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Abstract—This paper derives the exact cumulative density function (cdf)
of the distance between a randomly located node and any arbitrary refer-
ence point inside a regular L-sided polygon. Using this result, we obtain
the closed-form probability density function of the Euclidean distance
between any arbitrary reference point and its nth neighbor node when
N nodes are uniformly and independently distributed inside a regular
L-sided polygon. First, we exploit the rotational symmetry of the regular
polygons and quantify the effect of polygon sides and vertices on the
distance distributions. Then, we propose an algorithm to determine the
distance distributions, given any arbitrary location of the reference point
inside the polygon. For the special case when the arbitrary reference point
is located at the center of the polygon, our framework reproduces the
existing result in the literature.

Index Terms—Distance distributions, random distances, regular poly-
gons, wireless networks.

I. INTRODUCTION

Recently, distance distributions in wireless networks have received
much attention in the literature [1]–[3]. Distance distributions can be
applied to study important wireless network characteristics such as
interference, outage probability, connectivity, routing, and energy con-
sumption [1], [4]–[6]. Distance distributions in wireless networks are
dependent on the location of the nodes, which are seen as realizations
of some spatial point process. When the node locations follows an
infinite homogeneous Poisson point process, the probability density
function (pdf) of the Euclidean distance between a point and its nth
neighbor node follows a generalized Gamma distribution [7]. How-
ever, as recently identified in [1], [2], [8], and [9], this model does not
accurately reflect the distance distributions in many practical wireless
networks where a fixed and finite number of nodes are uniformly and
independently distributed over a finite area such as square, hexagon, or
disk region. Note that these finite regions of interest can conveniently
be modeled as special cases of a regular L-sided polygon (referred to
as an L-gon for brevity); for example, L = 3, 4, 6, and ∞ corresponds
to an equilateral triangle, square, hexagon, and disk, respectively. In
this context, the two important distance distributions are given as
follows: 1) the pdf of the Euclidean distance between two nodes
uniformly and independently distributed inside an L-gon and 2) the pdf
of the Euclidean distance between any arbitrary reference point and its
nth neighbor node when N nodes are uniformly and independently
distributed inside an L-gon. For the first case, the pdf of the distance
between two nodes that are uniformly and independently distributed
inside an equilateral triangle [10], square [11], [12], hexagon [3], [13],
and disk [11] are well known in the literature. These results are special
cases of the general result recently obtained in [14]. For the second
case, the pdf of the Euclidean distance to the nth neighbor node is
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obtained in [1] for the special case when the reference point is located
at the center of the L-gon.

In this paper, we present a general framework for analytically
obtaining the exact cumulative density function (cdf) of the distance
between a randomly located node and any arbitrary reference point
inside a regular L-gon. Using this result, we obtain the closed-form pdf
of the Euclidean distance between any arbitrary reference point and its
nth neighbor node when N nodes are uniformly and independently
distributed inside a regular L-gon. The proposed framework is based
on characterizing the overlap area between the L-gon and a disk that is
centered at the arbitrary reference point located inside the L-gon. The
following two key insights lead to our results: 1) the use of the rotation
operator that simplifies the characterization of distances and overlap
areas and 2) the systematic analysis of the effect of L-gon sides and
vertices on the overlap area. Based on our proposed framework, we
formulate an algorithm to determine the distance distributions, given
any location of the reference point inside the polygon. We provide
examples to demonstrate the generality of our proposed framework.
We also show that the result in [1] can be obtained as a special case in
our framework.

II. SYSTEM MODEL

Consider N nodes that are uniformly and independently distributed
inside a regular L-gon A ∈ R

2, where R
2 denotes the 2-D Euclidean

domain. Let u = [x, y]T ∈ A denote an arbitrary reference point
located inside the L-gon, where [·]T denotes transpose of a vector.

A. Polygon Geometry

Without loss of generality, we assume that the L-gon is inscribed
in a circle of radius R and is centered at the origin [0, 0]T . Then, its
inradius is Ri = R cos(π/�), and its area A is given by

A = |A| = 1
2
LR2 sin

(2π
L

)
. (1)

Let S� and V� denote the sides and vertices of the polygon for
� = 1, 2, . . . , L, which are numbered in an anticlockwise direction, as
shown in Fig. 1. We assume that the first vertex V1 of the polygon is at
[R, 0]T , i.e., at the intersection of the circle that inscribes the polygon
and the x-axis. The interior angle of the polygon θ and the central
angle between two adjacent vertices ϑ are given by

θ =
π(L− 2)

L
and ϑ =

2π
L

. (2)

B. Rotation Operator

For compact representation, we define the rotation operator R� that
rotates an arbitrary point u = [x, y]T anticlockwise around the origin
by an angle � ϑ. The rotated point R�u can thus be expressed as

(R�u) = Tu, (3)

where T is the corresponding rotation matrix of R� and is given by

T =

(
cos(�ϑ) − sin(�ϑ)
sin(�ϑ) cos(�ϑ)

)
. (4)

In addition, define R−� as the inverse rotation operator with rotation
matrix T−1, which rotates an arbitrary point u = [x, y]T clockwise
around the origin by an angle � ϑ. We note that the rotation under
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Fig. 1. Sides, vertices, and angles for the L-gon inscribed in a circle of radius
R. θ that denote the interior angle of the polygon and ϑ that denote the central
angle between two adjacent vertices are defined in (2).

the operator R is an isometric operation that preserves the distances
between any two points in the 2-D plane, i.e., det(T) = 1 and
TT−1 = I, where I denotes the identity matrix.

C. Distances From the Polygon Sides and Vertices

In this section, we find the distances from an arbitrary reference
point u located inside the polygon to all its sides and vertices. First, we
examine the distance to any vertex. Using the geometry, the distance
d(u; V1) between the point u and the vertex V1 is given by

d(u;V1) =
√

(x−R)2 + y2. (5)

To find the distances to the remaining vertices, we use d(u; V1)
and exploit the rotational symmetry of the L-gon. By appropriately
rotating the point u and then finding its distance from vertex V1, we
can, in fact, find the distance to other vertices. Thus, using (5) and the
rotation operator defined in (3), we can express d(u; V�) as

d(u;V�) = d(R−(�−1)u;V1). (6)

Next, we examine the distance to any side. We define this distance
to any side as the shortest distance between the point u and the line
segment that was formed by the side of the polygon. If the projection
of the point u onto a side lies inside the side, then the shortest distance
is given by the perpendicular distance between the point and the side.
If the projection of the point u onto a side does not lie on the side,
then the shortest distance is the minimum of the distance to the side
endpoints. Using the geometry, the perpendicular distance from an
arbitrary point u to the line segment formed by side S1 is given by

p(u;S1) =
abs

(
y + tan

(
θ
2

)
x−R tan

(
θ
2

))
√

1 + tan2
(
θ
2

) , (7)

where abs(·) denotes the absolute value. The distance to the side
S1 endpoints is simply given by d(u; V1) and d(u; V2). Thus, the
shortest distance d(u; S1) to the side S1 can be expressed as

d(u;S1)

=

{
min (d(u;V1), d(u;V2)) , max (d(u;V1), d(u;V2))>t;
p(u;S1), otherwise;

(8)

Fig. 2. Nonsymmetric circular segment areas formed outside the sides S1, S2,
and S4 for a square (L = 4-gon). There is also an overlap between the circular
segment areas formed outside the sides S1 and S2.

where w=[R− (1/2)(x−R)(cosϑ− 1)+y sinϑ, (sinϑ
(
(x−R)

(cosϑ− 1) + y sinϑ
)
/2(1 − cosϑ))]T denotes the perpendicular

projection of u onto the line segment formed by side S1, t =
2R sin(π/L) is the side length of the L-gon, and min(·) and max(·)
denote the minimum and maximum values, respectively. Then, using
(3), we can express p(u; S�) and d(u; S�) as

p(u;S�)=p(R−(�−1)u; S1), d(u;S�)=d(R−(�−1)u;S1). (9)

Definition 1: Define the distance vector d as an indexed vector
of the distances from the arbitrary point u ∈ A to all the sides and
vertices of the L-gon, which are defined in (5), (6), (8), and (9) as

d = [d(u;S1), . . . , d(u;SL), d(u;V1), . . . , d(u;VL)] . (10)

III. PROBLEM FORMULATION

Consider a disk D(u; r) of radius r centered at the arbitrary
reference point u. First, we define the probability that a random node,
which is uniformly distributed inside the L-gon A, lies at a distance of
less than or equal to r from the point u.

Definition 2: Define the cdf F (u; r), which is the probability that
a random node falls inside a disk D(u; r) of radius r centered at the
arbitrary reference point u, as

F (u; r) =
|D(u; r) ∩ A|

|A| =
O(u; r)

A
, (11)

where O(u; r) = |D(u; r) ∩ A| is the overlap area between the disk
D(u; r) and the L-gon A.

Then, the pdf fn(u; r) of the distance from an arbitrary point u to
the nth neighbor node is [1]

fn(u; r) =
(1 − F (u; r))N−n (F (u; r))n−1

B(N − n+ 1, k)
∂ F (u; r)

∂r
, (12)

where N is the number of nodes that are uniformly and independently
distributed inside the L-gon, B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the
beta function, Γ(·) denotes the gamma function, ∂(·)/∂r denotes the
partial derivative with respect to the variable r, and F (u; r) is given
in (11).
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Fig. 3. Effect of sides and vertices of the polygon on the overlap. (a) Overlap area is limited by side S1. (b) Overlap area is limited by sides S1 and SL only.
(c) Overlap area is limited by sides S1 and SL with the inclusion of the vertex V1.

The challenge in evaluating (11) and (12) is finding the overlap
area O(u; r). When the reference point is located at the center of the
L-gon, the overlap area O(u; r) can easily be evaluated, as shown
in [1]. For 0 ≤ r ≤ Ri [where Ri is the L-gon inradius previously
defined (1)], the disk D(u; r) is entirely inside the L-gon A. Thus,
the overlap area is the same as the area of the disk, i.e., O(u; r) =
πr2. For Ri ≤ r ≤ R, [where R is the L-gon circumradius], there
are L circular-segment-shaped portions of the disk D(u; r) that are
outside the L-gon. Because these circular segments are symmetric
and there is no overlap between them, the overlap area is given
by O(u; r) = πr2 − L× (area of one circular segment). Note that,
in this case, it is simple to find the area of one circular segment using
geometry.

When the reference point is not located at the center, then the
circular segments are no longer symmetric. For simplicity, this is
illustrated in Fig. 2 for the case of a square (L = 4). We can see that,
for the given radius of the disk D(u; r) centered at the reference point,
nonsymmetric circular segment areas are formed outside the sides
S1, S2, and S4. In addition, there is an overlap between the circular
segment areas formed outside the sides S1 and S2. This complicates
the task of finding the overlap area O(u; r). In addition, for any
arbitrary location of the reference point, the different ranges for r are
no longer exclusively determined by the inradius Ri and circumradius
R but by the number of unique distances from the reference point to
the vertices and the sides. This adds further complexity to the task of
finding the overlap area O(u; r).

In the next section, we propose our method to systematically ac-
count for the effect of sides and vertices on the overlap area O(u; r).
Then, in Section V, we propose an algorithm to automatically formu-
late the different ranges for r and find the overlap area O(u; r) to
evaluate (11) and (12).

IV. CHARACTERIZATION OF THE EFFECT OF

SIDES AND VERTICES

In this section, we characterize the effect of polygon sides and
vertices on the overlap area O(u; r). Because of the symmetry of the
polygon, we only need to consider the following three cases, which
are illustrated in Fig. 3; other cases can be handled as an appropriate
combination of these cases.

1) The overlap area is limited by one side of the polygon only. This
is illustrated in Fig. 3(a) for side S1.

2) The overlap area is limited by two sides of the polygon, and
there is no overlap between them. This is illustrated in Fig. 3(b)
for sides S1 and SL.

3) The overlap area is limited by two sides of the polygon, and there
is overlap between them. This is illustrated in Fig. 3(c) for sides
S1 and SL and vertex V1.

A. Case 1: Overlap Area Limited by Only One Side

Let B1(u; r) denote the circular segment formed outside the side
S1, as shown in Fig. 3(a). It is obvious that the overlap area in
this case is given by O(u; r) = πr2 −B1(u; r), where B1(u; r) =
|B1(u; r)|. Using polar coordinates, we can find the area B1(u; r)
by integrating the angle θ1 [shown in Fig. 3(a)] over B1(u; r) as
expressed in (13), shown at the bottom of the page, where p(u;S1)
and d(u;S1) are given in (7) and (8), respectively.

Generalizing, let B�(u; r) denote the circular segment that is formed
outside the side S�. Using (13), shown at the bottom of the next page,
and the rotation operator in (3), we can express B�(u; r) as

B�(u; r) =
{
B1(R

−(�−1)u; r), r ≥ d(u;S�);
0 otherwise.

(14)

B1(u; r) = ‖B1(u; r)‖ = 2

r∫
d(u;S1)

r′ arccos

(
p(u;S1)

r′

)
dr′

=

⎧⎪⎨
⎪⎩

r2 arccos
(
p(u;S1)

r

)
− (d(u;S1))

2 arccos
(

p(u;S1)
d(u;S1)

)
−p(u;S1)

(√
r2 − (p(u;S1))

2 −
√

(d(u;S1))
2 − (p(u;S1))

2
)
, r ≥ d(u;S1);

0, otherwise;

(13)
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B. Case 2: Overlap Area Limited by Two Sides With No Overlap

This case is illustrated in Fig. 3(b), where two circular segments
B1(u; r) and BL(u; r) are formed outside the sides S1 and SL, respec-
tively. Because there is no overlap between the circular segments, the
overlap area is given by O(u; r) = πr2 − (B1(u; r) +BL(u; r)),
where B1(u; r) is given by (13), and BL(u; r) can be found
using (14).

C. Case 3: Overlap Area Limited by Two Sides With an Overlap

This case is illustrated in Fig. 3(c), where there is an overlap
between the two circular segments B1(u; r) and BL(u; r) formed
outside sides S1 and SL due to the inclusion of the vertex V1. Let
C1(u; r) = B1(u; r) ∩ BL(u; r) denote this overlap region between
the two circular segments. Thus, in this case, the overlap area is given
by O(u; r) = πr2 − (B1(u; r) +BL(u; r)− C1(u; r)).

Using polar coordinates, we can find the area C1(u; r) by integrat-
ing the angle θ2 [shown in Fig. 3(c)] over C1(u; r), as expressed in
(15), shown at the bottom of the page, where d(u;V1), p(u;S1), and
p(u;SL) are given in (5), (7), and (9), respectively.

Generalizing, let C�(u; r) denote the overlap region between two
circular segments that adjoin the vertex V� of the polygon. Using (15)
and the rotation operator in (3), we can express C�(u; r) as

C�(u; r) =

{
C1

(
R−(�−1)u; r

)
, r ≥ d(u;V�);

0 otherwise.
(16)

The expressions for the derivatives of B�(u; r) and C�(u; r), which
are needed in the evaluation of ∂F (u; r)/∂r in (12), are provided in
the Appendix.

V. DISTANCE DISTRIBUTIONS IN POLYGONS

In this section, we present our algorithm to use the distance vector
in (10) and the effect of different sides and vertices [see (13)–(16)]
to find the overlap area O(u; r), given any arbitrary reference point
u = [x, y]T located inside the L-gon A.

The overall effect of the sides and vertices of the L-gon depends on
the range of the distance r and on the distance between the reference
point and all the sides and vertices. Because an L-gon has L sides and
L vertices, there can be 2L+ 1 different ranges for the distance r. We
sort the distance vector d in (10) in ascending order and define d́ to be
the sorted distance vector. Then, the first range of the distance is 0 ≤
r ≤ d́1, where d́1 denotes the first entry of the sorted distance vector
d́. The next 2L− 1 ranges are d́j ≤ r ≤ d́j+1, j = 2, 3, . . . , 2L, and

the last range is d́2L ≤ r. Thus, in general, we can write an expression
for O(u; r) as

O(u; r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

O1(u; r) = πr2, 0 ≤ r ≤ d́1

O2(u; r), d́1 ≤ r ≤ d́2

...
...

O2L(u; r), d́2L−1 ≤ r ≤ d́2L

O2L+1(u; r) = A, r ≥ d́2L

(17)

where the subscript j in Oj(u; r) denotes the overlap area for the jth
range.

For the first range 0 ≤ r ≤ d́1, S1(u; r) = πr2, because the disk
D(u; r) will be completely inside the L-gon. For the last range
d́2L ≤ r, O2L+1(u; r) = A, because the disk D(u; r) will completely
overlap with the L-gon A. For the intermediate ranges, the overlap
area may be limited by any number of sides, with or without an
overlap between any two adjacent sides. In addition, depending on
the location of the arbitrary reference point, some of the distance to
the sides and vertices may be the same. To automate the process of
finding the unique set of ranges for the distance r and to calculate
the corresponding overlap area for each unique range, we propose
Algorithm 1.

Algorithm 1: Algorithm for finding the overlap area.

Step 1: Sort d in (10) in ascending order to obtain d́.
Step 2: Determine the index sorting that transforms d into d́ and
obtain the index vector k.
Step 3: Find the appropriate circular segment areas and the overlap
area.
for each j in j = 1, 2, 3, . . . , 2L+ 1, do

if d́j−1 − d́j �= 0, (d́0 = 0), then
Oj(u; r) = πr2

for each i in i = 1, 2, 3, . . . , j − 1, do
if ki ≤ L, then

Oj(u; r) = Oj(u; r)−Bki
(u; r)

else
Oj(u; r) = Oj(u; r) + Cki−L(u; r)

end if
end for

end if
end for

C1(u; r)

= ‖C1(u; r)‖ =

r∫
d(u;V1)

r′
(
π(L− 2)

L
+ arccos

(
p(u;S1)

r′

)
+ arccos

(
p(u;SL)

r′

)
− π

)
dr′

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r2

2

(
arccos

(
p(u;S1)

r

)
+ arccos

(
p(u;SL)

r

))
− (d(u;V1))

2

2

(
arccos

(
p(u;S1)
d(u;V1)

)
+ arccos

(
p(u;SL)
d(u;V1)

))

+ p(u;S1)

2

(√
(d(u;V1))

2 − (p(u;S1))
2 −

√
r2 − (p(u;S1))

2
)

+ p(u;SL)
2

(√
(d(u;V1))

2 − (p(u;SL))
2 −

√
r2 − (p(u;SL))

2
)
− π

L

(
r2 − (d(u;V1))

2
)
, r ≥ d(u;V1)

0 otherwise

(15)
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In the proposed algorithm, we sort the distance vector d in (10) in
ascending order to obtain the sorted distance vector d́ and the index
vector k = [k1, k2, . . . , k2L]. The index vector k is then used to find
the effect of sides and vertices on the overlap area for each value of
range. For each unique range d́j−1 − d́j , which is determined in the
outer for loop, we evaluate the overlap area Oj(u; r) in (17) in the
inner for loop by taking into account the cumulative effect of all of
the sides and vertices. The terms BL(u; r) and CL(u; r) are appropri-
ately selected using the index vector k. Once O(u; r) in (17) has been
computed for each unique range, it can then used to evaluate (11) and
(12). We have implemented the proposed algorithm in MATLAB.

A. Algorithm Illustration: Arbitrary Reference Point in a Square

To illustrate the proposed framework and algorithm, we consider
the problem to find the cdf in (11) and the pdf in (12) for a point
u1 = [R/2, −R/2]T located in the middle of the side S4 of the square
(L = 4). The distance vector d in (10) and the sorted distance vector
d́ are given by

d =

[
R√

2
,
√

2R,
R√

2
, 0,

R√
2
,

√
10R
2

,

√
10R
2

,
R√

2

]
,

d́ =

[
0,

R√
2
,
R√

2
,
R√

2
,
R√

2
,
√

2R,

√
10R
2

,

√
10R
2

]
.

Thus, the index vector k for this case is given by k = [4, 1, 3, 5,
8, 2, 6, 7], which is employed to determine O(u; r) in (17) using the
proposed algorithm. Thus, the cdf is

F (u1; r)

=
1
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πr2 −B4, 0 ≤ r ≤ R√
2
;

πr2 − (B1 +B2

+B4 − C1 − C4),
R√
2
≤ r ≤

√
2R;

πr2 − (B1 +B2 +B3

+B4 − C1 − C4),
√

2R ≤ r ≤
√
10R
2

;

A, r ≥
√
10R
2

.

(18)

Substituting (18) and its derivative, which is obtained using the ex-
pressions in the Appendix in (12), we obtain the pdf of the distance
to the nth neighbor, which is shown in Fig. 4 for R = 1, N = 5,
and n = 1, 2, . . . , 5. We can see that the simulation results, which
are averaged over 10 000 simulation runs, perfectly match with the
analytical results, verifying the proposed framework and algorithm.

B. Special Case: Reference Point at the Center of the Polygon

Consider the special case that the reference point is located at
the center O of the polygon, i.e., at the origin u2 = [0 0]T . All
of the sides and also all of the vertices are equidistant from the
center of the polygon, and the rotation operator does not affect the
point located at the origin. This implies that d(u2;S�) = d(u2;S1) =
R tan(θ/2), d(u2;V�) = d(u2;V1) = R, B� = B1, and C� = C1

for � = 2, 3, . . . , L. By employing these relations and the proposed
algorithm, we obtain the cdf expression for the following three possible
ranges:

F (u2; r) =
1
A

⎧⎪⎨
⎪⎩

πr2, 0 ≤ r ≤ R tan
(
θ
2

)
;

πr2 − LB1, R tan
(
θ
2

)
≤ r ≤ R;

A, r ≥ R;

(19)

Fig. 4. PDF fn(u; r) of the distance to nth nearest neighbor for a point
located midway between V1 and V4 on the side S4 of the square (L = 4).
The circumradius is R = 1, and the number of nodes is N = 5.

Fig. 5. PDF f10(u; r) of the distance to the farthest neighbor for a point
located at the vertex of the polygon with area A = 100 and N = 10 nodes
for a triangle (L = 3), square (L = 4), hexagon (L = 6), and disk (L = ∞).
Solid lines show the analytical result using our proposed algorithm, and markers
provide verification using simulation.

where B1=r2 arccos((R/r) tan(θ/2))−Rtan(θ/2)
√

r2−R2 tan2(θ/2),
and θ is defined in (2). Substituting (19) in (12) reproduces the result
in [1].

C. Special Case: Reference Point at the Vertex of the Polygon

Consider the special case when the arbitrary point is located at one
of the vertices of the polygon. Let the point u3 be located at V1,
i.e., u3 = [R 0]T . From the vertex V1, the sides S�, SL+1−� and the
vertices V�, VL+2−� are all equidistant for � = 2, 3, . . . 
L/2�, where

·� denotes the integer floor function. Hence, there are (L/2) + 1
possible ranges of the distance. By using the proposed algorithm to
determine the overlap area O(u; r), we obtain the cdf expression
for these ranges as shown in (20) at the top of the next page,
which is then used to the evaluate the pdf of the distance to the
nth neighbor by employing (12). Fig. 5 shows the plot of the pdf of
the distance to the farthest neighbor (n = 10) from the vertex V1,
with N = 10 nodes distributed inside an L-gon with area A = 100,
for L = 3, 4, 6, and L = ∞, which corresponds to a disk. For a
disk, we can easily use the overlap area approach to obtain
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F (u3; r) =
1
A

⎧⎪⎨
⎪⎩

πr2 −
�∑

i=1

(Bi +BL+i−1 − Ci − CL+2−i), d(u3, V�) ≤ r ≤ d(u3, V�+1), � = 1, 2, . . .
⌊
L
2

⌋
, CL+1 = 0;

A, d(u3, V�L
2
�+1) ≤ r;

(20)

F (u; r) =
1

πR2

⎧⎨
⎩

πr2, 0 ≤ r ≤ R− ψ(u);

r2 arccos
(

r2+ψ2(u)−R2

2rψ(u)

)
+R2 arccos

(
R2+ψ2(u)−r2

2Rψ(u)

)
−

√
ζ

2
, R− ψ(u) < r ≤ R+ ψ(u);

πR2, R+ d < r;

(21)

the cdf as expressed in (21), shown at the top of the page,
where ζ = (ψ(u) + r +R)(−ψ(u) + r +R)(ψ(u)− r +R)(r +

ψ(u)−R), and ψ(u) =
√

x2 + y2 denotes the distance of the point
u from the origin. Note that (21) is similar to [15, eq. (11)] but
with different range conditions. Setting ψ(u3) = R and substituting
(21) in (12) produces the result for a disk shown in Fig. 5. For the
simulation results, we have used the acceptance–rejection method [16]
to uniformly distribute the points inside the L-gon and averaged the
results over 10 000 simulation runs. Again, it can be shown that the
simulation results perfectly match with the analytical results.

VI. CONCLUSION

In this paper, we have derived the exact cdf of the distance between
a randomly located node and any arbitrary reference point inside a
regular L-gon. We have used it to obtain the closed-form pdf of
the Euclidean distance between any arbitrary reference point and its
nth neighbor node when N nodes are uniformly and independently
distributed inside a regular L-gon. We have provided examples to
demonstrate the generality of our proposed framework. Future work
can exploit the knowledge of these general distance distributions
to model and analyze the wireless network characteristics such as
connectivity [17], interference, and outage probability from the per-
spective of an arbitrary node that is located anywhere (i.e., not just the
center) in the finite coverage area.

APPENDIX

DERIVATIVES

By employing the Leibniz integral rule, we can express the deriva-
tives of B�(u; r) and C�(u; r), which are required in the evaluation of
(∂F (u; r)/∂r) in (12), as

∂B�(u; r)

∂r
= 2r arccos

(
d(u;S�)

r

)
, (22)

∂C�(u; r)

∂r
= r

(
arccos

(
p(u;S�)

r

)

+ arccos

(
p(u;S�−1)

r

)
− 2π

L

)
. (23)
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