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Smnmary. - For the eontinuaus real valued/unctions, p, m and g, with p(x) >~ O, and m(x) > O, 

and ~ > O, v > 0 being reals, the di]ferential equations y'~(x) -~ p(x)ly(x)I ~ sgn y(x) = 

= re(x)ty(g(x))I ~ sgn y(g(x)) is eonside.red, lJyapu~ov type integral inequalities are established 

which yield implicit lower bounds on the distance between consecutive zeros oJ a nontriviat 

solution o/the above e~ation, and several others. The same is done jo~" a problem involving 

the distance from a zero o/ a solution y to the next greater zero o / i t s  derivative y'. Special 

conditions are placed on the corresponding initial functions. They allow /or application o/ 

results to oscillatory solutions o/ the given e~uation, and also to non-trivial solutions having 

a zero initial /unction. When p(x) ~ O. the results take on a special ]orm; and when in 

addition re(x)> O, g(x) < x and v = 1, one result establishes a necessary condition /or the 

existence oJ an oscillatory solution having in/initely many small semicycles. This condition 

is the weak ]orm o/ a strict integral inequality, due to G. Ladas et al., which establishes a 

suMicient condition /or the oscillation of all bounded solutions. 

l .  - Introduction. 

I n  this pape r  we wish to consider the  differential  equat ion 

b 

(1.1) y"(x) -~ p(x)ty(x)l, sgny(x)  = f !y (u ) t  v sgny(u)  d~(x, ~ ) ~  

t~ 

on an  in te rva l  I of reals hav ing  end points  a < b, (a---- --  ce or b =- ~ c~ are pos- 

sible). I n  the  (proper  or improper )  l~iemann-Stiel t jes  integral ,  d~(x,  u) signifies 

t h a t  for  each x, ~(x, .) is the  in tegra to r  funct ion.  For  the  r ema inde r  of the  pape r  

we drop the  subscr ip t  u on d. Throughout  we assume hypotheses  

g, h,p: I-->R are  all cont inuous wi th  p(x)>~O and  h(x)<~g(x) on I ,  and  # > 0 

and  v > 0 are  reals ;  

(it1) : 

and  

(tI~): ~: I × R - ~ R  is such t h a t  for each x in I, ~(x, s) is mono tone  increasing in s 

wi th  o:(x, s) =-- ~(x, h(x) --) for s < h(x) and o:(x, s) ~ o:(x, g(x) 4- ) for s > g(x); 

and  for each cont inuous k : I - ~ R ,  o:(x,k(x)), ~(x,k(x)-~) and  o:(x,k(x)--) 

are bounded  and  Lebesgue in tegrable  on compac t  subintervals  of I .  

(*) Entrat~ in Redazione il 28 marzo 1974. 
(**) Based on research supported in part by the U.S. Army Research Office-Durham through 

Grant Number DA-ARO.31-124-72-G154 with The University of Oklahoma Research Institute. 

1 8  - Annali  di 1~iatematica 



274 S'rA~LEY B. ELIASON: Distance between zeros o] certain diHerential, etc. 

In  (H~) and  elsewhere we denote  r ight  and lef t  hand  limits by  @ and --. 

Problems studied here  involve plaeing implicit  lower bounds on the  distance 

between zeros of cer ta in  solutions y, (and/or derivat ives y'), of (1.1), and other  equa- 

tions, by  means of establishing I~yapunov type  inequMities. This also leads to esta- 

blishing a necessary condit ion for the existence of cer ta in  oscillatory solutions of 

a special case of (1.1), i.e., where p(x) ~ 0 and the integral  on the right is replaced 

by  m(x)]f(g(x))l ~. sgn y(g(x)), with r e ( x ) >  0, g s t r ic t ly  increasing" and g ( x ) <  x on 

I -  [a, oo). 

A special case of (1.1) is 

(1.2) y',(~) + p(~);y(~)i  ~' sgn  y(~) = ~ (~ ) ly (g (x ) ) t  ~ sgn y(e(x)), 

where we assume 

H ( ~j: m: I-->R is nonnegat ive  and continuous,  and p, g, # and ~ satisfy (II~). 

The basic theorems which are established for equat ion (1.1) can also be modified 

to handle  the  equat ion 

b 

(1.3) y"(x)-5 ~ ly(u)l~sgny(u)d~zdx, u) = O, 
4 = 1  

(% 

under  

(Its): for each I < i < K ,  ~ > 0  and ei ther  ~ or - - ~  satisfies (H2) for appropria te  

funct ions h~ and g~ satisfying (H~). 

Thus, as special cases of (1.3) under  (H4), we have equat ion (1.1) under  (HI) and 

(tI2), bu t  where (~ p(x)~> 0 ~> is deleted and the phrase (~ is monotone  increasing ~> ma y  

be changed to <~is of bounded var ia t ion ~>; and equat ion (1.2) where g, p and m are 

any  continuous functions,  and v > 0 hold. 

The work of this paper  continues tha t  of the au thor  [2]. There in section 3, equa- 

t ion (1.1) above is s tudied under  (It1), bu t  with -- e satisfying (E2) and # ==- 1. Also 

there ,  equat ion (1.2) above is s tudied under  (Its) , bu t  with m being nonpositive.  

Even  though several equat ions s tudied in [2] are special cases of (1.3) under  (It4), 

we cannot  claim tha t  the  theorems of [2] are special eases of the  results here. This 

is due to the  fact  tha t ,  in the  main theorems of each paper,  t e r t i an  restr ict ions are 

placed on the init ial  and te rmina l  port ions of solutions. For  equat ion (1.1.) above, 

the  restr ict ions va ry  accordingly as e or -- ~ is monotone  increasing in its second 

variable.  I t  is for a common area where these conditions overlap tha t  equat ion (1.3) 

under  (It4) may  be studied. 

Here,  as in [2], the  Lya tmnov  type  inequMities are mot iva ted  by  work of I~L']~E~T [1] 

Other  recent  work concerning (1.2) with p(x) ~- O, g(x) --> @ c,o and  g(x)<x can 

be found in [3], [4], [5] and  [6]. They  also consider certain generalizations. 
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Examples  1.1 through 1.6 of GUSTAFSON [3] show several such equat ions and 

point  out how cer ta in  equations ma y  have oscillatory and nonoscil latory solutions 

both  existing in quite in teres t ing combinations even when p(x) ~ 0 and  v = 1. 

Some resul ts  of M¥~K!S, appear ing in [6] and [7] deal with lower bounds on the 

distance between zeros of solutions of (1.1) where p ( x ) ~  0 and  v == 1. The Rie- 

mann-Stiel t jes  integral  here  in (1.1) is expressed in somewhat  different form. 

Finally,  for la ter  reference,  if y is a solution of (1.1) on an in terval  J ,  having ini- 

tial segment J -  and  terminal segment J+~ as in (3.3) of [2], we have 

(1.4) 

b a(z) 

f ty(u)i sgn y(u)e (x, . . . . .  f ty(u)1 sgn 
a h(z) 

where the  upper  and lower bars on g(x) and h(x) are given by  

and 

g(x), 

g ( x ) =  g ( x ) ÷ ,  

h(x), 

h ( x ) =  h(z ) - - ,  

if g(x) = sup J W J+ 

if g(x) < sup J W J + ,  

if h(x) = inf J w J -  

if h(x) < inf J W J -  

Certa,inly (1.~) may  be applied to equat ion (1.3) under  (H4) as well. Tha t  is, each g~ 

and  h~ sat isfy (1.4) provided J+ and J -  are defined as unions of J+ and J~- respectively.  

2. - Lyapunov type integral inequalities L 

In  this section we wish to establish Ly a p u n o v  type  integral  inequalities which 

yield implicit  lower bounds on the  lengths of left quarter-cycles, [c~ d], of solutions y 

of (1.1), i.e., y(c) = 0 = y'(d), y(x) =/=0 en (c, d). They  ma y  be used as well to place 

lower bounds on the  first proper  value 3,, if such exists and is nonnegat ive,  of a Sturm- 

Liouville t ype  problem 

y" (x) -~ )~y(x) ---- re(x)y(g(x)) 
(2.1) 

y(x) ~ 0 on [c, d]-, y'(d) = 0 

where [e, d] ¢_I, m is cont inuous and g(x )<x  on I.  Such problems are considered in 

Chapter III of [8]. 

h~otationally, as in [2] when q and  r are reals, we let  q V r  = max{q, r} and qAr  

~ m i n { q ,  r}. Also, ~ quarter-cycle,  {later, a semicycle), [e, d] is called positive or 

negative depending on y(x) > 0 or y(x) < 0 on (c, d). 
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In  order to apply  our first theorem to (1.1), fairly specific conditions are assumed 

on the initial  and te rminal  segments of the  left  quarter-cycle. When the quarter-  

cycle is posit ive these  are given by  (2.3) below. These conditions correspond to (2.8) 

and (2.9) of [2], which of course, deal with a different equation. Condition (2.3)' 

below denotes (2.3) with the  inequalities changed in direction; and (2.4)' denotes (2.4) 

with (~max ~) changed to ((min,). F inal ly  y'(5) denotes y'(~-~) when used in (2.4) 

or (2.4)'. 

T~EOR:E]g 2.1. - Let [c, d] c I be a positive, (negative), le]t quartereycle o] a solu- 

tion y o] (1.1) under (H~) and (H~). Assume 7 and 5 satis]y 

(2.2) 5 e I ,  5 < e  and 7~[5 ,  d ] - ,  (y=(~  i] [5, d]- is null), 

and that y satis]ies 

(2.3) y is a solution o] (1.1) on [5, d], ( x - -7 )y (x )< 0 on [~, d]-k) [5, c], y(x) > 0 on [5~ d] +, 

the restriction o] y to [Y, 5] is absolutely continuous and y ' (x )<0  a.e. on [7, 5), 

((2.3)'). Let y e [5, d] satis]y 

(2.4) y '(y) -~ max{y'(x) : 5 <x < d} 

((2.4)'). 
I t  /oltows that 

d D 

(2.5) 
c V ~  

d 

< ( d -  c)~ly'(~)I "-~ fp( t )d t  + (c -- 5)~ty'(~)I ~-~ f [~(t, G--~) -- ~(t, H(t))] dt,  
cV~ 

G(t) 

f ~c-(Svu)]~d~(t, u))dt 
H(t) 

D 

Also, in 

T = d A s u p { y } W { t : g ( t ) < 7 }  and D = ~ f V i n f ( d } w { t : h ( t ) > c } .  

where 

(2 6) G(t) ~ ( y V g ( t ) ) A c ,  H(t)  ~- (TVh( t ) ) / \ c  

with upper and lower bars ]ollowing the convention o] (1.4) ]or J ~  [8, d]. 

general ~ and D satis]y 

(2.7) ~ =  y e [ b , d ]  and D----d,  

but when g and h are monotone increasing they may be chosen to satis]y 

(2.7)mon 

PROOF. - F rom (1.1) and (1.4), for any s, x in [5, d] it follows tha t  

(2.s) 
s $ 

g(t) 

j !y(u)i 
a(tj 
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Assuming now tha t  the  left  quar te r  cycle is positive, by  (2.3), (2.4), (2.6), (2.7), 

(2.7)mon, we have f rom equat ion (2 8) with s = F, x = d 

(2.9) 

a D G(t) 

,'(w)<f ,(t),'(~Vt)dt + f ( f [-y(u)]~a~(t, u))at 
,~ T H(t) 

d t D G(t) c 

vV,# v T H(t) ~ \ / u  

a D ~(t) 

<[y'(~,)]" f (t--c)~p(t)dt +[y'(w)]~f ( f [c--(d\/u)]~d~(t, u))dt 
c V ~ ~ 1t(0 

cl D 

< (d- -  c)~ [y'(~)]" f p(t)dt ÷ (c- -  5)~ [y'(y;)] ~ f [ e ( t , - f f~ ) -  ~(t, H(t))]dt. 
cV~  W 

I t  is since y is nonnegat ive  outside of [y, c] on It, d] W [e, d] + W [c, d]- t ha t  G and H 

m a y  be chosen to sat isfy (2.6); and also t h a t  allows Wand  D to be as in (2.7) or (2.7)~o.. 

Similar computat ions  are found in (2.11), (2.12), (3.10), (3.11), (3.12), and (3.12)mo. 

of [2]. 

The theorem now follows. 

(2.1o) 

and 

REMAI~K 1. - For  equat ion (1.2) under  (H3), t ake  h(x)~_g(x). Then the  com- 

putat ions  (3.15), (3.16), and preceding of [2] allow the  existence of an ~ satisfying 

(g~), and also 

¢(~) 

J ly(u) ~ sgn y(u)d~(x, u ) ~  m(x)ly(g(x))l ~ sgn y(g(x)) , 
h(~) 

(2.11) o < ~(x, ~ )  - ~(x, s ( x ) )  < ~(x, ~ )  - ~(x, h(x)) -- re(x) 

on [8, d]. 

As a result ,  for equat ion (1.2) under  (It3) , the  two r ight  hand  integrands in the  

two lines of (2.5) m a y  be replaced b y  the  corresponding integrands below in (2.12). 

The l imits of in tegrat ion W and D still, in general  sat isfy (2.7) or (2.7)mon. I n  the  

nex t  corollary we see t ha t  when p ( x ) ~  0 and  g is increasing on I, t h e n  F can be 

de te rmined  in t e rms  of g, y and  8. 

RE~CL~K 2. -- The purpose of s ta t ing (2.2) and (2.3) in the  form given is to  allow 

init ial  condit ions such as in (2.1), where y = 8 = e, and  also init ial  conditions which 

arc l ikely fulfilled when considering an oscillatory solution of (1.1) where the  zeros 

of the  solution are  isolated. 
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RE~A~,~: 3. - As in l%emark I of Section 2 of [2], the  change of var iable  T(x) 

d q- c - -  x allows the  above  t heo rem to be appl ied to r ight  quar tercycles  of solu- 

tions. All conditions of the  t heo rem take  on a (~ mirror  ~> form. The reader  can see 

f rom [2] wha t  needs to  be  done here. This applies as well to be  corotla, ry  below, bu t  

we no te  t h a t  in this case it  is necessary  t ha t  g be  a t  t imes an  advanced  argument .  

At  the  end of Section 3 we have  fu r the r  comment s  re la t ing to this. 

I%nlgAI~K 4. - The larger  the  values of y and  5, sat isfying (2.2) and  (2.3), (or (2.3)'), 

t h e  sharper  the  inequali t ies  (2.5) become. Thus if y < 5 < c and  if y'((~) exists  as a 

two  sided der iva t ive  it  is na tu ra l  to assume y ' ( d ) =  0. 

COROLLARY 2.2. -- _Let [c, d] c_I be a positive, (negative), le]t quartercycle el a solu- 

tion y o/(1.2) under (H~), where in addition, g is increasing on I. Assume y and ~ sa- 

tis?y (2.2), y saris]lea (2.3), ((2.3)'), and p(x) ==- 0 on [~, d]. 

Then  it  follows t h a t  

(2x2) 1< f [c--  ( dV g(t) ) ]~ m(t) dt 
t V g-~(r) 

d A a-~(c) 

<~(c--~)qy'(hVg-~(y))l ~'-~ f m(t)dt .  
d V a-~(r) 

PROOF. -- The computa t ions  (2.10) and  (2.11) yield the  in tegrands  displayed in (2.12). 

Consequent ly  we need only ver i fy  the  choice of l imits  of in tegra t ion  and  the  value 

of F. 

When  the  lef t  quar ter-cycle  is posit ive,  p ( x ) ~  0 on [d~ d], g is increasing on I, 

and  (2.2) and  (2.3) hold, then  y is convex on [(~, 5Vg-~(~)] ~ [(5, ell and  on [d, d] 

(~ g-~([c, d] VJ [d, ell+). I t  is concave en [g-~(Y), g-~(c)] n [~, d]. F u r t h e r m o r e  it  is 

necessary  t h a t  g(y) < c, y < g(d), g(c) < c and  g(6) < c hold. 

The first two of the  above  inequali t ies are easily seen to be  true.  For  the third,  

we no te  t h a t  a necessary condit ion t ha t  [c, d] be a posi t ive lef t  quarter-cycle is t h a t  

S(xo) < 0 hold for some xo in (c, d). Thus for x~---- g(xo), we m u s t  have  y(x~) < 0 

and  y < x~ < c, so t ha t  g(c) < g(xo) = a'~ < c holds. F ina l ly  we have  g(5) < g(c) < c, 

yielding the  last  inequali ty.  

:By s tudying  the  resul ts  of the  two previous paragr~phes  we see t h a t  ~o m a y  be 

selected as ~Vg-~(y), and  also t ha t  yVg-~ (y )<  d Ag-~(c). 

Of course, if d V g - ~ ( y ) =  d, the  der iva t ives  in (2.21) denotes  a r ight  hand  one. 

Th~s establishes the  Corollary. 

RE3fARK 5. -- The inequali t ies (2.5) and  (2.12) do provide  an implicit  lower bound 

on 6he length of a lef t  quarter-cycle ,  b~ t  a t  t imes they  can be in te rp re ted  in a larger 

sense as showing an in te rdependence  among  two or more  various types  of cycles. 

For  ins tance,  when y < ~ < c and  y is a solution on [y, d], since we m a y  assume 

y'((~) = 0, the  inequali t ies show a relat ionship be tween the  r ight  and lef t  quarter-  

cycles [d, el and  [c, d]. t f  y ( y ) ~ - 0  we then  have  an addi t ional  lef t  quar ter-cycle  

[y, ~] involved.  
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I~E~/IARK 6. -- We are  able, in a ce r ta in  sense, to  establish the  sharpness  of the  

inequa l i ty  p rov ided  b y  the  ex t remes  of (2.12). For  this  example ,  however,  we axe 

bas ica l ly  requi red  to have  g be a delay, i.e. g(x) ~ x on I .  We  establ ish this sharp- 

ness when Iv, d] is a min ima l  lef t  quarter-cycle,  i.e., it p roper ly  contains none other  

such. B y  considering the  proof  of Corollary 2.2 we see t h a t  i t  is na tu ra l  to assume 

g(d) K v in this  case. 

ExA~n~]~E 2.3. - Le t  there  be given an increasing funct ion g sat isfying g ( x ) ~  x 

on I - ~  [a, c~) and  (Hs). Suppose g ( d ) ~ d  are  in I .  Define (~--~ g(d) and c =  (~ ~-d)/2.  

Now for  a n y  s ~ 0 we can cons t ruc t  an equat ion (1.2) wi th  p ( x ) ~  0 on I and  

(H3) is satisfied, and  for which It, d] is a min imal  posi t ive lef t  quarter-cycle of some 

solution y sa t is fying (2.2) and  (2.3) for y =  g(c) ~ g(8), and  for which the  last  func- 

t ional  on the  r ight  in (2.12) is domina ted  b y  1 -~  s. 

To cons t ruc t  the  equat ion (1.2) we first const ruct  the  solution. :For ~ ~ 0 as 

given, and  for each Y ~ 0, sufficiently small  in t h a t  c < d --  U and g(d -~ ~) ~ e hold, 

let  y be  defined in a piecewise fashion as follows: on [g (d -~ -u ) ,d - -u]  let  y ( x ) - -  

x - -  c; on ( d - -  U, d-~  U] let  y(x) ~-- d - -  c - -  V -~ 2V ~-~ sin[~(2V)-~(x-- (d - -  V))]; on 

(d + V, ~ )  let  y(x) - -  (d - -  c - -  ~) ÷ (d ÷ V --  x); on [g(~), g (d - -  V)] let  y(x) ~ A ( x - -  ~) 

where A ~ [g(d -~ ~) - -  c] [g(d--  V) - -  ~']-~ and,  as we recall  y = g(c); and  finally on 

( g ( d - - u ) , g ( d ~ u ) )  let  y be a n y  convex funct ion such t ha t  y ' ( 8 ) = 0  and  such tha t  

the  resul t ing funct ion y defined en [g(8), c~) has a continuous second derivative.  

Since y ( g ( d - - ~ ) ) =  y(g(d q-V)), Y ' ( g ( d - - ~ t ) ) <  0 and  y'(g(d q-V))--~ 1 >  0 we are al- 

lowed to m a k e  this  cons t ruc t ion  of y on (g(d--v]),  g(d q-V)).  

With  y so defined, on [8, g(d q-U)] a n d  on [ d - - v ,  d q-U] let  

re(x) sgn 

Elsewhere  on [8, c~), since y " ( x ) ~  O, we define r e ( x ) ~  0. 

We now note  t h a t  m satisfies (H~) and  y is a solution of (1.2) on [8~ c~)~ with 

p(x)  .... 0, and  hav ing  [c~ d] as a pos i t ive  lef t  quarter-cycle.  

Also in the  las t  func t iona l  of (2.12)~ since c - - . q - ~ ( y ) >  8, we have  

d 

z-l(~,) 
d 

---- [c - -  g(d)] ~ 1 ~-1 f [ - -  y(g(t))]-*z~(2U)-~ sin [~(2n)-~(t - -  (d - -  ~))]dt  

d--~ 
d 

< - g(d)] , [ -  y(g(d + f sin ( d -  v))]dt 
d--;7 

---- [c --  g(d)] ~ [e --  g(d Jr U)] -~ . 

By the continuity of g, for the ~ ~ 0 given~ it is now clear that the last term in 

(2.13) can be dominated by 1-~ ~ by taking V sufficiently small. 
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3. - Lyapunov type inequalities II. 

Inequali t ies  similar to (2.5) and (2.12) are provided below for semicycles, i.e., 

y(e)-~ y(d)= O, y (x )~  0 on (c, d). The arguments  used are again modifications of 

those used in [1] and [2]. The choice of ~o satisfying (2.4) is somewhat  more restr ict ive 

in the  following theorem. Also there is a restriction tha t  [~, d] + _c {d}. 

TttE01CE~ 3.1. - Let [e, d] be a positive, (negative), semicycle o] a solution y oJ (1.1) 

under (HI) and (H~). Assume y and ~ satisJy (2.2), y satisfies (2.3), ((2.3)'), and 

[~, d]+_C{d}..Let ~e  It, d] satisjy (2.4), ((2.4)'). 

Then with G and H given by  (2.6), and T and D given b y  (2.71 or (2.7)mon , it fol- 

lows that 
d 

(3 .1 )  :L < (d - ~ ) - ~  { l ~ ' ( ~ ) I " - ~ j  " (d - -  t)(t-- ~)"p (t)et 
D G(t) 

H(t) 

d 

< ly'(~o)V'-~(d - ~0)-~#"(# + 1)-(~+~)(d-- c)"+~fp(t)dt 

D 

+ Iy'(~)l"-~(c- ~)'f[o:(t, ~ ) )  -- ~(t, H(t))jdt. 
W 

P~ooF. - For  s ----- ~ we integrate  both  sides of (2.8) for x be tween F and d. This 

yields 
d 

(3.2) O> -- y(y~)-~ f y'(xldx 
~p 

d x d x G(t) 

B y  (3.2) and one integration by  parts ,  as in the  computat ions  (2.9), we have 

d 

(3.3/ (d-- YOY'(~) < f (d-- x)p(x)y"(xldx 

+ f(d-x)( f -ly(u)I~ sgn y(u)do:(x, u))dx 
h(t) 

d 

< [y'(~)]. f ( d -  ~)(~- c).p(~) dx 
'~ 2) ¢(x) 

H(~) 
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Finally,  #~(# -}- 1)-('+~)(d -- c) ~+t maximizes (d -- t) (t--  c) ~ for c <~ t < d. This provides 

the last  inequal i ty  in (3.]), and  establishes the theorem. 

The computat ions {2.10) and (2.11) m a y  again be used to provide a corresponding 

result  for equat ion (1.2), from (3.1). 

For  equat ion (1.2) under  (H3) with p(x) ~ 0 on [(5, d] and g is increasing, we 

have a s i tuat ion here similar to Corollary 2.2. Recall tha t  f rom the proof of tha t  

corollary g(c)< c holds, so t ha t  our assumption of ~o e [c, d] is assured if 7<~g(c). 

In  order to provide an integral  inequal i ty  similar to (2.12), we incorporate this assum- 

ption in the following corollary. The case of ~0 e [c, d], but  y < g(c) is still covered 

in the main theorem. 

COI~OLLAR¥ 3.2. -- Let [c, d] c_I be a positive, (negative), semicyele o] a solution y 

o] (1.2) under {H3), where in addition, g is increasing on I .  Assume y and (5 satis]y (2.2) 

with r~>g(c), y satislies (2.3), ((2.3)') with [5, d] + _¢ {d}, and p(x) ~ 0 on [6, d]. 

Then it ]olIows that 

(3.4) 

dVa-~(c) 

1 < [ a -  ,-1 f (d-- 

a-~(y) 

P~OOF. - Under the assumptions here, (3.4) follows from (3.1) and a modifica- 

t ion of the proof of Corollary 2.2. 

REMARK 1. - -  I t  is in teres t ing to note tha t  as inequalities involving y, 6, c and d, 

if g-1(~)~>($ and  g(d)<d,  then  we may  compare (3.4) and (2.12). We see tha t  

the first inequal i ty  of (3.4) is stronger than  the first one of (2.12), but  the extreme 

inequalities of (2.12) and (3.4) are identical. This natural ly  leads us to the ques- 

t ion of sharpness of the extreme inequMity in (3.4). The following modification of 

Example  2.3 does provide this sharpness, when as previously, we assume g is an 

increasing delayed deviation. 

EXAMPLE 3.3. -- Again let I---- [a, c~), y, d and g be as in Example  2.3. Define 

y*: I - * R  in a piecewise fashion by le t t ing y*(x) ~ y(x) on [a, d]. On [d, oo) we 

let y* be the  solution of the init ial  value problem 

(3.5) 
u,  = sgn U*(g(x)) 

y*(x) ~ y(x) on [g(d), d] ,  y*'(d) -~ O, 

where, on [a, d], m*(x) ~-m(x) as in Example 2.3; on [dd-~  ~, c~), m*(x) ~ 0; and 

on (d, d +~1~), m* is a line satisfying lim m*(x) = re(d) and lira, m*(x) -~ O. 
~->d+ ~--~d +~ - -  
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For  this example,  by  using the  computat ions (2.13) on [a, d] and noting tha t  y* 

represents  a line havimg slope on [d @ V~, oo), it  follows tha t  y*(d*) = 0 for some 

d * >  d. Consequent ly  [c, d*] is a posi t ive semicyele of y* and 

(3.6) 

d* 

f m*( )dx 
g-'(r) 

d d + ~  ~" 

d--~7 d 

<< [c -- g(d)]~ [e -- g(d -~ V)] -* @ [c -- g(d)],(n/4) [-- y(g(d))]-,'~. 

Now as ~1-~0, the  last  t e rm  in (3.6) tends  to zero and consequent ly  the last 

line can be dominated  by  1 @ s for any  preassigned e > 0. 

PRo]~osImIo~. - Wi th  m* and y* as in the  previous examples,  [d, d*] is a posit ive 

right quarter-cycle  of y* and 

d* d + 0 :  

d d 

Consequent ly  it follows tha t  for equat ion (1.2) under  (Ha), with p ( x ) - - 0  and g 

increasing and g(x) < x on I, no Lyapunov  type  integral  inequali ty,  having the  same 

basic form as the  extremes of (2.12) or (3.4), appears  to be possible. Indeed,  it  ap- 

pears t ha t  corresponding integral  ineqnalities for such a r ight  quarter-cycle,  [d, d*]~ 

l ikely should involve a posi t ive power of ( d * - - d )  in the  funct ional  on the  right. 

4. - Resul t s  for a general  equat ion.  

Here  we examine modifications in Theorems 2.1 and 3.1 necessary for us to apply 

the  results  to  equat ion (1.3) under  (H~). As indicated in the  in t roduct ion we here 

place fu r the r  restr ict ions on the  init ial  and terminal  port ions of the  solution. This 

is spelled out  in (4.2) and (4.3) below, where we have used conditions (2.8) and 

(2.9) of [2] to modify  (2.2) and (2.3). Here,  (4.2)' denotes (4.2) with inequalities 

changed in direction. 

T ~ n o n ~  4.1. - Let [c, d] be a positive, (negative), left quarter-cycle of a solution 

o] (1.3) under (H4). Assume 

(4.1) c5 e l  and ~ < c  
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and that 

(4.2) y is a solution o] (1.3) on [5, d], y(x)~O on [5, d ] - u  [d, el, y(x)>~O on [5, d] + 

the restrictions o] y to [5, d]- and [5, d] + are absolutely continuous with yt(x)~<0, 

a.e., on [~, d ] - w  [6, d]+, 

((4.,9),). ~et ~ [ 5 ,  d] satis/y (2.4), ((2.4'). 
Then it ]oIlows that 

(4.3) 1 <  ~ 1y'(~0)i~-1 Ui(u) d~i(t, u) d t ,  

where, ]or each l<~i<~K; i] O~ i satis]ies (It:) then 

(4.4) + G d t ) ~ c V g d t ) ,  H~(t)=--c\/hdt) , Udu)=-- [(uAd)--c]  ~ , 

and in general, ~J~ and D~ satis]y 

(4.5) ~-'¢i --" ~l) e [5 ,  d ) ,  D i : d ,  

but when g~ and hi are monotone i~wreasing, then 

g + 
(4.O)~o . ~p~=dAsup{F}w{ t :g~( t )<e} ,  D ~ = d ;  

but i] --o~i satis]ies (H~) then (4.4) + becomes 

(4.4)- G d t ) ~ e A g d t ) ,  Hdt )=~cAhdt ) ,  Udu)~[c- - (5 \ /u )]~ '~  

14 ~\4.  (4.5) remains unchanged, and t .O)~o, becomes 

PRoof.  - We integrate  both sides of (1.3) and apply (1.4) to each term, much 

as in (2.8). Pu t t ing  the values of F ~or s a,nd d for x yields 

d ,  g~(t) 

 f(f ) (4.6) y'(~,) = . ~ -  ly(u)l~sg~y(~)d~i(t, u) at. 
~ - 1  ~ -  h~(t) 

~Yithout loss of generality,  assume the quarter-cycle [c, d] is positive. Then depend- 

ing on whether cq is monotone increasing or monotone decreasing we delete the nega- 

tive or posi~ive portions of each integrand, as in the first step of (2.9). This gives the 

proper values found in (4.4), (4.5) and  (4.5)r,o~. We omit  the  details since they  are 

largely repetitive. 
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COROI~LAR¥ 4.2. - I] ]or each 1 <~ i < K ,  either p~ is nonnegative or nonpositive and g~ 

is continuous on I,  and i] ~ > O~ then the theorem applies to 

K 

(4a) y"(x) + 5, p,(-)ty(g,(x))i"' sgn y(g,(x)) = o . 

i =1  

I n  this case (4.3) may be expressed as 

d 

, j ' (  )1 (4.8) 1 < ~ty'(~)b-.= T¢, g,(t p,( t ldt  

where,/or each 1 ~ i <~K; i] p~ is nonnegative then 

(4.9) + 

but i] p~ is nonpositive then 

(4.9)- 

V,(t) ----- [(cV (tAd)) -- c]" ; 

V,(t) ~_ [c -- ((5 Vt)Ac)] ' " .  

PROOF. -- The results here are obta ined much as Corollary 2.2 follows from Theo- 

rem 2.1. Tha t  is, by  applying (2.10) and (2.11). Ev e n  though (2.10) and (2.11) are 

given for m being nonnegative,  similar results hold if m is nonpositiv% but  in this 

ease the  corresponding g is monotone  decreasing in its second variable~ so tha t  the  

inequalit ies of (2.11) are reversed.  Thus~ if in this corollary, p~ is nonposit ive then  

the  corresponding ~ provides G~ Hi  and U~ sutisfying (4.4)- in the theorem. 

COROLLARY 4.3. - I] in equation (4.7) each p~ and g~ are merely assumed to be con- 

tinuous and vl > 0 then (4.8) needs to be changed to 

(4.:t0) 

d 

t < ~, Iy'(~)I "~-~ W~+(gdt))p'~(t) +W~_(g~(t))pT(t)jdt 
i = t  

where W~+ is de]ined by (4.9) + and Wf_ is de]ined by (4.9)-. 

PROOF. -- This is obta ined  by  writ ing equat ion (4.7) as 

(4.11) 

d 

fE y'(x)  + ~ p+(x)--pV.(x)]]y(g~(x))I~,sgny(g~(x)) 
i = 1  

= 0 ,  

where p+~(x)=-- 0 Vp~(x), p/ (x )  ~ 0 V [-p~(x)] .  
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RE:MAttE 1. - -  Each theorem and corollary above relates to Theorem 2.1 and left 

quarter-cycles. They m a y  all be rewri t ten to relate to Theorem 3.1 and semicycles. 

Due to space demands,  we simply remark tha t  in Theorem 4.1, for semicycles, (4.2) 

needs modification to 

[5, d]+g{d} and the conditions of (4.2) 

and in (2.4), ((2.4)') we need to assume F ~ [e, d]. 

Final ly  in (4.3) the  sum must  be multiplied by (d--F)-~ and the te rm (d-- t )  

must  be inserted immediate ly  to the r ight  of the left integral sign in each summand.  

Similar comments  apply to each of the corollaries ~s well. 

REMARK 2. -- I f  in equation (4.7) we assume K---- 2, p~(x)>O and p~(x)>~O, with 

g,(x) ~ x, then  (4.8) is a special case of inequal i ty (2.13) of Theorem 2.1 of [2]. In  

fact,  if in (1.3) under  (tI4), it  is assumed tha t  each ~ satisfies (11~), then  Theorem 4.1 

can be established under  less restrictive conditions than  (4.2). I t  is here possible to 

subst i tu te  conditions (2.9) of [2]. For  this, 'we also need to subst i tute  conditions (3.11) 

of [2] for the first two conditions of (4.4) +, to subst i tute  conditions (3.12) for (4.5), 

(where T ~ - C ) ,  and  finally to subst i tute  (3.12)~on for (4.5)+on . 

Similar ad jus tments  can be made to Theorem 4.1 here under  Remark  1, which 

deals with semicycles. Thus, all results of section 2 of [2] generalize to functional  

equations as described in the previous paragraph. 

5.  - Compar i son  o f  results .  

As mentioned in the introduction, considerable work on <~ distance between zeros 

of solution ~> is given by ~Iy~kis. Chapter V of [8] is largely devoted to a s tudy  of 

the equation 
b 

(5.1) + fy( ) n )  0 
a 

on I = [a, b), where g and h satisfy (H1) and a satisfies the monotonei ty  conditions 

of (tt~) with some ad jus tment  on the integrabil i ty conditions of (tt2). That  is to say, 

My~kis assumes 

(5.2) g(x)<x , 

and 

x - - h ( x ) < A o ,  0 < - -  < 

limit, f l~(t' u)- - : t (x ,  u)idu 
a ~ t < b  - -co  

~ 0 .  

Theorem 48 of [7, p. 109] is given below. 



286 STA~'LE¥ B. ELZASOX: Distance between ze~vs o/ certain differential, etc. 

THEOlCE~ (M¥~KIS). - Let y be a solution o/(5.1) on I ,  where (5.2) and other condi- 

tions of (H2) mentioned above are assumed. Suppose also that 

(5.3) d~Ma < (~/2) 47 2 ¢ 2.9850 . . . ,  

and that y satisfies 

(5.4) y (x )<0  on [ a - - • ( , , a ] ,  y ( a ) = 0 ~  y ' ( a )>0  and  y (x )~O on I .  

Then there is a number c in [a, b) such that y ( x ) ~  0 on [a, c] and such that one 

and only one of the following two cases hold: 

(5.5) (i) y ' ( x )>O on (c, b); 

(5.5) (ii) y' has a smallest zero d in (c, b) for which (d--x)M~,>~/2,  and y ' ( x )>  0 

on (e, d). 

2'urthermore, if  (5.5) (ii) holds then one and only one of the following two conditions 

hold: 

(5.6) (i) y(x)  > o on (c, b), 

(5.6) (ii) y has a smallest zero d* in (d, e) for which (d*--d)M~>2 ~, and consequently 

it follows from this and (5.5) (iii) that (d* --c) M~> (~/2) 47 2 ~. 

We see tha t  (5.5) (ii) provides a lower bound on the length of the positive left 

quarter-cycle [c, d]~ und the l~st inequali ty in (5.6) (ii) does similarly for the posi- 

t ive sernicycle [c, d*]. In  both cases, the initial function satisfies the general condi- 

tions of (4.2) of Theorem 4.1. 

Thus, if (H0 is s~tisfied by ~ in equation (5.1), we may  apply Theorem 4.1. Ine- 

quali ty (4.3) yields 

d e V a(0 

(5.7) f f u)dt, 
T c Vh(t) 

where, since g(x)<x,  T :  dAsnp{y} u {t: g(t) < c}>~c may  be chosen. 

The main points of comparison though are tha t  in [2] and  this paper we consider 

the problem of distance between zeros for much la, rger classes of equstions with, 

in general, tess restrictions on g and  h~ and in the initial and terminal  functions. 

My~kis deals with linear equations, and does not allow ~ to be monotone decreasing 

in its second variable. Also we do not  assume condition (5.3), used by My~kis to 

assure tha t  [c, d*], above, be a <(large ~> semicyele. 

When m(x)<O on I and 

(5.8) p, m~ and g are continuous on I~ p(x)>O, x--£]~<~g(x)<x, p ( x ) - - m ( x ) < M ~  

~nd # : v : 1, 

then  equation (1.2) becomes a special ease of (5.1) under (5.2). 
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Wi th  the  conditions of the  preceding paragraph,  Theorem 3.1 of Norkin [8, p. 129] 

becomes a special case of the above Theorem of Hygkis. :Norkin, however, claims 

his Theorem 3.1 to  be valid for equat ion (1.2) under  (5.8), wi thout  the rest r ic t ion 

of re(x)<0.  He  obtains (1.2) under  (5.8), wi thout  the  res t r ic t ion of re (z)<0.  He 

obtains essential ly the  same conclusions of (5.6) wi thout  reference to (5.5), bu t  cer- 

ta in ly  under  his proof  the  conclusions (5.5) and (5.6) ma y  be included. 

N o ~  indicates t ha t  the  proof of this theorem is based on Lemmas  4.1-4.3, 

found in [8, pp. 89-91 ], also due to MY~K/s, which in tu rn  are based on conditions (1.2'), 

(1.3') and (1A') of [8, p. 88], which assume an identical ly zero init ial  function.  

I t  appears  to the  au thor  t h a t  for lqoaKI~ to claim a proof of his Theorem 3.1, 

wi thout  the rest r ic t ion of re (x)<0  on / ,  based on the above ment ioned  lemmas,  it  

is necessary as well to  assmne tha t  

y(g(x))>O holds if r e ( x ) > 0 ,  for x in (c ,d*) .  

As a result ,  the  generalizat ion of Mygkis' theorem is such tha t  the  ease of re(x) > 0 

in (1.2) under  (5.2) is somewhat  hedged. 

For  the  ve ry  special case of equat ion (1.2) under  (5.2), with p(x) ~ p  > 0, re(x) 

~-m > 0 and g ( x ) ~ - x -  L] < x, we m a y  apply  Re ma rk  1 following Corollary 3, to 

tha t  corollary to obta in  a result  for semicycles. F rom (4.10) we have 

d* 

(5.9) 1 <  (d*--  ~v)-~ J (d*- - t ) [cV( t - -  gi) -- c]p dt 

d* 

+ - ( ( ( o -  i t -  

< [ p ( ~ * - c -  A)~I47 + [mA~12], 

provided F, satisfying (2.4), is in [c, d*]. (This condit ion of ((F in It, d*])) is not  needed 

for applying (4.10) to the  left  quartercycle  [e, d]). The inequal i ty  provided by  the 

extremes of inequal i ty  (5.9) m a y  in a sense be thought  of as an extension of the final 

inequal i ty  in (5.6) (ii), since ~¢iy~kis' theorem ma y  not  handle this equation. 

A final comment  is t ha t  our  implicit  lower bounds on the (( distance between 

zeros ~ are obta ined in terms of integrals of the  coefficients ra ther  t han  max imum 

values o~ such. When  bo th  My~kis' t heo rem and our results apply, it  is when the coef- 

ficients are (, nearly )> constant that My~kis' results are better, otherwise they are 

not  necessarily so. 

6. - A necessary  condi t ion  for  osc i l la t ion .  

The Lyapunov  type  inequal i ty  (2.12) m a y  be applied to obtain a necessary con- 

dit ion for the existence of a cer ta in  type  of oscillatory solution on I ~- [a, ~ )  of (1.2) 

under  (Ha), where, in addi t ion  it  is assumed tha t  p(z) ~ O, re(x) > 0, g(x) < x and g 

is incresing on I .  
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Under  these conditions, we use the nota t ion of MY~K~S [7], (see also [8]), and 

call a quarter-cycle or semicycle [c, d], large or small accordingly as c < g(d) or c >  g(d) 

hold. We shall call ~ solution oscillatory if there  is no largest zero. 

LEM)~.~ 6 . 1 . - L e t  y be an oscillatory solution o/(1.2) on I =  [a, c~), where toge- 

ther with (H3); p ( x ) ~  0, m ( x ) >  0, g ( x ) ~  x and g is increasing on I ,  are assumed. 

Assume that y has a / i r s t  positive, (negative), le]t quarter-cycle and y is negative, {posi- 

tive), on the corresponding initial segment, excepting its right endpoint. 

Then all zeros o / y  and y' to the right o] this le]t quarter-cycle are isolated and inter- 

lace each other. Also ]or each other positive, (negative), le]t quarter-cycle [c, d] o] y, 

values o] 7 and ~ satis]ying (2.2) may be chosen so that ~<~  < c and (2.3), ((2.3)'), 

holds. Finally, it is necessary that g(x)-+ c~ as x--~ c~z, and the zeros o] y have no 

]inite cluster point. 

P~ooF. - This l emma follows by  an induct ive  a rgument  on the  quarter-cycles and 

semicyeles going f rom left  to right.  Several  comments  in the  proof of Corollary 2.2 

apply  here. 

Wi thou t  loss of generali ty,  assume It, d] is the  first lef t  quar tercyele  and tha t  it  

is positive. Then it  is necessary tha t  y"(x) ~ 0 hold for values of x immedia te ly  to 

the  lef t  of d, so tha t  y"(d)~O. 

If  y"(d) ~ 0, then  d is isola.ted from other  zeros o~ y'. 

I f  y" (d)=O,  then  since m ( d ) > O  we have y(g(d))-~O ~nd g ( d ) = c .  Hence 

y"(x) ~ 0 for all x > d and y h~s no l~rger zeros, a contradict ion.  

Also, if z > c is the  first zero of y greater  t h a n  c, then  y'(z) ~ O. Indeed  y'(x) ~ 0 

holds on (d, z]. For  if eo ~ (d, z] is the  smallest zero of y', t hen  y"(x) ~ 0 is necessary 

for values of x immedia te ly  to the  left  of w. Consequently y"(co)>~O, so y(g(w))>O 

and c<g(co) holds. Again, as above we m a y  conclude y " ( x ) ~  0 for almost  all x >  eJ, 

a contradict ion.  

:Now, for the  next  larger, negative,  left quar te r  cycle (c*, d*] we m a y  pick 

(5-= dVg(e*) ~nd 7--= cVg(c*), where c*-~ z, c and d are as above. If  follows tha t  

g(d*) e (c, c*). 

The a rgument  now proceeds inductively,  and since g(x )<  x, and g is continuous 

we may  argue tha t  the zeros of y have no finite cluster point. We omit  the remainder  

o~ the proof. 

LEM~IA 6.2. - Assume the ]irst paragraph o] Le mma  6.1. Let [Zo, zl] and [z~, z2] 

be two consecutive semicycles o] y, and ~i ~ (zo, zl), ~2E (zl, z~) be the zeros o] y'. 

Then g-l(Zo) ~ (~1, ~'~), g-~(z~) > ~ and g(~) ~ (Zo, zl) all hold. 

Also, if semicycte [zo, z~] is small, then 

ly'(g- (zo))i < f [g(v,) - g(s)]m(s)ds 

holds, where ~o~ ~ g-l(zt). 
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PROOF. -- The first paragraph of conclusions follow by  an induct ive argument  

as in L e m m a  6.1. 

The computat ions  (6.1) follow from inequali ty (2.12) b y  applying these comments  

and the  previous lemma. We have, since [z0, z~] is small, tha t  

f rz -g(s)l,m(s ds 
a-~(zo)  

a-~(zD 

<~ f [z~--g(s)]'m(s)ds 

= f [g(YJ2) -- g(s)]'m(s) ds. 
a('PD 

THEORE~ 4.3. -- Let y be an oscillatory solution o] (1.2) on I-= [a, c~), where toge- 

ther with (H3); p(x)=-- O, re(x)> O~ g(x) < x and g is increasing on I~ are assumed. 

Zet (z.) denote the sequence o] consecutive zeros o] y, where i] y is positive, (negative)~ 

on (z~, z2) then y is negative, (positive), on (g(z~), z~). 

Then, i] each semicyde [z.~ z.+l] is small, it ]ollows that: 

limsup~_.~ ]y'(x)ll-~<limsup~_.~ f [g(x)--g(s)]~m(s)ds i] 0 < ~ < 1 ;  
a(~) 

(6.2) 

and 

(6.3) [lim~sup IY' (x)1 ~-~] -~ < lira sup f [g(x) - -  g(s)] ~ re(s) ds i ] ~ > 1 .  

PROOF. - First., define F~+x g-~(z.), for each natura l  n. I t  is seen tha t  if the  semi- 

cycle is positive, then 

(6.4) y'(%~+~) ~-- max (y'(x): z .<x<z .+~} ,  

and ~ max  ~ is cha.nged to rain, if [z., z.+~] is negative. 

B y  (6.1) we thus h~ve 
Wn 

(6.5) ly'(~._~)l ~-. < j [g(F.) --  g(s)],m(s) ds,  

a(w,,) 
for each natural  n. 

Thus, if 0 < ~ < 1 we have 

(6.6) lim sup ly'($)l 1-~ = lira sup ]y'(F._l)l 1-~ 
fi~-~> ¢o h--> ¢o 

<~ lim suph...~ f [g(~o~)--g(s)]~m(s)ds 
a(,p~) 

~< lira sup~_~ f [g(x)--g(s)]~m(s)ds.  

1 9  - .Annali  d i  Matemaf ica  
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For  v >  1, mul t ip ly  bo th  sides of (6.5) b y  ly'(~f~_~)[ ~-~ and repeat  computat ions 

similar to (6.6)~ not ing t ha t  <~lim sup of p r o d n c t < p r o d a c t  of lim sups ~ when the  

te rms of the  product  are positive, this provides the  theorem. 

:~or the  case of v = 1 we have the  following result. 

TtIEOI~E]~[ 4.4. - Assume the first paragraph of Theorem ~.3~ then, for ~, = 1, it  

follows that 
fg 

(6.7) l<limsup~_~ f [g(x)--g(s)]m(s)ds 

holds if  infinitely many o] the semicycles [z~, z,+~] are small. 

P n o o F .  - The proof is aga.in similar to the case of O < ~ < 1,  except  now (6 .5)  

beeomes 

(6.8) 
~fln 

1 < f [g(~)-g(s)]m(s)&, 

provided [z~_~, z~_~] is small. Since g(x) --> oo as x --> co, the  last  inequal i ty  of (4.6) 

again applies. 

l~]~IAn~ 1. - In  [~], [5] and [6] are given extensions of a result  dealing with 

(6.9) 1 < lim~sup f [g(x) - -  g(s)] re(s)ds 

g(x) 

as a sufficient condit ion yielding all bounded solutions of (1.2) under  (tt3) with p(x) ~ O, 

g(x)<x and g increasing on I,  and v =  17 to be oscillatory. 

They  leave as an open quest ion whether  or not  (6.9) is sharp. Tha t  is~ can the  

constant  of 1 on the left  be decreased and still leave (6.9) as a sufficient condition? 

We wish to  point  out the  similari ty of (6.7) and (6.9)~ but  also note  tha t  (6.7) 

does not  establish the  sharpness, since (6.7) follows on the  assumption tha t  infinitely 

m a n y  of the  semicycles are assumed to be small. 
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