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�is paper studies the distance-based congestion pricing in a network considering the day-to-day dynamic tra�c 	ow evolution
process. It is well known that, a
er an implementation or adjustment of a new congestion toll scheme, the network environment will
change and tra�c 	ows will be nonequilibrium in the following days; thus it is not suitable to take the equilibrium-based indexes
as the objective of the congestion toll. In the context of nonequilibrium state, prior research proposed a mini–max regret model to
solve the distance-based congestion pricing problem in a network considering day-to-day dynamics. However, it is computationally
demanding due to the calculation of minimal total travel cost for each day among the whole planning horizon. �erefore, in order
to overcome the expensive computational burden problem and make the robust toll scheme more practical, we propose a new
robust optimization model in this paper. �e essence of this model, which is an extension of our prior work, is to optimize the
worst condition among the whole planning period and ameliorate severe tra�c congestions in some bad days. Firstly, a piecewise
linear function is adopted to formulate the nonlinear distance toll, which can be encapsulated to a day-to-day dynamics context.
A very clear and concise model named logit-type Markov adaptive learning model is then proposed to depict commuters’ day-
to-day route choice behaviors. Finally, a robust optimization model which minimizes the maximum total travel cost among the
whole planning horizon is formulated and a modi�ed arti�cial bee colony algorithm is developed for the robust optimization
model.

1. Introduction

Congestion toll is generally regarded as a potent economic
instrument for transportation demand management (TDM)
to alleviate the tra�c congestion and improve the system
performance in urban areas and also has received more and
more attention both academically and practically. Since the
successful implementation of congestion pricing in Singapore
from 1975, many countries and cities (such as Norway, Lon-
don, Stockholm andMilan) have implemented a road conges-
tion pricing policy, which has achieved remarkable success
in terms of easing urban tra�c congestion [1]. However, all
of the existing and implemented congestion toll schemes
adopt a unique toll method, whichmakes the inequitable and
ine�ective problem. �erefore, in order to give full play to

congestion pricing in alleviating urban tra�c congestion and
improve the fairness and e�ectiveness of congestion pricing,
it is necessary to consider the travel distance inside the
charging cordon and establish the distance-based congestion
toll scheme.

�e distance-based toll scheme receives more and more
attention recently in both the academic community and
industrial circles. References [2–4] assumed that the distance-
based toll is linearly proportional to the distance traveled
in the charging area. However, it may be more e�cient and
e�ective in using the nonlinear toll function in the practical
congestion toll scheme according to some recent studies.
Lawphongpanich and Yin [5] assumed that the distance-
based toll is a nonlinear form and used a piecewise linear
functionwith two intervals to represent it. References [1, 6–9]
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studied the distance-based toll using the piecewise linear toll
functionwithmultiple intervals to approximate the nonlinear
toll function. It is worth noting that the next generation of
road pricing systems in Singapore will adopt the distance-
based toll scheme based on global navigation satellite system
(GNSS) technology [10].

Generally, the total travel cost is regarded as the optimiza-
tion objective of the congestion toll design problem. Most
of the literatures studying the congestion pricing problem
calculate the total travel cost (TTC) based on the equilibrium
	ows and make an evaluation based on the calculated TTC.
However, when a toll pattern is implemented, the route
	ows will be totally di�erent from day to day, because the
implemented toll policy is an important component which
will in	uence travelers’ route choice behaviors. �e system
cannot reach an equilibrium state overnight. �erefore, for
the optimal toll design problem during the whole planning
period, the day-to-day dynamics models can better describe
the network 	ow conditions, rather than the �nal equilibrium
state. Besides, to avoid the complicated implementation of
governments and confusions of travelers on the toll in
practice, it is necessary to levy an unchanged toll in the whole
period �; for instance, Singapore’s electronic road pricing
(ERP) toll is adjusted every three months [4, 5] and kept
unchanged in-between; thus� can be set as three months in
this study.

During the whole period of�, the TTC will change from
day to day because the tra�c 	ows will change from day to
day.�erefore, no toll pattern can give rise to a minimal TTC
in all days of �. Liu et al. [7] proposed a mini–max regret
model to solve the day-to-day dynamic congestion pricing
(DCP) problem. However, this model is computationally
demanding due to the calculation of minimal total travel cost
for each day among the whole planning horizon. �erefore,
in order to overcome the expensive computational burden
problem and make the robust toll scheme more practical, we
can use the mini–max total travel cost model to replace the
mini–max regret model. �e essence of this model, which is
an extension of our previous work, is to optimize the worst
condition among the whole planning period and ameliorate
severe tra�c congestions in some bad days.

�e day-to-day dynamic 	ow evolution process is the
foundation for the day-to-day DCP problem; lots of research
work focus on the day-to-day dynamic 	ow evolution process
[6–14]. As for the DCP, Wie and Tobin [15] considered
the day-to-day DCP problem and used a convex control
model to solve it. Friesz et al. [16] studied the day-to-day
DCP aiming at maximizing the net present value of social
welfare. More recently, Guo et al. [17] studied the dynamic
tolls on each day and they are merely determined by the
	ows and tolls on the previous day. Ye et al. [18] studied
themarginal-cost pricing scheme considering the day-to-day
dynamics based on the trial-and-error method. Tan et al.
Reference [19] studied the day-to-dayDCPproblemaiming at
minimizing the total system cost and time.However, all of the
aforementioned studies focus on deterministic day-to-day
DCP problem. Recently, Rambha and Boyles [20] studied the
stochastic day-to-day DCP problem. However, the objective

function in Rambha and Boyles [20] does not consider the
network performances of each day. Cheng et al. [21] made a
comprehensive review of urban dynamic congestion pricing
and highlighted that there was an emerging research need to
investigate the DCP problem.

�e contributions of this paper are twofold. On the
one hand, a �nite learning process model named logit-
type Markov adaptive learning model is proposed to depict
commuters’ day-to-day route choice behaviors. On the
other hand, a mini–max total travel cost model, which can
overcome the expensive computational burden problem in
previous work and make the congestion toll scheme more
practical, is proposed to solve the congestion toll problem
considering nonequilibrium 	ow evolution processes. �is
paper is structured as follows. �e next section �rst intro-
duces the nonlinear distance toll which can be approximated
with a piecewise linear toll function. A logit-type Markov
adaptive learning model is then proposed in Section 3.
A
erwards, a mini–max model for the optimal toll pattern
that minimizes the maximum total travel cost among the
whole planning horizon is introduced in Section 4, and a
modi�ed arti�cial bee colony (ABC) algorithm is developed
for the robust optimization model in Section 5. Finally,
conclusions are drawn in Section 6.

2. Problem Statement

A strongly connected network, denoted by � = (�,�), is
considered. � denotes the set of nodes and � denotes the
set of directed links.� denotes the set of origin-destination
(OD) pairs, and �� denotes the set of routes connecting an
OD pair � ∈ �. 
� is the tra�c demand connecting the

OD pair � ∈ �, and q = (
�, � ∈ �)�. ��� is the tra�c
	ow on route � ∈ �� connecting OD pair � ∈ �, and

f = (���, � ∈ ��, � ∈ �)�. V� is the tra�c 	ow on link  ∈ �,
and ��(V�) is the travel time (or link performance) function
of link  ∈ �, which is assumed to be increasing, convex
and continuously di�erentiable. �e notations in this paper
mostly follow that in Liu et al. [1, 7], which are summarized
in Table 1.

A nonlinear-type distance-toll function is preferred
according to Liu et al. [1, 7] and Meng et al. [8]; the
general idea is to formulate the nonlinear distance-toll
function �(�) as a piecewise linear function in terms of
the travel distance � in a cordon. It is clear to de�ne
the toll function �(�) on the range [�0, ��] with � equal
intervals as shown in Figure 1. Note that �0 and �� are the
minimal and maximal route length in the charging cordon,
respectively. Obviously, the piecewise linear toll function
composes � straight line sections, and each line section is
uniquely de�ned by the two ends points of each interval

y = (�0, �1, �2, . . . ��, . . . ��)� whose corresponding value of
distance is � = (�0, �1, �2, . . . ��, . . . , ��)�. With this piecewise
linear toll function discussed above, the continuous curve of
the nonlinear distance-toll function can be characterized as a
number of straight lines, which can be determined by � + 1
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Table 1: List of notations.

Notation Explanation

� �e total planning period for one toll pattern.

� �e number of days a
er the toll implementation, � = 1, 2, ⋅ ⋅ ⋅ , �.
� �e set of OD pairs.

�� �e set of routes connecting an OD pair � ∈ �.

��� �e travel cost on route � ∈ �� connecting OD pair � ∈ �.

f �e route 	ows over the entire network, f = (���, � ∈ ��, � ∈ �)�.
��� �e tra�c 	ow on route � ∈ �� connecting OD pair � ∈ �.

q �e travel demands, q = (
�, � ∈ �)�.

� �e travel demand connecting OD pair � ∈ �.

t(k) �e link travel time functions, t(k) = (��(V�),  ∈ �)�.
k �e link 	ows, k = (V�,  ∈ �)�.
��(V�) �e travel time function of link  ∈ �.
V� �e tra�c 	ow on link  ∈ �.
���� ���� = 1 if route � ∈ �� contains link , and ���� = 0 otherwise.
y �e vertex values, y = (�0, �1, �2, . . . ��, . . . ��)� of the piecewise linear toll function.
�
min
, �

max
�e lower and upper bound of the distance-based toll.

�(�) �e toll charge function.

� �e total number of the intervals in the toll function �(�).
� Column vector of the travel distance in a cordon, � = (���, � ∈ ��, � ∈ �)�.
� Column vector of the distance-based toll � = (���, � ∈ ��, � ∈ �)�.
��, �	, �
 Number of the colony size, the employed bees, and the onlookers.

�0, �1, �2 Parameters used in the day-to-day dynamics model.
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Figure 1: Piecewise linear toll.

points. For example, assume that �min = 2.0, �max = 5.0, and
Δ � = 0.5, and then � = (5.0 − 2.0)/0.5 = 6, which means
the piecewise linear toll function can be determined with 6
intervals, and these 6 intervals can be uniquely de�ned by 7
vertexes. By the way, the proposed methodology here can be
easily generalized for the case of unequal intervals between
the range [�0, ��].

It is practical to de�ne a nondecreasing distance-toll
function in real life; thus we should have

�min = �0 ≤ �1 ≤ �2 ≤ . . . ≤ �� ≤ . . . ≤ �� ≤ �max (1)

In a real application, we only need to know a particular route
length, then we can calculate the corresponding toll value in
terms of the piecewise linear toll function. Let ��� denote the
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length portion of route � ∈ �� in the cordon. Suppose ���
locates in the �th distance interval of �(�) shown in Figure 1,

then the distance toll of route � ∈ �� is

��� = � (���) = ��−1 +
��� − ��−1
�� − ��−1

(�� − ��−1) (2)

�e total/generalized travel cost on route � ∈ �� connecting
OD pair � ∈ �

��� = ∑
�
������ +

���
� (3)

where � is the travelers’ value-of-time.

From (2) we can see that each toll pattern � is uniquely
determined by the vertex value y = (�0, �1, �2, . . . ��, . . . ��)�.
Let Ω� be the set of all the feasible y. �en, the optimal

congestion pricing becomes a problem to obtain the optimal

y∗ ∈ Ω�. Before introducing the model for the optimal y∗,
the day-to-day dynamics model is �rst discussed in the next

section.

3. Day-To-Day Dynamics Model

A reasonable day-to-day dynamics model should well re	ect

the realistic route adjustment process and learning behavior

of commuters [15, 16]. As for the travel behavior of an

individual commuter, his/her route choice on current day is

dependent on his/her route choice decision as well as what

others did in the previous day. Essentially, this reconsid-

eration process of the route choice from day to day is an

experienced weighted learning model [22]. Compared to the

reinforcement learning model in market entry games [23],

themodi�cation of thismodel is that commuter’s route choice

in that past may in	uence his/her own current route choice,

and this route choice may also in	uence other commuters’

route choice behaviors [24]. As for an ordinary commuter,

he/she would concern about the utilization for every route

(no matter whether it was his/her currently chosen route)

from day to day to make his/her route choice in the next day

more rational.

Erev et al. [25] showed that subjects in the market entry

games were mainly in	uenced by what happened in the most

recent times, and this e�ect would be more obvious in the

day-to-day dynamics process [24]. For instance, commuters’

route choice behaviors are highly a�ected by themost recently

unexpected incidents, such as unexpected network disrup-

tions and adverse weather conditions. �us, in the proposed

day-to-day dynamics model of this paper, we assume that a

commuter’s route choice on the current day is only dependent

on his/her and other commuters’ route choice decisions in the

previous day, and this is a �nite learning process in essence.

�e most obvious characteristic is that the route 	ow on day

� + 1 decreases as its actual travel cost of that route on day

� increases and vice versa. It is obvious that the route choice

decision of the current day is the baseline of the route choice

decision of the next day. For the sake of presentation but

without loss of generality, all of the commuters are assumed

at the initial state of day 1, and then tra�c 	ows of the whole

network evolve from day to day.

A very clear and concise �nite learning process named

logit-type Markov adaptive learning model is proposed to

depict commuters’ day-to-day route choice behaviors. Specif-

ically, the baseline probability of choosing route � on day�+1,
which is the same route as day�, can be expressed through the
following multinomial logit-type function:

Pr��	���	 (��+1 = �) =
exp (���	���	�� (y, �))
∑� exp (���	���	�� (y, �))

(4)

where ��+1 is the route choice decision on day � + 1,
���	���	�� (y, �) = −�1$��(y, �) is the attraction of or the
propensity towards choosing route � ∈ �� with the toll pattern
y on day �, and �1 is a positive response sensitivity parameter.

�en, the 	ow of route � can be calculated by

���	���	�� (y, � + 1) = 
� ⋅ Pr��	���	 (��+1 = �) (5)

From this baseline model, we can see clearly that the routes

with high travel costs on day � hold weaker attraction to

commuters compared to those routes with low travel costs on

the same day, and this is coincided with the nature of day-to-

day dynamics process.

According to the baseline model, the following model is

proposed to estimate the actual attraction of route � on day �:

��� (y, �) =
{{{{{
{{{{{
{

�1 ($�� (y, �) − $�� (y, �)) -� � ̸= - 4� $�� (y, �) < $�� (y, �)

�0 -� � = -

�2 ($�� (y, �) − $�� (y, �)) -� � ̸= - 4� $�� (y, �) ≥ $�� (y, �)

(6)

where �0 and �2 are positive parameters. �e probability
of choosing route � on day � + 1 and the route 	ow can

be expressed through the following multinomial logit-type
functions:
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Pr (��+1 = �) =
exp (��� (y, �))
∑� exp (��� (y, �))

(7)

��� (y, � + 1) = 
� ⋅ Pr (��+1 = �) (8)

It is worth noting that �0 and �2 are inertia and regret e�ect
in this model, respectively. Compared with other day-to-day
dynamics models, e.g., Guo et al. [26], He et al. [27], and
Cantarella andWatling [28], the proposedmodel in this paper
is more concise, and there is no explicit route adjustment
parameter, which is actually re	ected by the inertia and regret
e�ect of �0 and �2, respectively.

4. Robust Optimization Model

As discussed in Introduction, the whole network environ-
ment will be changed a
er a period of days, and the days
� = 90 in this paper. �erefore, a
er 90 days, a new toll
scheme will be performed to optimize the whole network
with the already changed network environment, making a
new process of day-to-day dynamics. At same time, d should
be reset to 1 when the new toll scheme is implemented.Hence,
the study period is from � = 1 to � = �.

When a toll pattern y is implemented, the route 	ows will
be totally di�erent from day to day, because the implemented
toll scheme is an important component which will in	uence
travelers’ route choice behaviors. Let f(y, �) be the column
vector of route 	ows on day � in terms of a toll pattern y,
and f(y, �) is clearly determined by (4)-(8). �e authorities’
objective is to minimize the total travel costs for each day
rather than merely for the �nal equilibrium state. Since
the commuters’ route choice behavior follows the logit-type
Markov adaptive learning model introduced in Section 3, the
system’s optimal performance is re	ected by the one with
minimal total travel cost. On day �, the total travel cost can
be calculated by

88$ (y, �) = f (y, �)� ⋅ c (y, f , �) (9)

It may be impossible for just one particular toll pattern to
optimize the system’s performance for all the days/scenarios
(from day 1 to day �). If a particular toll scheme y is
implemented on � = 1, then there would be a new day-
to-day route 	ow evolution process. In the context of day-
to-day dynamics, network 	ows are varying each day, so
any toll pattern that can give rise to minimum total travel
cost in a particular day may lead to bad tra�c conditions
in some other days. From the viewpoints of policy-maker,
the deterioration of some worst days is more harmful than
the loss of e�ciency on the good cases, both temporally
and spatially. �us, it is a better strategy in practice that:
compromising the e�ciency on the optimal end of some good
days so that the severe tra�c congestions in some bad days
could be ameliorated. Following this logic, this paper then
takes the mini–max total travel cost as the objective; thus

y (�) ∈ argmin
y∈Ω�

max88$ (10)

subject to the day-to-day route 	ows introduced in Section 3.

It is clear that model (10) is a robust optimization model,
which can also be deemed as a bilevel model, where the upper
level is amini–max total travel costmodel, and the lower level
re	ects the day-to-day dynamic 	ows, which is discussed in
Section 3. �e optimal solution of model (10) is a robust toll
scheme that considers the system’s performance on each day
of the study horizon.

5. Solution Algorithms

All of the existing solution methods (such as sensitivity
analysis method, system optimal relaxation method, and gap
function method) are not suitable to solve the proposed
bilevel robust model due to the complexity of the 	ow
evolution process f(y, �). More speci�cally, the day-to-day
dynamics model of f(y, �) has no closed form when � > 2,
in spite of an initial 	ow pattern f(y, 1) is given. �erefore, a
heuristic algorithm named arti�cial bee colony algorithm is
adopted in this paper.

�e ABC algorithmwas originally proposed by Karaboga
[29] for solving unimodal and multimodal numerical opti-
mization problems. Recently, this algorithm is used to solve
transportation problems [3, 22–25, 27]. We also use the ABC
algorithm to �gure out the mini–max TTC problem here due
to its advantages of good local search mechanism which can
enhance the solution quality compared to other evolutionary
algorithms such as genetic algorithm [30]. In this paper,
we proposed a modi�ed ABC algorithm to solve the robust
programmingmodel for the optimal toll design. According to

an initial food source, we can obtain the TTC for each day and

the maximum TTC among the whole planning period, then

the mini–max TTC can be calculated through the modi�ed

ABC algorithm. Finally, the robust optimal toll pattern can

be output. �e procedures of this algorithm are summarized

in Figure 2. For a detailed description of the ABC algorithm,

the readers are referred to some other references, such as

[3, 25, 27].

6. Conclusions

�is paper studies the nonlinear distance-based toll with day-

to-day dynamic tra�c 	ow evolution. A
er an implemen-

tation or adjustment of a new congestion toll scheme, the

network environment will change and tra�c 	ows will be

nonequilibrium in the following days, which makes it not

suitable to take the equilibrium-based indexes as the objective

of the congestion toll. A mini–max total travel cost model,

which can overcome the expensive computational burden

problem in previous work and make the congestion toll

scheme more practical, is then proposed to solve the conges-

tion toll problem considering nonequilibrium 	ow evolution

processes. �e essence of the mini–max total travel cost

model is to optimize the worst condition among the whole

planning period and ameliorate severe tra�c congestions in

some bad days, and this takes into consideration the network

performance on each day of the study horizon rather than the

�nal equilibrium state.
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Start

Initialization of the ABC parameters:

Initialization of the distance-based toll

Initialization of the day-to-day dynamics 

Obtain the initial route �ows

End

Initialization of employed bees with randomly distributed 

initial food sources (i.e., congestion toll values)

Calculate the toll value for each internal path with Eq. (2)

Calculate the link �ows, the link travel times and the

route travel times

Conduct the network loading process in terms of Eqs. (4) 

and (5)

Attraction and �ow estimation with Eqs. (6)~(8)

Evaluation of the maximum TTC based on Eq. (9)

Employed bee phase

Onlooker phase

Scout bee phase

Convergence?

Provide the best solution of mini–max TTC and the 

corresponding toll pattern

Yes

No

related parameters: D, 0, 1, 2

parameters: yＧＣＨ , yＧ；Ｒ , K

Nc, Ne , No , IＧ；Ｒ

Figure 2: Flowchart of the solution algorithm.
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