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Abstract—In wireless networks, knowledge of internode dis-
tances is essential for performance analysis and protocol design.
When determining distance distributions in random networks,
the underlying nodal arrangement is almost universally taken to
be a stationary Poisson point process. While this may be a good
approximation in some cases, there are also certain shortcom-
ings to this model, such as the fact that, in practical networks,
the number of nodes in disjoint areas is not independent. This
paper considers a more-realistic network model where a known
and fixed number of nodes are independently distributed in a
given region and characterizes the distribution of the Euclidean
internode distances. The key finding is that, when the nodes are
uniformly randomly placed inside a ball of arbitrary dimensions,
the probability density function (pdf) of the internode distances
follows a generalized beta distribution. This result is applied to
study wireless network characteristics such as energy consump-
tion, interference, outage, and connectivity.

Index Terms—Binomial point process, interference, internode
distances, outage, Poisson point process, wireless networks.

I. INTRODUCTION

A. Motivation

IN wireless channels, the received signal strength (RSS) falls

off with distance according to a power law, at a rate termed

the large-scale path loss exponent (PLE) [1]. Given a link dis-

tance l, the signal power at the receiver is attenuated by a factor

of l−α, where α is the PLE. Consequently, in wireless net-

works, distances between nodes strongly impact the signal-to-

noise-and-interference ratios, and, in turn, the link reliabilities.

Knowledge of the nodal distances is therefore essential for the

performance analysis and the design of efficient protocols and

algorithms.

In many wireless networks, nodes can be assumed to be

randomly scattered over an area or volume; the distance dis-

tributions then follow from the spatial stochastic process gov-

erning the locations of the nodes. For the sake of analytical
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convenience, the arrangement of nodes in a random network is

commonly taken to be a homogeneous (or stationary) Poisson

point process (PPP). For the resulting so-called “Poisson

network” of density λ, the number of nodes in any given

set V of Lebesgue measure |V | is Poisson with mean λ|V |,
and the numbers of nodes in disjoint sets are independent.

Even though the PPP model is a good approximation when

the network density is known and can lead to some insightful

results, practical networks differ from Poisson networks in

certain aspects. First, networks are usually formed by scattering

a fixed (and finite) number of nodes in a given area. In this

case, the nodal arrangement is a binomial point process (BPP),

which we define shortly. Second, since the area or volume

of deployment is necessarily finite, the point process formed

is nonstationary and often nonisotropic, which means that the

network characteristics as seen from a node’s perspective, such

as the nearest-neighbor distance or the interference distribution,

are not the same for all nodes. Furthermore, the numbers of

nodes in disjoint sets are not independent; in the case of the

BPP, they are governed by a multinomial distribution.

Definition: Formally, a BPP Φ is formed as a result of inde-

pendently uniformly distributing N points in a compact set W .

The density of the BPP at any location x is defined to be

λ(x) = (N/|W |)1(x). In this paper, we consider that W ⊂ R
d

(d is an arbitrary positive integer). For any set V ⊂ R
d, the

number of points in V , i.e., Φ(V ), is binomial (n, p) with

parameters n = N and p = |V ∩ W |/|W | [3]. By this property,

the number of nodes in disjoint sets is joined via a multinomial

distribution. Accordingly, for disjoint sets V1, . . . , Vk and n =
n1 + · · · + nk, we have

Pr (Φ(V1) = n1, . . . ,Φ(Vk) = nk) =
n!

∏k
i=1 |Vi ∩ W |ni

∏k
i=1 ni!|W |n

.

If the number of nodes or users is known, the PPP is

clearly not a good model, since realizations of the process

may have more nodes than the number of nodes deployed or

no nodes at all. In particular, when the number of nodes is

small, the Poisson model is inaccurate. The main shortcoming

of the Poisson assumption is, however, the independence of

the number of nodes in disjoint areas. For example, if all the

N nodes are located in a certain part of the network area, the

remaining area is necessarily empty. This simple fact is not

captured by the Poisson model. This motivates the need to study

and accurately characterize finite uniformly random networks

in an attempt to extend the plethora of results for the PPP to the

often more-realistic case of the BPP. We call this new model a

binomial network, and it applies to mobile ad hoc and sensor
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networks and wireless networks with infrastructure, such as

cellular telephony networks.

In this paper, we analytically characterize the distribution of

internode distances in a binomial network wherein a known

number of nodes are independent identically distributed (i.i.d.)

in a compact set. As a special case, we derive the Euclidean

distance properties in a d-dimensional isotropic1 BPP and use it

to study relevant problems in wireless networks, such as energy

consumption, design of efficient forwarding and localization

algorithms, interference characterization, and outage and con-

nection probability evaluation.

The rest of this paper is organized as follows. Section I-B

discusses prior work that deals with internode distances in wire-

less networks. Section II characterizes the probability density

function (pdf) of internode distances in a general d-dimensional

BPP. As a special case, we analyze distance distributions for

the isotropic BPP and compare it with the PPP model. In

Section III, we compute the moments of the internode dis-

tances in the isotropic BPP. In Section IV, we derive the pdf

of the distances for the BPP distributed on a regular poly-

gon. Section V deals with applications of our findings to the

study of wireless networks, and Section VI concludes this

paper.

B. Related Work

Even though the knowledge of the statistics of the node

locations in wireless networks is crucial, relatively few relevant

results are available in the literature. In addition, most of the

existing work deals only with moments of the distances (means

and variances) or characterizes the exact distribution only for

very specific system models. In [4], the pdf and cumulative

distribution function (cdf) of the distances between nodes are

derived for networks with uniformly random and Gaussian

distributed nodes over a rectangular area. Reference [5] derives

the joint distribution of distances of nodes from a common

reference point for networks with a finite number of nodes

randomly distributed on a square, and [6] determines the pdf

and cdf of the distance between two randomly selected nodes

in square random networks.

Furthermore, the applications of internode distances to wire-

less network analysis and design are not well studied in the

literature. Among the limited related work, [7] studies mean

internodal distance properties for several kinds of multihop

systems such as ring networks, Manhattan street networks,

hypercubes, and shufflenets and applies it to study network

connectivity. Reference [8] provides closed-form expressions

for the distributions in d-dimensional homogeneous PPPs and

describes some applications of the results for large networks.

Reference [9] considers 1-D Poisson networks and analyzes

the moments of the single-hop distance, which is defined

as the maximum possible distance between two nodes that

can communicate with each other. The results therein are

applicable to problems such as localization and coverage area

estimation.

1A point process is said to be isotropic if its distribution is invariant to
rotations.

Fig. 1. BPP with N = 16 points in an arbitrary compact set W . We wish to
determine the distribution of the distances to the other points from the reference
point x.

Our contribution in this paper is twofold. First, we use ideas

from stochastic geometry to study the cdf, pdf, and moments of

internode distances in a more-realistic network model: a gen-

eral nonhomogeneous BPP distributed on an arbitrary compact

space. As special cases, we characterize the internode distance

distributions in closed form for binomial networks distributed

on a d-dimensional ball and in a regular polygon. Second, we

discuss the impact of our findings on the design of wireless

networks.

II. DISTRIBUTION OF INTERNODE DISTANCES

In this section, we determine the distribution of the Euclid-

ean distance to the nth nearest point from an arbitrary

reference point for a general BPP. In the special case of a

d-dimensional isotropic BPP, we establish that this random

variable (r.v.) follows a generalized beta distribution. We also

derive the distances to the nearest and farthest nodes and the

void probabilities.

Consider the BPP Φ with N points uniformly randomly

distributed in a compact set W ⊂ R
d. Let Rn denote the r.v.

representing the Euclidean distance from an arbitrary reference

point x to the nth nearest node of the BPP,2 and let bd(x, r)
denote the d-dimensional ball of radius r centered at x (see

Fig. 1).

The complementary cdf of Rn is the probability that there

are less than n points in bd(x, r)

F̄Rn
(r) =

n−1
∑

k=0

(

N

k

)

pk(1 − p)N−k, 0 ≤ r ≤ R (1)

where p = |bd(x, r) ∩ W |/|W |. In the case of a nonhomo-

geneous BPP with a general density function λ(x), p =
∫

bd(x,r)∩W λ(x)dx.

F̄Rn
can be written in terms of the regularized incomplete

beta function as

F̄Rn
(r) = I1−p(N − n + 1, n), 0 ≤ r ≤ R (2)

2For the rest of this paper, we assume that x is not a point of the BPP.
However, if x ∈ Φ, the remaining point process simply becomes a BPP with
N − 1 points.
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Fig. 2. Comparison of distance pdf’s for the ten nearest neighbors for 1-D and 2-D binomial and conditioned Poisson networks.

where

Ix(a, b) =

∫ x

0 ta−1(1 − t)b−1dt

B(a, b)
.

Here, B(a, b) denotes the beta function, which is expressible

in terms of gamma functions as B(a, b) = Γ(a)Γ(b)/Γ(a + b).
The pdf of the distance function is given by

fRn
(r) = − dF̄Rn

(r)/dr

=
dp

d

(1 − p)N−npn−1

B(N − n + 1, n)
. (3)

We now analytically derive the pdf of the Euclidean distance

between points in a d-dimensional isotropic BPP and, later, in

Section III, compute its moments.

Theorem 2.1: In a point process consisting of N points uni-

formly randomly distributed in a d-dimensional ball of radius R
centered at the origin o, the Euclidean distance Rn from the

origin to its nth nearest point follows a generalized beta distri-

bution, i.e., for r ∈ [0, R]

fRn
(r) =

d

R

B(n − 1/d + 1, N − n + 1)

B(N − n + 1, n)

×β

(

( r

R

)d

;n −
1

d
+ 1, N − n + 1

)

where β(x; a, b) is the beta density function3 defined as

β(x; a, b) = (1/B(a, b))xa−1(1 − x)b−1.

Proof: For the isotropic d-dimensional BPP, we have

W = bd(o,R). The volume of this ball |W | is equal to cdR
d,

where

cd = |bd(o, 1)| =
πd/2

Γ(1 + d/2)

3Mathematica: PDF[BetaDistribution[a, b], x].

is the volume of the unit ball in R
d [3]. Important cases include

c1 = 2, c2 = π, and c3 = 4π/3. The density of this process is

equal to N/(cdR
d) inside the ball.

With the reference point being the origin, we have p =
cdr

d/cdR
d = (r/R)d, and from (3), it follows that

fRn
(r) =

d

R

( r

R

)d−1 (1 − p)N−npn−1

B(N − n + 1, n)

=
d

R

(1 − p)N−npn−1/d

B(N − n + 1, n)

=
d

R

B(n − 1/d + 1, N − n + 1)

B(N − n + 1, n)

× β

(

( r

R

)d

;n −
1

d
+ 1, N − n + 1

)

(4)

for 0 ≤ r ≤ R. The final equality casts Rn as a generalized

beta-distributed variable. !

Corollary 2.2: For the practical cases of d = 1 and d = 2,

we have

fRn
(r)=

1

R
β

( r

R
;n,N−n+1

)

and

fRn
(r) =

2

R

Γ
(

n+ 1
2

)

Γ(N+1)

Γ(n)Γ
(

N+ 3
2

) β

(

r2

R2
;n+

1

2
, N−n + 1

)

respectively.

Fig. 2 plots the distance pdf’s for the cases of d = 1 and

d = 2 when N = 10 and R = 10.

Remarks:

1) The void probability p0
B of the point process is defined

as the probability of there being no point of the process

in an arbitrary test set B [3]. For a BPP with N points

distributed over a set W , it is straightforward to see from

the definition of the BPP that

p0
B = (1 − |B ∩ W |/|W |)N . (5)
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For the isotropic BPP considered, when the test set is

B = bd(o, r), we have p0
B = (1 − (r/R)d)N .

2) Of particular interest are the nearest and farthest node

distances. The nearest node distance pdf is given by

fR1
(r) =

dN

r

(

1 −
( r

R

)d
)N−1

( r

R

)d

(6)

and the distance to the farthest point from the origin is

distributed as

fRN
(r) =

dN

r

( r

R

)Nd

, 0 ≤ r ≤ R. (7)

Both are generalized Kumaraswamy distributions [10].

3) For a 1-D BPP, fRn
(r) = fRN−n+1

(R − r), and there-

fore, knowledge of the distance pdf’s for the nearest

'N/2( nodes gives complete information on the distance

distributions to the other points.

4) If a point of the BPP x is located at the origin, the remain-

ing N − 1 points are uniformly distributed in bd(0, R).
Thus, the pdf of the Euclidean distance from x to its

neighbors is identical to (4), with N replaced by N − 1.

Furthermore, (4) also holds for any reference point x for

0 ≤ r ≤ R − ‖x‖.

We wish to compare the distance distributions from the origin

for an isotropic BPP and a PPP with the same density. However,

note that, in general, the PPP may have fewer points than the

number dropped. To make a fair comparison, we condition on

the fact that there are at least N points present in the PPP

model. The following corollary establishes the distance pdf’s

for such a conditioned PPP. Furthermore, note that, conditioned

on there being exactly N points present, the PPP is equivalent to

a BPP [3].

Corollary 2.3: Consider a PPP of density λ over a finite

volume bd(o,R). Conditioned on there being at least N points

in the ball, the distance distribution from the origin to the nth

nearest node (n ≤ N), f ′
Rn

(r) is given by

f ′
Rn

(r) =
λdcdr

d−1
(

An−1(r)
(
∑∞

k=N−n Bk(r)
))

∑∞
k=N Ak(R)

(8)

for r ∈ [0, R], where Ak(r) := e−λcdrd
(λcdr

d)k/k!, Bk(r) :=

e−λcd(Rd−rd)(λcd(R
d − rd))k/k!.

Proof: The complementary conditional cdf of Rn is

given by

F̄ ′
Rn

(r) = Pr (Φ (bd(o, r)) < n|Φ (bd(o,R)) ≥ N)

=
Pr (Φ (bd(o, r)) < n,Φ (bd(o,R)) ≥ N)

Pr (Φ (bd(o,R)) ≥ N)

(a)
=

n−1
∑

k=0

[

Pr (Φ (bd(o, r)) = k)

Pr (Φ (bd(o,R)) ≥ N)

× Pr (Φ (bd(o,R) \ bd(o, r)) ≥ N − k)

]

=

∑n−1
k=0 Ak(r)

(

1 −
∑N−k−1

l=0 Bl(r)
)

∑∞
k=N Ak(R)

(9)

where (a) is obtained from the property that the number of

points of the PPP in disjoint sets are independent of each other.

It is easy to see that

d

dr
Ak(r) =

{

λdcdr
d−1 (Ak−1(r) − Ak(r)) , k > 0

−λdcdr
d−1A0(r), k = 0

(10a)

and

d

dr
Bl(r) =

{

λdcdr
d−1 (Bl(r) − Bl−1(r)) , l > 0

λdcdr
d−1B0(r), l = 0.

(10b)

Therefore, we have

d

dr

N−k−1
∑

l=0

Bl(r) = λdcdr
d−1BN−k−1(r). (10c)

The details of the remainder of the proof are straightfor-

ward but tedious and are omitted here. Since the pdf of the

conditional distance distribution is f ′
Rn

(r) = −dF̄ ′
Rn

(r)/dr,

one basically has to differentiate the numerator in (9), and

after some simplifications (10a)–(10c), it will be seen that the

conditional distance pdf is identical to (8). !

Fig. 2 depicts the pdf’s of the distances for 1-D and 2-D BPPs

with N = 10 and R = 10 [from (4)] and compares them with

the distance pdf’s for a conditioned PPP with the same density.

We see that the conditioned PPP does not accurately model the

distance distributions, particularly for farther neighbors.

When a large number of points are randomly distributed over

a large area, their arrangement can be well approximated by

an infinite homogeneous PPP. The PPP model for the nodal

distribution is ubiquitously used for wireless networks and

may be justified by claiming that nodes are dropped from an

aircraft in large numbers; for mobile ad hoc networks, it may

be argued that terminals move independently of each other. We

now present a corollary to the earlier theorem that reproduces a

result from [8].

Corollary 2.4: In an infinite PPP with density λ on R
d, the

distance Rn, between a point and its nth neighbor is distributed

according to the generalized gamma distribution

fRn
(r) = e−λcdrd d(λcdr

d)n

rΓ(n)
, r ∈ R. (11)

Proof: If the total number of points N tends to infinity in

such a way that the density λ = N/(cdR
d) remains constant,

then the BPP asymptotically (as R → ∞) behaves as a PPP [3].

Taking R = d
√

N/cdλ and applying the limit as N → ∞, we

obtain, for a PPP

fRn
(r) = lim

N→∞

d

R

(1 − p)N−npn−1/dΓ(N + 1)

Γ(N − n + 1)Γ(n)

=
d(λcdr

d)n

rΓ(n)
lim

N→∞

(

1 −
λcdr

d

N

)N ∏n−1
i=0 (N − i)

Nn

= e−λcdrd d(λcdr
d)n

rΓ(n)
.

for r ∈ R. This is an alternate proof to the one provided

in [8]. !
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III. MOMENTS OF THE INTERNODE DISTANCES

We now consider the isotropic d-dimensional BPP and use

the internode distance pdf (4) to compute its moments. The

γth moment of Rn is calculated as follows4:

E [Rγ
n] =

d

R

1

B(N − n + 1, n)

×

R
∫

0

[

rγ
( r

R

)nd−1
(

1 −
( r

R

)d
)N−n

]

dr.

(a)
=

Rγ

B(N − n + 1, n)

1
∫

0

tn+γ/d−1(1 − t)N−ndt

=
Rγ

B(N − n + 1, n)
Bx(n + γ/d,N − n + 1)|10

(b)
=

{

Rγ
Γ(N+1)Γ(γ/d+n)

Γ(n)Γ(γ/d+N+1) , if n + γ/d > 0
∞, otherwise

=

{

Rγn[γ/d]/(N + 1)[γ/d], if n + γ/d > 0
∞, otherwise

(12)

where Bx[a, b] is the incomplete beta function,5 and x[n] =
Γ(x + n)/Γ(x) denotes the rising Pochhammer symbol no-

tation. Here, (a) is obtained by making the substitution r =
Rt1/d and (b) using the following identities:

B0(a, b) =

{

0, Re(a) > 0
−∞, Re(a) ≤ 0

and B1(a, b) = B(a, b) if Re(b) > 0.

The expected distance to the nth nearest node is thus

E(Rn) =
Rn[1/d]

(N + 1)[1/d]
(13)

and the variance of Rn is

Var[Rn] =
R2n[2/d]

(N + 1)[2/d]
−

(

Rn[1/d]

(N + 1)[1/d]

)2

. (14)

Remarks:

1) For 1-D networks, E[Rn] = Rn/(N + 1). Thus, on aver-

age, it is as if the points are arranged on a regular lattice.

In particular, when N is odd, the middle point is located

exactly at the center on the average.

2) On the other hand, as d → ∞, E[Rn] → R, and it is as

if all the points are equidistant at maximum distance R
from the origin.

3) In the general case, the mean distance to the nth nearest

node varies as n1/d for a large n. This follows from the

series expansion of the Pochhammer sequence [11]

n[q] = nq (1 −O(1/n)) .

Furthermore, for d > 2, the variance goes to 0 as n
increases. This is also observed in the case of a Poisson

network [8].

4Note that γ ∈ R in general and is not restricted to being an integer.
5Mathematica: Beta[x, a, b].

Fig. 3. Section of an l-sided regular polygon depicting one of its sides. o is
the origin. For Ri < r ≤ Rc, the area of the shaded segment ABC is r2θ −
Ri

√

r2 − R2

i
.

4) By the triangle inequality, the mean internode distance

between the ith and jth nearest nodes from the origin Dij

is bounded as (assuming i < j)

R
(

j[1/d] − i[1/d]
)

(N + 1)[1/d]
< E[Dij ] <

R
(

i[1/d] + j[1/d]
)

(N + 1)[1/d]
.

5) For the special case of γ/d ∈ Z, we obtain

E [Rγ
n] = Rγ

(

n + γ/d − 1

γ/d

)/(

N + γ/d

γ/d

)

.

IV. DISTANCE DISTRIBUTIONS IN POLYGONAL

BINOMIAL POINT PROCESSES

In this section, we derive the pdf of the distance to the nth

nearest node from the origin o in BPPs distributed on an l-sided

regular polygon W . Assume that the polygon is centered at the

origin and |W | = A. Then, its inradius and circumradius are,

respectively, given by

Ri =

√

A

l
cot

(π

l

)

and Rc =

√

2A

l
csc

(

2π

l

)

.

Let the total number of nodes be N , and assume that no point

of the process is at the origin.

Clearly, when r ≤ Ri, b2(o, r) lies completely within the

polygon, and the number of points lying in it Φ(b2(o, r)) is

binomially distributed with parameters n = N and p = πr2/A.

When Ri < r ≤ Rc, |W ∩ b2(o, r)| can be evaluated by

considering the regions of the circle lying outside the polygon

(see the shaded segment in Fig. 3). It is easy to see that

Φ(b2(o, r)) follows a binomial distribution with parameters

n = N and that

q =
πr2 − lr2θ + lRi

√

r2 − R2
i

A

where θ = cos−1(Ri/r). Following (3), we can write

fRn
(r) =











2rπ
A

(1−p)N−npn−1

B(N−n+1,n) , 0 < r ≤ Ri

2r(π−lθ)
A

(1−q)N−nqn−1

B(N−n+1,n) , Ri < r ≤ Rc

0, Rc < r.

(15)
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Fig. 4. PDF of the distances to the farthest nodes from the origin in a BPP
with ten nodes and area of 100 units, distributed on an l-sided polygon for
l = 3, 4, and 5. The dotted line depicts the farthest neighbor distance in a circle
(l → ∞) for which Ri = Rc = 10/

√
π.

Fig. 4 plots the pdf of the farthest neighbors in a BPP with ten

nodes, distributed on an l-sided regular polygon with A = 100,

for l = 3, 4, and 5 and l → ∞.

V. APPLICATIONS TO WIRELESS NETWORKS

We now apply the results obtained in the previous section

to wireless networks. For the system model, we assume a

d-dimensional network over a ball bd(o,R), where N nodes

are uniformly randomly distributed. Nodes are assumed to

communicate with a base station (BS) positioned at the origin o.

The attenuation in the channel is modeled by the large-scale

path loss function g with PLE α, i.e., g(x) = ‖x‖−α. The

channel-access scheme is taken to be slotted ALOHA with

contention parameter δ.

A. Energy Consumption

The energy that is required to successfully deliver a packet

over a distance r in a medium with PLE α is proportional to rα.

Therefore, the average energy required to deliver a packet from

the nth nearest neighbor to the BS is given by (12), with γ = α.

This approximately scales as nα/d when the routing is taken

over single hops. When α < d, it is more energy efficient to use

longer hops than when the PLE is greater than the number of

dimensions.

B. Design of Routing Algorithms

Knowledge of the nodal distances is also useful for the

analysis and design of routing schemes for wireless networks.

We illustrate this via an example wherein a greedy forwarding

strategy that maximizes the expected progress of a packet

toward its destination needs to be designed.

Fig. 5. Greedy forwarding strategy. Each relay Xi forwards the packet to its
farthest neighbor lying inside the sector of radius φ around the Xi–D axis. The
thick lines represent the path taken by the packet (through three arbitrary relays)
for this particular realization.

Consider the scenario where N nodes are uniformly distrib-

uted in a disk of radius R. Assume that several packets need to

be forwarded from the BS to an arbitrarily chosen destination

node D, which lies far away from the BS. We also assume

that each node has a peak (transmit) power constraint of P .
Rα. Let us suppose that the nodes adopt a greedy forwarding

strategy wherein each relay node Xi that gets a packet relays it

to its farthest neighbor in a sector of angle φ (0 ≤ φ ≤ π), i.e.,

along ±φ/2 around the Xi–D axis (see Fig. 5). Evidently, for

a large φ, the direction of the farthest neighbor in the sector

may be off the Xi–D axis, while for a small φ, there may

not be enough nodes inside the sector. The natural question to

ask is the following: What value of φ maximizes the expected

progress of packets6 toward the destination?

A problem of similar flavor is studied in [12] for an

interference-limited PPP, wherein the authors evaluate the

optimal density of transmitters that maximizes the expected

progress of a packet. In [13], the author determines the energy

required to deliver a packet over a certain distance for various

routing strategies in a PPP. In [14], the optimal transmission

radius that maximizes the expected progress of a packet is de-

termined for different transmission protocols in Poisson packet

radio networks.

To evaluate the progress of a packet in the binomial network,

we first note that if there are exactly k nodes in an arbitrary

sector of angle φ and radius r = P 1/α (which is the range

of transmission), the average distance to the farthest (kth)

neighbor in that sector is the same as (13),7 with n = k,

R = r, and d = 2. We also know that the number of nodes

lying in that sector is binomial with parameters N and that

p = r2φ/2πR2 = P 2/αφ/2πR2. Thus, the mean distance to

the farthest neighbor in the sector can be written as

N
∑

k=1

(

N

k

)

pk(1 − p)N−k 2rk

2k + 1
. (16)

Note that the sectors emanating from nodes Xi and Xi+1

partially overlap and that the total number of nodes is fixed;

therefore, the mean distance to the farthest neighbor E[X ′] is

6We define the progress of a packet from a relay node Xi as the effective
distance traveled along the Xi–D axis.

7This follows from the observation that, in (1), the distance distributions
depend only on p = |b2(x, r) ∩ W |/|W |, and the values of p for the sector
and the circle are the same.
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Fig. 6. Expected progress of a packet (empirical and upper bound) for various
values of N . The square markers correspond to the optimum values of φ that
maximize the packet’s progress.

actually upper bounded by (16). However, since we consider

the farthest neighbors, the sectoral overlap is small.

Next, let Ψ denote the angle between the line connecting

Xi to its farthest neighbor (Xi+1) and the Xi–D axis. Since

the nodal distribution is uniformly random, Ψ is uniformly

distributed on [−φ/2,φ/2]. The expected progress of a packet

is E[X] = E[X ′]E[cos(Ψ)] since Ψ and X ′ are independent and

is upper bounded as

E[X] ≤
2

φ
sin

(

φ

2

) N
∑

k=1

2P 1/αk

2k + 1

(

N

k

)

pk (1 − p)N−k . (17)

The optimum value of φ that maximizes the progress of

packets can be numerically determined from (17).

Fig. 6 plots the expected progress of a packet (upper bound)

versus φ for several values of N using (17) and compares it

with the empirical value, obtained via simulation. We see that

the bound is reasonably tight, particularly at a lower N . The

optimum values of φ are also marked in the figure.

C. Localization

In wireless networks, localization is an integral component

of network self-configuration. Nodes that are able to accurately

estimate their positions can support a rich set of geographically

aware protocols and report the regions of detected events.

Localization is also useful for performing energy-efficient rout-

ing in a decentralized fashion.

In this section, we investigate conditional distance distribu-

tions and study their usefulness to localization algorithms. We

consider the scenario wherein a few nodes precisely know or

can accurately estimate their distances from the BS. Now, what

can be said about the distance statistics of the other nodes, given

this information?

Suppose we know that the kth nearest neighbor is at distance

s from the center.8 Then, clearly, the first k − 1 nodes are

uniformly randomly distributed in bd(o, s), while the more

distant nodes are uniformly randomly distributed in bd(o,R) \
bd(o, s). Following (4), the distance distributions of the first

k − 1 nearest neighbors from the origin can be written as

fRn
(r|Rk = s) =

d

s

B(n − 1/d + 1, k − n)

B(k − n, n)

×β

(

(r

s

)d

;n −
1

d
+ 1, k − n

)

, n < k

for 0 ≤ r ≤ s, which again follows a generalized beta

distribution.

For the remaining nodes, i.e., for n > k, we have, for

r ∈ [s,R]

fRn
(r|Rk = s) = −

d

dr
I1−q(N − n + 1, n − k)

=
drd−1

Rd − sd

(1 − q)N−nqn−k−1

B(N − n + 1, n − k)

where q = (rd − sd)/(Rd − sd).
The moments of Rn are also straightforward to obtain.

Following (12), we see that, for n < k and n + α/d > 0

E [Rα
n|Rk = s] =

sαn[α/d]

(k + 1)[α/d]
. (18)

For n > k, we have

E [Rα
n|Rk = s] =

R
∫

s

drα+d−1

Rd − sd

(1 − q)N−nqn−k−1

B(N − n + 1, n − k)
dr

=
1

B(N − n + 1, n − k)

×

1
∫

0

qn−k−1(1−q)N−n
(

q(Rd−sd)+sd
)

α/ddq

=
sα

(n − k)B(N − n + 1, n − k)

×F1

(

n−k;n−N,−
α

d
;n−k+1;1,1−

Rd

sd

)

where F1[a; b1, b2; c;x, y] is the Appell hypergeometric func-

tion of two variables.9

Often, it is easiest to measure the nearest-neighbor distance.

Give this distance as s, we have, for n > 1

fRn
(r|R1 =s)=

drd−1

Rd − sd

(

1−
(

rd−sd

Rd−sd

))N−n (

rd−sd

Rd−sd

)n−2

B(N − n + 1, n − 1)

8Based on the RSS from the BS, perhaps averaged over a period of time to
eliminate the variations due to fading, nodes can determine how many other
nodes are closer to the transmitter than they are. This way, a node would find
out that it is the kth nearest neighbor to the base station.

9Mathematica: AppellF1[a, b1, b2, c, x, y].
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Fig. 7. Mean conditional distances of the higher order neighbors in a binomial
network with ten nodes and d = 1, 2, and 3, when it is known that the nearest
neighbor is at unit distance away from the BS.

for r ∈ [s,R]. Furthermore, the mean conditional distances to

the remaining neighbors are

E[Rn|R1 = s] =
s

(n − 1)B(N − n + 1, n − 1)

×F1

(

n − 1;n − N,−
1

d
;n − 1; 1, 1 −

Rd

sd

)

.

Fig. 7 plots the mean conditional distances in a network with

ten nodes when the nearest-neighbor distance is unity.

D. Interference

To accurately determine network parameters such as outage,

throughput, and transmission capacity, the interference in the

system I needs to be known.

Let Tn ∈ {0, 1}, 1 ≤ n ≤ N , denote the r.v. representing

whether the nth nearest node to the BS transmits or not in

a particular time slot. With the channel access scheme being

ALOHA, these are i.i.d. Bernoulli variables (with parameter δ).

The mean interference as seen at the center of the network is

given by

µI = E

[

N
∑

n=1

(

TnR−α
n

)

]

=
N

∑

n=1

E[Tn]E
[

R−α
n

]

= δ

N
∑

n=1

E
[

R−α
n

]

.

Setting γ = −α and n = 1 in (12), we can conclude that

the mean interference is infinite for d ≤ α. This is due to the

nearest interferer. Even the mean interference from just the nth

nearest transmitter is infinite if α ≥ nd. When the number of

dimensions is greater than the PLE, we have, from (12)

µI =
δR−αΓ(N + 1)

Γ(N + 1 − α/d)

N
∑

n=1

Γ(n − α/d)

Γ(n)
.

One can inductively verify that

k
∑

n=1

Γ(n − α/d)

Γ(n)
=

Γ(k − α/d)

Γ(k)

k − α/d

1 − α/d
, ∀ k ∈ Z (19)

and we obtain, after some simplifications

µI =
NδdR−α

d − α
, d > α. (20)

The unboundedness of the mean interference at practical

values of d and α (i.e., d < α) actually occurs due to the fact

that the path loss model we employ breaks down for very small

distances, i.e., it exhibits a singularity at x = 0. One way to

overcome this issue is to impose a guard zone of radius ǫ around

every receiver. In other words, every receiver has an exclusion

zone of radius ǫ around it, and the nodes lying within it are not

allowed to transmit.

Since the average number of nodes in the ball b(o, ǫ) is

Nǫd/Rd, we obtain the mean interference in this case to be

µI =
NpdR−α

d − α
−

Nǫdδdǫ−α

Rd(d − α)

=
Nδd(Rd−α − ǫd−α)

Rd(d − α)
, ∀ d 0= α. (21)

Taking limits, we obtain µI = Nδd ln(R/ǫ)/Rd when

d = α.

E. Outage Probability and Connectivity

Assuming that the system is interference limited, an out-

age O is defined to occur if the signal-to-interference ratio at

the BS is lower than a certain threshold Θ. Let the desired

transmitter be located at unit distance from the origin, transmit

at unit power, and also not be a part of the original point process.

Then, the outage probability is Pr(O) = Pr[1/I < Θ].
Considering only the interference contribution from the near-

est neighbor to the origin, a simple lower bound is established

on the outage probability as

Pr(O) ≥ Pr
(

T1R
−α
1 > 1/Θ

)

= δ Pr(R1 < Θ
1/α)

=







δ

(

1 −
(

1 − Θ
d/α

Rd

)N
)

, Θ ≤ Rα

δ, Θ > Rα.

(22)

The empirical values of success probabilities and their upper

bounds (22) are plotted for different values of N in Fig. 8. As

the plot depicts, the bounds are tight for lower values of N
and Θ, and therefore, we conclude that the nearest neighbor

contributes most of the network interference. However, as α

decreases, the bound gets looser since the contributions from

the farther neighbors are also increased.

Next, we study the connectivity properties of the binomial

network, assuming that interference can be controlled or miti-

gated such that the system is noise limited. Define a node to be

connected to the origin if the SNR at the BS is greater than a
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Fig. 8. Comparison of exact success probabilities versus their upper bounds
for different values of the system parameters.

Fig. 9. Probability of the nth nearest neighbor n = 1, 2, . . . , 10 being con-
nected to the BS for a binomial network with 25 nodes.

threshold Θ. Let the nodes transmit at unit power and assume

noise to be additive white Gaussian noise with variance N0.

In the absence of interference, the probability that the BS is

connected to its nth nearest neighbor is

= Pr
(

R−α
n > N0Θ

)

= 1 − Pr
(

Rn > (N0Θ)−1/α
)

=

{

1 − I1−p′(N − n + 1, n), Θ > R−α/N0

1, Θ ≤ R−α/N0
(23)

where p′ = ((N0Θ)−1/α/R)d. Fig. 9 plots the connection prob-

ability in a 2-D binomial network with 25 nodes.

The mean number of nodes that are connected to the BS is

N min{1, (((N0Θ)−1/α/R))d}.

F. Other Applications

We now list a few other areas where knowledge of the

distance distributions is useful.

1) Routing: The question of whether to route over smaller

or longer hops is an important yet nontrivial issue [15],

[16], and it gets more complicated in the presence of

interference in the network. Knowledge of internode dis-

tances is necessary for the evaluation of the optimum hop

distance and maximizing the progress of a packet toward

its destination.

2) PLE estimation: The issue of PLE estimation is a very

important and relevant problem [17]. Several PLE esti-

mation algorithms are based on RSS techniques, which

require knowledge of the distances between nodes.

VI. CONCLUDING REMARKS

We have argued that the Poisson model for nodal distribu-

tions in wireless networks is not accurate in many practical sit-

uations and instead consider the often more-realistic binomial

network model. We have derived exact analytical expressions

for the cdf’s of the internode distances in a network where

a known number of nodes are independently distributed in a

compact set. Specializing to the case of an isotropic random

network, we have shown that the distances between nodes fol-

low a generalized beta distribution and express the moments of

these r.v.’s in closed form. We have also derived the distribution

of the internode distances for the BPP distributed on a regular

polygon. Our findings have applications in several problems re-

lating to wireless networks such as energy consumption, design

of efficient routing and localization algorithms, connectivity,

interference characterization, and outage evaluation.
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