Distance domination and distance irredundance in graphs

Adriana Hansberg, Dirk Meierling and Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
e-mail: \{hansberg,meierling,volkm\}@math2.rwth-aachen.de

Submitted: Feb 13, 2007; Accepted: Apr 25, 2007; Published: May 9, 2007
Mathematics Subject Classification: 05C69

Abstract

A set $D \subseteq V$ of vertices is said to be a (connected) distance k-dominating set of G if the distance between each vertex $u \in V-D$ and D is at most k (and D induces a connected graph in G). The minimum cardinality of a (connected) distance k-dominating set in G is the (connected) distance k-domination number of G, denoted by $\gamma_{k}(G)\left(\gamma_{k}^{c}(G)\right.$, respectively). The set D is defined to be a total k-dominating set of G if every vertex in V is within distance k from some vertex of D other than itself. The minimum cardinality among all total k-dominating sets of G is called the total k-domination number of G and is denoted by $\gamma_{k}^{t}(G)$. For $x \in X \subseteq V$, if $N^{k}[x]-N^{k}[X-x] \neq \emptyset$, the vertex x is said to be k-irredundant in X. A set X containing only k-irredundant vertices is called k-irredundant. The k-irredundance number of G, denoted by $i r_{k}(G)$, is the minimum cardinality taken over all maximal k-irredundant sets of vertices of G. In this paper we establish lower bounds for the distance k-irredundance number of graphs and trees. More precisely, we prove that $\frac{5 k+1}{2} i r_{k}(G) \geq \gamma_{k}^{c}(G)+2 k$ for each connected graph G and $(2 k+1) i r_{k}(T) \geq \gamma_{k}^{c}(T)+2 k \geq|V|+2 k-k n_{1}(T)$ for each tree $T=(V, E)$ with $n_{1}(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann [9] and Cyman, Lemańska and Raczek [2] regarding γ_{k} and the first generalizes a result of Favaron and Kratsch [4] regarding $i r_{1}$. Furthermore, we shall show that $\gamma_{k}^{c}(G) \leq \frac{3 k+1}{2} \gamma_{k}^{t}(G)-2 k$ for each connected graph G, thereby generalizing a result of Favaron and Kratsch [4] regarding $k=1$.

Keywords: domination, irredundance, distance domination number, total domination number, connected domination number, distance irredundance number, tree

2000 Mathematics Subject Classification: 05C69

1 Terminology and introduction

In this paper we consider finite, undirected, simple and connected graphs $G=(V, E)$ with vertex set V and edge set E. The number of vertices $|V|$ is called the order of G and is denoted by $n(G)$. For two distinct vertices u and v the distance $d(u, v)$ between u and v is the length of a shortest path between u and v. If X and Y are two disjoint subsets of V, then the distance between X and Y is defined as $d(X, Y)=\min \{d(x, y) \mid x \in X, y \in Y\}$. The open k-neighborhood $N^{k}(X)$ of a subset $X \subseteq V$ is the set of vertices in $V \backslash X$ of distance at most k from X and the closed k-neighborhood is defined by $N^{k}[X]=$ $N^{k}(X) \cup X$. If $X=\{v\}$ is a single vertex, then we denote the (closed) k-neighborhood of v by $N^{k}(v)\left(N^{k}[v]\right.$, respectively). The (closed) 1-neighborhood of a vertex v or a set X of vertices is usually denoted by $N(v)$ or $N(X)$, respectively ($N[v]$ or $N[X]$, respectively). Now let U be an arbitrary subset of V and $u \in U$. We say that v is a private k-neighbor of u with respect to U if $d(u, v) \leq k$ and $d\left(u^{\prime}, v\right)>k$ for all $u^{\prime} \in U-\{u\}$, that is $v \in N^{k}[u]-N^{k}[U-\{u\}]$. The private k-neighborhood of u with respect to U will be denoted by $P N^{k}[u, U]\left(P N^{k}[u]\right.$ if $\left.U=V\right)$.

For a vertex $v \in V$ we define the degree of v as $d(v)=|N(v)|$. A vertex of degree one is called a leaf and the number of leaves of G will be denoted by $n_{1}(G)$.

A set $D \subseteq V$ of vertices is said to be a (connected) distance k-dominating set of G if the distance between each vertex $u \in V-D$ and D is at most k (and D induces a connected graph in G). The minimum cardinality of a (connected) distance k-dominating set in G is the (connected) distance k-domination number of G, denoted by $\gamma_{k}(G)\left(\gamma_{k}^{c}(G)\right.$, respectively). The distance 1-domination number $\gamma_{1}(G)$ is the usual domination number $\gamma(G)$. A set $D \subseteq V$ of vertices is defined to be a total k-dominating set of G if every vertex in V is within distance k from some vertex of D other than itself. The minimum cardinality among all total k-dominating sets of G is called the total k-domination number of G and is denoted by $\gamma_{k}^{t}(G)$. We note that the parameters $\gamma_{k}^{c}(G)$ and $\gamma_{k}^{t}(G)$ are only defined for connected graphs and for graphs without isolated vertices, respectively.

For $x \in X \subseteq V$, if $P N^{k}[x] \neq \emptyset$, the vertex x is said to be k-irredundant in X. A set X containing only k-irredundant vertices is called k-irredundant. The k-irredundance number of G, denoted by $\operatorname{ir}_{k}(G)$, is the minimum cardinality taken over all maximal k-irredundant sets of vertices of G.

In 1975, Meir and Moon [10] introduced the concept of a k-dominating set (called a ' k-covering' in [10]) in a graph, and established an upper bound for the k-domination number of a tree. More precisely, they proved that $\gamma_{k}(T) \leq|V(T)| /(k+1)$ for every tree T. This leads immediately to $\gamma_{k}(G) \leq|V(G)| /(k+1)$ for an arbitrary graph G. In 1991, Topp and Volkmann [11] gave a complete characterization of the class of graphs G that fulfill the equality $\gamma_{k}(G)=|V(G)| /(k+1)$.

The concept of k-irredundance was introduced by Hattingh and Henning [5] in 1995. With $k=1$, the definition of an k-irredundant set coincides with the notion of an irredundant set, introduced by Cockayne, Hedetniemi and Miller [1] in 1978. Since then a lot of research has been done in this field and results have been presented by many authors (see [5]).

In 1991, Henning, Oellermann and Swart [8] motivated the concept of total distance domination in graphs which finds applications in many situations and structures which give rise to graphs.

For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi and Slater [6], [7].

In this paper we establish lower bounds for the distance k-irredundance number of graphs and trees. More precisely, we prove that $\frac{5 k+1}{2} i r_{k}(G) \geq \gamma_{k}^{c}(G)+2 k$ for each connected graph G and $(2 k+1) i r_{k}(T) \geq \gamma_{k}(T)+2 k \geq|V|+2 k-k n_{1}(T)$ for each tree $T=(V, E)$ with $n_{1}(T)$ leaves. A class of examples shows that the latter bound is sharp. Since $\gamma_{k}(G) \geq i r_{k}(G)$ for each connected graph G, the latter generalizes a result of Meierling and Volkmann [9] and Cyman, Lemanska and Raczek [2] regarding γ_{k} and the former generalizes a result of Favaron and Kratsch [4] regarding $i r_{1}$. In addition, we show that if G is a connected graph, then $\gamma_{k}^{c}(G) \leq(2 k+1) \gamma_{k}(G)-2 k$ and $\gamma_{k}^{c}(G) \leq \frac{3 k-1}{2} \gamma_{k}^{t}(G)-2 k$ thereby generalizing results of Duchet and Meyniel [3] for $k=1$ and Favaron and Kratsch [4] for $k=1$, respectively.

2 Results

First we show the inequality $\gamma_{k}^{c} \leq(2 k+1) \gamma_{k}-2 k$ for connected graphs.
Theorem 2.1. If G is a connected graph, then

$$
\gamma_{k}^{c}(G) \leq(2 k+1) \gamma_{k}(G)-2 k
$$

Proof. Let G be a connected graph and let D be a distance k-dominating set. Then $G[D]$ has at most $|D|$ components. Since D is a distance k-dominating set, we can connect two of these components to one component by adding at most $2 k$ vertices to D. Hence, we can construct a connected k-dominating set $D^{\prime} \supseteq D$ in at most $|D|-1$ steps by adding at most $(|D|-1) 2 k$ vertices to D. Consequently,

$$
\gamma_{k}^{c}(G) \leq\left|D^{\prime}\right| \leq|D|+(|D|-1) 2 k=(2 k+1)|D|-2 k
$$

and if we choose D such that $|D|=\gamma_{k}(G)$, the proof of this theorem is complete.
The results given below follow directly from Theorem 2.1.
Corollary 2.2 (Duchet \& Meyniel [3] 1982). If G is a connected graph, then

$$
\gamma^{c}(G) \leq 3 \gamma(G)-2
$$

Corollary 2.3 (Meierling \& Volkmann [9] 2005; Cyman, Lemańska \& Raczek [2] 2006). If T is a tree with n_{1} leaves, then

$$
\gamma_{k}(T) \geq \frac{|V(T)|-k n_{1}+2 k}{2 k+1}
$$

Proof. Since $\gamma_{k}^{c}(T) \geq|V(T)|-k n_{1}$ for each tree T, the proposition is immediate.
The following lemma is a preparatory result for Theorems 2.5 and 2.7.
Lemma 2.4. Let G be a connected graph and let I be a maximal k-irredundant set such that $\operatorname{ir}_{k}(G)=|I|$. If $I_{1}=\left\{v \in I \mid v \in P N^{k}[v]\right\}$ is the set of vertices that have no k-neighbor in I, then

$$
\gamma_{k}^{c}(G) \leq(2 k+1) i r_{k}(G)-2 k+(k-1) \frac{\left|I-I_{1}\right|}{2} .
$$

Proof. Let G be a connected graph and let $I \subseteq V$ be a maximal k-irredundant set. Let

$$
I_{1}:=\left\{v \in I \mid v \in P N^{k}[v]\right\}
$$

be the set of vertices in I that have no k-neighbors in I and let

$$
I_{2}:=I-I_{1}
$$

be the complement of I_{2} in I. For each vertex $v \in I_{2}$ let $u_{v} \in P N^{k}[v]$ be a k-neighbor of v such that the distance between v and u_{v} is minimal and let

$$
B:=\left\{u_{v} \mid v \in I_{2}\right\}
$$

be the set of these k-neighbors. Note that $|B|=\left|I_{2}\right|$. If w is a vertex such that $w \notin$ $N^{k}[I \cup B]$, then $I \cup\{w\}$ is a k-irredundant set of G that strictly contains I, a contradiction. Hence $I \cup B$ is a k-dominating set of G.

Note that $G[I \cup B]$ has at most $|I \cup B|=\left|I_{1}\right|+2\left|I_{2}\right|$ components. From $I \cup B$ we shall construct a connected k-dominating set $D \supseteq I \cup B$ by adding at most

$$
\left|I_{2}\right|(k-1)+\left(\left|I_{1}\right|+\left\lfloor\frac{\left|I_{2}\right|}{2}\right\rfloor-1\right) 2 k+\left\lfloor\frac{\left|I_{2}\right|}{2}\right\rfloor(k-1)
$$

vertices to $I \cup B$.
We can connect each vertex $v \in I_{2}$ with its corresponding k-neighbor $u_{v} \in B$ by adding at most $k-1$ vertices to $I \cup B$.

Recall that each vertex $v \in I_{2}$ has a k-neighbor $w \neq v$ in I_{2}. Therefore we need to add at most $k-1$ vertices to $I \cup B$ to connect such a pair of vertices.

By combining the two observations above, we can construct a k-dominating set $D^{\prime} \supseteq$ $I \cup B$ from $I \cup B$ with at most $\left|I_{1}\right|+\left\lfloor\left|I_{2}\right| / 2\right\rfloor$ components by adding at most $(k-1)\left|I_{2}\right|+$ $(k-1)\left\lceil\left|I_{2}\right| / 2\right\rceil$ vertices to $I \cup B$. Since D^{\prime} is a k-dominating set of G, these components can be joined to a connected k-dominating set D by adding at most $\left(\left|I_{1}\right|+\left\lfloor\left|I_{2}\right| / 2\right\rfloor-1\right) 2 k$ vertices to D^{\prime}.

All in all we have shown that there exists a connected k-dominating set D of G such that

$$
\begin{aligned}
|D| & \leq\left|I_{1}\right|+2\left|I_{2}\right|+(k-1)\left|I_{2}\right|+(k-1)\left\lceil\frac{\left|I_{2}\right|}{2} \left\lvert\,+2 k\left(\left|I_{1}\right|+\left\lfloor\frac{\left|I_{2}\right|}{2}\right\rfloor-1\right)\right.\right. \\
& \leq(2 k+1)|I|-2 k+(k-1) \frac{\left|I_{2}\right|}{2}
\end{aligned}
$$

Hence, if we choose the set I such that $|I|=i r_{k}(G)$, the proof of this lemma is complete.

Since $\left|I_{2}\right| \leq|I|$ for each k-irredundant set I, we derive the following theorem.
Theorem 2.5. If G is a connected graph, then

$$
\gamma_{k}^{c}(G) \leq \frac{5 k+1}{2} i r_{k}(G)-2 k
$$

The next result follows directly from Theorem 2.5.
Corollary 2.6 (Favaron \& Kratsch [4] 1991). If G is a connected graph, then

$$
\gamma^{c}(G) \leq \operatorname{3ir}(G)-2
$$

For acyclic graphs Lemma 2.4 can be improved as follows.
Theorem 2.7. If T is a tree, then

$$
\gamma_{k}^{c}(T) \leq(2 k+1) i r_{k}(T)-2 k .
$$

Proof. Let T be a tree and let $I \subseteq V$ be a maximal k-irredundant set. Let

$$
I_{1}:=\left\{v \in I \mid v \in P N^{k}[v]\right\}
$$

be the set of vertices in I that have no k-neighbors in I and let

$$
I_{2}:=I-I_{1}
$$

be the complement of I_{2} in I. For each vertex $v \in I_{2}$ let $u_{v} \in P N^{k}[v]$ be a k-neighbor of v such that the distance between v and u_{v} is minimal and let

$$
B:=\left\{u_{v} \mid v \in I_{2}\right\}
$$

be the set of these k-neighbors. Note that $|B|=\left|I_{2}\right|$. If w is a vertex such that $w \notin$ $N^{k}[I \cup B]$, then $I \cup\{w\}$ is a k-irredundant set of G that strictly contains I, a contradiction. Hence $I \cup B$ is a k-dominating set of G.

Note that $T[I \cup B]$ has at most $|I \cup B|=\left|I_{1}\right|+2\left|I_{2}\right|$ components. From $I \cup B$ we shall construct a connected k-dominating set $D \supseteq I \cup B$ by adding at most

$$
(2 k-1)\left|I_{2}\right|+2 k\left(\left|I_{1}\right|-1\right)
$$

vertices to $I \cup B$. To do this we need the following definitions. For each vertex $v \in I_{2}$ let P_{v} be the (unique) path between v and u_{v} and let x_{v} be the predecessor of u_{v} on P_{v}. Let $I_{2}=S \cup L_{1} \cup L_{2}$ be a partition of I_{2} such that

$$
S=\left\{v \in I_{2} \mid d\left(v, u_{v}\right)=1\right\}
$$

is the set of vertices of I_{2} that are connected by a 'short' path with u_{v},

$$
L_{1}=\left\{v \in I_{2} \mid N^{k}\left(x_{v}\right) \cap I_{1} \neq \emptyset\right\}
$$

is the set of vertices of I_{2} that are connected by a 'long' path with u_{v} and the vertex x_{v} has a k-neighbor in I_{1} and

$$
L_{2}=I_{2}-\left(S \cup L_{1}\right)
$$

is the complement of $S \cup L_{1}$ in I_{2}. In addition, let $L=L_{1} \cup L_{2}$. We construct D following the procedure given below.

Step 0: Set $\mathcal{I}:=I_{2}, \mathcal{S}:=S$ and $\mathcal{L}:=L$.
Step 1: We consider the vertices in \mathcal{S}.
Step 1.1: If there exists a vertex $v \in \mathcal{S}$ such that $d(v, w) \leq k$ for a vertex $w \in \mathcal{L}$, we can connect the vertices v, u_{v}, w and u_{w} to one component by adding at most $2(k-1)$ vertices to $I \cup B$.
Set $\mathcal{I}:=\mathcal{I}-\{v, w\}, \mathcal{S}:=\mathcal{S}-\{v\}$ and $\mathcal{L}:=\mathcal{L}-\{w\}$ and repeat Step 1.1.
Step 1.2: If there exists a vertex $v \in \mathcal{S}$ such that $d(v, w) \leq k$ for a vertex $w \in \mathcal{S}$ with $v \neq w$, we can connect the vertices v, u_{v}, w and u_{w} to one component by adding at most $k-1$ vertices to $I \cup B$.
Set $\mathcal{I}:=\mathcal{I}-\{v, w\}$ and $\mathcal{S}:=\mathcal{S}-\{v, w\}$ and repeat Step 1.2.
Step 1.3: If there exists a vertex $v \in \mathcal{S}$ such that $d(v, w) \leq k$ for a vertex $w \in I_{2}-(\mathcal{S} \cup \mathcal{L})$, we can connect the vertices v and u_{v} to w by adding at most $k-1$ vertices to $I \cup B$.
Set $\mathcal{I}:=\mathcal{I}-\{v\}$ and $\mathcal{S}:=\mathcal{S}-\{v\}$ and repeat Step 1.3.
Note that after completing Step 1 the set \mathcal{S} is empty and there are at most $\left|I_{1}\right|+2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}$ components left, where r_{i} denotes the number of times Step 1.i was repeated for $i=1,2,3$. Furthermore, we have added at most $(k-1)\left(2 r_{1}+r_{2}+r_{3}\right)$ vertices to $I \cup B$.
Step 2: We consider the vertices in L_{1}.
If there exists a vertex $v \in L_{1} \cap \mathcal{L}$, let $w \in I_{1}$ be a k-neighbor of x_{v}. We can connect the vertices v, u_{v} and w to one component by adding at most $2(k-1)$ vertices to $I \cup B$.
Set $\mathcal{I}:=\mathcal{I}-\{v\}$ and $\mathcal{L}:=\mathcal{L}-\{v\}$ and repeat Step 2 .
Note that after completing Step 2 we have $\mathcal{L} \subseteq L_{2}$ and there are at most $\left|I_{1}\right|+$ $2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}-2 s$ components left, where s denotes the number of times Step 2 was repeated and the numbers r_{i} are defined as above. Furthermore, we have added at most $(k-1)\left(2 r_{1}+r_{2}+r_{3}+2 s\right)$ vertices to $I \cup B$.
Step 3: We consider the vertices in L_{2}. Recall that for each vertex $v \in L_{2}$ the vertex x_{v} has a k-neighbor $w \in I_{2}$ besides v.

Let v be a vertex in $L_{2} \cap \mathcal{L}$ such that x_{v} has a k-neighbor $w \in I_{2}-\mathcal{I}$. We can connect the vertices v, u_{v} and w by adding at most $2(k-1)$ vertices to $I \cup B$. Set $\mathcal{I}:=\mathcal{I}-\{v\}$ and $\mathcal{L}:=\mathcal{L}-\{v\}$ and repeat Step 3 .
Note that after completing Step 3 the sets \mathcal{I} and \mathcal{L} are empty and there are at most $\left|I_{1}\right|+2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}-2 s-2 t$ components left, where t denotes the number of times Step 3 was repeated and the numbers r_{i} and s are defined as above. Furthermore, we have added at most $(k-1)\left(2 r_{1}+r_{2}+r_{3}+2 s+2 t\right)$ vertices to $I \cup B$.
Step 4: We connect the remaining components to one component.
Let D^{\prime} be the set of vertices that consists of $I \cup B$ and all vertices added in Steps 1 to 3 . Since D^{\prime} is a k-dominating set of G, the remaining at most $\left|I_{1}\right|+2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}-2 s-2 t$ components can be connected to one component by adding at most $\left(\left|I_{1}\right|+2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}-2 s-2 t-1\right) 2 k$ vertices to D^{\prime}.
After completing Step 4 we have constructed a connected k-dominating set $D \supseteq I \cup B$ by adding at most
$(k-1)\left(2 r_{1}+r_{2}+r_{3}+2 s+2 t\right)+\left(\left|I_{1}\right|+2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}-2 s-2 t-1\right) 2 k$
vertices to $I \cup B$.
We shall show now that the number of vertices we have have added is less or equal than $(2 k-1)\left|I_{2}\right|+2 k\left(\left|I_{1}\right|-1\right)$. Note that $\left|I_{2}\right|=2 r_{1}+2 r_{2}+r_{3}+s+t$. Then

$$
\begin{aligned}
(k- & 1)\left(2 r_{1}+r_{2}+r_{3}+2 s+2 t\right)+\left(\left|I_{1}\right|+2\left|I_{2}\right|-3\left(r_{1}+r_{2}\right)-2 r_{3}-2 s-2 t-1\right) 2 k \\
& -(2 k-1)\left|I_{2}\right|-2 k\left(\left|I_{1}\right|-1\right) \\
= & (2 k+1)\left|I_{2}\right|-3 k\left(2 r_{1}+2 r_{2}+r_{3}+s+t\right)-k\left(r_{3}+s+t\right) \\
& +(k-1)\left(2 r_{1}+r_{2}+r_{3}+2 s+2 t\right) \\
= & -(k-1)\left(2 r_{1}+2 r_{2}+r_{3}+s+t\right)-k\left(r_{3}+s+t\right)+(k-1)\left(2 r_{1}+r_{2}+r_{3}+2 s+2 t\right) \\
= & -(k-1) r_{2}-k r_{3}-s-t \\
\leq & 0 .
\end{aligned}
$$

If we choose $|I|$ such that $|I|=i r_{k}(T)$, it follows that

$$
\begin{aligned}
\gamma_{k}^{c}(T) & \leq|D| \leq\left|I_{1}\right|+2\left|I_{2}\right|+2 k\left|I_{1}\right|+(2 k-1)\left|I_{2}\right|-2 k \\
& =(2 k+1)|I|-2 k \\
& =(2 k+1) i r_{k}(T)-2 k
\end{aligned}
$$

which completes the proof of this theorem.
As an immediate consequence we get the following corollary.

Corollary 2.8. If T is a tree with n_{1} leaves, then

$$
i r_{k}(G) \geq \frac{|V(T)|-k n_{1}+2 k}{2 k+1}
$$

Proof. Since $\gamma_{k}^{c}(T) \geq|V(T)|-k n_{1}$ for each tree T, the result follows directly from Theorem 2.7.

Note that, since $\gamma_{k}(G) \geq i r_{k}(G)$ for each graph G, Corollary 2.8 is also a generalization of Corollary 2.3. The following theorem provides a class of examples that shows that the bound presented in Theorem 2.7 is sharp.

Theorem 2.9 (Meierling \& Volkmann [9] 2005; Cyman, Lemanska \& Raczek [2] 2006). Let \mathcal{R} denote the family of trees in which the distance between each pair of distinct leaves is congruent $2 k$ modulo $(2 k+1)$. If T is a tree with n_{1} leaves, then

$$
\gamma_{k}(T)=\frac{|V(T)|-k n_{1}+2 k}{2 k+1}
$$

if and only if T belongs to the family \mathcal{R}.
Remark 2.10. The graph in Figure 1 shows that the construction presented in the proof of Theorem 2.7 does not work if we allow the graph to contain cycles. It is easy to see that $I=\left\{v_{1}, v_{2}\right\}$ is an $i r_{2}$-set of G and that $D=\left\{u_{1}, u_{2}, x_{1}, x_{2}, x_{3}\right\}$ is a γ_{2}^{c}-set of G. Following the construction in the proof of Theorem 2.7, we have $I_{1}=\emptyset, I_{2}=\left\{v_{1}, v_{2}\right\}$ and $B=\left\{u_{1}, u_{2}\right\}$ and consequently, $D^{\prime}=I_{2} \cup B \cup\left\{x_{1}, x_{2}, x_{3}\right\}$. But $\left|D^{\prime}\right|=7 \not \leq 6=$ $(2 \cdot 2+1)|I|-2 \cdot 2$ and D contains none of the vertices of I.

Figure 1.
Nevertheless, we think that the following conjecture is valid.
Conjecture 2.11. If G is a connected graph, then

$$
\gamma_{k}^{c}(G) \leq(2 k+1) i r_{k}(G)-2 k .
$$

Now we analyze the relation between the connected distance domination number and the total distance domination number of a graph.

Theorem 2.12. If G is a connected graph, then

$$
\gamma_{k}^{c}(G) \leq \frac{3 k+1}{2} \gamma_{k}^{t}(G)-2 k
$$

Proof. Let G be a connected graph and let D be a total k-dominating set of G of size $\gamma_{k}^{t}(G)$. Each vertex $x \in D$ is in distance at most k of a vertex $y \in D-\{x\}$. Thus we get a dominating set of G with at most $\lfloor|D| / 2\rfloor$ components by adding at most $\lceil|D| / 2\rceil(k-1)$ vertices to D. As in the proof of Lemma 2.4, the resulting components can be joined to a connected k-dominating set $\left|D^{\prime}\right|$ by adding at most $(\lfloor|D| / 2\rfloor-1) 2 k$ vertices. Consequently,
$\gamma_{k}^{c}(G) \leq\left|D^{\prime}\right| \leq|D|+\left\lceil\frac{|D|}{2}\right\rceil(k-1)+\left(\left\lfloor\frac{|D|}{2}\right\rfloor-1\right) 2 k \leq \frac{3 k+1}{2}|D|-2 k=\frac{3 k+1}{2} \gamma_{k}^{t}(G)-2 k$
and the proof is complete.
For distance $k=1$ we obtain the following result.
Corollary 2.13 (Favaron \& Kratsch [4] 1991). If G is a connected graph, then

$$
\gamma^{c}(G) \leq 2 \gamma^{t}(G)-2
$$

The following example shows that the bound presented in Theorem 2.12 is sharp.
Example 2.14. Let P be the path on $n=(3 k+1) r$ vertices with $r \in \mathbb{N}$. Then $\gamma_{k}^{c}(P)=$ $n-2 k, \gamma_{k}^{t}(P)=2 r$ and thus, $\gamma_{k}^{c}(P)=\frac{3 k+1}{2} \gamma_{k}^{t}(P)-2 k$.

References

[1] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller: Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978), 461-468.
[2] J. Cyman, M. Lemańska and J. Raczek: Lower bound on the distance k-domination number of a tree, Math. Slovaca 56 (2006), no. 2, 235-243.
[3] P. Duchet, H. Meyniel: On Hadwiger's number and the stability number, Ann. Discrete Math. 13 (1982), 71-74.
[4] O. Favaron and D. Kratsch: Ratios of domination parameters, Advances in graph theory, Vishwa, Gulbarga (1991), 173-182.
[5] J.H. Hattingh and M.A. Henning: Distance irredundance in graphs, Graph Theory, Combinatorics, and Applications, John Wiley \& Sons, Inc. 1 (1995) 529-542.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater: Domination in Graphs: Advanced Topics, Marcel Dekker, New York (1998).
[8] M.A. Henning, O.R. Oellermann and H.C. Swart: Bounds on distance domination parameters, J. Combin. Inform. System Sci. 16 (1991) 11-18.
[9] D. Meierling and L. Volkmann: A lower bound for the distance k-domination number of trees, Result. Math. 47 (2005), 335-339.
[10] A. Meir and J.W. Moon: Relations between packing and covering number of a tree, Pacific J. Math. 61 (1975), 225-233.
[11] J. Topp and L. Volkmann: On packing and covering numbers of graphs, Discrete Math. 96 (1991), 229-238.

