DISTANCE-BASED INDEXING FOR HIGH-DIMENSIONAL METRIC SPACES

Tolga Bozkaya

Department of Computer Engineering & Science
Case Western Reserve University
email: bozkaya@alpha.ces.cwru.edu

Abstract

In manydatabasepplicationspneof the commonqueriesis to
find approximate matchesto a given query item from a
collectionof dataitems. For example given animagedatabase,
one may wantto retrieveall imagesthat are similar to a given
query image. Distancebasedindex structuresare proposedfor
applicationswherethe datadomainis high dimensionalor the
distance function used to compute distances between data
objectsis non-Euclideanin this paper,we introducea distance
basedindex structurecalled multi-vantagepoint (mvp) tree for
similarity querieson high-dimensionametric spacesThe mvp-
treeusesmorethanonevantagepoint to partition the spaceinto
sphericalcutsat eachlevel. It alsoutilizes the pre-computedat
constructiontime) distancesbetweenthe data points and the
vantage points. We have done experiments to compepetrees
with vp-treeswhich havea similar partitioning strategy but use
only onevantagepoint at each level, and do not make use of
the pre-computeddistances Empirical studiesshow that mvp-
tree outperformsthe vp-tree 20% to 80% for varying query
ranges and different distance distributions.

1. Introduction

In many databasepplicationsit is desirableto be able
to answerqueriesbasedon proximity such as asking for data
items that are similar to a query item, or that are closestto a
query item. We face such queries in the context of ndatgbase
applications such as genetics, image/picture databasestime
series analysis, information retrieval, etc. In geneticsctimeern
is to find DNA or proteinsequencethataresimilar in a genetic
databaseln time-seriesanalysis,we would like to find similar
patternsamonga given collectionof sequencedmagedatabases
canbe queriedto find andretrieveimagesin the databasehat

are similar to the query image with respect to a specified criteria.

* This researchis partially supportedby the National ScienceFoundatiol
grantIRl 92-24660 andthe National ScienceFoundationFAW awardIRI-
90-24152

Meral Ozsoyoglu

Department of Computer Engineering & Science
Case Western Reserve University
ozsoy@alpha.ces.cwru.edu

Similarity betweenmagescanbe measuredn a number
of ways. Featuressuchas shapecolor, texture can be extracted
from imagesin the databaseo be usedas contentinformation
where the distance calculations will be basadmagescanalso
be comparedn a pixel by pixel basisby calculatingthe distance
betweentwo images as the accumulationof the differences
between the intensities of their pixels.

In all the applicationsabove, the problem is to find
similar dataitems to a given query item where the similarity
betweentemsis computedby somedistanceunction definedon
the applicationdomain.Our objectiveis to provide an efficient
accessmechanismto answerthese similarity queries.In this
paper,we considerthe applicationswhere the data domain is
high dimensional andthe distancefunction employedis metric.
It is important for an application to have a metric distance
functionto makeit possibleto do filtering of distantdataitems
for a similarity query by using the triangle inequality property
(section 2). Becauseof the high dimensionality,the distance
calculations between data items are assumedto be very
expensive. Therefore, an efficient accessmechanismshould
certainly haveto minimize the numberof distancecalculations
for similarity queriesto improve the speedin answeringthem.
This is usually done by employing techniques and index
structuresthat are usedto filter out distant (non-similar) data
items quickly, avoiding expensive distance computationsach
of them.

The dataitemsthatarein theresultof a similarity query
can be further filtered out by the userthrough visual browsing.
This happensin image databaseapplicationswhere the user
would pick the most semanticallyrelated imagesto a query
image by examining the imagesretrieved as the result of a
similarity query. This is mostly inevitable becauseit is
impossibleto extractandrepresengll the semanticinformation
for an image simplypy extractingfeaturesin theimage.The best
an image database can do is to present the images thalaaeel
or closeto the queryimage,and leavethe further identification
and semantic interpretation of images to users.

In this paper,we introducethe mvp-tree (multi-vantage
point tree) as a generalsolution to the problem of answering
similarity basedqueriesefficiently for high-dimensionaimetric
spaces. The mvp-tree is similar to the vp-tree (vantage peaijt
[UhI91] in the sensethat both structuresuse relative distances
from a vantage point to partition the domain spécep-treesat
everynodeof the tree,a vantagepoint is chosenramongthe data

points, and the distancesof this vantagepoint from all other
points (the points that will be indexedbelow that node) are
computedThen,thesepointsaresortedinto an orderedlist with

respecto their distancedrom the vantagepoint. Next, thelist is

partitioned at positionsto create sublists of equal cardinality.
The order of the tree correspondgo the numberof partitionsto

be made.Eachof thesepartitionskeepthe datapoints that fall

into a spherical cut with inner and outer radii beingrttieimum
and the maximum distancesof thesepoints from the vantage
point.

The mvp-tree behaves more clevarymakinguseof the
vantage-pointdy employingmore than one at eachlevel of the
treeto increasethe fanout of eachnodeof the tree. In vp-trees,
for a given similarity query, mostof the distancecomputations
made are betweenthe query point and the vantage points.
Becauseof using more than one vantagepointsin a node,the
mvp-tree has less vantagepoints comparedto a vp-tree. The
distances of data points at the leaf nddes the vantagepoints
at higher levels (which were already computedat construction
time) are kept in mvp-trees,and thesedistancesare used for
efficient filtering atsearchtime. The efficientfiltering at the leaf
level is utilized more by making the leaf nodesto have higher
node capacities.By this way, the major filtering step during
search is delayed to the leaf level.

We have done experiments with 20-dimensional
Euclideanvectorsandgray-levelimagesto comparevp-treesand
mvp-treesto demonstratemvp-trees’ efficiency. The distance
distribution of data points plays an important role in the
efficiency of the index structures,so we experimentedon two
setsof Euclideanvectorswith differentdistancedistributions.In
both casesmvp-treesnade20%to 80% lessnumberof distance
computationscomparedto vp-treesfor small query ranges.For
higher query ranges,the percentagewisalifference decreased

A metric distancefunction d(x,y) for a metric spaceis
defined as follows:

i) d(x,y) = d(y.x)

i) 0 <d(x,y) <o, XYy

i) d(x,x) =0

iv) d(x,y)< d(x,z) +d(z,y) (triangle inequality)

The above conditionsare the only oneswe should be
assumingvhendesigningan index structurebasedon distances

between objects in a metric space. Note that, we cannot make use

of any geometricinformation aboutthe metric space unlike the
way we canfor a Euclideanspace We only havea setof objects
from a metric spaceanda distancefunctiond() thatcanbe used
to compute the distance between any two objects.

Similarity basedqueriescan be posedin a number of
ways. The most commonone asksfor all dataobjectsthat are
within somespecifieddistancefrom a given query object. These
queries require retrieval ofear neighbor®f the query object:

Near Neighbor QueryErom a given set alataobjectsX
= {X1, Xy, ..., Xn} from a metric spacewith a metric distance
functiond(), retrieve all data objects that are within distarrcef
a given query point Y. The resulting set vii#{ X; | X; 0 X and
d(X;,Y)< r }. Here,r is generallyreferredto as the similarity
measure, or the tolerance factor.

Some variations of the near neighbor query are also
possible.The nearestneighborquery asksfor the closestobject
to a given query object. Similarly, k closestobjects may be
requestedas well. Thoughnot very common, objectsthat are
fartherthana givenrangefrom a queryobjectcanalsobe asked
aswell asthe farthest,or the k farthestobjectsfrom the query
object. The formulation of all thesequeriesare similar to the
near neighbor query we have given above.

gradually, yet the mvp-trees performed 10% to a respectable 30%

lessdistancecomputationdor the largestquery rangeswe used
in our experiments.

Our experimentson gray-levelimagesusing L; and L,
metrics (see section5.1) also revealedthe fact that mvp-trees
performbetterthanvp-trees.For this dataset,we hadonly 1151
images to experiment on (and therefore had rather shak®s),
and the mvp-trees performed upto 20-30% less distance
computations.

The rest of the paperis organizedas follows. Section2
gives the definitions for high dimensionalmetric spacesand
similarity queries.Section3 presentdhe problemof indexingin
high dimensionalspacesand also presentspreviousapproaches
to this problem. The related work for distance-basedndex
structuresto answersimilarity basedqueriesis also given in
section 3. Section 4 introducesthe mvp-tree structure. The
experimentalresultsfor comparingthe mvp-treeswith vp-trees
are givenin section5. We summarizeour resultsand point out
future research directions in section 6.

2. Metric Spaces and Similarity Queries

In this section,we briefly give the definitions for metric
distance functions and different types of similarity queries.

Here, we are mainly concernedon distance based
indexing for high-dimensional metric spaces. We also
concentraten the nearneighborquerieswhenwe introduceour
index structure. Our maiobjectiveis to minimize the numberof
distancecalculationsfor a given similarity query as we assume
that distanceomputationsn high-dimensionametric spacesre
very expensive.ln the next section, we discussthe indexing
problem for high-dimensional metric spaces, esdew previous
approaches to the problem.

3. Indexing in High-Dimensional Spaces

For low-dimensional Euclidean domains, the
conventionaindex structureg[Sam89])suchas R-trees(and its
variations)[Gut84, SRF87,BKSS90] can be usedeffectively to
answersimilarity queries.In suchcasesa nearneighborsearch
query would ask for all the objectsin (or that intersects)a
spherical search window where tbenteris the queryobjectand
the radius is the tolerancefactor r. There are some special
techniquedor otherforms of similarity queries,suchas nearest
neighborqueries.For example,in [RKV95], someheuristicsare
introducedto efficiently searchthe R-tree structureto answer
nearest neighbor queries. However, the conventional spatial
structuresstop being efficient if the dimensionality is high.
Experimental results [Ott92] show that R-trees become
inefficient for n-dimensional spaces where n is greater than 20.

The problemof indexinghigh-dimensionaspacesanbe
approachedn differentways. One approachis to usedistance
preserving transformationsto Euclidean spaces, which we
discussn section3.1. Anotherapproachs usingdistance-based
index structuresln section3.2, we discussdistance-basethdex
structuresandbriefly review the previouswork. In section3.3,
we discussthe vp-tree structurein detail sinceit is the most
relevant approach to work.

3.1 Distance Preserving Transformations

Therearewaysto useconventionalspatialstructuresfor
high-dimensionaldomains.One way is to apply a mapping of
objects from a high-dimensionalspaceto a low-dimensional
(Euclidean)spaceby usinga distancepreservingtransformation,
andthenusingconventionaindex structuregsuchasR-trees)as
a major filtering mechanism. A distance preserving
transformatioris a mappingfrom a high-dimensionatlomain to
a lower-dimensionaldomain where the distancesbetween
objects before the transformati@in the actualspace)aregreater
than or equalto the distancesafter the transformation(in the
transformedspace).That is, the distancepreservingfunctions
underestimatethe actual distances between objects in the
transformed space. Distance preserving transformationshave
beensuccessfullyusedto index high-dimensionadatain many
applications such as time sequence§AFA93, FRM94], and
images [FEF+94].

The distance preserving functions such as DFT,
Karhunen-Loeveare applicableto any Euclideandomain.Yet, it
is also possibleto come up with application specific distance
preservingtransformationgfor the samepurpose.ln the QBIC
(Query By Image Content) system[FEF+94], color content of
imagescanbe usedto answersimilarity queries.The difference
of the color contents of two images a@mputedrom their color
histograms. Computation of a distance between the color
histograms of two images is quite expensive as the color
histogramsare high-dimensionalnumberof different colors is
generally64 or 256) vectors,and also crosstalk(as somecolors
are similar) betweencolors haveto be consideredTo increase
speed in color distance computation, the QB&&psanindexon
averagecolor of images.The averagecolor of animageis a 3-
dimensionalectorwith the averagered, blue,andgreen values
of the pixels in the image. The distancebetweenaveragecolor
vectorsof imagesare provento be less than or equal to the
distance between their color histograms, that is, the
transformatioris distancepreserving Similarity querieson color
content of imagesare answeredby first using the index on
average color vectors as the major filtering step, and then

refining the result by actual computations of histogram distances.

Note that, althoughthe ideaof usingdistancepreserving
transformationworks fine for many applications,it makesthe
assumptiorthat such a transformationexists and applicableto
the application domain. Transformationssuch as DFT or
Karhunen-Loevere not effective in indexing high-dimensional
vectorswherethe valuesat eachdimensionare uncorrelatedor
any given vector. Therefore, unfortunately, it is not always
possibleor costeffectiveto employ this method.Yet, thereare
distancebasedindexing techniquesthat are applicableto all
domainswhere metric distancefunctions are employed.These
techniquesanbe directly employedfor high-dimensionaspatial

domains as the conventional distance functions (such as
Euclidean, or any j.distance)usedfor thesedomainsaremetric.
Sequencematching, time-seriesanalysis,image databasesre
someexampleapplicationshavingsuchdomains Distancebased
techniques are also applicable for domains wherelales non-
spatial (that is, dataobjectscan not be mappedto pointsin a
multi-dimensionalspace),suchasin the caseof text databases
which generally use the edit distance (which is metric) for
computingsimilarity dataitems (lines of text, words, etc.). We
review a few of the distance based indexing techniques below.

3.2 Distance-Based | ndex Structures

There are a number of researchresults on efficiently
answering similarity search queriesin different contexts. In
[BK73], Burkhard& Keller suggestedhe useof threedifferent
techniques fothe problemof finding bestmatching(closest)key
words in a file to a given query key. They employ a metric
distancefunction on the key spacewhich alwaysreturnsdiscrete
values, (i.e., the distancesare always integers). Their first
methodis a hierarchicalmulti-way tree decomposition At the
top level, they pick an arbitrary elementfrom the key domain,
andgroupthe restof the keyswith respectto their distancego
that key. The keys that aoé the samedistancefrom thatkey get
into the samegroup. Note thatthis is possiblesincethe distance
valuesare always discrete. The samehierarchicalcomposition
goes on for all the groups recursively, creating a tree structure.

In the secondapproachin [BK73], they partition the
space into a number of seilskeys.For eachset,theyarbitrarily
pick a center key, and calculate the radius which is the
maximumdistancebetweenthe centerand any otherkey in the
set. The keysin a setare partitionedinto other setsrecursively
creating a multi-way tree. Each node in the tree, keepsthe
centersand the radii for the setsof keys indexedbelow. The
strategyfor partitioningthe keysinto setswasnot discussednd
was left as a parameter.

The third approachof [BK73] is similar to the second
one, but there is the requirement thatdremneter(the maximum
distancebetweenanytwo pointsin a group)of any groupshould
belessthana given constank, wherethe value of k is different
at eachlevel. The group satisfying this criterion is called a
cligue This methodrelieson finding the setof maximalcliques
at eachlevel, and keepingtheir representatived the nodesto
direct or trim the search. Nothatkeysmayappealin morethan
oneclique, sothe aim is to selectthe representativi&keysto be
the ones that appear in as matigjuesas possible.

In anotherapproach,such as the one in [SW90], pre-
computed distancesbetween the data elementsare used to
efficiently answer similarity search queries. The aim is to
minimize the number of distance computationsas much as
possible, as they are assumedto be very expensive.Search
algorithmsof O(n) or evenO(n log n) (wheren is the numberof
data objects) are acceptable if they minimize the numiiséance
computations.In [SW90], a table of size O() keepsthe
distancesbetweendata objects if they are pre-computed.The
otherpairwisedistancesreestimatedby specifyinganinterval)
by making use of the other pre-computed distances. The
techniqueof storing and using pre-computeddistancesmay be
effective for datadomainswith small cardinality, however,the

space requirements and the search complexity becomes
overwhelming for larger domains.

In [UhI91], Uhlmannintroducedtwo hierarchicalindex
structuresfor similarity search.The first one is the vp-tree
(vantage-pointtree). The vp-tree basically partitions the data
spaceinto sphericalcutsarounda chosenvantagepoint at each
level. This approachreferredto asthe ball decompositiorin the
paperis similar to thefirst methodpresentedn [BK73]. At each
node,the distancesetweenthe vantagepoint for that nodeand
the datapointsto be indexedbelowthatnodeare computed.The
medianis found, and the data points are partitionedinto two
groups,one of them accommodatinghe points whosedistances
to the vantage point are less than or equal to the mdditance,
and the other group accommodatinghe points whosedistances
arelargerthanor equalto the median.Thesetwo groupsof data
points are indexedseparatelyby the left and right subbranches
below that node, which are constructedin the same way
recursively.

Although the vp-tree was introduced as a birnigeg, it is
also possibleto generalizeit to a multi-way tree for larger
fanouts.In [Yia93], the vp-tree structurewas enhancecby an
algorithm to pick vantage-pointdor better decompositionsin
[Chi94] the vp-tree structure is modified to answer nearest
neighborqueries.We talk aboutthe vp-treesin detailin section
3.3.

The gh-tree(generalizedhyperplanetree) structurewas

also introduced in [UhI91]. It is constructed as follows. At the top

node,two pointsarepickedandthe remainingpointsaredivided
into two groupsdependingon which of thesetwo pointsthey are
closer to. The two branchesfor the two groups are built
recursivelyin the sameway. Unlike the vp-trees,the branching
factor can only be two. If the twmivot points arewell-selectecht
every level, the gh-tree tends to be a well-balanced structure.

More recently, Brin introducedthe GNAT (Geometric
Near-NeighborAccessTreg structure[Bri95]. A k number of
split pointsare chosen at the top level. Each one ofémeaining
points are associated with one of khgatasets (one for easplit
poinf), dependingon which split point they are closestto. For
eachsplit point, the minimumandmaximumdistancesrom the
pointsin the dataset®f othersplit pointsarerecorded.The tree
is recursively built for each datasetat the next level. The
numberof split points, k, is parameterize@ndis chosento be a
different value for eachdata set dependingon its cardinality.
The GNAT structureis comparedo the binary vp-tree,andit is
shownthat the preprocessingconstruction)stepof GNAT is
more expensivehanthe vp-tree,but its searchalgorithm makes
less number of distancecomputationsin the experimentsfor
different data sets.

3.3 Vantage point tree structure

Let us briefly discussthe vp-treesto explainthe idea of
partitioning the data space around selected points (vantage
points) at different levels forming a hierarchicaltree structure
and using it for effective filtering in similarity search queries.

The structureof a binary vp-tree is very simple. Each
internal nodeis of the form (S,, M, Ru, Lpy), Where S, is the
vantagepoint, M is the mediandistanceamongthe distancesf

all the points (from g indexed below that node, afgy and Ly
are pointersto the right and left branchesLeft branchof the
node indexes the points whose distances froar&less than or

equalto M, and right branch of the node indexesthe points
whosedistancedrom S, are greaterthanor equalto M. In leaf
nodes,insteadof the pointersto the left and right branches,
references to the data points are kept.

Givena finite set S={S;, S, .., Si} of n objects,anda
metric distancefunction d(S, S), a binary vp-treeV on S is
constructed as follows.

1) If OSF 0, then create an empty tree.
2) Else, let gbe an arbitrary object from S. (8 the
vantage point)
M = median of { @S, S) | O0S O S}
LetS={S | d(S, S) <M, where 800 S and 5% S}
$={S|dS, S)=M, where §00 S}
(the cardinality of Sand $ should be equal)
Recursively create vp-trees orefid on $ as the lefand
right branches of the root of V.

The binary vp-tree is balancedand therefore can be
easily pagedfor storagein secondarynemory.The construction
step requires O(n lea) distance computations.

For a given query object Q, the set of dataobjectsthat
arewithin distancer of Q arefoundusingthe searchalgorithm
given below.

1 Ifd(Q, S) <r, thenS, (thevantagepoint at the root)
is in the answer set.
2) If d(Q, S)) +r = M (median),thenrecursivelysearch
the right branch
3) If d(Q, S) - r < M, thenrecursivelysearchthe left
branch.

(notethat both branchescanbe searchedf both search

conditions are satisfied)

The correctnessof this simple searchstrategy can be
proven easil\by usingthetriangle inequalityof distancesamong
any three objects in a metric data space (see Appendix).

Generalizing binary vp-treesinto multi-way vp-trees.

The binaryvp-treecanbe easilygeneralizednto a multi-
way tree structure for larger fanouts at every node hagpiagghe
decrease in the height of the tree would alecreas¢he number
of distancecomputationsThe constructionof a vp-treeof order
m is very similar to that of a binary vp-tree. Here, insteadof
finding the medianof the distancesbetweenthe vantagepoint
andthe datapoints, the points are orderedwith respectto their
distancedrom the vantagepoint, and partitionedinto m groups
of equal cardinality. The distancevaluesusedto partition the
data points are recordedin eachnode.We will refer to those
valuesas cutoff values.Thereare m-1 cutoff valuesin a node.
Them groupsof datapointsareindexedbelow the root nodeby
its m children,which arethemselvewp-treesof orderm created
in the sameway recursively.The constructionof an m-way vp-
tree requires O(n lggn) distancecomputationsThatis, creating
anm-way vp-treedecreasethe numberof distancecomputations
by a factor of log, m comparedto binary vp-trees at the
construction stage.

Figure 1. Therootlevel partitioning of a vp-treewith
branching factor 3. The three different regions are
labelled 1, 2, 3, and they are all shaded differently

However,thereis one problemwith high-ordervp-trees
when the order is large. The vp-tree partititmsdataspacento
sphericalcuts (seeFigure 1). Thosesphericalcuts becometoo
thin for high-dimensionatlomainsJeadingthe searchregionsto
intersectwith many of them, and therefore leading to more
branchingin doing similarity searchesAs an example,consider
an N-dimensionalEuclideanSpacewhereN is a large number,

and a vp-tree of order 3 is built to index the uniformly distributed

datapointsin that space.At the root level, the N-dimensional
spaceis partitionedinto three sphericalregions, as shownin

Figure 1. The threedifferent regionsare coloreddifferently and
labeled as 1, 2, ar®l Let Ry betheradiusof region1, andR; be
the radius of the sphere enclosing regions 1 and 2. Becatlse
uniform distribution assumption, we can consider the N-

dimensionalolumesof regionsl and?2 to be equal. The volume
of an N-dimensionalsphereis directly proportionalto the N™

factor of its radius,sowe candeducethatR, = Ry * (2)YN . The
thicknessof the sphericalshell of region2 is Rz - Ry = Ry *(2N

- 1). To give an idea, for N=100zR 1.007 R.

So,whenthe sphericalcutsare very thin, the chancesof
a searchoperationdescendingdown to more than one branch
becomeshigher.If a searchpath descendslown to k out of m
childrenof a node,thenk distancecomputationsare neededat
the next level, wherethe distancebetweenthe query point and
the vantagepoint of eachchild node hasto be found. This is
becausehe vp-treekeepsa different vantagepoint for eachnode
at the samelevel. Each child of a nodeis associatedwvith a
region that is like a sphericalshell (other than the innermost
child, which hasa sphericalregion),andthe datapointsindexed
below that child node abelongto thatregion.Thoseregionsare
disjoint for the siblings. As the vantage point fan@ehasto be
choseramongthe datapointsindexedbelow a node,the vantage
points of the siblings are all different.

4. Multi-vantage-point trees

In this section,we presentthe mvp-tree (multi vantage
point tree). Similar to the vp-tree, the mvp-treepartitions the
dataspaceinto sphericalcutsaroundvantagepoints.However,it
creategartitionswith respecto morethanonevantagepoint at
onelevel and keepsextrainformation for the datapointsin the

of

leaf nodesfor effective filtering of non qualifying pointsin a
similarity search operation.

4.1 Motivation

Beforewe introducethe mvp-tree,we first discussa few
useful observationghat can be usedas heuristicsfor a better
searchstructure.Theideais to partition the dataspacearounda
vantage point at each level for a hierarchical search.

Observation 1: It is possibleto partition a spherical
shell-like region using a vantagepoint chosenfrom outsidethe
region.Thisis shownin Figure 2, wherea vantagepoint outside
of the regionis usedto partition it into three parts, which are
labeledas1,2,3andshadedlifferently (region2 consistsof two
disjoint parts). The vantage point doext haveto befrom inside
the region, unlike the strategy followed in vp-trees.

vantage
poin

Figure 2. Partitioning a spherical shell-lik
region using a vantage point from outsid

This meansthat we can usethe samevantagepoint to
partition theregionsassociatedvith the nodesat the samelevel.
When the searchoperationdescendslown to severalbranches,
we do not haveto makea different distancecomputationat the
root of eachbranch.Also, if we canusethe samevantagepoint
for all the childrenof a node,we canaswell keepthat vantage
point in the parent.This way, we would be keepingmore than
onevantagepointin the parentnode.We canavoid creatingthe
children nodes by incorporating them in the parent. Toidd be
doneby increasingthe fanoutof the parentnode.The mvp-tree
takes this approach, and uses more than one vantageipdims
nodes for higher utilization.

Observation 2: In the construction of the vp-tree
structure, for each data point in the leaves,we computethe
distancesbetweenthat point and all the vantagepoints on the
path from the root nodeto the leaf node that keepsthat data
point. Sofor eachdatapoint, (logm n) distancecomputationgfor
a vp-treeof order m) are made,which is equalto the height of
the tree. In vp-trees,suchdistances(other than the distanceto
the vantagepoint of the leaf node)are not kept,. However,it is
possibleto keepthesedistancesfor the data pointsin the leaf
nodesto providefurther filtering at the leaf level during search
operations We usethis ideain mvp-treesin mvp-treesfor each
datapointin aleaf,we alsokeepthefirst p distanceghere,p is
a parameterthatare computedn the constructionstepbetween
that datapoint andthe vantagepoints at the upperlevels of the
tree. The searchalgorithm is modified to make use of these
distances.

Having shown the motivation behind the mvp-tree
structure, we explain the constructionand searchalgorithms
below.

4.2 mvp-tree structure

The mvp-tree usestwo vantagepoints in every node.
Each node of the mvp-tree can be viewed as two levels of a
vantagepoint tree (a parentnodeandall its children) whereall
the childrennodesat the lower level usethe samevantagepoint.
This makesit possible for an mvp-tree node to have large
fanouts, and a less number of vantagepoints in the non-leaf
levels.

In this section,we will showthe structureof mvp-trees
and presentthe constructionalgorithm for binary mvp-trees.In
general, an mvp-tree has 3 parameters:

« the numberof partitionscreatedby eachvantagepoint
(m),

« the maximum fanout for the leaf nodé&}, (

« andthe numberof distancedor the datapoints at the
leaves to be keppj.

In binary mvp-treesthe first vantagepoint (we will refer
to it by Si1) divides the spaceinto two parts, and the second
vantagepoint (we will referto it by S,») divides eachof these
partitionsinto two. Sothe fanoutof a nodein a binary mvp-tree
is four. In generalthe fanoutof an internal nodeis denotedby
the parametent, wherem is the numberof partitionscreatecby
avantagepoint. Thefirst vantagepoint createsm partitions,and
the second point createsm partitions from each of these
partitions createtyy thefirst vantagepoint, makingthe fanoutof
the nodar?.

In everyinternalnode,we keepthe median,M,, for the
partition with respectto the first vantagepoint, and medians,
M2[1] and M3[2], for the further partitions with respectto the
second vantage point.

Svl M 1
Sv2 I|'\/|2[1]| | | IM2[2]| |
{ child pointers }
Internal node
[sa Di1] Di[2] Di[k] |
| S D1l DJ21 .. Dikl]
P, P2, P,
P. PATH P.PATH P. PATH
Led node
(P1 thru Py are the data points)

Figure 3. Node structure for a binary mvp-tree.

In the leaf nodes,we keepthe exactdistancesbetween
the datapointsin the leaf and the vantagepoints of that leaf.
D4i] andDi] (i=1, 2, .. k) arethe distancedrom the first and

secondvantagepointsrespectivelywherek is the fanoutfor the
leaf nodeswhich may be chosenlarger than the fanout of the
internal nodesr?.

For eachdatapoint x in the leavesthe array x. PATHI[p]
keepsthe pre-computediistancesetweenthe datapoint x and
thefirst p vantagepointsalongthe pathfrom the root to the leaf
nodethat keepsx. The parametemp can not be bigger than the
maximum number of vantage poirttonga pathfrom therootto
any leaf nodeFigure 3 below showsthe structureof internaland
leaf nodes of a binary mvp-tree.

Having giventhe explanationfor the parameterandthe
structure,we presentthe constructionalgorithm next. Note that,
we tookm=2 for simplicity in presenting the algorithm

Construction of mvp-trees
Givenafinite set S={S;, S, .., Si} of n objects,anda
metric distancefunction d(S, S), an mvp-treewith parameters
m=2, k,and p is constructed o as follows.

(Here, we use the notatiave haveexplainedabove.The
variable level is usedto keep track of the numberof vantage
pointsusedalongthe pathfrom the currentnodeto theroot. It is
initialized to 1.)

1) If OSCF 0O, then create an empty tree and quit.

2) If OSk k+2, then
2.1) Selectan arbitrary objectfrom S. (S is the first
vantage point)
2.2)LetS:=S-{ g} (Delete S;: from S)
2.3) Calculateall d(S, S.1) whereS O S, andstorein
array D.
2.4) Let S,; be the farthestpoint from S,; in S.(Sz2is
the second vantage point)
25)LetS:=S-{ %} (Delete S, from S)
2.6) Calculateall d(S, S»2) whereS O S, andstorein
array D.
2.7) Quit.

3) Else if0S> k+2, then
3.1) Let S;1 be anarbitrary objectfrom S. (S is the
first vantage point)
3.2)Let S:=S-{ @} (Delete S; from S)
3.3) Calculate all (5, S;1) where SO S
if level< p) S.PATH[I] = d(S, Sn).
3.4) Order the objects in S with respect to their
distances from 2.
M1= median of {{S, Sx) | 0S O S} Break this list
into 2 lists of equal cardinality at the median. Let SS
and SSthese two sets in order, i.e., S@eps the
farthest objects fromg
3.5) Let S be an arbitrary object from 28S,; is
the second vantage point)
3.6) Let S9:=SS - { S. } (Delete S, from SS)
3.7) Calculate all (5, S,2) where $O0SS or §O
SS.
if level <p) S.PATH[level+1] = AS;, S»)
3.8) M[1]= median of { S, S») | OS O SS}
M[2]= median of { dS, S») | 0S U SS}
3.9) Break the list SSnto two sets of equal
cardinality at M[1].

Similarly, break S8nto two sets of equal
cardinality at M[2].

Letlevel=level+2, and recursively create the
mvp-trees on these four sets.

The mvp-treeconstructioncanbe modified easily so that
more than Zrantagepointscanbe keptin onenode.Also, higher
fanoutsat the internalnodesare alsopossible, andmay be more
favorable in most cases.

Observethat, we chosethe secondvantagepoint to be
oneof the farthestpointsfrom the first vantagepoint. If the two
vantagepointswere closeto eachother, they would not be able
to effectively partition the dataset.Actually, the farthestpoint
may very well be the bestndidateor the secondvantagepoint.
Thatis why we chosethe secondvantagepointin a leaf nodeto

be the farthest point from the first vantage point of that leaf node.
Note that any optimization technique (such as a heuristic to chose

the bestvantagepoint) for vp-treescan also be appliedto the
mvp-trees.

The construction step requires O(n logn n) distance
computationsfor the mvp-tree. There is an extra storage
requirementfor the mvp-treesas we keepp distancesfor each
data point in the leaf nodes, howevedadesnot changethe order
of storage complexity.

A full mvp-treewith parametergm,k,p§ andheighth has
2*(n?" -1)/(n? -1) vantagepoints. That is actually twice the
numberof nodesin the mvp-treeaswe keeptwo vantagepoints
at every node. The numberof datapoints that are not usedas
vantagepointsis (m?"*)*k, which is the numberof leaf nodes
times the capacityk] of the leaf nodes.

It is agoodideato keepk large so that mostof the data
itemsare keptin the leaves.lf k is keptlarge the ratio of the
numberof vantagepointsversusthe numberof pointsin the leaf
nodesbecomesmaller,meaningthat mostof the datapointsare
accommodateth the leaf nodes.This makesit possibleto filter
out many non-qualifying (out of the searchregion) points from
further considerationby making use of the p pre-computed
distancedor eachleaf point. In otherwords, insteadof making
many distance computationswith the vantage points in the
internal nodes,we delay the major filtering step of the search
algorithmto the leaf level wherewe have more effective means
of avoiding unnecessary distance computations.

4.3 Search algorithm for mvp-trees

We presentthe searchalgorithm below. Note that the
searchalgorithm proceedsepth-firstfor mvp-trees We needto
keep the distancesbetweenthe query object and the first p
vantagepointsalongthe currentsearchpathaswe will be using
thesedistancesfor eliminating data points in the leavesfrom
further consideration (if possible). An array, PATH[], of Sizés
used to keep these distances.

Similarity Search in mvp-trees

For a given query object Q, the set of dataobjectsthat
arewithin distancer of Q arefound usingthe searchalgorithm
as follows:

1) Compute the distances d(Q:)%nd d(Q, %).
(S and $; are first and second vantage points)

if d(Q, Sa) <r then S is in the answer set.
if d(Q, Sp) <r then & is in the answer set.

2) if the current node is a leaf node,
For all data points (Sin the node,
2.1) Find d(S, Sx1) andd(S, Si2) from the arraysD;
and D respectively.
2.2)if [d(Q, S1) -r =d(S, S1) =£d(Q, Sy +r]and
[d(Q,S) -1 < d(S, Sp) <d(Q,Sp) +1],
then
ifforalli=1..p
(PATHI] - r < S.PATH][i] < PATH[i] +r)
holds,
then compute d(Q,)SIf d(Q,S) <r, thenS
is in the answer set.

3) Else if the current node is an internal node
3.1) if (< p) PATH[I] = d(Q, S1).
if (<p) PATH[I+1] = d(Q, $2).

32) if d(Q, Sl) +r < My, then
if d(Q, S»2) +r < My[1] then recursively
search the first branch witkl+2
if d(Q, S2) -r = M[1] then recursively
search the second branch wlitiht+2

3.3)ifd(Q, S1) -r = My, then
if d(Q, S») +r < M3[2] then recursively
search the third branch withl+2
if d(Q, S2) -r = M[2] then recursively
search the fourth branch withl+2

The efficiency of the search algorithm very much
dependson the distribution of distancesamongthe datapoints,
query range,and the selectionof vantagepoints. In the worst
case,most data points are relatively far away from eachother
(such as randomly generatedvectors in a high- dimensional
domainasin section5). The searchalgorithm,in this case,can
make O(N) (N is the cardinality of the dataset)distance
computationsHowever,evenin the worst case,the numberof
distancecomputationsnadeby the searchalgorithmis far less
thanN, makingit a significantimprovementover linear search.
Note that, the claim on worst casecomplexity is true for all
distancebasedindex structuressimply becauseall of them use
the triangle inequality to filter out data points that are distant
from the query point.

In the next section, we presentsome experimentsto
study the performance of mvp-trees.

5. Implementation

We haveimplementedthe main memory model of the
mvp-treeswith different parametergo testand compareit with
the vp-trees. The mvp-tree and the vp-trees are both
implementedin C under UNIX operating system. Since the
distance computationsare very costly for high-dimensional
metric spaceswe usethe numberof distancecomputationsas
the cost measure. We counted the number of distance
computationgequiredfor similarity searchqueriesby both mvp
and vp-trees for the same set of queries for comparison.

5.1 Data Sets

Two typesof data, high-dimensionalEuclideanvectors
and gray-level MRI images (where each image has 256*256
pixels) are used for empirical study.

A. High-Dimensional Euclidean Vectors:

We usedtwo setsof 50.00020-dimensionalvectorsas
data sets. Euclideandistance metric is used as the distance
metric in both cases.For the first set, all vectorsare chosen
randomly from a 20-dimensionalhypercubewith each side of
size 1. Eachof thesevectorsis simply generatedoy randomly
choosing20 real numbersfrom the interval [0,1]. The pairwise
distancedistributionof theserandomlychosenvectorsare shown
asa histogramin Figure 4. The distancevaluesare sampledat
intervals of length 0.01.

Note that this datasetis highly synthetic.As the vectors
are uniformly distributed, they are mostly far away from each
other. Their distancedistributionis similar to a sharpGaussian
curve where the distancesbetweenany two points fall mostly
within the interval [1, 2.5] concentratingaround the midpoint
1.75. As a result, the vantagepoints (in both vp-treesand mvp-
trees)always partition the spaceinto thin sphericalshells and
thereis alwaysa large, void sphericalregionin the centerthat
doesnot accommodat@ny datapoints. This distribution makes
both structures(or any other hierarchicalmethod)ineffective in
querieshaving valuesof r (similarity measure)arger than 0.5,
although higher r values are quite reasonablefor legitimate
similarity queries.

Distance distribution histogram for
randomly generated vectors
25000000 -

20000000 -

15000000 -

10000000 -

5000000 -

Figure 4. Distance distribution for randomly
generated Euclidean vectors.

(Y axis shows the number of data object pairs that haw:
corresponding distance value)
(The distance values are sampled at intervals of length

The secondset of Euclideanvectors are generatedin
clustersof equal size. The clustersare generatedas follows.
First, a randonvectoris generatedrom the hypercubewith each
side of size 1. This random vector becomesthe seedfor the
cluster.Then,the othervectorsin the clusterare generatedrom
this vectoror a previously generatedsector in the samecluster
simply by altering each dimension of that vector with the
addition of a random value chosen from the intengle}; where
€ is a small constant (such as between 0.1to 0.2).

Distance distribution histogram for
clustered vectors
25000000 -

20000000 -
15000000 -
10000000 -

5000000 -

?

0

(=T R T e Ty R S Bt N e SR I R ol =)
WMo = i NN Mm@
=T I I A T = od od @

Distance Value

Figure 5. Distance distribution for Euclidean
vectors generated in clusters.
(Y axis shows the number of data object pairs that haw:
corresponding distance value)
(The distance values are sampled at intervals of length

Since most of the points are generatedrom previously
generatedpoints, the accumulationof differencesmay become
large,andtherefore thereare many pointsthat are distantfrom
the seedof the cluster (and from each other), and many are
outside of the hypercube of side 1. \d&dl thesegroupsof points
as clustersbecauseof the way they are generatednot because
they are a bunchof pointsthat are very closein the Euclidean
spaceln Figure5, we seethe distancedistribution histogramfor
a setof clustereddatawhereeachclusteris of size 1000,and €
is 0.15. Again the distance values are samatédtervalsof size
0.01. One can quickly realize that this dataset hasa different
distancedistributionwherethe possiblepairwisedistanceshave
a wider range. The distribution is not as sharpas it was for
randomvectors.For this data set, we testedsimilarity queries
with r ranging from 0.2 to 1.0.

B. Gray-Level MRI Images:

We also experimentedon 1151 MRI images with
256*256 pixels and 256 valuesof graylevel. Theseimagesarea
collectionof MRI headscansof severalpeople.Sincewe do not
have any content information on these imagessimply usedL 1
and L, metrics to compute the distances between images.
Remembethatthe L, distancebetweenany two N-dimensional
EuclideanvectorsX andY (denotedby Dy(X,Y)) is calculated
as follows:

DD(X'Y) = igl(lxi_Yil)p

L, metric is the Euclidean distance metric. An L; distance
betweentwo vectorsis simply found by accumulatingabsolute
differences at each dimension.

When calculating distances, we simplgattheseimages
as 256*256=65536-dimensional Euclidean vectors, and
accumulatehe pixel by pixel intensitydifferencesusingL, or L,
metrics. This data set is a good example where it is very
desirableto decreasehe numberof distancecomputationsby
using an index structure. The distancecomputationsnot only
requirea largenumberof arithmeticoperationsput alsorequire

considerabld/O time sincethoseimagesare kept on secondary
storageusingaround61K perimage(imagesarein binary PGM
format using one byte per pixel).

We seethe distancedistributionsof the MRI imagesfor
L1 andL, metricsin the two histogramsshownbelowin Figures
6 & 7. There are (1150*1151)/2= 658795 different pairs of
images and hence, that many computations.The L; distance
values are normalizedby 10000 to avoid large valuesin all
distancecalculationdbetweerimages.The L, distancevaluesare
normalized by 100 similarly. After the normalization, the

also be usedin a weighted fashion where eachpixel position
would be assigneda weight that would be usedto multiply
intensity differencesof two imagesat that pixel position when
computingthe distancesSucha distancefunction canbe easily
shownto be metric. It canbe usedto give more importanceto
particular regions (for example: center of the images) in
computing distances.

For gray level images,color histagramscan be usedto
computesimilarity. Unlike color images,thereis no crosstalk
(betweenthe colors) in graylevel (or any mono-color)images,

distance values are sampled at intervals of length 1 in each caseand therefore,an L, metric can be usedto computedistances

Distance distribution with respect to
L1 metric

5000 -
4000 -
3000 -
2000 -
1000 -

0

1 84 167 250 333 416 499 582 665 748

distance values (divided by 10000)

Figure 6. Distance histogram for images when
L1 metric is used.

Distance distribution with respect to
L2 metric

10000 -
8000 -
6000 -

4000 -
2000 -

0
1 44 87 130173 216 259 302 345 388
distance values (divided by 100)

Figure 7. Distance histogram for images when
L2 metric is used.

The distance distribution for the imagesrischdifferent
than the one for Euclidean vectors. There are two peaks,
indicating that while most of the imagesare distantfrom each
other,someof them are quite similar, probablyforming several
clusters.This distribution also gives us an idea about choosing
meaningful tolerance factors femmilarity queries,n thesesense
that we canseewhat distancerangescanbe consideredsimilar.
If Ly metricis used,atolerancefactor (r) around500000is quite
meaningful, where if L, metric is used, the tolerance factor
should be around 3000 .

It is alsopossibleto useotherdistancemeasuresiswell.
Any L, metric canbe used just like L1 or Lo. An L, metric can

betweenrcolor histogramsThe histogramsawill simply be treated
as if they are 256-dimensional vectors, and then ,andtric can
be used.

5.2 Experimental Results

A. High-Dimensional Euclidean Vectors:

In Figures8 and 9, we presentthe searchperformances
of four tree structuresfor two different data setsof Euclidean
vectors.The vp-treesof order 2 and 3, and two mvp-treeswith
the (m,k,p values(3,9,5)and (3,80,5)respectivelyare the four
structuresWe haveexperimentedvith vp-treesof higherorder,
however higher order vp-trees gave similar or worse
performancestherefore,we do not presentthe resultsfor them.
We havealsotried severalmvp-treeswith different parameters,
however, we have observedthat order 3 (m) gives the most
reasonableesultscomparedo order 2 or any value higherthan
3. Wekept5 (p) referencepointsfor eachdatapointin the leaf
nodesof the mvp-trees.The two mvp-treesthat we display the
resultsfor havedifferent k (leaf capacity)valuesto seehow it
effects the searchefficiency. All the results are obtained by
taking the averageof 4 different runsfor eachstructurewherea
different seed (for the random function usedto pick vantage
points)is usedin eachrun. The resultof eachrun is obtainedby
averaging the results of 100 search queries with randomly
selectedquery objectsfrom the 20-dimensionahypercubewith
eachsideof sizel. In Figures8 and9, the mvp-treewith (m,k,p
values(3,9,5)is referredas mvpt(3,9)andthe other mvp-treeis
referredas mvpt(3,80)sinceboth treeshavethe samep values.
The vp-treesof order 2 and 3 are referredas vpt(2) and vpt(3)
respectively.

As shown in Figure 8, both mvp-treesperform much
better than the vp-trees, and vpt(2) is slightly better than
(around10%) vpt(3). mvpt(3,9)makesaround40% lessnumber
of distancecomputationcomparedo the vpt(2). The gapcloses
slowly whenthe queryrangeincreasesywhere mvpt(3,9) makes
20% less distance computationsfor the query range of 0.5.
mvpt(3,80) performs muchetter,andneedsaround80%to 65%
percentlessnumberof distancecalculationscomparedo vpt(2)
for small ranges(0.15to 0.3). For queryrangesof 0.4 and 0.5,
mvpt(3,80) makes 45% and 30% (respectively)less distance
computationscomparedto vpt(2). For higher query ranges,the
gain in efficiency decreases, whichdigeto the fact thatthe data
points in the domain are themselvesquite distant from each
other,makingit harderto filter out non-qualifyingpointsfor the
search operations.

#distance calculations per search for

random vectors
30000 —

——\t(2)
—m—wt(3)
—&— mwt(3,9)
—>— mwt(3,80)

25000 —

20000 —

15000 —

10000 —

distance calculations

5000 —

0.15 0.2 0.3 0.4 0.5
Query Range

Figure 8. Search performances of vp and mvp
trees for randomly generated Euclidean vectors

#distance calculations per search for

vectors generated in clusters
25000 —

——\t(2)
—— wt(3)
—&— mwt(3,9)
—— mwt(3,80)

20000 —

15000 —

10000 —

distance calculations

5000 —

—

S5 o oo
Query Range

o
[=]

Figure 9. Search performances of vp and mvp
trees for Euclidean vectors generated in cluste:

Figure 9 showsthe performanceresultsfor the dataset
where the vectorsare generatedn clusters.For this data set,
vpt(3) performsslightly better than vpt(2) (around 10%). The
mvp-treesperform again much better than vp-trees.mvpt(3,80)
makesaround70% - 80% lessnumberof distancecomputations
than vpt(3) for small query ranges (up to 0.4), where the
mvpt(3,9) makes around 45% - 50% less number of
computations for the same query ranges. For higheryranges,
the gain in efficiency decreasesslowly as the query range
increaseskor the queryrangel.0, mvpt(3,80)requires25%less
distance computations compared to vpt(3) arvgt(3,9)requires

» Higherordervp-treesperformbetterfor wider distance
distributions,howeverthe differenceis not much. For datasets
with narrow distance distributions, low-order vp-trees are better.

* mvp-treesperformmuchbetterthanvp-trees.The idea
of increasingeaf capacitypaysoff sinceit decreasethe number
of vantagepoints by shorteningthe heightof the tree,and delay
the major filtering step to the leaf level .

« For bothrandomandclusteredvectors,mvp-treeswith
high leaf-node capacity perform a considerable improvement over
vp-trees, especiallyfor small query ranges(up to 80%). The
efficiency gain (in terms of number of distancecomputations
made)is smaller for larger query ranges,but still significant
(30% for the largest ranges we have tried).

B. Gray-Level MRI Images:

We display the experimentalresults for the similarity
searchperformancesof vp and mvp treeson MRI imagesin
Figures10 and 11. For this domain,we presentthe resultsfor
two vp-trees and three mvp-tre@$e vp-treesareof order2 and
3, referredasvpt(2) andvpt(3). All the mvp-treeshavethe same
p parameterwhich is 4. The three mvp-treesare; mvpt(2,16),
mvpt(2,5) and mvpt(3,13) where for each of them, the first
parameter is the ordemj andthe secondoneis theleaf capacity
(k). We did not try for higherm, or k valuesas the numberof
dataitems in our domainis small (1151). Actually, 4 is the
maximum p value common to all three mvp-tree structures
because of the low cardinality of the ddtamain.Theresultsare
averagedakenafter differentrunsfor different seedsandfor 30
different query objects in each rumhereeachqueryobjectis an
MRI image selected randomly from the data set.

distance calculations per search for

L1 metric
600 —

—— ot ()
—l— vpt @)
500 — —A— mvpt (2,16)
—>— mvpt2,5)
—@— mvpt(3.13)

400 —

300 —

200 —

#distance calculations

100 =

30 40 50 60 80 100
Query Range

Figure 10. Similarity search performances of
vp and mvp trees on MRI images whemtetric
is used for distance computations.

Figure 10 shows the search performanceof these 5
structureswhen L; metric is used.Betweenthe vp-trees,vpt(2)

20% less. We have also run experiments on the same type of datﬁerformsaround 10-20% percentbetterthan vpt(3). mvpt(2,16)

with different cluster sizes, however the percentagedlid not
differ much.

We can summarize our observations as follows:

and mvpt(2,5) perform very close to each other, both having
around 10% edge over vpt(2). The best one is mvpt(3,13)
performing around 20-30% lessimberof distancecomputations
compared to vpt(2).

distance calculations per search for L2

metric
800 —

700 —

600 —

500 —

400 —

300 —

200 —

distance calculations

0 20 30 40 50 60 80
Query Range

Figure 11. Similarity search performances of
vp and mvp trees on MRI images whermtetric
is used for distance computations.

Figure11 showsthe searchperformancesvhenL, metric
is used. Similar to the casewhen L1 metric was used, vpt(2)
outperforms vpt(3) wih a similar approximate 10% margin.
mvpt(2,16) performs better than vpt(2) but its performance
degradesor higherqueryrangevalues.This shouldnot be taken
asa generalresult, becausehe randomfunction that is usedto
pick vantage pointhasa considerableffecton the efficiency of
thesestructures.Similar to the previouscase,mvpt(3,13)gives

thatit is not possibleor it is not costefficient to imposea global
total order or a grouping mechanismon the objects of the
application data domain. We plan to look further into this
problem of extending mvp-treeswith insertion and deletion
operations that would not imbalance the structure.

It would bealsointerestingto determinethe bestvantage
pointfor a givensetof dataobjects.Methodsto determinebetter
vantagepoints with a little extra costwould pay off in search
queriesby causingless numberof distancecomputationsto be
done. We also plan to look further into this problem.

References

[AFA93] R. Agrawal, C. Faloutsos, A. Swami. “Efficient
Similarity Search In Sequence Databasé's In FODO
Conference1993.

[BK73] W.A. Burkhard, R.M. Keller, “Some Approachesto
Best-Match File Searching”, Communicationsof the ACM,
16(4), pages 230-236, April 1973.

[BKSS90]N. BeckmannH.P.Kriegel, R. SchneiderB. Seeger,
“The R*-tree: An Efficient andRobustAccessMethodfor Points
and Rectangles”, Proceedingsof the 1990 ACM SIGMOD
Conference, Atlantic Citygages 322-33May 1990.

[Bri95] S. Brin, “Near Neighbor Search lrargeMetric Spaces”,
Proceedings of the 21st VLDB Confererpages574-584, 1995.

[Chi94] T. Chiueh, “Content-Based Image Indexing”,
Proceedings of the 20th VLDB Conference, p&@2593, 1994.

[FEF+94]C. FaloutsosW. Equitz, M. Flickner et al., “Efficient

the best performance among all the structures, once again makingndEffective Queryingby ImageContent”,journal of Intelligent

20-30% less distance computations compared to vpt(2).

In summary,the experimentalresultsfor the datasetof
gray-levelimagessupportour previous observationsabout the
efficiency of mvp-trees with high leaf-node capacity. Even
thoughour imagedatasethasa very low cardinality (leadingto
shallow tree structures), we were atdegetaround20-30%gain
in efficiency.If the experimentavereconductecn alargersetof
images, we would expect higher performance gains.

6. Conclusions

In this paper,we introducedthe mvp-tree, which is a
distancebasedindex structurethat can be usedin any metric
datadomain.Like the otherdistancebasedindex structuresthe
mvp-treedoesnot make any assumptioron the geometryof the
applicationspace and providesa filtering methodfor similarity
searchqueriesonly basedon relative distancedetweenthe data
objects.Similar to an existing structure,the vp-tree, mvp-tree
takes the approach of partitionitige dataspacearoundvantage-
points but behavesmuch clever in choosingthesepoints and
makesuse of the pre-computeddistances(at the construction
stage) when answering similarity search queries.

Mvp-trees,like otherdistancebasedindex structuresjs
a static index structure. It is constructeditop downfashionon
a static set of data points, and guaranteeghe fact that it is a
balancedstructure. Handling update operations(insertion and
deletion)without major restructuring,and without violating the
balancedstructureof thetreeis an openproblem.In generalthe
difficulty for distance-basethdex structuresstemsfrom the fact

Information Systems (3)ages .231-262, 1994.

[FRM94] C. Faloutsos, M. Ranganathan, Y. Manolopouleast
Subsequenc#latchingin Time-SeriesDatabases”Proceedings
of the 1994 ACM SIGMOD Conference Minneapolis, pages
419-429, May 1994.

[Gut84] A. Guttman,“R-Trees: A Dynamic Index Strcuturefor
Spatial Searching”,Proceedingsof the 1984 ACM SIGMOD
Conference, Bostorpages 47-57, June 1984.

[Ott92] M. Otterman, “Approximate Matching with High
Dimensionality R-trees”. M.Sc Scholarly paper, Dept. of
ComputerSciencelJniv. of Maryland, Collage Park, MD, 1992.
Supervised by C. Faloutsos.

[RKV95] N. RoussopoulosS. Kelley, F. Vincent, “Nearest
Neighbor Queries”, Proceedingsof the 1995 ACM SIGMOD
Conference, San Joggages 71-79, May 1995.

[Sam89]H. Samet,“The Designand Analysis of Spatial Data
Structures” Addison Wesleyl989.

[SRF87]T. Sellis,N. RoussopoulosC. Faloutsos;The R+-tree:
A Dynamic Index for Multi-dimensional Objects”, Proceedings
of the13th VLDB Conferenceages 507-518, September 1987.

[SW9O0] D. ShashaT. Wang,“New Techniquedor Best-Match
Retrieval”, ACM Transactionson Information Systems8(2),
pagesl40-158, 1990.

[UhI91] J.K. Uhlmann,*Satisfying GeneralProximity/Similarity
Querieswith Metric Trees”,Information Processingd-etters,vol
40,pagesl75-179, 1991.

[Yia93] P.N. Yiannilos, “Data Structuresand Algorithms for
Nearest Neighbor Search in Gendvdtric Spaces” ACM-SIAM
Symposium on Discrete Algorithnpgges 311-321, 1993.

Appendix

Let us show the correctness of the search algorithm for
vp-trees.

Let Q be the query objeatbe the query range, $e the
vantage point of a node that we visit during the search, and M be
the median distance value for the same node. We have to show
that

if d(Q, S) + r <M then we do not have to search the
right branch. (1)

if d(Q, S) - r> M then we do not have to search the left
branch. (II)

For (1), Let X denote any data object indexed in the right branch,
i.e.,

diX,S)=M Q)

M>d(Q,S) +r (2) (hypothesis)
d(Q,) +d(Q, X)=d(X,S) (3) (triangle inequality)
d(Q,X) >r (4) (summation

of (1),(2), and (3))
Because of (4), X cannot be in the query result, which means that
we do not have to check any object in the right branch.

For (1), Let Y denote any data object indexed in the left branch,
i.e.,

M 2 d(Y, S) (5)

dQ,8)-r>M (6) (hypothesis)
d(Y,S) +d(Q,Y)=2d(Q, S) (7) (triangle inequality)
diQ,Y)>r (8) (summation

of (5),(6), and (7))
Because of (8), Y cannot be in the query result, which means that
we do not have to check any object in the left branch.

