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_______________________________________________________________________________________________ 

Abstract 

Intuitionistic multiplicative sets use an asymmetric, unbalanced scale to express information from positive, 

negative and indeterminate information. They have been found capable of comprehensively and objectively 

representing a person's intuitive understanding, and hence have attracted much attention. Distance techniques are 

widely used to measure the degree to which arguments deviate from one another. Several fuzzy set extensions have 

been developed, but little research has been conducted on measures of distance between intuitionistic multiplicative 

sets. In this paper we start by presenting a variety of measures of the distance between intuitionistic multiplicative 

sets, including Hausdorff distance measures, weighted distance measures, ordered weighted distance measures and 

continuous weighted distance measures. We then develop a distance-based IM-TOPSIS method and a distance-

based IM-VIKOR method for handling multiple criteria decision making problems with intuitionistic multiplicative 

evaluation information. To demonstrate the practical application of these distance measures and the proposed 

methods, we provide a case study of hospital management of inpatient admission. The paper ends with comparative 

analyses of the two methods and some concluding remarks.  

Keywords: Multiple criteria decision making; intuitionistic multiplicative sets; distance measures; hospital 

management; inpatient admission 

________________________________________________________________________________________________ 

1 Introduction 

Hospitals are complex systems, always involving various complex information and processes and the issue of 
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finding ways to manage them effectively is highly important. The imbalance between supply and demand for scarce 

medical resources is increasing in China with a huge population pressure. Because the service provided by primary 

medical and health institutions tends to be poor, patients in China prefer to go to large public hospitals than small 

ones, regardless how serious their illness is (Zhang et al., 2016). In the case of patients with severe diseases or 

acute medical problems, a delay of treatment may lead to a high risk of disease progression or death, but patients 

with minor ailments should be directed to community hospitals or community clinics for treatment. China has 

many more primary health care institutions than large public hospitals, so the Chinese government is trying to 

establish a hierarchical system of healthcare triage, which not only helps patients select the most appropriate 

institution but also helps hospital administrators determine which patients should be treated first. The patient 

admission process is very important in improving the efficiency with which medical resources are used, especially 

in large public hospitals such as the West China Hospital (WCH).  

Unfortunately, the task of ranking patients is a difficult and subjective one, and an efficient, scientific decision 

support techniques are needed to aid the process. More importantly, for the patient admission evaluation, the 

intricacies of objective matters mean it is difficult for people to describe their opinions accurately, especially in the 

DMs’ opinions on qualitative criteria. Fuzzy set (FS) theory provides a tool for investigating such problems. It 

mainly uses a certain value for the interval [0, 1], called the membership degree, to represent the degree to which 

an element belongs to a set. Through deeper research, scholars have found that it is difficult to determine the exact 

membership degree for the traditional FS. Atanassov (1986) proposed the use of the intuitionistic FS (IFS) to solve 

this problem; the IFS is characterized by a membership degree, a non-membership degree and a hesitancy degree, 

to represent people’s cognition from three different aspects. The use of the IFS has led to great achievements in the 

past three decades since 1986 (Liu & Liao, 2017; Yu & Liao, 2018), but IFSs can only represent people’s cognition 

symmetrically by using a balanced scale, i.e., 0.1-0.9 scale, whilst in many practical cases, the preferences of 

experts or decision-makers (DMs) are actually uniformly and symmetrically distributed. One simple example 

comes from the law of diminishing marginal utility in economics (Xia, Xu & Liao, 2013): if inefficient and 

efficient companies are given the same resources, the growth rate of the latter should be much higher. It is noted 

that Saaty (1994) proposed the asymmetric 1/9-9 scale, which can be used to describe asymmetric problems. Xia, 

Xu and Liao (2013) combined the asymmetric 1/9-9 scale with the concept of the IFS, and introduced the 

intuitionistic multiplicative preference relation (IMPR) and the concept of intuitionistic multiplicative sets (IMSs). 
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IMSs use an asymmetric, unbalanced scale to express three different aspects of information, and thus can provide a 

comprehensive, objective representation of intuitive information. A lot of work has been done with IMSs (Xu, 2013; 

Jiang, Xu & Gao, 2015; Jiang, Xu & Yu, 2015; Jiang, Xu & Shu, 2016; Ren, Xu & Liao, 2016; Zhang & Pedrycz, 

2017, 2018; Luo, Zhang, & Liao, 2019; Zhang, Liao, & Luo, 2019). As the fundamental theory for investigating the 

IMS, distance measure for IMS plays a significant role in measuring the difference between numbers (points or 

sets). Meanwhile, it is also the core part for most multiple criteria decision making (MCDM) methods, such as the 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and VIKOR (Vlsekriterijumska 

Optimizacija I Kompromisno Resenje in Serbian). 

So far, distance measures can be classified into traditional distance measures (such as the Hamming distance, 

the Euclidean distance, the Hausdorff distance) and weighted distance measures (including ordered weighted 

distance (Xu & Chen, 2008), continued weighted distance (Xu, 2012), and hybrid weighted distance (Xu, 2008)). 

Many scholars have investigated distance measures for different kinds of fuzzy information, such as IFSs (Burillo 

& Bustince, 1996; Du & Hu, 2015; Grzegorzewski, 2004; Grzegorzewski, 2004; Narukawa & Torra, 2006; Szmidt 

& Kacprzyk, 2000; Wang & Xin, 2005; Xu & Chen, 2011), hesitant fuzzy sets (HFSs) (Xu & Xia, 2011), and 

hesitant fuzzy linguistic term sets (HFLTSs) (Liao, Xu & Zeng, 2014; Liao & Xu, 2015). As we can see, there have 

been many advances in approaches to measuring the distance between IFSs but little research on measuring the 

distance between IMSs (Jiang, Xu & Gao, 2015; Jiang, Xu & Shu, 2016; Garg, 2017). Thus, in this paper we focus 

on measures of the distance between IMSs, which are basic and highly important, especially in solving MCDM 

problems with IMSs.  

In addition, many scholars have investigated this issue regarding the patient admission evaluation, but there 

are drawbacks to all the approaches proposed so far. First, the approaches proposed for handing inpatient admission 

management in other countries (see Ashour & Kremer, 2016; Mariotti, 2014; Rahimi, 2015; Rahimi et al., 2016; 

Solans-Domènech et al., 2013; Valente et al., 2009) are not appropriate to the China context. Second, although 

some Chinese scholars (Zhang et al., 2016) have considered the problem they have only considered evaluation 

criteria such as “urgency”, “need for hospitalization”, “value of clinical pathology” and not other factors such as the 

limitations on the person’s activity or time spent on the waiting list. Here we present a case study of inpatient 

admission management by the admission center of the WCH to illustrate how distance-based MCDM methods with 

IMSs can be used to circumvent these drawbacks by combining with the specific situations of Chinese hospital. 
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Inspired by these motivations, in this paper, we investigate the Hausdorff distance measure for IMSs 

associated with its hybrid form, generalized weighted form, ordered weighted form and continuous weighted form. 

Comparing with the existing distance measures, including the Minkowski distance, Hamming distance, Euclidean 

distance (Jiang, Xu & Gao, 2015; Jiang, Xu & Shu, 2016; Garg, 2017), the Hausdorff distance has good noise 

immunity, especially in pattern recognition, image matching and distinct improved algorithms. Moreover, both the 

ordered weighted form and the continuous form are analyzed in this paper, by which the DMs can select the 

optimal one according to their demands. Subsequently, based on these novel distance measures between IMSs, we 

investigate a distance-based IM-TOPSIS method and a distance-based IM-VIKOR method. Both of these two 

methods can be used to solve MCDM problems with IMS information. Finally, we apply the proposed methods to 

tackle the problem related to inpatients admission evaluation, which can provide some insights for hospital 

management in China.  

In summary, the contributions of this paper are summarized as follows: 

(1) We propose a variety of distance measures for IMSs, based on traditional distance measures such as the 

Hausdorff distance measures, hybrid distance measures, weighted distance measures, ordered weighted distance 

measures and weighted distance measures in continuous form. We also provide some numerical illustrations. 

(2) We present a distance-based IM-TOPSIS method and a distance-based IM-VIKOR method. These two 

methods have wide applicability in solving MCDM problems with IMSs. It should be noted that any type of 

distance measure could be applied in these two methods, so they provide DMs a wider choice for solving MCDM 

problems. 

(3) We apply the proposed distance-based IM-TOPSIS method and distance-based IM-VIKOR method to 

inpatient admission assessment to aid the WCH admission center. These methods can be used to select patients 

scientifically and are useful for allocating medical resources in a rational way. 

The remainder of this paper is organized as follows: In Section 2 we review some concepts relevant to IMSs 

as well as the existing measures of distance between IMSs. Section 3 presents various measures of the distance 

between IMSs. Section 4 investigates the IM-TOPSIS method and IM-VIKOR method based on measures of the 

distance between IMSs. A case study of application of the IM-TOPSIS and IM-VIKOR methods to inpatient 

admission assessment is presented in Section 5. Section 6 provides some concluding remarks. 



5 

 

 

2 IMSs and their existing distance measures 

To start our study, we first present the existing distance measures of IMSs. 

         For a reference set X , an IMS on X  can be defined as (Xia, Xu & Liao, 2013): 

{ , ( ( ), ( )) | }D DD x x x x X                                                               (1) 

where ( )D x  and ( )D x  are the membership degree the non-membership degree of x X  to the set D , 

respectively, and they satisfy: 1 9 ( ), ( ) 9D Dx x   , ( ) ( ) 1D Dx x   , x X  . ( ) 1 ( ) ( )D D Dx x x    is called 

the hesitancy degree and  ( ), ( )D Dx x   is called an IMN. For any two IMNs, they can be compared by the score 

function ( )s      and the accuracy function ( )h     .  

Assume that an DM evaluates two alternatives ix  and jx  on a criterion and gives his/her opinions as IMS 

    ,D Dx x  . For an IMS     ,D Dx x  , the term   1
,1

9
D x    

 denotes that the alternative ix  is inferior 

to jx , that is, the alternative jx  is prior to ix . In contrast, the term    1,9D x   means the alternative ix  is 

preferred to jx . In addition, several special cases can be described: (1)     1D Dx x    represents that there is 

no difference between ix  and jx ; (2)   9D x   or   1

9
D x   indicates that ix  is absolutely preferred to jx ; (3) 

  1

9
D x   or   9D x   denotes that ix  is absolutely inferior to jx . For details, please refer to Xia, Xu and Liao 

(2013).  

        For two IMSs  {( ,A iA x    , ) }A i A i ix x x X    and B        , ,B i B i B i ix x x x X    , Jiang, Xu 

& Gao (2015) proposed that the distance measure ( , )d A B  should satisfy the following basic axioms: (1) 

0 ( , ) 1d A B  ; (2) ( , ) 0d A B   if and only if A B ; (3) ( , ) ( , )d A B d B A ; (4) For , ,A B C M , if A B C  , 

then ( , ) ( , )d A C d A B  and ( , ) ( , )d A C d B C . Then, they defined the Minkowski distance measure and the 

normalized Minkowski distance measure between IMSs A  and B  as: 

 
 

 
 

 
 9

1

9 91
1

1
( , ) log log log

2

A i A i A i

B i B i

n

md

i B i

x x x

x x
d A

x
B

  





  
  



  
    
  

  
 , 1                   (2) 
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 
 

 
 

 
 9 9 91

1

1

1
( , ) log log log

2

A i A i A i

B i B i B i

n

nmd

i

x x x

x x
A

x
d B

n

  





  
  



  
    
  

  
 , 1                (3) 

If 1  , the Minkowski distance becomes the Hamming distance and the normalized Minkowski distance 

becomes the normalized Hamming distance; If 2  , the Minkowski distance becomes the Euclidean distance and 

the normalized Minkowski distance becomes the normalized Euclidean distance (Jiang, Xu & Shu, 2016).  
 

Theorem 1. For two IMSs A  and B , if  , the normalized Minkowski distance measure reduces to the 

following: 

 
 

 
 

 
 9 9 9log ,

1
lim ( , ) max log , log

2

A i A i A i

nmd
i

B i B i B i

x x x
d A B

x x x

  
  

    
  

                           (4) 

Proof: Let 
 
 

 
 

 
 9 9 9log , log , lox

2
g

1
ma A i A i A i

i
B i B i B i

x x x

x x x

  


  

    
  

. Then by Eq. (3), we have 

 
 

 
 

 
 9 9

1
9

1

1
lo

1
lim g log lo( , ) lim

2
g

n
A i A i A i

nmd

i B i B i B i

x x x
d A B

n x x x

  

 

  
   



  
  
  



 



 
 

 
 

 
 9 9

1
9

1

1
l

1
li og lo

2
logm g

n
A i A i A i

i B i B i B i

x x x

x x xn

  



  



  

 


      
           




 
 
     



 
 
 

 
 

 
 9

11

1
9 9

1 1 1
lo

1
lim lim g log log

2 2 22

n
A i A i A i

i B i B i B i

x x x

x x xn

  


 

  
 

  
  

 


             

     
           

       
  

This completes the proof of Theorem 1.  

3 Hausdorff metric-based distance measures for IMSs 

This section introduces new distance measures between IMSs. 

3.1 Hausdorff distance measures and hybrid distance measures between IMSs 

Jiang, Xu and Gao (2015), Jiang, Xu and Shu (2016) and Garg (2017) introduced a series of distance measures 

for IMSs, including the Manhattan distance, the Euclidean distance, and the Minkowski distance, together with the 

corresponding normalized and weighted forms. However, the Euclidean distance, one of the most widely used 

distance measures, fails to measure the difference between different types of attribute. We know that different types 
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of attribute have different dimensions and the Euclidean distance treats them equally, such that the results are 

inconsistent with reality. The Hausdorff distance, a new definition of distance, not only overcomes the defect of 

Euclidean distance but also has good noise immunity and so it has been widely applied to pattern recognition, 

image matching and distinct improved algorithms (Du & Hu, 2015; Ashour & Kremer, 2016). The application of 

the Hausdorff distance to various information forms, such as IFSs (Grzegorzewski, 2004), HFSs (Xu & Xia, 2011) 

and HFLTSs (Liao, Xu & Zeng, 2014) has also been investigated. However, there has been little research into use 

of the Hausdorff distance measure with IMSs. We therefore introduce some measures of the distance between IMSs 

based on the Hausdorff metric. 

Inspired by the generalized Hausdorff measures of the distance between IFSs (Grzegorzewski, 2004) and 

taking into account the relationships between IMSs and IFSs, we can define a generalized Hausdorff measure of the 

distance between two IMSs A  and B  as: 

1

9 9 9
1

( ) ( ) ( )1
( , ) max log , log , log

2 ( ) ( ) ( )

n
A i A i A i

ghaud

i B i B i B i

x x x
d A B

x x x

  



  
  

          
 , 0                (5) 

Property 1. The generalized Hausdorff distance measure shown as Eq. (5) satisfies the following properties: 

(1) ( , )=0ghaudd A B  if and only if =A B ; 

(2) ( , )= ( , )ghaud ghaudd A B d B A ; 

(3) If A B C  , then ( , ) ( , ) ( , )ghaud ghaud ghaudd A B d B C d A C  . 

The proof of Property 1 is given in the Appendix. 

If 1  , then the generalized Hausdorff distance becomes the Hamming-Hausdorff distance: 

9 9 9
1

( ) ( ) ( )1
( , ) max log , log , log

2 ( ) ( ) ( )

n
A i A i A i

hhaud

i B i B i B i

x x x
d A B

x x x

  
  

    
  

                            (6) 

If 2  , then the generalized Hausdorff distance becomes the Euclidean-Hausdorff distance: 

2 2 2

9 9 9
1

( ) ( ) ( )1
( , ) max log , log , log

4 ( ) ( ) ( )

n
A i A i A i

ehaud

i B i B i B i

x x x
d A B

x x x

  
  

    
  

                       (7) 

In addition, if we combine the Hausdorff distance with the Hamming distance and the Euclidean distance, we 

can obtain some hybrid measures of the distance between A  and B , such as the hybrid Hamming distance, the 

hybrid Euclidean distance and the generalized hybrid distance, which are shown below in that order: 



8 

 

 

9 9 9 9 9 9
1

( ) ( ) ( ) ( ) ( ) ( )1 1
( , ) log log log max log , log , log

8 ( ) ( ) ( ) 4 ( ) ( ) ( )

n
A i A i A i A i A i A i

hhd

i B i B i B i B i B i B i

x x x x x x
d A B

x x x x x x

     
     

                   
        (8)                  

1 2
2 2 2 2 2 2

9 9 9 9 9 9
1

1 ( ) ( ) ( ) 1 ( ) ( ) ( )
( , ) log log log max log , log , log

16 ( ) ( ) ( ) 8 ( ) ( ) ( )

n
A i A i A i A i A i A i

hed

i B i B i B i B i B i B i

x x x x x x
d A B

x x x x x x

     
     

                       
            (9) 

1

9 9 9 9 9 92 1
1

1 ( ) ( ) ( ) 1 ( ) ( ) ( )
( , ) log log log max log , log , log , 0

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

n
A i A i A i A i A i A i

ghd

i B i B i B i B i B i B i

x x x x x x
d A B

x x x x x x


     

 

      
      



                       
 (10) 

Property 2. The generalized hybrid distance measure shown as Eq. (10) satisfies the following properties: 

(1) ( , )=0ghdd A B  if and only if =A B ; 

(2) ( , )= ( , )ghd ghdd A B d B A ; 

(3) If A B C  , then ( , ) ( , ) ( , )ghd ghd ghdd A B d B C d A C  . 

The proof of Property 2 is given in the Appendix. 

3.2 Distinct weighted distance measures between IMSs 

In this subsection, we mainly introduce the distance measures between IMSs from three aspects, which are the 

weighted distance measures, the ordered weighted distance measures, and the continuously weighted distance 

measures. 

3.2.1 Weighted distance measures between IMSs 

In many real-world situations the weights of the elements ix X ( 1,2, , )i n  should be considered. Jiang, 

Xu and Shu (2016) proposed some weighted measures of the distance between IMSs, such as the weighted 

Minkowski distance, the weighted Hamming distance, and the weighted Euclidean distance. In addition, Garg 

(2017) presented the normalized weighted Hamming distance and the normalized weighted Euclidean distance. 

Below we introduce more weighted distance measures for IMSs. 

Let  1 2, , , nX x x x be a finite set,   ,A iA x     ,A i i ix x x X    and B 

       , ,B i B i B ix x x   ix X  be two IMSs in X  associated with the weight vector 1 2( , , , )T

nw w w w , 

where 0 1iw   and 
1

1
n

i

i

w


 . The generalized weighted Hausdorff distance between A  and B  is defined as: 
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 

 
 

 
 
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A i A i A i

gwhaud i

i B i B i B i

x x x
d A B w

x x x

  



  
  

          
 , 0          (11) 

If 1  , we can obtain the weighted Hamming-Hausdorff distance between A  and B : 

 
 

 
 

 
 9 9 9

1

1
( , ) max log , log , log

2

n
A i A i A i

whhaud i

i B i B i B i

x x x
d A B w

x x x

  
  

    
  

                    (12) 

If 2  , we can obtain the weighted Euclidean-Hausdorff distance between A  and B : 

 
 

 
 

 
 

2 2 2

9 9 9
1

1
( , ) max log , log , log

4

n
A i A i A i

wehaud i

i B i B i B i

x x x
d A B w

x x x

  
  

    
  

                  (13) 

In particular, if (1 ,1 , ,1 )T
w n n n , then the generalized weighted distance, the weighted Hamming distance, 

and the weighted Euclidean distance are equal to the normalized Minkowski distance, the normalized Hamming 

distance and the normalized Euclidean distance, respectively.  

Obviously, we can also obtain some hybrid weighted distance measures on the basis of the above distance 

measures, for example: 

(1) The hybrid weighted Hamming distance between A  and B : 

9 9 9 9 9 9
1

( ) ( ) ( ) ( ) ( ) ( )1 1
( , ) log log log max log , log , log

8 ( ) ( ) ( ) 4 ( ) ( ) ( )

n
A i A i A i A i A i A i

hwhd i

i B i B i B i B i B i B i

x x x x x x
d A B w

x x x x x x

     
     

                    
   (14) 

(2) The hybrid weighted Euclidean distance between A  and B : 

1 2
2 2 2 2 2 2

9 9 9 9 9 9
1

1 ( ) ( ) ( ) 1 ( ) ( ) ( )
( , ) log log log max log , log , log

16 ( ) ( ) ( ) 8 ( ) ( ) ( )

n
A i A i A i A i A i A i

hwed i

i B i B i B i B i B i B i

x x x x x x
d A B w

x x x x x x

     
     

                      
   (15) 

(3) The generalized hybrid weighted distance between A  and B : 

1

9 9 9 9 9 92 1
1

( ) ( ) ( ) ( ) ( ) ( )1 1
( , ) log log log max log , log , log

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

n
A i A i A i A i A i A i

ghwd i

i B i B i B i B i B i B i

x x x x x x
d A B w

x x x x x x

     

 



     
      



                       
 , 0   (16) 

3.2.2 Ordered weighted measures of the distance between IMSs 

The concept of ordered weighted distance was introduced by Xu and Chen (2008) and has been studied by 

many scholars. So far the concept of ordered weighted distance has been extended to IFSs (Xu & Chen, 2011), 

HFSs (Xu & Xia, 2011) and HFLTSs (Liao & Xu, 2015; Liao, Xu & Zeng, 2014). A prominent characteristic of 

ordered weighted distance is that it can diminish or enhance the influence of unduly large or small deviations on the 
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aggregation results by assigning them low or high weights (Xu & Chen, 2008). This desirable property makes 

ordered weighted distance measures extremely useful in decision making processes, however our review of the 

existing literature revealed that there has been no research on ordered weighted measures of the distance between 

IMSs, so in this subsection we present some ordered weighted measures of the distance between IMSs. 

Let A  and B  be two IMSs, and their associated weight vector be given as above. The generalized ordered 

weighted distance between A  and B  is defined as:  
 

 
 

 
 

 
 

1

( ) ( ) ( )

9 9 91
1 ( ) ( ) ( )

1
( , ) log log log

2

n
A i A i A i

gowd i

i B i B i B i

x x x
d A B w

x x x

  

  


  

  

  


          

 , 0                (17) 

 

where (1), (2), , ( )n    is a permutation of (1,2, , )n  such that 

 
 

 
 

 
 

 
 

 
 

 
 

( 1) ( 1) ( 1) ( ) ( ) ( )

( 1) ( 1) ( 1) ( ) ( ) ( )

9 9 9 9 9 9log log log log log log
A i A i A i A Ai A

B i B i B i B B

i i

i i iB

x x x x x x

x x x x x x

    

     

    





     

     
  

  

   
       
      
   

 

If 1  , Eq. (17) reduces to an ordered weighted Hamming distance between A  and B :  

 
 

 
 

 
 

( ) ( ) ( )

9 9 9
1 ( ) ( ) ( )

1
( , ) log log log

4

n
A i A i A i

owhd i

i B i B i B i

x x x
d A B w

x x x

  

  

  

  

 
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 
 

                     (18) 

If 2  , Eq. (17) reduces to an ordered weighted Euclidean distance between A  and B :  

 
 

 
 

 
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2 2 2
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                   (19) 

Based on the Hausdorff metric, we can define a generalized ordered weighted Hausdorff distance between A  

and B : 

 
 

 
 

 
 

1

( ) ( ) ( )

9 9 9
1 ( ) ( ) ( )

1
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2
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A i A i A i
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i B i B i B i

x x x
d A B w

x x x

  
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
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  


  

  
         

     (20) 

where (1), (2), , ( )n    is a permutation of (1,2, , )n , such that: 

 
 

 
 

 
 

 
 

 
 

 
 

1 1( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

9 9 9 9 9 9

1 1 1

max log , log , log max log , log , log
A A A A A A

B B B B B

i i i i i i

i i i i i iB

x x x x x x

x x x x x x

     



  

 

 

 




     

     
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  

   
      
      

 

If 1  , then Eq. (20) reduces to an ordered weighted Hamming-Hausdorff distance between A  and B :  
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                  (21) 

If 2  , then Eq. (20) reduces to an ordered weighted Euclidean-Hausdorff distance between A  and B :  
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Obviously, we can also develop some hybrid ordered weighted distance measures, such as the hybrid 

generalized ordered weighted distance, the hybrid ordered weighted Hamming distance, and the hybrid ordered 

weighted Euclidean distance between A  and B , which are shown below in that order: 

( ) ( ) ( ) ( ) ( ) ( )
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where (1), (2), , ( )n    is any permutation of (1,2, , )n , such that 
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

 

3.2.3 Weighted distances between IMSs in the continuous case 

We find that all the above distance measures are based on discrete values. However, sometimes the universe of 

discourse and the weights of elements may be continuous. This subsection mainly discusses that case. 

Let A  and B  be two IMSs in X  with the weight of [ , ]x X a b   being ( )w x , where ( ) [0,1]w x   and 

( ) 1
a

b
w x dx  . We define a generalized continuous weighted distance, a continuous weighted Hamming distance 
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and a continuous weighted Euclidean distance between the IMSs A  and B , respectively, as follows: 
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If ( ) 1 ( )w x b a   for any [ , ]x a b , then the above distances respectively reduce to a generalized continuous 

normalized weighted distance, a continuous normalized Hamming distance and a continuous normalized Euclidean 

distance, as follows: 
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 , 0           (29) 

   
 
 

 
 

 
 9 9 9

1
, log log log

4

b
A A A

cnhd
a

B B B

x x x
d A B dx

b a x x x

  
  

 
      

                       (30) 

   
 
 

 
 

 
 

1 2
2 2 2

9 9 9

1
, log log log

8

b
A A A

cned
a

B B B

x x x
d A B dx

b a x x x

  
  

  
    
  

  
                 (31) 

On the basis of the Hausdorff metric, we can introduce a generalized continuous weighted Hausdorff distance, 

a continuous weighted Hamming-Hausdorff distance and a continuous weighted Euclidean-Hausdorff distance 

between A  and B  as follows: 

 
 

 
 

 
 

1

9 9 9

1
( , ) ( )max log , log , log

2

b

gcwha

A A A

B B B

ud
a

x x
d A B w x dx

x

x x x

  
  
  

          
 , 0          (32)                 

 
 

 
 

 
 9 9 9

1
( , ) ( )max log , log , log

2

b
A A A

cwhhaud
a

B B B

x x x
d A B w x dx

x x x

  
  

    
  

                          (33) 
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 
 

 
 

 
 

1 2
2 2 2

9 9 9

1
( , ) ( )max log , log , log

2

A A A

B

b

cweh

B

aud
a

B

x x x

x x
d A B w x dx

x

  
  

          
                (34) 

If ( ) 1 ( )w x b a   for any [ , ]x a b , then Eqs. (32)-(34) reduce respectively to a generalized continuous 

normalized Hausdorff distance, a continuous normalized Hamming-Hausdorff distance and a continuous 

normalized Euclidean-Hausdorff distance between A  and B  as follows: 

 
 

 
 

 
 

1

9 9 9

1 1
( , ) max log , log , log

2

A A A

B

b

gcnwhaud
a

B B

x x x

x x x
d A B dx

b a

  
  
  

            
 , 0          (35)                 

 
 

 
 

 
 9 9 9

1
( , ) max log , log , log

2( )

b
A A A

cnhhaud
a

B B B

x x x
d A B dx

b a x x x

  
  

    
   

                      (36)  

 
 

 
 

 
 

1 2
2 2 2

9 9 9

1 1
( , ) max log , log , log

2

b

cnehaud

A A A

B B B
a

x x x
d A B dx

b a x x x

  
  

           
               (37) 

We can, of course, derive some hybrid continuous weighted distance measures, such as a generalized hybrid 

continuous weighted distance, a hybrid continuous weighted Hamming distance and a hybrid continuous weighted 

Euclidean distance between A  and B  as follows: 

 
1

9 9 9 9 9 92 1

( ) ( ) ( ) ( ) ( ) ( )1 1
( , ) log log log max log , log , log

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

b
A i A i A i A i A i A i

ghcwd
a

B i B i B i B i B i B i

x x x x x x
d A B w x dx

x x x x x x

    




 

     
      

                       
 , 0    (38) 

  9 9 9 9 9 9

1 ( ) ( ) ( ) 1 ( ) ( ) ( )
( , ) log log log max log , log , log

8 ( ) ( ) ( ) 4 ( ) ( ) ( )

b
A i A i A i A i A i A i

hcwhd
a

B i B i B i B i B i B i

x x x x x x
d A B w x dx

x x x x x x

     
     

                   
          (39)  

 
1 2

2 2 2 2 2 2

9 9 9 9 9 9

1 ( ) ( ) ( ) 1 ( ) ( ) ( )
( , ) log log log max log , log , log

16 ( ) ( ) ( ) 8 ( ) ( ) ( )

b
A i A i A i A i A i A i

hcwed
a

B i B i B i B i B i B i

x x x x x x
d A B w x dx

x x x x x x

     
     

                       
  (40) 

If ( ) 1 ( )w x b a   for any [ , ]x a b , then Eqs. (38)-(40) reduce respectively to a generalized hybrid 

continuous normalized distance, a hybrid continuous normalized Hamming distance and a hybrid continuous 

normalized Euclidean distance between A  and B  as follows: 

 
 
 

 
 

 
 

 
 

 
 

 
 
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9 9 9 9 9 92 1

1 1 1
( , ) log log log max log , log , log

2 2
A A A A A A

B B B

b

ghcn
a

B

d

B B

d
x x x x x

A
x

x x x x x
x

x
B d

b a


     

 

     
      

     
 

         

 

 

 





 , 0   (41) 
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x xa x x x
x

b x

     
     

            

 


  

 
         (42) 

 
 
 

 
 

 
 

 
 

 
 

 
 

1 2
2 2 2 2 2 2

9 9 9 9 9 9

1 1 1
( , ) log log log max log , log , log

16 8

A A A A A A

B B B B B

b

hcwed
a

B

d A B dx
b

x x x x x x

x x x x xa x

     
     

                 

 
 
 
 

  (43) 

Note. In Section 3.2, various weighted distance measures for IMSs based on the generalized weighted 

Hausdorff distance and the generalized hybrid weighted distance were investigated. It is easy to demonstrate that 

all the proposed weighted distance measures also have the properties shown in Properties 1 and 2.  

Example 1. Let A  and B  be two IMSs in  1 2,X x x  and     1 6,4 , 2,1 6A ,     6,1 9 , 7,1 9B  . Their 

weight vector is  1 3,2 3
T

w  . 

(1) Using Eq. (11), we can obtain the generalized weighted Hausdorff distance between A  and B . The results 

are shown in Fig. 1. The left side of Fig. 1 shows the variations and distributions of the generalized weighted 

Hausdorff distance between A  and B  when 0 1000   whilst the right side shows these data for 0 100  . 

When 1   and 2  , we can obtain the weighted Hamming-Hausdorff distance and the weighted Euclidean-

Hausdorff distance between A  and B : ( , ) 0.4619whhaudd A B  , ( , ) 0.5252wehaudd A B  . 

 

Fig. 1 The generalized weighted Hausdorff distance between A  and B  

(2) Using Eq. (16), we can obtain the generalized hybrid weighted distance between A  and B . The results are 

shown in Fig. 2. The left side of Fig. 2 shows the variations and distributions of the generalized hybrid weighted 

distance between A  and B  when 0 1000   whilst the right side shows the data for 0 100  . We can obtain 

the hybrid weighted Hamming distance and the hybrid weighted Euclidean distance between A  and B  for 1   

and 2  , respectively: ( , ) 0.4619hwhdd A B   and ( , ) 0.5195hwedd A B  . 
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Fig. 2 The generalized hybrid weighted distance between A  and B  

We can see from Fig. 1 and Fig. 2 that the variations and distributions of these generalized measures of the 

distance between A  and B  are almost the same. Both Figs. 1 and 2 exhibit a slow decrease in the rate of growth of 

the distance between A  and B , whereas all the distances become gradually larger as the value of   increases, and 

they ultimately converge at  approximately 0.82. When 1   and 100  , we obtain the same distance values, i.e., 

0.4619 and 0.82, representing the minimum and maximum values, respectively. It should be noted that both the 

generalized weighted Hausdorff distance and the weighted Minkowski distance make up the generalized hybrid 

weighted distance. Calculation of the generalized hybrid weighted distance is more complex and hence more time-

consuming than calculation of the generalized weighted Hausdorff distance. Hybrid distance measures are more 

robust than single distances. We can choose which distance measure to use based on the demands of a particular 

DM. 

Example 2. Let       = 5,1 7 , 6,1 7 , 1 5,4A ,       2,1 7 , 1 7,5 , 1 6,5B   and      6,1 6 , 4,1 8 , 1 7,2C   

be three IMSs, and  1 3,1 6,1 2
T

iw   be their weight vector. Four distance measures - the Minkowski distance, 

the weighted Minkowski distance, the generalized hybrid distance, and the generalized hybrid weighted 

distance - are used to determine the values of  ,d A B ,  ,d A C , and  ,d B C , and the results are shown in Figs. 

3-5, respectively. 
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Fig. 3 The distance between A  and B  

  

Fig. 4 The distance between A  and C  

  

Fig. 5 The distance between B  and C  

The left side of Fig. 3 shows the distance between A  and B  when 0 100   whilst the right side shows the 

corresponding distance with 1,2,10,50,100,500,1000  . Corresponding values for the distances between A and C 

and B and C are shown in Figs. 4 and 5 respectively. Based on these figures we can draw the following conclusions: 

(1) Using different distance measures we obtain different values for the distance between IMSs. For instance, 

the generalized hybrid distance and the weighted Minkowski distance provide the biggest and smallest values 

respectively.  

(2) The values of weighted distance measures gradually increase with  , whereas values of unweighted 

distance measures decrease. Note also that the values of the weighted distances are smaller than those of the 

unweighted distances. 
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(3) The right sides of Figs. 3-5 show that the differences between the values of the different distance measures 

gradually decrease as the values of   increase and finally tend to zero. Meanwhile, when 1   and 2  , we 

have      , , ,d B C d A B d A C  ; whilst for 10  , 50  , 100  , 500  , 1000  , we have 

     , , ,d A B d B C d A C  . This means that the proposed distance measures, i.e., the generalized hybrid distance 

and the generalized hybrid weighted distance, provide effective measurements of the difference between IMSs. 

Example 3. (Continued from Example 2) Assume that  1 6,1 3,1 2
T

w   is the weight vector of the ordered 

positions of the distances     ,i iA x B x , where  

    ,i iA x B x 
 
 

 
 

 
 

( 1) ( 1) ( 1)

9 9 9

( 1) ( 1) ( 1)

log log log
A i A i A i

B i B i B i

x x x

x x x

  

  

  

  

  
  

  

 
    
 

, for 1,2,3i   

(I) Using Eq. (17), we can obtain the generalized ordered weighted distance between A  and B . When 1   

and 2  , we have ( , ) 0.2366owhdd A B   and ( , ) 0.3613owedd A B  .  

(II) Using Eq. (20), we can obtain the generalized ordered weighted Hausdorff distance between A  and B . 

When 1   and 2  , we have ( , ) 0.2367owhhaudd A B   and ( , ) 0.3693owehaudd A B  .  

(III) Using Eq. (23), we can obtain the hybrid generalized ordered weighted distance between A  and B . 

When 1   and 2  , we have ( , )=0.2367howhdd A B  and ( , )=0.3653howedd A B . 

Examples 2 and 3 show that the values of the weighed distance measures, i.e., those given by Eqs. (17), (20) 

and (23), are smaller than those of the unweighted distance measures, i.e., Eqs. (2) and (10). As mentioned above, a 

prominent characteristic of ordered weighted distance measures is that they can modify the influence of unduly 

large or small deviations on the aggregation results by assigning them low or high weights (Xu & Chen, 2008). In 

such cases, the obtained results are closer to DMs’ preferences and more consistent with the real situation. In 

addition, this section further investigates the use of continuous weighted distance with IMSs, which provides a 

solution to the problem of the continuity of weight vector for attributes. The strength, characteristics and 

applicability of these proposed distance measures are further summarized in Table 1. On this basis, the choice of 

distance measure can be based on the demands of the DMs. 

Table 1 Comparisons of the proposed IM distance measures 

Distance measures Strength Characteristics Applicability 

Unweighted form Generalized Hausdorff distance Moderate Regardless of weight MCDM problems with 
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equal weights of the 
DMs or criteria; 
Regardless of weight 

Weighted form 

Generalized weighted Hausdorff 
distance 

Strong 
Both the weight vectors 
of DMs and criteria are 
considered 

It can be widely used to 
measure the weighted 
distance between 
IMSs/IMNs 

Ordered weighted Hausdorff 
distance 

Moderate 

It can diminish or 
enhance the influence of 
unduly large or small 
deviations on  
aggregation results 

The case considering 
the orders of criteria 
and DMs 

Continuous weighted Hausdorff 
distance 

Weak Continuous values 

It is mainly used to 
tackle the case that the 
universe of discourse 
and the weights of 
elements are 
continuous 

Note that the term “strength” in Table 1 denotes the strength of practicality, that is, the frequency of application in real case. 

Moreover, the hybrid distance measures for IMSs/IMNs have stronger robustness compared with single forms such as the 

Hausdorff distance, Hamming distance, and Euclidean distance.  

4 Two distance-based methods for MCDM problems with intuitionistic multiplicative 

information 

A MCDM can be described as follows: let  1 2, , , mX X X X  be a discrete set of options, where the DMs 

need to choose the best option from X  according to the criterion set  1 2, , , nC C C C . Suppose that the values 

for the criteria, given by the DMs, are represented by the IMNs {( ( ), ( )) | 1,2, , , 1,2, , }
i iX j X jC C i m j n    , 

where ( )
iX jC  and ( )

iX jC  are the degrees of membership and non-membership, respectively, of option iX  

based on criterion 
jC , and satisfy:

 
1 9 ( ), ( ) 9

i iX j X jC C   , 0 ( ) ( ) 1
i iX j X jC C   . Together these IMNs 

constitute an intuitionistic multiplicative decision matrix (IMDM) ( )ij m nR r   ( ( ), ( ))
i iX j X j m nC C   . In this 

section, based on the proposed measures of the distance between IMSs, we propose two methods of solving 

MCDM problems with intuitionistic multiplicative information. 

4.1 The distance-based IM-TOPSIS method 

TOPSIS (Chen & Hwang, 1992) is a well-known method and is widely used in solving MCDM problems. 

With this method, the chosen option should be furthest from the negative-ideal solution and closest to the positive-
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ideal solution. In other words, the distance measure plays an important role in this method. There has been a lot of 

work done on the TOPSIS method and it can be divided into two categories: (i) extensions of the TOPSIS method 

to multiple fuzzy sets (Liao & Xu, 2015), including IFSs, interval-valued IFSs, Pythagorean fuzzy sets, HFSs and 

HFLTSs; (ii) applications in a wide variety of fields, such as the healthcare industry, manufacturing, business 

investment, military training, financial management of government and national policies.  

By combining the extant research results with the proposed measures of distance between IMSs we can 

develop a distance-based, intuitionistic multiplicative TOPSIS (IM-TOPSIS) method. The general procedures of the 

IM-TOPSIS are shown below. 
 
Algorithm 1 

Step 1. Build the IMDM based on the initial intuitionistic multiplicative evaluation values given by the DM. 

Step 2. Determine the intuitionistic multiplicative positive-ideal solution (IMPIS) and the intuitionistic 

multiplicative negative ideal solution (IMNIS). Note that the evaluation criteria can be classified into benefit 

criteria and cost criteria. We need to do some unification before carrying out further calculations. The values of the 

cost criterion 
jC  can be translated to their opposites as: 

   ' '( ), ( ) ( ), ( )
i i i iX j X j X j X jC C C C                                                        (44) 

with 
jC  being the cost criterion. 

In this way we can obtain a unified IMDM '
R . To facilitate the presentation, we will assume that all the 

criteria are benefit criteria, if not they could be translated as illustrated above. In this case, the IMPIS X
  and the 

IMNIS X
  can be defined as: 

1 2, , , ,j nX C C C C
        , 1 2, , , ,j nX C C C C

                                           (45) 

where max ( , )j ij j j
i

C C      , min ( , )j ij j j
i

C C       ( 1,2, ,j n ). Given that the criteria are sometimes 

conflicting; it is realistic to assume that such an IMPIS does not exist; if it did the decision would be trivial. 

Step 3. Calculate the distance between each option and the IMPIS, ( , )id X X
 , and the distance between each 

option and the IMNIS, ( , )id X X
 , using the distance measures introduced in Section 3. 

Step 4. Calculate the relative closeness coefficients ( )ic X  ( 1,2, ,i m ) for all options, where 
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 ( ) ( , ) ( , ) ( , )i i i ic X d X X d X X d X X
                                                     (46) 

Step 5. Sort ( )ic X  ( 1,2, ,i m ) in descending order. A large value for the relative closeness coefficient 

( )ic X  implies that the option iX  is close to the IMPIS and relatively distant from the IMNIS. Thus all options can 

be ranked in descending order of their relative closeness coefficient values. The optimal option is the one with the 

highest closeness coefficient value. 

4.2 The distance-based IM-VIKOR method 

The VIKOR (Vlsekriterijumska Optimizacija I Kompromisno Resenje in Serbian, meaning multi-criteria 

optimization and compromise solution) method, which yields compromise solution(s) based on the ideal solution, 

was first proposed by Opricovic (1998). Mardani et al. (2016) gave a comprehensive overview of the VIKOR 

method based on the papers published from 2004 to 2015. Our review of the literature indicated that the VIKOR 

method has been applied to MCDM problems in many different areas, including material selection, supplier 

selection, renewable energy plan selection and information security risk control assessment. In addition, the 

VIKOR method has been extended to other information representation environments, such as IFSs, HFSs, HFLTSs 

and interval neutrosophic sets (Liao & Xu, 2015; Liao & Xu, 2013; Liao, Xu & Zeng, 2015; Bausys & Zavadskas, 

2015). 

However, there has been no research on the VIKOR method with IMSs. Hence we have developed a distance-

based intuitionistic multiplicative VIKOR (IM-VIKOR) method, by combining the existing research results with 

the proposed measures of distance between IMSs. This method involves the following steps: 
 

Algorithm 2 

Steps 1-2. As for Algorithm 1. 

Step 3. Calculate the values of the intuitionistic multiplicative group utility measure iIMGU  and the 

intuitionistic multiplicative individual regret measure iIMIR
 
for all options, defined in terms of the measures of 

distance between IMSs introduced in Section 3, and shown below (here we choose the Euclidean distance as an 

example): 
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      (48) 

Desirable options should have values of these two measures that are as small as possible. Minimization of 

iIMGU  implies maximization of the group intuitionistic multiplicative group utility, whereas to minimize iIMIR  

is to minimize individual regret. 

Step 4. Calculate the value of the intuitionistic multiplicative compromise measure iIMC  of option iX : 

 1i i

i

IMGU IMGU IMIR IMIR
IMC v v

IMGU IMGU IMIR IMIR

 

   

 
  

 
                                          (49) 

where min i
i

IMGU IMGU
  , max i

i
IMGU IMGU

  , min i
i

IMIR IMIR
  , max i

i
IMIR IMIR

  . The coefficient 

[0,1]v  denotes the trade-off the DM makes between group utility and individual regret over the conflicting 

criteria: if 0.5 1v  , then the DM prefers to maximize the group utility; if 0 0.5v  , then the DM pays more 

attention to minimization of individual regret; if 0.5v  , then the DM give equal weight to group utility and 

individual regret. The smaller the value of iIMC  is, the better the option should be. 

Step 5. Rank the options in decreasing order of the values of iIMGU , iIMIR  and iIMC , producing three 

ranking lists. 

Step 6. Propose compromise solution(s) for the MCDM problem.  

(1) There is only one compromise solution (1)
X , which is the first when it is ranked in ascending order of the 

values of  iIMC , and satisfying the following two conditions: 

C1: 
(2) (1)( ) ( )IMC X IMC X   , where (2)

X  is the second-ranked option in the list of values of the 

intuitionistic multiplicative compromise measure iIMC ; 1 ( 1)m    is the threshold, showing the acceptable 

advantage of the compromise option (1)
X , with m  being the number of options. If 4m  , then we let 0.25   in 

order to identify the unique compromise solution (Opricovic & Tzeng, 2004).  

C2: The option (1)
X  is also the best in terms of the ranking of the intuitionistic multiplicative group utility 
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measure iIMGU  and the intuitionistic multiplicative individual regret measure iIMIR . This condition is used to 

guarantee that the unique compromise solution is stable. 

(2) There is more than one compromise solution if the above two conditions are not fully satisfied. If the first 

condition does not hold, then (1) (2) ( ), , , M
X X X  are compromise solutions where  ( )M

X  meets the condition 

( )( )M
IMC X  (1)( )IMC X   . In this case, all the options (1) (2) ( ), , , M

X X X  are very close to each other in terms 

of the intuitionistic multiplicative compromise measure iIMC . If only the second condition does not hold, then 

options (1)
X  and (2)

X  are the compromise solutions. 

The flow charts of the distance-based IM-TOPSIS method and IM-VIKOR method are shown in Fig. 6 (a)-(b), 

respectively. 
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                          (a) Distance-based IM-TOPSIS method          (b) Distance-based IM-VIKOR method 

Fig. 6 Flow charts of the intuitionistic multiplicative TOPSIS and VIKOR methods 

In this section, we extend the TOPSIS method and VIKOR method into the IMS environment. The new parts 

between the proposed algorithms and their traditional forms can be respectively justified as follows: (1) With the 

new method, DMs can express their evaluations in IMSs rather than real numbers or other forms. In this sense, it 

has a stronger ability to depict MCDM problems with unbalanced or asymmetric situations; (2) To measure the 
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distances in the TOPSIS method or VIKOR method (Step 3 in both of them), all the proposed distance measures for 

IMSs can be used. In this regard, DMs can choose an appropriate distance measure of IMSs according to their 

actual demand in real case. 

5 A case study: Healthcare management at WCH 

In this section, a case study concerning hospital management is used to illustrate the application of the 

proposed MCDM methods as well as the distance measures between IMSs. 

5.1 Case introduction 

WCH, located in the southwest of China, is not only the largest single-site hospital in the world but also a 

leading medical center that treats various complicated and severe cases especially in the fields of living donor liver 

transplantation, severe acute pancreatitis and clinical anesthesia. It is a comprehensive hospital classed as Grade-A 

Class-Three in China. It was the first hospital in China to be accredited by the American Society of Pathologists 

(ASP). The WCH is also seeking to become a national center for medical scientific research and technology 

innovation. The WCH takes a large number of patients from Sichuan province and the surrounding provinces and 

cities due to its advanced medical technology, equipment and wealth of medical resources. According to the 

hospital’s own statistics there are about 18,000 outpatients and more than 6000 patients waiting for a bed on any 

given day.  

In recent years the continuing development of the WCH has led to the emergence of some management 

problems. We know that beds are an extremely scarce hospital resource and that the main goal of hospital bed 

management is to maximize utilization of resources. Every year the WCH admits nearly 200,000 inpatients, but at 

least thirty percent of this number (about 60,000 inpatients) do not need to be treated in the WCH. A small 

proportion of the inpatients suffers from severe disease or special value of clinical pathology, but most of them 

suffer from less serious conditions, such as toothache and minor trauma. These patients are taking up high-quality 

medical resources, which means that there are no beds for other patients needing hospital treatment; on the other 

hand treating patients with simple diseases (appendicitis, gallbladder problems etc.) allows the WCH to participate 

in development of medical technology and in scientific research. The conflict between the large number of patients 

seeking to benefit from the excellent resources of the WCH despite having no clinical need for them and the 
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scarcity of medical resource has become a more and more serious problem for the WCH. 

The WCH admission center was established in 2011 to deal with this tricky problem. The center has two main 

objectives: (i) to optimize the hospitalization admission process and select patients; (ii) to improve the efficiency 

with which resources are used and ensure the fair and intelligent use of medical resources. The first stage of the 

inpatient admission process is that the patient is diagnosed in an outpatient department, and then registered by the 

admission center to reserve waiting outside the hospital. The system is designed to prioritize admission of patients 

who have the greatest need of a bed or the most serious clinical need. The triage of patients should resolve the 

conflict between the supply of hospital resources and the considerable demand of patients. Every day there are 

many patients in admission center. Ranking the patients is an onerous task, based on highly subjective criteria. We 

therefore need an efficient, scientifically based decision support technique to support the works and decide which 

patients should be prioritized, which patients should wait for admission, and which patients should not be admitted. 

A review of the relevant literature showed that many scholars in other countries have considered this issue. 

Solans-Domènech et al. (2013) developed a priority scoring system for patients waiting for elective surgery, based 

on the condition of the patient and other, situational factors. Rahimi et al. (2015) proposed a risk-based framework 

for patient prioritization that involved using soft fuzzy sets to help hospitals to select high-risk patients. This not 

only ensures that the risks associated with long waiting times and delayed treatment are borne by the patients least 

likely to be adversely affected, but also increases the overall quality of medical service. Rahimi et al. (2016) 

presented a new approach to decisions where the information and risks are uncertain, which takes into account the 

opinions of surgery team members and patients. Ashour and Kremer (2016) developed a dynamic grouping and 

prioritization algorithm based on existing triage algorithms, which can not only reduce emergency room waiting 

times and the average length of stay but also reduces the observed risks of delayed treatment. It can satisfy the 

demands of emergency departments. There is, however, a significant difference between the medical systems for 

which these tools were designed and the Chinese medical system, which means that many frameworks or 

prioritization approaches are not suitable for use in the Chinese healthcare context. Hence, we further view the 

relevant literatures regarding China’s hospital management. Zhang et al. (2016) used a hesitant fuzzy linguistic 

VIKOR method to solve the inpatient admission assessment problem at the WCH, based on the following criteria: 

“urgency”, “need for hospitalization”, “value of clinical pathology”. However, these authors did not consider other 

risks, limitations on the patient’s activity or time spent on the waiting list. After consulting experts and staff in the 
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admission center and referring to the previous literatures, we developed an approach that would address these 

shortcomings, specifying the following admission criteria and corresponding weights. 

- 1C  (Value of Clinical Pathology, 1 0.15w  ). Dealing with patients who suffer from difficult or complicated 

disease can promote the development of iatrology and have high value of clinical pathology.  

- 2C  (Clinical Features, 2 0.32w  ). Represents disease severity, pain and limitations on activity, etc. 

- 3C  (Related risks, 3 0.20w  ) Delay could exacerbate a patient’s condition or even lead to death, due to 

infection, comorbidity etc.  

- 4C  (Urgency 4 0.22w  ) Patients who are seriously ill or have a condition requiring emergency treatment are 

classified as having high urgency. 

- 5C  (Patient Information, 5 0.11w  ). Represents medical insurance type, time on waiting list, VIP status (yes 

or no) etc. 

For simplicity of presentation we will use five patients 1 2 3 4 5{ , , , , }X X X X X X  to illustrate the proposed 

method. We invited hospital experts (such as the outpatient doctor and staff in the admission center) to diagnose 

these patients and provide their assessments in IMSs. For example, the expert may consider that the patient value 

(based on admission criteria) is between extreme acceptance and very strong acceptance, so the patient value can be 

described as a number between 7 and 9. The other values can be deduced in analogous fashion and then we can 

derive the intuitionistic multiplicative judgment matrix as shown in Table 2. 
 

Table 2 The intuitionistic multiplicative judgment matrix 

Patients
 

1C  2C  3C  4C  5C  

1X  (6,1/8,4/3) (3,1/5,5/3) (4,1/7,7/4) (1/3,2,3/2) (5,1/6,6/5) 

2X  (1 ,1/4,4) (8,1/9,9/8) (3,1/5,5/3) (1/7,2,7/2) (3,1/4,4/3) 

3X  (3,1/6,2) (4,1/5,5/4) (1,1/8,8) (1/5,5,1) (7,1/8,8/7) 

4X  (7,1/8,8/7) (3,1/6,2) (5,1/6,6/5) (1/8,6,4/3) (6,1/7,7/6) 

5X  (4,1/6,3/2) (7,1/8,8/7) (7,1/8,8/7) (1/6,4,3/2) (5,1/9,9/5) 

5.2 Applications of the methods 

As we know, MCDM methods, such as TOPSIS and VIKOR, can be applied to rank options and they are all 

based on a measure of distance from some reference (ideal) points or options. Below we use the distance-based IM-
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TOPSIS and IM-VIKOR methods to solve this inpatient admission assessment problem. 

5.2.1 Solving the problem with the distance-based IM-TOPSIS method 

Step 1. Derive the intuitionistic multiplicative decision matrix from the values given by the outpatient doctor 

and the staff in admission service center for clinical and administrative criteria respectively (see Table 1). 

Step 2. Determine IMPIS X
  and IMNIS X

 . In our example, the criteria 1C , 2C , 4C  and 5C  are benefit 

criteria while 3C  is the cost criterion. Thus we get the following IMPIS A  and IMNIS B . 

          7,1 8,8 7 , 8,1/ 9,9 / 8 , 1,1 8,8 , 1 3,2,3 2 7,1, 8,8 7X
   

          1,1 4,4 , 3,1 5,5 3 , 7,1 8,8 7 , 1 8,6,4 3 3,1, 4,4 3X
     

Step 3. The distance between each option and the IMPIS (denoted as PIS-D in Tables 3-5), and the distance 

between each option and the IMNIS (denoted as NIS-D in Tables 3-5), are given by Eq. (11) and Eq. (16) 

respectively. The results are shown in Tables 3-4. 

Table 3 Distances between each option and the IMPIS or IMNIS for different values of   

(Based on generalized weighted distances) 

 1   2   3   4   5   6   7   
 PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D 

1X  0.1543 0.1544 0.1867 0.188 0.2125 0.2149 0.2317 0.2372 0.2462 0.256 0.2573 0.272 0.2662 0.2856 

2X  0.2014 0.165 0.2334 0.1732 0.257 0.1824 0.2768 0.1899 0.2936 0.1959 0.308 0.2007 0.3202 0.2045 

3X  0.1253 0.1918 0.1359 0.2306 0.144 0.2704 0.1504 0.3006 0.1557 0.3229 0.1603 0.3395 0.1642 0.3523 

4X  0.2166 0.1124 0.239 0.163 0.263 0.2078 0.2832 0.2429 0.2998 0.2699 0.3135 0.2911 0.3249 0.3079 

5X  0.1635 0.1496 0.2185 0.1586 0.2646 0.1739 0.2977 0.1888 0.3214 0.2019 0.3388 0.2133 0.3519 0.223 

 
 8   9   10   20   50   100   400   

 PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D 

1X  0.2735 0.2972 0.2795 0.307 0.2845 0.3154 0.3105 0.3582 0.3304 0.3871 0.338 0.3973 0.3439 0.4051 

2X  0.3306 0.2077 0.3395 0.2104 0.3472 0.2128 0.3894 0.2262 0.4205 0.2392 0.4315 0.2445 0.44 0.2486 

3X  0.1676 0.3623 0.1706 0.3704 0.1733 0.377 0.188 0.4086 0.1996 0.4288 0.204 0.4357 0.2074 0.441 

4X  0.3344 0.3215 0.3424 0.3328 0.3493 0.3422 0.3855 0.389 0.4123 0.4205 0.4219 0.4315 0.4292 0.44 

5X  0.3621 0.2313 0.3703 0.2385 0.377 0.2447 0.4086 0.2772 0.4288 0.2995 0.4357 0.3074 0.441 0.3134 

 

Table 4 Distances between each option and the IMPIS or IMNIS for different values of   

(Based on generalized weighted Hausdorff distances) 

 1   2   3   4   5   6   7   
 PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D 

1X  0.1543 0.1544 0.2017 0.2084 0.2282 0.2421 0.246 0.2669 0.2591 0.286 0.2693 0.301 0.2777 0.313 

2X  0.2014 0.165 0.2592 0.1927 0.2904 0.2035 0.312 0.2096 0.3281 0.2137 0.3406 0.2167 0.3506 0.2191 
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3X  0.1253 0.1918 0.152 0.2378 0.1629 0.2753 0.1693 0.3033 0.1737 0.3243 0.177 0.3402 0.1796 0.3526 

4X  0.2166 0.1124 0.259 0.184 0.2848 0.2385 0.3045 0.2765 0.3207 0.3033 0.334 0.3229 0.345 0.3377 

5X  0.1635 0.1496 0.2204 0.1801 0.2653 0.1989 0.2979 0.2133 0.3215 0.2252 0.3388 0.2351 0.3519 0.2434 

 
 8   9   10   20   50   100   400   

 PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D 

1X  0.2845 0.3228 0.2902 0.3309 0.295 0.3376 0.3191 0.3708 0.3349 0.3926 0.3403 0.4001 0.3142 0.3445 

2X  0.3589 0.2211 0.3657 0.2228 0.3716 0.2243 0.4031 0.2335 0.4263 0.2426 0.4345 0.2462 0.4407 0.4407 

3X  0.1818 0.3625 0.1837 0.3705 0.1854 0.3771 0.1946 0.4086 0.2023 0.4288 0.2054 0.4357 0.2077 0.2077 

4X  0.354 0.3493 0.3615 0.3587 0.3678 0.3663 0.3983 0.4027 0.418 0.4263 0.4248 0.4345 0.3648 0.43 

5X  0.3621 0.2504 0.3703 0.2564 0.377 0.2614 0.4086 0.2869 0.4288 0.3037 0.4357 0.3095 0.441 0.441 

 

Table 5 Distances between each option and the IMPIS or IMNIS for different values of   

(Based on generalized hybrid weighted distances) 

 1   2   3   4   5   6   7   
 PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D 

1X  0.1543 0.1544 0.1944 0.1985 0.2207 0.2293 0.2392 0.2534 0.2529 0.2727 0.2637 0.2883 0.2723 0.3012 

2X  0.2014 0.165 0.2466 0.1832 0.2747 0.1935 0.2959 0.2005 0.3127 0.2056 0.3263 0.2094 0.3375 0.2126 

3X  0.1253 0.1918 0.1442 0.2343 0.154 0.2728 0.1607 0.302 0.1656 0.3236 0.1696 0.3399 0.1729 0.3524 

4X  0.2166 0.1124 0.2492 0.1738 0.2743 0.2242 0.2944 0.2613 0.3109 0.2885 0.3246 0.309 0.3358 0.3248 

5X  0.1635 0.1496 0.2195 0.1697 0.2649 0.1872 0.2978 0.2022 0.3214 0.2148 0.3388 0.2255 0.3519 0.2345 

 
 8   9   10   20   50   100   400   

 PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D PIS-D NIS-D 

1X  0.2794 0.3118 0.2852 0.3207 0.2902 0.3282 0.3154 0.3655 0.333 0.3903 0.3394 0.3989 0.3442 0.4055 

2X  0.3467 0.2151 0.3545 0.2173 0.3612 0.2192 0.3973 0.2304 0.4239 0.2412 0.4332 0.2455 0.4404 0.2489 

3X  0.1757 0.3624 0.1781 0.3704 0.1802 0.3771 0.1919 0.4086 0.2012 0.4288 0.2048 0.4357 0.2076 0.441 

4X  0.3452 0.3374 0.353 0.3476 0.3596 0.3561 0.3929 0.397 0.4156 0.4239 0.4236 0.4332 0.4297 0.4404 

5X  0.3621 0.2422 0.3703 0.2487 0.377 0.2543 0.4086 0.2828 0.4288 0.302 0.4357 0.3086 0.441 0.3137 

 

Step 4. We can obtain different relative closeness coefficients for different values of parameter   from Eq. 

(46); the results are shown in Tables 6-8. 

Table 6 Patient rankings for different values of    

(Based on generalized weighted distances) 

 
1   2   3   4   5   6   7   8   9   

10 
 

20 
 

50 
 

100 
 

400 
 

1X  0.5002  0.5017  0.5028  0.5059  0.5098  0.5139  0.5176  0.5208  0.5234  0.5258  0.5357  0.5395  0.5403  0.5409  

2X  0.4503  0.4260  0.4151  0.4069  0.4002  0.3945  0.3897  0.3858  0.3826  0.3800  0.3674  0.3626  0.3617  0.3610  

3X  0.6049  0.6292  0.6525  0.6665  0.6747  0.6793  0.6821  0.6837  0.6847  0.6851  0.6849  0.6824  0.6811  0.6801  

4X  0.3416  0.4055  0.4414  0.4617  0.4738  0.4815  0.4866  0.4902  0.4929  0.4949  0.5023  0.5049  0.5056  0.5062  

5X  0.4778  0.4206  0.3966  0.3881  0.3858  0.3863  0.3879  0.3898  0.3918  0.3936  0.4042  0.4112  0.4137  0.4154  

Ranking 
orders 

31524 31254 31425 31425 31425 31425 31425 31452 31452 31452 31452 31452 31452 31452 

 

Table 7 Patient rankings for different values of   

(Based on generalized weighted Hausdorff distances) 

 1   2   3   4   5   6   7   8   9   10  20  50  100  400 
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1X  0.5002  0.5082  0.5148  0.5204  0.5247  0.5278  0.5299  0.5315  0.5328  0.5337  0.5375  0.5397  0.5404  0.5409  

2X  0.4503  0.4264  0.4120  0.4018  0.3944  0.3888  0.3846  0.3812  0.3786  0.3764  0.3668  0.3627  0.3617  0.3611  

3X  0.6049  0.6101  0.6283  0.6418  0.6512  0.6578  0.6625  0.6660  0.6685  0.6704  0.6774  0.6794  0.6796  0.6798  

4X  0.3416  0.4153  0.4558  0.4759  0.4861  0.4916  0.4947  0.4967  0.4981  0.4990  0.5027  0.5049  0.5056  0.5061  

5X  0.4778  0.4497  0.4285  0.4173  0.4119  0.4097  0.4089  0.4088  0.4091  0.4095  0.4125  0.4146  0.4153  0.4159  

Ranking 
orders 

31524 31524 31452 31452 31452 31452 31452 31452 31452 31452 31452 31452 31452 31452 

 

Table 8 Patient rankings for different values of   

(Based on generalized hybrid weighted distances) 

 1   2   3   4   5   6   7   8   9   10 
 

20 
 

50 
 

100 
 

400 
 

1X  0.5002  0.5052  0.5096  0.5144  0.5188  0.5223  0.5252  0.5274  0.5293  0.5307  0.5368  0.5396  0.5403  0.5409  

2X  0.4503  0.4262  0.4133  0.4039  0.3967  0.3909  0.3865  0.3829  0.3800  0.3777  0.3671  0.3627  0.3617  0.3611  

3X  0.6049  0.6190  0.6392  0.6527  0.6615  0.6671  0.6709  0.6735  0.6753  0.6767  0.6804  0.6806  0.6802  0.6799  

4X  0.3416  0.4109  0.4497  0.4702  0.4813  0.4877  0.4917  0.4943  0.4961  0.4976  0.5026  0.5049  0.5056  0.5061  

5X  0.4778  0.4360  0.4141  0.4044  0.4006  0.3996  0.3999  0.4008  0.4018  0.4028  0.4090  0.4132  0.4146  0.4157  

Ranking 
orders 

31524 31524 31425 31425 31452 31452 31452 31452 31452 31452 31452 31452 31452 31452 

Step 5. The relative closeness coefficient values are sorted in descending order, as shown in the final rows of 

Tables 6-8. Note that in these tables the notation “31524” represents the following ranking order:

3 1 5 2 4X X X X X . 

Step 6. Rank all patients in ascending order of the values of 
iIMGU , 

iIMIR  and 
iIMC  and propose 

compromise solution(s) for the MCDM problem, based on which the ranking list can be derived. The final rankings 

with respect to various parameters are shown in Tables 6-8. 

5.2.2 Solving the problem with the distance-based IM-VIKOR method 

Steps 1-2. As described in 5.2.1. 

Step 3. Calculate the values of 
iIMGU  and 

iIMIR  for all patients with Eq. (47) and Eq. (48), respectively. 

The results are shown in Table 9.  
 

Table 9 The values of 
i

IMGU  and 
i

IMIR  

 
1X  2X  3X  4X  5X  

i
IMGU  0.5615 0.7031 0.4530 0.6550 0.5149 

i
IMIR  0.3013 0.3278 0.228 0.3009 0.2487 

 
Step 4. Calculate the values of 

iIMC  for all patients using Eq. (49). The results are shown in Table 10. 
 

Table 10 Patient rankings for different values of parameter v  

  
1IMC  2IMC  3IMC  4IMC  5IMC  Ranking orders 

0.0 0.7345 1 0 0.7305 0.2074 35412
 

0.1 0.7044 1 0 0.7382 0.2114 35142
 

0.2 0.6743 1 0 0.7459 0.2154 35142
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0.3 0.6443 1 0 0.7536 0.2194 35142
 

0.4 0.6142 1 0 0.7613 0.2234 35142
 

0.5 0.5841 1 0 0.7691 0.2275 35142
 

0.6 0.5541 1 0 0.7768 0.2315 35142
 

0.7 0.524 1 0 0.7845 0.2355 35142
 

0.8 0.494 1 0 0.7922 0.2395 35142
 

0.9 0.4639 1 0 0.8 0.2435 35142
 

Steps 5-6. Rank all patients in ascending order of the values of 
iIMGU , 

iIMIR  and 
iIMC  and propose the 

compromise solution(s) for the MCDM problem. The final rankings for different parameter values are shown in 

Table 10. 

5.3 Analyses of results 

We can derive some interesting conclusions from Tables 7-9.  

(1) In the case of the IM-TOPSIS method, we use generalized weighted distance, generalized weighted 

Hausdorff distance and generalized hybrid weighted distance to calculate the corresponding distances, respectively. 

These different distance measures produce different relative closeness coefficient results, but produced similar 

ranking results, as listed in Tables 7-9. When 2  , the ranking result is 
3 1 2 5 4X X X X X  or 

3 1 5 2 4X X X X X . However, if 3  , the rankings are all 
3 1 4 5 2X X X X X . In such cases, ranking 

result does not change as the value of   increase, regardless of whether generalized weighted distance, generalized 

weighted Hausdorff distance or generalized hybrid weighted distance is used. In addition, the results derived from 

these three distance measures become more stable as parameter   increases. This result is consistent with the 

conclusion presented in Section 3.  

(2) The variability of the values of the relative closeness coefficients differs with respect to  . For 
2X  

calculated from the above three distance measures, the values of the relative closeness coefficients decrease as 

parameter   increases. For 
1X  and 

4X , the variability in relative closeness coefficients follows a different pattern 

from that applying to 
2X , which always increases as parameter   increases. For 

3X  and 
5X , however, the 

variation tendencies of the values of the relative closeness coefficients not always the same.  

As mentioned above, using the IM-TOPSIS method, the relative closeness coefficient slightly varies with the 

selected distance measures for IMSs, including the generalized weighted distance, generalized weighted Hausdorff 

distance and generalized hybrid weighted distance. However, when we consider the values of the relative closeness 
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coefficient from the perspective of final results, we find that they converge on an instant number, such as 0.5409, 

0.3610, 0.6801, 0.5062 and 0.4154 in Table 7. Therefore, in real case, the DMs only need to compute the 

generalized hybrid distance measures of IMS with 1   or 2. In addition, as an integrated form of the Minkowski 

distance and Hausdorff distance, the generalized hybrid weighted distance measure for IMS has stronger robustness 

than the generalized weighted form.  

Using the IM-VIKOR method we can calculate distances using the Euclidean distance measure and obtain 

some meaningful results. When v  is changed, the rankings also change. For example, when 0v  , the rank order is 

3 5 4 1 2X X X X X . However, if 0v  , the rank order becomes 
3 5 1 4 2X X X X X , based on which, 

the compromise solution(s) can be derived as 
3X  and 5X . The DMs can determine the value of v  and we should 

note that v  is the weight of the decision making strategy ‘‘the majority of criteria’’, or saying ‘‘the maximum group 

utility’’ (Opricovic & Tzeng, 2004), based on the DMs’ preference in the given MCDM problem. The VIKOR 

method is more useful and flexible in our real-life situation because it allows the DMs to try to both maximize 

group utility and minimize individual regret of other DMs (opponents). 

Analysis of our example case shows that both the IM-TOPSIS method and the IM-VIKOR method can handle 

the inpatient admission assessment problem effectively. The results explain the difference between these two 

MCDM methods. It also shows that the IM-TOPSIS method and the IM-VIKOR method produce different rankings 

when dealing with the inpatient admission assessment problem. Using the IM-TOPSIS method the best ranking is 

3 1 4 5 2X X X X X , whilst using the IM-VIKOR method the compromise ranking result is 

3 5 1 4 2X X X X X
 
. In real life, DMs can choose any one of them, the IM-TOPSIS or the IM-VIKOR 

method, according to the characteristics of the actual inpatient admission assessment problem. 

6 Conclusions 

As we know, distance measures are a widely used to deal with MCDM problems. In this paper we have 

developed some distance measures for IMSs, including the generalized Hausdorff distance, weighted distance 

measures, ordered weighted distance measures and continuous weighted distance measures. On this basis, we have 

proposed a distance-based IM-TOPSIS method and a distance-based IM-VIKOR method, which can be used to 

handle MCDM problems with IMSs. Compared with the IM-VIKOR method, the IM-TOPSIS method produces 

more stable and accurate results when used to handle an admission-sequencing problem. We have used a practical 
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example in the field of hospital management to illustrate these proposed approaches. As to the studied case of 

inpatient admission service center in WCH, we have proposed the evaluation indices, or saying criteria, for the 

admission sequencing model. It can provide some references for the hospital managers in China.   

In the future we may investigate the differences between generalized continue weighted distance and 

generalized ordered weighted distance as applied to IMSs. The issue of how to handle MCDM problems when 

criterion weights are unknown or incomplete remains open. We will try to develop more measures of the distance 

between IMSs, for example projection-based distance measures, psychological distance measures etc. Furthermore, 

we may apply our distance measures to other decision-making problems. 
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Appendix  

Proof of Property 1.  

Proof. (1) Necessary: If =A B , then the equality 
 
 

 
 

 
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 holds. On this 

basis, we have 
 
 
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 . Thus, the equality 

( , )=0gwhaudd A B  holds. 
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Sufficient: Since  
 
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Thus, we have ( , ) ( , )ghd ghdd A C d A B . Similarly, we can prove that ( , ) ( , )ghd ghdd A C d B C  holds. This completes 

the proof of Property 2.  

 


