussed in the previous section, most of the discarded

regions will require only one distance evaluation, and all the accepted regions
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Fig. 25. Example of curve with a multiple component

(fix, y) = ((x + 1)2 + v~ – 5)~((.r – 1)2 + y~ – 5)),

which can be identified by the different thickness.

will require two. But since in general two curves intersect in a finite set of

points (they can have a common component as well), this approach is clearly

the most cost effective. If the intersection of the two curves is a finite set of

points, the rasterized version will be formed by a few clusters of neighboring

pixels. If the resolution is high enough, each of these clusters will correspond

to one intersection point in the region. Then, if the locations of the intersec-

tion points are required at higher resolution, a numerical root-finding algo-

rithm can be used to improve the estimate. However, the main problem which

remains to be solved is how to determine if a cluster corresponds to a single

intersection point or not. In the algebraic case we could use symbolic methods

to count the number of zeros inside a box [Milne 1990; Pedersen 199 la], and

if the number is larger than one, keep refining until each cluster corresponds

to a single intersection point. However, as we mention above, these methods

are only practical for very low-degree polynomials and can also be unstable.

We will leave this subject for further research. And clearly, as in the case of

union of curves, the intersection of more than two curves can be handled in a

similar way.

9.3 Approximation of Singular Points

As we discussed in Section 7, the algorithms introduced above tend to render

the neighborhoods of singular points at larger width. In certain applications,

as for example when the user wants to locate the singular points by looking

at the display, this can be seen as a feature. Also, multiple components of

algebraic curves can be identified by looking at the rasterized representation

produced by these algorithms, as it is illustrated in Figure 25. Even the

relative thickness of the lines with respect to the regular parts can be used to

determine the multiplicity.

However, in other applications this property of the approximate distances

could be a disadvantage. In those cases it is necessary to locate the singular

regions and solve the problem. Since the singular points of the curve 2(f) are

the set of points q which satisfy f(q) = f,(q) = f,,(q) = O, a possible solution

is to rasterize the intersection of the three curves 2(f) n 2( ~x) n 2( f, ),

locate clusters which correspond to one or more singular points, continue
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................,....., .,. .....’. .
.. ... .. ..,,;. ,,

. ...@/

....,.. . ..

Fig. 26. Surface-surface intersection rendered with the
.. .,

.. .. .. .. . .....’,

algorithms described in the text based on the first-order

approximate distance. ...... . . .. . .. .. ..
... .....’...

..:,.. .,..,. ..,,
..... . .. .. . ...’....

with the recursive space subdivision scheme only in those regions for one or

two more steps at the ‘subpixel level, and then paint only those pixels which

contain at least one of these high-resolution subpixels.

9.4 Rendering Surface-Surface Intersections

Our next task is to generalize the algorithms described above to higher-di-

mensional cases. That is, we want to extend the previous methods to render

two-dimensional projections of higher-dimensional implicit curves. This is

particularly interesting in the CAD arena, where nonplanar three-dimen-

sional curves, intersection of two implicit surfaces, have to be rendered.

The approach here is to work in the original space, where the curve lives,

and apply the projection at rendering time. In this way the user could also

interact with the system to choose the viewpoint, i.e., once the points are

computed, different views of the curve can be rendered in linear time (propor-

tional to the number of points in the approximating set). Figure 26 shows an

example of a three-dimensional curve rendered with an extension of the

algorithms described above to the three-dimensional case, and the extension

of the first-order approximate distance described below. As in the planar case,

some missing points can be observed in this example as well.

Both the space subdivision scheme, and the 4NN dilation procedure have

clear extensions to higher-dimensional spaces. For example, in three-dimen-

sional space, every voxel is divided into eight lower-resolution voxels, and

each of them has six nearest neighbors. In order to properly extend the

algorithms to higher dimensions, we just have to show how to measure the

approximate distances from a point to a higher-dimensional implicit set. In

Taubin [1988; 1991], we have shown how to extend the first-order approxi-

mate distance to the higher-dimensional case. If f: Rn + R& is a vector-val-

ued function with continuous first-order derivatives, and the Jacobian Dff p)

of f at p = R‘ has maximum rank k, then the following expression is a

first-order approximation of the Euclidean distance from p to 2(0

al(p, z(f))z = f(p)@f(p)LM(p)T)-if(p).
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The proper extension of the higher-order approximate distances to the

higher-dimensional case requires a deeper analysis, and we will also leave it

for further research.

9.5 Parallel Algorithms

Except for RecursivePaintZeros4NN, all the algorithms described in this

article are ideal for parallel implementation due to the nonexistent communi-

cation between different pixels. Clearly, if as many processors as pixels are

available, a parallel version of the ideal rendering algorithm of Figure 1, with

the Euclidean distance test replaced by the higher-order approximate-dis-

tance test, can be trivially implemented. With this algorithm, an algebraic

curve defined by a polynomial of degree k can be rendered in 0(1) time, the

time required to evaluate the polynomial and all its partial derivatives at a

point using Homer’ algorithm, which itself can be parallelized [Dowling

1990]. If not so many processors are available, we just need to subdivide the

original region in as many processors are available and assign each subregion

to a different processor for rendering. If the side of the original square is a

power of two, the most symmetric way to subdivide it is using a power of four

number of processors.

APPENDIX

Equations

In this appendix we list all the polynomials used for creating the figures and

the specifications for the bounding boxes:

Figures 3, 5, 8, and 11, (a) to (f). Box centered at (0.0, 0.5), side 5.0.

/_(X,.Y) = 0.004 + O.11OX - 0.177y - 0.174x’ + 0.224xy - 0.303y’

— 0.168x:] + 0.327xxy – 0.087xyz – 0.013yq + 0.235x4

– 0.667x’;y + 0.745xzyz – 0.029xy~ + 0.072y4.

Figures 3, 5, 8, and 11, (g) to (l). Box centered at (0.0, 0.6), side 4.5.

f(x, Y) = -0.139- 0.179x - 1.798Y + 0.482xZ - 0.399xY - 6.367y’

+ 0.084x:1 + 13.770xzy + 0.314xya – 8.279y J + 0.910x4

– 0.762xay + 41.679 .z_2y2– 0.533xy ’1– 1.938y4 + 2.297x5

— 32.303xdy – 0.658 x:jyz + 34.719Z2YS – 3.995xy4 + 3.147y A

– 4.106xG + 10.536XS.Y – 92.138 X4.YZ + 12.892 XS.YS

— 0.440 XZ.Y4 – 4.514xy5 + 0.898yG – 2.588x7 + 22.109xGy

+ 1.609 .xsyz – 36.923x4ys + 8.600XSY4 – 7.411XZYS

+ 0.251 X.Yfi – 0.542y7 + 3.079xS – 13.236x7y + 71.933xGyz

- 33.078 .Ysys + 8.256x4y4 + 8.130x~ys + 0.418 X2.YG

+ o.975xy7 + o.037y*
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Figure 13(a). Box centered at (0.0, 0.0), side 5.0.

f(x, y) =X3 + 3x2y -X2 +yz

Figure 13(b). Box centered at (0.0, 0.0), side 5.0.

f(x, y) =4X4 - 4X2 +yz

Figure 13(c). Box centered at (0.0, – 1.0), side 5.0.

f(x, y) = 3y4 – 5y3 +X2

Figure 13(d). Box centered at (0.0, 0.0), side 5.0.

fix, y) = (2y -x - 1)(2Y -x + 1)(2X +y + 1)(2X + y - 1)

Figure 13(e). Box centered at (0.0, 0.0), side 5.0.

f(~,Y) = (2Y -x - 1X2Y –x + 1)(2X +Y + 1)(2X +Y– 1)

((5x - 2)2 + (5Y - 6)2 - 1O)((5X + 2)2 + (5Y + 6)2 – 10)

(25(x2 +y2) – 10)

Figure 13(f). Box centered at (0.0, 0.0), side 6.0.

f’(x, y) = ((x + 1)2 +y2 - 1)((X - 1)2 + yz - 1)

((x + 1.1)2 +Y2 - 1.21) ((X – 1.1)2 +yz – 1.21)

Figure 13(g). Box centered at (0.0, 0.0), side 2.5.

f(x, Y) = (3X2 –.Yv2y2 – (X2 +yz)’

Figure 13(h). Box centered at (0.0, 0.0), side 2.5.

f(~,y) = (8x4 – 4x2y2 +y4)y2 – (X2 +yz)’

Figure 13(i). Box centered at (0.0, 0.0), side 5.0.

f(x, y)=xz+yz+y’

Figure 14, (a) to (i), are just regions of Figure 13, (a) to (i), rendered at

higher magnification.

Figure 15, (a), (b), and (c) share the same polynomial. The three boxes are

centered at (0.0, 0.0), and the sides are 2.5, 0.625, and 0.1562.

f-(x, y) = +0.2X6 + 9.ox4y2 - 5.ox2y4 + l.oy’ - (X2 + yv4

Figure 16, (a), (b), and (c) share the same polynomial. The three boxes are

centered at (0.0, 0.0), and the sides are 10.0, 2.5, and 0.625.

f(x, y) =X2(4X2 –yv2 - (X2 +yz)’

Figure 17 is explained in the corresponding caption.
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Figures 19 and 20, (a) to (l), share the same center (0.0, 0.0), and side 6.0.

Figures 19 and 20, (a) to (c).

f(x,. v)= ((x - 0.5)2 + (y + 0.5)2 - 0.4)( (.X + 0.5)2 + (y + 0.5)2 - 0.4)

((x - 0.5? + (.Y - 0.5)2 - 0.4)((X + 0.5)2 + (y - 0.5)” - 0.4)

Figures 19 and 20, (d) to (f).

f(x,. v)= ((x+ I) ’+ (y+ 1)2- 0.4)( (X+ l)2+y’-o.4)

((x+ l)2+(y- 1)2- o.4)(x’ +(y+l)2-o.4)

(.Y2 +yz 0.4)(X2 + (y – 1)2 – 0.4)((X – 1)2 + (y + 1)2 – 0.4)

((x - 1)’ +,y’ - 0.4)((.K – 1)2 + (y – 1)2 – 0.4)

Figures 19 and 20, (g) to (i).

f(x,. v) = ((x - 1.5)2 + (y + 1.5)2 - 0.4)((X - 0.5)2 + (y + 1.5)2 - 0.4)

((x + 0.5)2 + (y + 1.5)2 - 0.4)( (.% + 1.5)2 + (y + 1.5)2 – 0.4)

((x - 1.5)2 + (v + 0.5)2 - 0.4)((X - 0.5)’ + (y + 0.5)2 - 0.4)

((x + 0.5)2 + (y + 0.5)2 - 0.4)((X + 1.5)’ + (y + 0.5)2 - 0.4)

((x - 1.5)’ + (,Y - 0.5)2 - 0.4)((X - 0.5)2+ (y - 0.5)2 - 0.4)

((x + 0.5)’ + (y - 0.5)2 - 0.4)((X + 1.5)2 + (y – 0.5)2 – 0.4)

((x - 1.5)2 + (y - 1.5)2 - 0.4)((X – 0.5)’2 + (y – 1.5)2 – 0.4)

((x + 0.5)2 + (y - 1.5)2 - 0.4)((X + 1.5)2 + (y – 1.5)2 – 0.4)

Figures 19 and 20, (j) to (l).

f(x,.y) =((x+2)’ +(~+2)’ -o.4)(( x+2)’ +(y+l)’ -4)4)

((x + 2)2 +.V2 - 0.4)((X + 2)2 + (y – 1)2 – 0.4)

(( X+2) ’+( Y-2)2 -0.4) (( X+1) ’+( Y +2)2-0.4)

((x+ l)2+(y+l)2 -0.4)( (X+ l)2+y’-o.4)

((x+ l)’2+(y-l)2- 0.4)((X + 1)2 + (y – 2)2 – 0.4)

(x’+ (y+ 2)2 — o.4)(x~ + (y + 1)2 – 0.4)

(.Y’+y’– 0.4)(X2 + (y – 1)2 – 0.4)

(x’+ (y-2)’ -0.4) ((x- l)2+(y+2)2-0.4)

((.Y - 1)2 + (y+ 1)2 - 0.4)((X - 1)2+ y’ - 0.4)
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((x - 1)2 + (y - 1)2 -0.4)((X. - 1)2 +(y -2)2 -0.4)

((x- 2)2 + (y + 2)2 - 0.4)((X – 2)2 + (y + 1)2 – 0.4)

((x - 2)2 +3’2 - 0.4)((X – 2)2 + (y – 1)2 – 0.4)

((x - 2)2 + (y - 2)2 - 0.4)

Figure 25. Box centered at (0.0, 0.0), side 8.0.

f(x, y)= ((x+ 1)2+ Y’-5)2((X - 1)2 +y’ -5)
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